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Shrinking methods in regression analysis are usually designed for metric
predictors. In this article, however, shrinkage methods for categorial predic-
tors are proposed. As an application we consider data from the Munich rent
standard, where, for example, urban districts are treated as a categorial pre-
dictor. If independent variables are categorial, some modifications to usual
shrinking procedures are necessary. Two L1-penalty based methods for fac-
tor selection and clustering of categories are presented and investigated. The
first approach is designed for nominal scale levels, the second one for ordinal
predictors. Besides applying them to the Munich rent standard, methods are
illustrated and compared in simulation studies.

1. Introduction. Within the last decade regularization, and in particular vari-
able selection, has been a topic of intensive research. With the introduction of the
Lasso, proposed by Tibshirani (1996), sparse modeling in the high-dimensional
predictor case with good performance, in terms of identification of relevant vari-
ables combined with good performance in predictive power, became possible. In
the following many alternative regularized estimators that include variable selec-
tion were proposed, among them the Elastic Net [Zou and Hastie (2005)], SCAD
[Fan and Li (2001)], the Dantzig Selector [Candes and Tao (2007)] and Boosting
approaches [for example, Bühlmann and Yu (2003)].

This article provides a regularized regression analysis of Munich rent standard
data. All larger German cities publish so-called rent standards for having guide-
lines available to tenants, landlords, renting advisory boards and experts. These
rent standards are used, in particular, to determine the local comparative rent. For
the composition of rent standards, a representative random sample is drawn from
all relevant households, and the interesting data are determined by interviewers
by means of questionnaires. The data analyzed come from 2053 households in-
terviewed for the Munich rent standard 2003. The response is monthly rent per
square meter in Euro. The predictors are ordered as well as unordered and bi-
nary factors. A detailed description is given in Table 1. The data can be down-
loaded from the data archive of the Department of Statistics at the University of
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TABLE 1
Explanatory variables for monthly rent per square meter

Urban district Nominal, labeled by numbers
1, . . . ,25

Year of construction Given in ordered classes [1910,1919],
[1920,1929], . . .

Number of rooms Taken as ordinal factor with levels
1,2, . . . ,6

Quality of residential area Ordinal, with levels “fair,”
“good,” “excellent”

Floor space (in m2) Given in ordered classes (0,30),

[30,40), [40,50), . . . , [140,∞)

Hot water supply Binary (yes/no)
Central heating Binary (yes/no)
Tiled bathroom Binary (yes/no)
Supplementary equipment in bathroom Binary (no/yes)
Well equipped kitchen Binary (no/yes)

Munich (http://www.stat.uni-muenchen.de/service/datenarchiv). The direct link is
found there.

For example, the urban district is given as a nominal predictor with 25 possible
values. The decade of construction can be interpreted as ordinal with 10 levels.
Usually such data are analyzed via standard linear regression modeling, with (for
example) dummy coded categorial explanatory variables. In the present situation
such modeling is possible, since the number of observations (2053) is quite high.
Nevertheless, from the viewpoint of interpretation, model selection is desired with
the focus on reducing model complexity.

In selection problems for categorical predictors as in the Munich rend data ex-
ample, it should be distinguished between two problems:

• Which categorical predictors should be included in the model?
• Which categories within one categorical predictor should be distinguished?

The latter problem is concerned with one variable and poses the question of which
categories differ from one another with respect to the dependent variable. Or, to
put it in a different way, which categories should be collapsed? The answer to
that question depends on the scale level of the predictor, one should distinguish
between nominal and ordered categories because of their differing information
content.

When investigating which of the 25 urban districts of Munich are to be dis-
tinguished with respect to the local rent, the number of possible combinations is
huge. If only urban districts are used as categorial predictor in a regression model
to explain the monthly rent, and districts are potentially fused (without further

http://www.stat.uni-muenchen.de/service/datenarchiv
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restrictions), the number of possible models—which just follow from different fu-
sion results—is greater than 1018. In cases like that—that is, when the number of
possible models is large—regularization techniques which induce sparsity are a
promising approach for model selection. The extent of regularization—and hence
sparsity—is typically controlled by a tuning parameter. Via choosing this parame-
ter, the model is also implicitly selected.

Most of the regularization techniques developed so far focus on the selection
of variables in the case where the effect of one variable is determined by one
coefficient. That means coefficients are selected rather than variables. When all
predictors are metric and a main effect model is assumed to hold, of course se-
lection of coefficients is equivalent to selection of predictor variables and model
selection. This is different when categorical variables have to be included because
then a whole group of coefficients refers to one variable.

To be more concrete, let us first consider just one categorial predictor C ∈
{0, . . . , k} and dummy coding xi = I{C=i}. Then the classical linear model is given
as

y = α +
k∑

i=0

βixi + ε,

with E(ε) = 0 and Var(ε) = σ 2. If category 0 is chosen as reference, coefficient
β0 is fixed to zero. When computing a penalized estimate, for example, by use of
the simple Lasso [Tibshirani (1996)], the shrinkage effect depends on the coding
scheme that is used and the choice of the reference category. With category zero
chosen as reference, shrinkage always refers to the difference between category
i and zero. Moreover, Lasso type penalties tend to set some coefficients to zero.
Usually this feature is seen as a great advantage over methods like Ridge regres-
sion, since it can be used for model/variable selection. Applied to dummy coded
categorial predictors, however, selection only refers to the currently chosen refer-
ence category. In most cases of nominal predictors, class labeling and choice of
the reference category is arbitrary, which means that the described selection pro-
cedures are not really meaningful. In addition, the estimated model is not invariant
against irrelevant permutations of class labels.

One of the few approaches that explicitly select categorical predictors was pro-
posed by Yuan and Lin (2006) under the name Group Lasso. The approach explic-
itly includes or excludes groups of coefficients that refer to one variable. However,
while the Group Lasso only attacks the problem of factor selection, for categori-
cal predictor variables with many categories a useful strategy is to (additionally)
search for clusters of categories with similar effects. As already described, in the
presented application (among other things) we try to model the influence of the
urban district where a person lives on the rent she/he has to pay. In Figure 1 a map
of Munich is drawn with color coded urban districts. Colors correspond to dummy
coefficients if an ordinary least squares model is fitted with (dummy coded) ex-
planatory variables from Table 1 and response monthly rent per square meter (in
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FIG. 1. Map of Munich indicating urban districts; colors correspond to estimated dummy coeffi-
cients if an ordinary least squares model is fitted with predictors from Table 1 and response monthly
rent per square meter (in Euro).

Euro). Some districts are hard to distinguish. That means it can be expected that
not all districts do differ substantially. If an ordinary least squares model is fitted,
however, estimated dummy coefficients (almost surely) differ. Therefore, the aim
is to combine districts which (on average) do not substantially differ in terms of
rent per square meter. Generally speaking, that means the objective is to reduce
the k + 1 categories to a smaller number of categories which form clusters. The
effect of categories within one cluster is supposed to be the same but responses
will differ across clusters. Therefore, in a regression model corresponding dummy
coefficients should be equal. Since, however, the number of possible clustering
results—and hence the number of models—tends to be very large (as already men-
tioned), model selection via regularization is quite attractive.

Clustering or fusion of metric predictors may, for example, be obtained by so-
called Variable Fusion [Land and Friedman (1997)] and the Fused Lasso proposed
by Tibshirani et al. (2005). If predictors can be ordered, by putting a L1-penalty
on differences of adjacent coefficients many of these differences are set to zero,
yielding a piecewise constant coefficient function. Recently, Bondell and Reich
(2009) adapted this methodology for factor selection and level fusion in ANOVA,
to obtain dummy coefficients that are constant over some of the categories. The
main focus of Bondell and Reich (2009), however, was on ANOVA typical iden-
tification of differences, not on model building as in our case, where prediction
accuracy is also an important aspect. So in the following the method is reviewed
and adapted to regression type problems. Some modifications are proposed and an
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FIG. 2. Paths of dummy coefficients of two categorial predictors obtained by the regularization
technique proposed here for the analysis of rent standard data.

approximate solution is presented which allows for easy computation of coefficient
paths. In addition, the method is adapted to the modeling of ordinal predictors.

Figure 2 shows paths of dummy coefficients for the rent data obtained by the
method used in this article. The coefficients at value s/smax = 1 correspond to the
ordinary least squares model. It is seen that with decreasing tuning parameter s,
categories are successively fused, that is, coefficients are set equal. Besides the
urban district, several other covariates are given, among them the (categorized)
year of construction. Corresponding paths of dummy coefficients are also shown
in Figure 2.

2. Regularization for categorical predictors. In the following we consider
the penalized least squares criterion

Qp(β) = (y − Xβ)T (y − Xβ) + λJ (β),(1)

with design matrix X, coefficient vector β and penalty J (β); y contains the ob-
served response values. The estimate of β is given by

β̂ = argmin
β

{Qp(β)}.(2)
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The decisive point is a suitable choice of penalty J (β). We start with the case
of one categorial explanatory variable and will distinguish between nominal and
ordinal predictors.

2.1. Unordered categories. If the categorial predictor has only nominal scale
level, a modification of Variable Fusion [Land and Friedman (1997)] and the Fused
Lasso [Tibshirani et al. (2005)] has been proposed by Bondell and Reich (2009) in
the form of the penalty

J (β) = ∑
i>j

wij |βi − βj |,(3)

with weights wij and βi denoting the coefficient of dummy xi . Since the order-
ing of x0, . . . , xk is arbitrary, not only differences βi − βi−1 (as in original fusion
methodology), but all differences βi − βj are considered. Since i = 0 is chosen as
reference, β0 = 0 is fixed. Therefore, in the limit case, λ → ∞, all βi are set to
zero and the categorial predictor C is excluded from the model since no categories
are distinguished anymore. For λ < ∞ the Lasso type penalty (3) sets only some
differences βi − βj to zero, which means that categories are clustered. With ad-
equately chosen weights wij , some nice asymptotic properties like selection and
clustering consistency of β̂ can be derived. These (adaptive) weights decisively
depend on the distance of the ordinary least squares estimates β̂

(LS)
i and β̂

(LS)
j .

For details see Proposition 1 in the Appendix. The issue, how to select concrete
weights in the n < ∞ case, is further addressed in Sections 2.5 and 3.2.

2.2. Ordered categories. An interesting case are selection strategies for ordi-
nal predictors, as, for example, the decade of construction from Table 1. Ordered
categories contain more information than unordered ones, but the information has
not been used in the penalties considered so far. Since in the case of ordered cate-
gories the ordering of dummy coefficients is meaningful, original fusion method-
ology can be applied, which suggests penalty

J (β) =
k∑

i=1

wi |βi − βi−1|,(4)

with β0 = 0. In analogy to asymptotic properties for the unordered case, with ad-
equately chosen weights wi , similar results can be derived; see the Appendix for
details.

2.3. Computational issues. For the actual application of the proposed method
a fitting algorithm is needed. For that purpose it is useful to consider the penal-
ized minimization problem (2) as a constrained minimization problem. That means
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(y −Xβ)T (y −Xβ) is minimized subject to a constraint. For unordered categories
the constraint corresponding to penalty (3) is∑

i>j

wij |βi − βj | ≤ s,

with β0 = 0. There is a one-to-one correspondence between the bound s and
penalty parameter λ in (1); cf. Bondell and Reich (2009). For estimation pur-
poses we consider transformed parameters θij = βi − βj which yield vector
θ = (θ10, θ20, . . . , θk,k−1)

T . If θ is directly estimated (instead of β), one has to
take into account that restrictions θij = θi0 − θj0 must hold for all i, j > 0. For
practical estimation, parameters θij are additionally split into positive and nega-
tive parts, that is,

θij = θ+
ij − θ−

ij ,

with

θ+
ij ≥ 0, θ−

ij ≥ 0,

and ∑
i>j

wij (θ
+
ij + θ−

ij ) ≤ s.

Minimization can be done by using quadratic programming methods. We used R
2.9.0 [R Development Core Team (2009)] and the interior point optimizer from
add-on package kernlab [Karatzoglou et al. (2004)].

The problem with quadratic programming is that the solution can only be com-
puted for a single value s. To obtain a coefficient path (as in Figure 2), the proce-
dure needs to be applied repeatedly. Moreover, when applying the method to our
data, we found numerical problems, especially when s was small. To attack these
problems, we propose an approximate solution which can be computed using R
add-on package lars [Efron et al. (2004)], where “approximate” means that only
θij ≈ θi0 − θj0 holds. For simplicity, we assume that weights wij = 1 are chosen.
But results can be generalized easily (see Section 2.5). For the approximation we
exploit that the proposed estimator can be seen as the limit of a generalized Elas-
tic Net. The original Elastic Net [Zou and Hastie (2005)] uses a combination of
simple Ridge and Lasso penalties. We use a generalized form where the quadratic
penalty term is modified. With Z so that Zθ = Xβ , we define

θ̂γ,λ = argmin
θ

{
(y − Zθ)T (y − Zθ) + γ

∑
i>j>0

(θi0 − θj0 − θij )
2 + λ

∑
i>j

|θij |
}
.

A simple choice of Z is Z = (X|0), since θi0 = βi , i = 1, . . . , k. The first penalty
term, which is weighted by γ , penalizes violations of restrictions θij = θi0 − θj0.
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The exact solution of the optimization problem considered here is obtained as the
limit

θ̂ = lim
γ→∞ θ̂γ,λ.

Hence, with sufficiently high γ , an acceptable approximation should be obtained.
If matrix A represents restrictions θij = θi0 − θj0 in terms of Aθ = 0, one may
define precision by

	γ,λ = (Aθ̂γ,λ)
T Aθ̂γ,λ.

The lower 	γ,λ the better. An upper bound is given by

	γ,λ ≤ λ(|θ̂ (LS)| − |θ̂0,λ|)
γ

,

where θ̂ (LS) denotes the least squares estimate (i.e., λ = 0) where Aθ̂(LS) = 0
holds, and |θ | = ∑

i>j |θij | denotes the L1-norm of vector θ . (For a proof see the

Appendix.) θ̂ (LS) can be computed by θ̂γ,0 if any γ > 0 is chosen. Not surprisingly,
for higher λ higher γ must also be chosen to stabilize precision.

The advantage of using the estimate θ̂γ,λ is that its whole path can be computed
using lars [Efron et al. (2004)], since it can be formulated as a Lasso solution.
With augmented data Z̃ = (ZT ,

√
γAT )T and ỹ = (yT ,0)T , one has

θ̂γ,λ = argmin
θ

{
(ỹ − Z̃θ)T (ỹ − Z̃θ) + λ

∑
i>j

|θij |
}
,

which is a Lasso type problem on data (ỹ, Z̃).
In the case of ordinal predictors the penalty is

J (β) =
k∑

i=1

|βi − βi−1|,

and the corresponding optimization problem can be directly formulated as a simple
Lasso type problem. We write

Qp(β) = (y − Xβ)T (y − Xβ) + λJ (β) = (y − X̃δ)T (y − X̃δ) + λJ (δ),

with X̃ = XU−1, δ = Uβ , J (δ) = ∑k
i=1 |δi |, and

U =

⎛
⎜⎜⎝

1 0 · · · 0
−1 1 · · · 0

0
. . .

. . . 0
0 · · · −1 1

⎞
⎟⎟⎠ .
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Simple matrix multiplication shows that the inverse of U is given by

U−1 =

⎛
⎜⎜⎜⎝

1 0 · · · 0

1 1
. . .

...
...

. . . 0
1 · · · · · · 1

⎞
⎟⎟⎟⎠ .

In other words, the ordinal input is just split-coded [Walter, Feinstein and Wells
(1987)], and ordinary Lasso estimation is applied. Split-coding means that dum-
mies x̃i are defined by splits at categories i = 1, . . . , k, that is,

x̃i =
{

1, if C ≥ i,
0, otherwise.

Now the model is parameterized by coefficients δi = βi −βi−1, i = 1, . . . , k. Thus,
transitions between category i and i − 1 are expressed by coefficient δi . Original
dummy coefficients are obtained by back-transformation βi = ∑i

s=1 δs . By apply-
ing penalty

∑k
i=1 |δi |, not the whole ordinal predictor is selected, but only rele-

vant transitions between adjacent categories. By contrast, Walter, Feinstein and
Wells (1987) intended the use of classical tests for such identification of substan-
tial “between-strata differences.”

2.4. Multiple inputs. In our application, as usual in statistical modeling, a set
of (potential) regressors is available (see Table 1) and only the relevant predictors
should be included into the model. In the introduction we already considered two
predictors, the urban district where a flat is located and the decade of construction.
For the handling of multiple categorial predictors in general, say, x1, . . . , xp , with
levels 0, . . . , kl for variable xl (l = 1, . . . , p, and fixed p), the presented methods
can be easily generalized. The corresponding penalty is

J (β) =
p∑

l=1

Jl(βl),(5)

with

Jl(βl) = ∑
i>j

w
(l)
ij |βli − βlj |, or Jl(βl) =

kl∑
i=1

w
(l)
i |βli − βl,i−1|,

depending on the scale level of predictor xl . The first expression refers to nominal
covariates, the second to ordinal ones.

If multiple predictors are considered, clustering of categories of single predic-
tors as well as selection of predictors is of interest. Penalty (5) serves both objec-
tives, clustering and selection. If all dummy coefficients that belong to a specific
predictor are set to zero, the corresponding predictor is excluded from the model.
Within each nominal predictor xl , there is also an L1-penalty on the differences
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to the dummy coefficient of the reference category. Since the latter is fixed to
zero, clustering of all categories of xl means that all coefficients which belong
to predictor xl are set to zero. In the ordinal case, this happens if all differences
δli = βli − βl,i−1 of adjacent dummy coefficients of predictor xl are set to zero.

2.5. Incorporation of weights. In many situations weights w
(l)
ij 	= 1 are to be

preferred over the simple weights w
(l)
ij = 1, for example, to obtain the adaptive

versions described in Propositions 1 and 3 in the Appendix, or when predictors
differ in the number of levels, as in the rent standard application (see Table 1). For
nominal variables Bondell and Reich (2009) suggested the weights

w
(l)
ij = (kl + 1)−1

√√√√n
(l)
i + n

(l)
j

n
,(6)

where n
(l)
i denotes the number of observations on level i of predictor xl . In the

adaptive version the weights contain additionally the factor |β̂(LS)
li − β̂

(LS)
lj |−1. The

use of these weights (6) was motivated through standardization of design matrix Z

from Section 2.3, in analogy to standardization of metric predictors. In the follow-
ing these weights are also considered, but multiplied by 2. If predictor xl is nomi-
nal, the factor (kl + 1)−1 is necessary to ensure that penalty Jl(βl) in (5) is of or-
der kl , the number of (free) dummy coefficients. Without these additional weights
Jl(βl) would be of order (kl + 1)kl , because the penalty consists of (kl + 1)kl/2
terms if no ordinal structure is assumed. By contrast, if the predictor is ordinal, the
penalty is already of order kl . Hence, the factor 2(kl + 1)−1 is omitted in this case.

In general, if weights w
(l)
ij 	= 1 are included, the model just has to be parame-

terized by vector θ̃ = Wθ , where W is a diagonal matrix with diagonal elements
w

(l)
ij . That means the (centered) design matrix needs to be multiplied by W−1.

2.6. Refitting procedures. The most attractive features of the methods de-
scribed above are variable selection and clustering. However, due to penalization,
estimates are obviously biased. In the usual ANOVA case, this is not a problem,
since the focus is on the identification of differences, and not on quantification. In
our case—as in regression analysis in general—we are also interested in parameter
estimation and prediction accuracy. In order to reduce the bias, refitting procedures
have been proposed by several authors, for example, by Efron et al. (2004) under
the name “Lars-OLS hybrid,” or by Candes and Tao (2007) as “Gauss-Dantzig Se-
lector.” In our setting, that means that the penalty in (1) is only used for variable
selection and clustering. After the identification of relevant predictors and clusters,
parameters are refitted by ordinary least squares. If variable selection and cluster-
ing are based on the already mentioned adaptive weights, asymptotic behavior is
obtained which is similar to the nonrefitting case; for details, see the remarks on
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Proposition 1 in the Appendix. However, before we apply the refitting method to
the rent data (where n < ∞), its effect is also tested in simulation studies (see
Section 3.2).

3. Numerical experiments. Before applying the presented methodology to
the Munich rent standard data in Section 4, the different approaches are tested and
some characteristics are investigated in simulation studies.

3.1. An illustrative example. In the first simulation scenario only one pre-
dictor and a balanced design are considered with 20 (independent) observations
in each of i = 0, . . . ,8 classes. In class i the response is N(μi , 4)-distributed,
where the means form three distinct groups of categories, that is, μ0 = μ1 = μ2,
μ3 = μ4 = μ5, μ6 = μ7 = μ8. Figure 3 (left) shows empirical distributions as well
as the true μi , which are marked by dashed lines. Moreover, exact and approximate
paths of dummy coefficients (middle) are shown, where the nonadaptive version
of penalty J (β) is employed. That means the weighting term |β̂(LS)

i − β̂
(LS)
j |−1

is omitted. Since there is only one predictor and the design is balanced, simple
weights wij = 1 can be used. The x-axis indicates s/smax, the ratio of actual and
maximal s value. The latter results in the ordinary least squares (OLS) estimate.
With decreasing s (or increasing penalty λ), categories are successively grouped

FIG. 3. Empirical within-class distributions (left), exact and approximate coefficient paths (mid-
dle), as well as results of the adaptive version (right); constant α is marked by the dashed line.
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together. First, classes with the same true mean are grouped as desired; for s = 0
the model finally consists of the intercept only—the empirical mean of y. For
the approximation,

√
γ = 105 has been chosen. It is hard to see any difference

between approximate and exact solution. Indeed, for s/smax ≥ 10−3, precision
	γ,λ < 10−17 is obtained. Also in the case of the “exact” solution, restrictions
are just “numerically” met. In the given example precision of the “exact” solution
is about 10−18 (or better), which is quite close to the “approximate” solution. So
in the following, only approximate estimates are used.

In the right panel of Figure 3, the results of the adaptive version which uses the
additional weights wij = |β̂(LS)

i − β̂
(LS)
j |−1 are shown. Grouping is quite good,

and compared to the nonadaptive version, bias toward zero is much smaller at the
point of perfect grouping.

In a second scenario, settings and data visualized in Figure 3 (left) are con-
sidered again, but now it is assumed that class labels have an ordinal structure.
Hence, penalty (4) is employed. Resulting paths of dummy coefficients are plot-
ted in Figure 4. Even for the nonadaptive version (left), grouping is quite good.
Moreover, before optimal grouping is reached, bias toward zero seems to be quite
low. Of course, assuming an ordinal class structure, which is actually given be-
cause all categories with truly equal coefficients are groups of neighbors, makes
the estimation problem easier.

FIG. 4. Paths of dummy coefficients for data as in Figure 3, but assuming an ordinal class structure,
nonadaptive (left) and adaptive (right) version; constant α is marked by the dashed line.
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3.2. Comparison of methods. For the comparison of different methods a set-
ting with 8 predictors is considered—4 nominal and 4 ordinal factors. For both
types of variables we use two factors with 8 categories and two with 4, of
which in each case only one is relevant. The true nonzero dummy coefficient
vectors are (0,1,1,1,1,−2,−2)T and (0,2,2)T for the nominal predictors, and
(0,1,1,2,2,4,4)T and (0,−2,−2)T for the ordinal predictors (constant α = 1).
A training data set with n = 500 (independent) observations is generated accord-
ing to the classical linear model with standard normal error ε. The vectors of mar-
ginal a priori class probabilities are (0.1,0.1,0.2,0.05,0.2,0.1,0.2,0.05)T and
(0.1,0.4,0.2,0.3)T for 8-level and 4-level factors, respectively. The coefficient
vector is estimated by the proposed method, using adaptive as well as nonadaptive
weights. In addition, the effect of taking into account marginal class frequencies
n

(l)
i is investigated, which means we check what happens if ((n

(l)
i + n

(l)
j )/n)1/2

is omitted in (6). Moreover, refitting is tested (as already mentioned), that is, the
penalization is only used for variable selection and clustering. After the identifi-
cation of relevant predictors and clusters, parameters are refitted by ordinary least
squares.

For the determination of the right penalty λ, resp. s value, we use 5-fold cross-
validation. Of course, any information criterion like AIC or BIC could also be
employed. For the latter some measure of model-complexity is needed. In analogy
to the Fused Lasso [Tibshirani et al. (2005)], the degrees of freedom of a model
can be estimated by

d̂f = 1 +
p∑

l=1

k∗
l ,

where k∗
l denotes the number of unique nonzero dummy coefficients of predictor

xl and the 1 accounts for the intercept.
After estimation of coefficient vector β , the result is compared to the true para-

meters. The MSE is computed, as well as False Positive and False Negative Rates
(FPR/FNR) concerning variable selection and clustering. As far as variable selec-
tion is concerned, “false positive” means that any dummy coefficient of a pure
noise factor is set to nonzero; if clustering is considered, it means that a difference
within a nonnoise factor which is truly zero is set to nonzero. By contrast, “false
negative” means that all dummy coefficients of a truly relevant factor are set to
zero, or that a truly nonzero difference is set to zero, respectively. Figure 5 shows
the results for 100 simulation runs; labels are defined in Table 2.

In addition to the MSE and FPR/FNR, an independent test set of 1000 obser-
vations is generated and prediction accuracies are reported in terms of the mean
squared error of prediction. For comparison the performance of the ordinary least
squares (OLS) estimate is also given. MSE and prediction accuracy are shown as
boxplots to give an idea of variability; FPR (dark gray) and FNR (light-colored)
are averaged over all simulation runs. It is seen that all methods are superior to the
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TABLE 2
Definition of labels used in Figures 5 and 6

adapt Adaptive version, i.e., weighting terms |β̂(LS)
i − β̂

(LS)
j |−1 are used

stdrd Standard (nonadaptive) version, i.e., terms

|β̂(LS)
i − β̂

(LS)
j |−1 are omitted

n(ij) Marginal class frequencies are taken into account,

i.e., ((n
(l)
i + n

(l)
j )/n)1/2 are used in (6)

rf Refitting was performed

OLS. Concerning FPR and FNR, differences between pure adaptive/nonadaptive
approaches and refitting are caused by the fact that not necessarily the same models
are selected, because in cross-validation already refitted coefficients are used.

As already illustrated by Bondell and Reich (2009) and supported by Proposi-
tions 1 and 3 in the Appendix, selection and grouping characteristics of the adap-
tive version are quite good—at least compared with the standard approach. Also,
accuracies of parameter estimates and prediction of the adaptive version are very
high in our simulation study. Via refitting, they can only be slightly improved. In
the case of standard weights, the improvement is much more distinct. However,
the most important effect of refitting is on variable selection and clustering—in
both the adaptive and the nonadaptive case. It can be seen that via refitting error
rates are enormously diminished—concerning false variable selection as well as
clustering. This finding can be explained by the bias which is caused by shrinking.
If tuning parameters are determined via cross-validation (as done here), with re-
fitting the chosen penalty parameter λ may be higher than without, because in the
latter case a higher penalty directly results in a higher bias which may deteriorate
prediction accuracy on the test fold. Since in the case of refitting the penalty is only
used for selection purposes, a higher value does not necessarily cause higher co-
efficient shrinkage and bias. Apparently, however, in many of our simulated cases
a higher penalty would have been necessary to obtain accurate variable selection
and grouping.

In a modified scenario further noise variables are included, 4 nominal and 4 or-
dinal, each with 6 levels and constant marginal a priori class probabilities. Quali-
tatively, results (shown in Figure 6) are similar to those obtained before. However,
since the number of independent variables has been considerably increased, the
performance of the ordinary least squares estimates is even worse than before. This
also explains why (in the adaptive case) the MSE and prediction accuracies cannot
be really improved by OLS refitting, and why in the case of refitting variability
is higher. Nevertheless, variable selection and clustering results are still distinctly
better if refitting is done.

As an overall result, it can be stated that, given a regression problem, refit-
ting has the potential to distinctly improve selection and clustering results in the
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FIG. 5. Evaluation of adaptive and nonadaptive (standard) as well as refitting (rf) approaches,
taking into account class sizes (ni , nj ) or not, for comparison the results for the ordinary least
squares (ols) estimator are also given; considered are the mean squared error of parameter estimate,
prediction accuracy and false positive/negative rates (FPR/FNR) concerning variable selection and
identification of relevant differences (i.e., clustering) of dummy coefficients.

n < ∞ case, while providing accurate parameter estimates (if n is not too small
compared to p). Therefore, it can be assumed to be a suitable approach for our re-
gression analysis. Moreover, taking into account marginal class frequencies seems
to (slightly) improve estimation results.

4. Regularized analysis of Munich rent standard data. For the estimation
of regression coefficients with predictors from Table 1, we consider the approaches
which performed best in the previous section; more concrete, both the adaptive
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FIG. 6. Evaluation of different approaches in the presence of many noise variables: adaptive and
nonadaptive (standard) as well as refitting (rf), taking into account class sizes (ni , nj ) or not, for
comparison also the ordinary least squares (ols) estimator; considered are the mean squared error
of parameter estimate, prediction accuracy and false positive/negative rates (FPR/FNR) concerning
variable selection and identification of relevant differences (i.e., clustering) of dummy coefficients.

as well as the standard (nonadaptive) version remain candidates, but each with
refitting only and taking marginal class frequencies into account. In the following
we first analyze the data and then evaluate the performance of the approach (using
the rent data) comparing it to ordinary least squares and Group Lasso estimates,
which do not provide variable selection and/or clustering of categories.

4.1. Data analysis. In the considered application more than 2000 observations
are available for the estimation of 58 regression parameters. Thus, OLS estimation



2166 J. GERTHEISS AND G. TUTZ

FIG. 7. Cross-validation score as a function of s/smax if refitting with standard (dashed black) or
adaptive (solid red) weights is used for the analysis of Munich rent standard data.

works, and (in the light of the simulation study before) it is to be expected that
refitting distinctly improves estimation accuracy as well as variable selection and
clustering performance of the proposed penalized approach.

Figure 7 shows the (10-fold) cross-validation score as a function of s/smax, for
the refitted model with nonadaptive (dashed black) as well as adaptive weights
(solid red). It is seen that penalized estimates, in particular, refitting with adap-
tive weights, may improve the ordinary least squares estimate (i.e., s/smax = 1) in
terms of prediction accuracy. It is not surprising that adaptive weights show better
performance than nonadaptive ones, since sample size is high, which means that
ordinary least squares estimates are quite stable, and the latter decisively influence
adaptive weights. So we choose adaptive weights at cross-validation score mini-
mizing s/smax = 0.61 (marked by dotted line in Figure 7). The estimated regres-
sion coefficients are given in Table 3. There is no predictor which is completely
excluded from the model. However, some categories of nominal and ordinal pre-
dictors are clustered, for example, houses constructed in the 1930s and 1940s, or
urban districts 14, 16, 22 and 24. It is interesting that rents of houses constructed
shortly before the Second World War and those constructed within or shortly after
the war do not substantially differ.

The biggest cluster, which contains 8 categories, is formed within the 25 dis-
tricts. A map of Munich with color coded clusters (Figure 8) illustrates the 10
found clusters. The map has been drawn using functions from R add-on package
BayesX [Kneib et al. (2009)]. The most expensive district is the city center. After
inspection of OLS estimates (e.g., in Figure 2), it could be expected that rather
cheap districts 14 and 24 are fused. It was not clear, however, if they are addition-
ally collapsed with any other districts, and if so, whether fused with {16,22} or
{11,23}. Based on our regularized analysis, it can now be stated with good reason
that rents in districts 14, 16, 22 and 24 are comparatively low and do not substan-
tially differ, which is in agreement with judgements from experts and feelings of
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TABLE 3
Estimated regression coefficients for Munich rent standard data using adaptive weights with

refitting, and (cross-validation score minimizing) s/smax = 0.61

Predictor Label Coefficient

Intercept 12.597

Urban district 14, 16, 22, 24 −1.931
11, 23 −1.719

7 −1.622
8, 10, 15, 17, 19, 20, 21, 25 −1.361

6 −1.061
9 −0.960
13 −0.886

2, 4, 5, 12, 18 −0.671
3 −0.403

Year of construction 1920s −1.244
1930s, 1940s −0.953

1950s −0.322
1960s 0.073
1970s 0.325
1980s 1.121

1990s, 2000s 1.624

Number of rooms 4, 5, 6 −0.502
3 −0.180
2 0.000

Quality of residential area good 0.373
excellent 1.444

Floor space (m2) [140,∞) −4.710
[90,100), [100,110), [110,120),

[120,130), [130,140) −3.688
[60,70), [70,80), [80,90) −3.443

[50,60) −3.177
[40,50) −2.838
[30,40) −1.733

Hot water supply no −2.001
Central heating no −1.319
Tiled bathroom no −0.562
Suppl. equipment in bathroom yes 0.506
Well equipped kitchen yes 1.207

laymen, because Munich’s deprived areas are primarily located in these (nonad-
jacent) districts. The cluster that contains district 12, however, partly contradicts
experiences of experts and tenants. The problem is that this district is very large
and reaches from the city center to the outskirts in the north. So very expensive
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FIG. 8. Map of Munich indicating clusters of urban districts; colors correspond to estimated
dummy coefficients from Table 3.

flats which are close to the city center are put together with cheaper ones on the
outskirts. But, on average, rents are rather high in this district, which causes it to
be clustered with other expensive but more homogeneous areas. In an ordinary
least squares model, district 12 is even identified as belonging to the three most
expensive districts (see also Figures 1 and 2). Penalized estimation ranks it only
among the top seven. But it should be noted that in the final regression model there
is also an ordinal predictor included which indicates the quality of the residential
area and allows for further discrimination between flats which are located in the
same district.

Not surprisingly, rent per square meter goes down if the number of rooms in-
creases. Between four, five or more rooms, however, no relevant differences are
identified. Flats with two rooms are fused with the reference category, since the
corresponding dummy coefficient is set to zero. The fact that no differences be-
tween flats with one and two rooms are found is caused by the inclusion of floor
space into the model. Existing differences are obviously modeled via the variable
which directly measures the flat’s size, with the effect that for larger flats the rent
per square meter is lower. Starting with small apartments, the decrease of rents is
quite apparent (between ca. 20 and 60 m2), then it is much slower. Between 90 and
140 m2, for example, no differences are identified with respect to rent per square
meter. The fact that the covariate which indicates the number of rooms is not com-
pletely excluded from the model, although the flat’s floor space is also considered,
shows that there are dependencies between rent and the number of rooms which
do not only refer to the flat’s size. If covariate floor space is held constant, but the
number of rooms is increased, rents tend to go down.
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FIG. 9. Map of Munich indicating clusters of urban districts, if just differences between dummy
coefficients of neighboring districts are penalized.

All in all, the selected model has 32 degrees of freedom, that is, 32 unique
nonzero coefficients (including the intercept), which means that the complexity of
the unrestricted model (58 df) is reduced by about 45%.

4.2. Using spatial information. A possible alternative to treating the urban
district as a nominal predictor is to include geographical information. One can use
distance measures or neighborhood effects when looking for clusters. A simple
approach we used is to penalize—in analogy to the ordinal predictor case—only
differences between dummy coefficients of neighboring districts. In Figure 9 a
map of Munich is shown which results from such neighborhood penalization. One
problem with this map is that district 12 (which reaches from the center to the
north) is now fused with three expensive adjacent districts in the center. We also
fitted a more advanced neighborhood weighting scheme, which uses the length of
the boundary between the corresponding districts as weights. Then the difference
between district 12 and a neighboring (and cheap) district in the north would get
some higher weight. However, even that modification does not solve the second
problem linked with that kind of spatial information based regularization: Two
nonadjacent districts will not be fused if they are not also fused with a whole set
of districts building a chain that connects them. In Figure 9 the two light-colored
districts in the west and southeast (22 and 16) seem quite similar. In contrast to
Figure 8 and Table 3, however, they are not fused. The corresponding difference
of dummy coefficients is about 0.007—close to, but not exactly zero. Generally
speaking, districts which are not neighbors may also be quite similar. Therefore,
fusion of such districts should be possible, too. Hence, we prefer an approach like



2170 J. GERTHEISS AND G. TUTZ

our initial modeling where all pairwise differences of districts’ dummy coefficients
have been penalized.

A more general procedure to include spatial information is to incorporate this
information into the weights wij in (3). For that purpose weights may be addi-
tionally multiplied by factors ζij , where ζij contains spatial information. As long
as 0 < ζij < ∞ for all i, j , consistency as given in Proposition 1 is not affected,
and all pairwise differences are still penalized as desired in our application. Fac-
tor ζij can, for example, be defined as a decreasing function of the distance be-
tween districts i and j . A special case of such an approach is to penalize only
differences of neighboring districts as already done before. This, however, does
not guaranty ζij > 0 for all i, j , and did not produce good results in our applica-
tion (as shown above). Furthermore, it seems sensible to assume that differences
(concerning rents) between the city center and the outskirts tend to be larger than
differences between outskirts in the west and the east of a city. So for defining ζij

we may use the information whether a district is rather central or peripheral. If ςi

denotes the distance of (the center of) district i to the city center (in km), we define

ζij = K

(
ςi − ςj

h

)
,

with a fixed kernel K and bandwidth h. For K we use the Epanechnikov kernel,
and h = 15 (km), which is roughly the radius of the smallest circle around the city
center which contains the whole city of Munich. Incorporating spatial information
this way, however, yields exactly the same clustering as already given in Table 3,
where urban districts have just been treated as a nominal predictor. So we can keep
interpretations given above, and will just use the districts’ categorial character in
the following. The finding that results do not change if ζij are included is obvi-
ously due to the fact that weights are decisively influenced by the ols terms (see
Proposition 1 in the Appendix).

4.3. Evaluation of prediction accuracies and sparsity. The proposed methods
provide clustering of categories, which results in a sparser model and facilitates
interpretation in the considered application. In order to evaluate their actual pre-
diction accuracies, we perform repeated random splitting of the data into training
and test sets. That means coefficients are estimated on the training data (including
determination of tuning parameters and weights), and then used to predict the test
data. As test set size we choose 100, and the procedure is independently repeated
100 times. Results are shown in Figure 10. Performance is measured in terms of
the mean squared error of prediction (MSEP). We investigate the refitted adap-
tive as well as the nonadaptive version of the presented regularization technique.
For comparison, we also give prediction accuracies for the (most complex) ordi-
nary least squares model, and for Group Lasso estimates as proposed by Yuan and
Lin (2006) or Meier, Van de Geer and Bühlmann (2008). In the case of ordinal
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FIG. 10. Prediction performance of the refitted adaptive (adapt) as well as nonadaptive (stdrd)
sparse modeling of Munich rent standard data, the Group Lasso (grpl) and ordinary least squares
(ols) fitting; all results (top left) as well as selected pairwise comparisons.

predictors, the usual within groups simple ridge penalty is replaced by a differ-
ence penalty as proposed in Gertheiss and Tutz (2009) and Gertheiss et al. (2009).
For practical estimation of Group Lasso estimates R add-on package grplasso
[Meier (2007)] was used.

The first plot (top left) in Figure 10 shows boxplots of the observed MSEPs for
all four methods. It is seen that all methods perform almost equally. This finding
is confirmed by pairwise comparisons. Since in each iteration MSEPs of differ-
ent methods are observed on the same test data, we report pairwise differences
of corresponding MSEPs. Boxplots which tend to be below zero indicate superior
performance of the method which is quoted first—and vice versa. It just seems that
the proposed adaptive version is slightly superior to the ordinary least squares es-
timate. Between the different penalization techniques—the presented sparse mod-
eling (adaptive/nonadaptive) and the Group Lasso—there can hardly be observed
any difference concerning prediction accuracy on the rent standard data.

It is a quite positive result, however, that prediction accuracies of the considered
methods are almost identical, because sparsity is the great advantage of the mod-
eling which has been applied above to analyze the data. While the ordinary least
squares model has 58 degrees of freedom, the (refitted adaptive) model which has
been chosen on the basis of all data just has 32 df (see Table 3). In Figure 11
we now show kernel density estimates of the model complexities observed during
random splitting of the data. It is seen that the adaptive models (solid red) tend
to have less degrees of freedom than the nonadaptive version (dashed black). But
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FIG. 11. Kernel density estimates of chosen degrees of freedom for the adaptive (solid red) and
nonadaptive (dashed black) model after repeated random splitting of Munich rent standard data.

also the latter is far away from the 58 df of the OLS model. Furthermore, the Group
Lasso can only perform variable selection, but no clustering of single categories.
However, in each of the considered random splits all factors were selected (not
shown), which means that none of the dummy coefficients estimated by the Group
Lasso were set to zero. Hence, with the (via cross-validation) chosen tuning pa-
rameters, the effect of the Group Lasso penalty was just shrinkage/smoothing of
groups of dummy coefficients, but no variable selection. That means in the case
of the analyzed rent standard data the Group Lasso does not result in a sparser
parametrization than the OLS model. In summary, on the rent data our model can
be expected to be as accurate as competing models, while complexity is distinctly
reduced and interpretability is increased.

5. Summary and discussion. We showed how L1-penalization of dummy
coefficients can be employed for sparse modeling of categorial explanatory vari-
ables in multiple linear regression. Depending on the scale level of the categorial
predictor, two types of penalties were investigated. Given just nominal covariates,
all pairwise differences of dummy coefficients belonging to the same predictor
are penalized. If the variable has ordinal scale level differences of adjacent coef-
ficients are considered. L1-penalization causes that certain differences are set to
zero. The interpretation is clustering of categories concerning their influence on
the response. In the analysis of the rent standard data this meant that, for exam-
ple, certain urban districts were identified where rents do not substantially differ
on average. If all dummy coefficients which belong to a certain predictor are set to
zero, the corresponding covariate is completely removed from the model.

In particular, it was shown that the usually applied (and accurate) ordinary least
squares fitting of rent standard data can be improved if categorial predictors are ad-
equately penalized. Such improvement is primarily in terms of interpretability and
model complexity. Via repeated random splitting of the data at hand, it could be
shown that model complexity could be reduced by about 40–50% while prediction
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accuracies did not deteriorate. As simulation studies showed, in cases of smaller
sample sizes estimation and prediction accuracies can also be distinctly improved
via the presented L1-difference-penalization.

An alternative approach would be to apply clustering methods on ols estimates,
which may give similar results for the considered rent data (see Figure 2, though it
is not clear, for example, in which way districts {14,24} should be fused with other
districts). However, this would be a two-step procedure and hence less elegant than
a penalty based regularization technique. Moreover, in case of smaller sample sizes
it would severely suffer from instability of ols estimates.

Though penalization with adaptive weights has some nice asymptotic proper-
ties, simulation studies also showed that in the case of finite n particularly vari-
able selection and clustering performance can even be further improved via or-
dinary least squares refitting of fused categories. A generalization of refitting is
the so-called relaxed Lasso [Meinshausen (2007)], which puts a second penalty
on (dummy) coefficients of fused categories. The disadvantage of relaxation is the
second tuning parameter. In the case of the Munich rent standard, sample sizes are
so high that accurate (ordinary) least squares estimation is possible, which means
that the second penalty parameter can be omitted.

In the case of ordinal predictors, computation of the proposed estimator is easily
carried out by the lars algorithm [Efron et al. (2004)], since the estimate is just
an ordinary Lasso solution, if independent variables are split-coded. If predictors
are nominal, we showed how procedures designed for ordinary Lasso problems
can also be used to compute approximate coefficient paths.

APPENDIX

Asymptotic properties for the unordered case. Let θ = (θ10, θ20, . . . ,

θk,k−1)
T denote the vector of pairwise differences θij = βi − βj . Furthermore,

let C = {(i, j) :β∗
i 	= β∗

j , i > j} denote the set of indices i > j corresponding to
differences of (true) dummy coefficients β∗

i which are truly nonzero, and Cn denote
the set corresponding to those difference which are estimated to be nonzero with
sample size n, and based on estimate β̂ from (2) with penalty (3). If θ∗

C denotes
the true vector of pairwise differences included in C , θ̂C denotes the corresponding
estimate based on β̂ , and β̂

(LS)
i the ordinary least squares estimate of βi , then a

slightly modified version of Theorem 1 in Bondell and Reich (2009) holds:

PROPOSITION 1. Suppose λ = λn with λn/
√

n → 0 and λn → ∞, and all
class-wise sample sizes ni satisfy ni/n → ci , where 0 < ci < 1. Then weights
wij = φij (n)|β̂(LS)

i − β̂
(LS)
j |−1, with φij (n) → qij (0 < qij < ∞) ∀i, j , ensure

that:

(a)
√

n(θ̂C − θ∗
C ) →d N(0,�),

(b) limn→∞ P(Cn = C) = 1.
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REMARKS. The proof closely follows Zou (2006) and Bondell and Reich
(2009), and is given below. The main differences to Bondell and Reich (2009)
are that a concrete form of the dependence on sample size, specified in φij (n), is
not yet fixed, and that λn is determined by λn/

√
n → 0 and λn → ∞. The latter is

needed for the proof of asymptotic normality, as given in Zou (2006). Bondell and
Reich (2009) used λn = Op(

√
n), which also allows λn = 0 and therefore cannot

yield limn→∞ P(Cn = C) = 1. φij (n) only needs to converge toward a positive fi-
nite value (denoted by qij ). Note that the covariance matrix � of the asymptotic
normal distribution is singular due to linear dependencies of pairwise differences;
cf. Bondell and Reich (2009). The concrete form of � results from the asymp-
totic marginal distribution of a set of nonredundant truly nonzero differences as
specified in the proof.

Due to the (additive) form of the penalty (5), theoretic results from above di-
rectly generalize to the case of multiple categorial inputs, given the number p of
predictors and the number kl of levels of each predictor xl are fixed.

Simple consistency limn→∞ P(‖β̂ −β∗‖2 > ε) = 0 for all ε > 0 is also reached
if λ is fixed and wij = φij (n), with φij (n) → qij (0 < qij < ∞) ∀i, j , is chosen.
This behavior is formally described in Proposition 2.

If adaptive weights are used and refitting is applied after the identification of
clusters and relevant variables, asymptotic behavior is obtained which is compara-
ble to Proposition 1. Since clustering and variable selection are directly based on
the penalty with adaptive weights, part (b) of Proposition 1 is still valid. Asymp-
totic normality results from asymptotic normality of the ordinary least squares
refit.

PROOF OF PROPOSITION 1. We first show asymptotic normality, which
closely follows Zou (2006) and Bondell and Reich (2009). Coefficient vector β

is represented by u = √
n(β − β∗), that is, β = β∗ + u/

√
n, where β∗ denotes the

true coefficient vector. Then we also have β̂ = β∗ + û/
√

n, with

û = argmin
u

�n(u),

where

�n(u) =
(
y − X

(
β∗ + u√

n

))T (
y − X

(
β∗ + u√

n

))
+ λn√

n
J (u),

with

J (u) = ∑
i>j ;i,j 	=0

√
n

φij (n)

|β̂(LS)
i − β̂

(LS)
j |

∣∣∣∣β∗
i − β∗

j + ui − uj√
n

∣∣∣∣
+ ∑

i>0

√
n

φi0(n)

|β̂(LS)
i |

∣∣∣∣β∗
i + ui√

n

∣∣∣∣.
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Furthermore, since y − Xβ∗ = ε, we have �n(u) − �n(0) = Vn(u), where

Vn(u) = uT

(
1

n
XT X

)
u − 2

εT X√
n

u + λn√
n
J̃ (u),

with

J̃ (u) = ∑
i>j ;i,j 	=0

√
n

φij (n)

|β̂(LS)
i − β̂

(LS)
j |

(∣∣∣∣β∗
i − β∗

j + ui − uj√
n

∣∣∣∣ − |β∗
i − β∗

j |
)

+ ∑
i>0

√
n

φi0(n)

|β̂(LS)
i |

(∣∣∣∣β∗
i + ui√

n

∣∣∣∣ − |β∗
i |

)
.

As given in Zou (2006), we will consider the limit behavior of (λn/
√

n)J̃ (u). If
β∗

i 	= 0, then

∣∣β̂(LS)
i

∣∣ →p |β∗
i |, and

√
n

(∣∣∣∣β∗
i + ui√

n

∣∣∣∣ − |β∗
i |

)
= uisgn(β∗

i );

and similarly, if β∗
i 	= β∗

j ,

∣∣β̂(LS)
i − β̂

(LS)
j

∣∣ →p |β∗
i − β∗

j |, and

√
n

(∣∣∣∣β∗
i − β∗

j + ui − uj√
n

∣∣∣∣ − |β∗
i − β∗

j |
)

= (ui − uj )sgn(β∗
i − β∗

j ).

Since by assumption φij (n) → qij (0 < qij < ∞) and λn/
√

n → 0, by Slutsky’s
theorem, we have

λn√
n

φi0(n)

|β̂(LS)
i |

√
n

(∣∣∣∣β∗
i + ui√

n

∣∣∣∣ − |β∗
i |

)
→p 0,

and

λn√
n

φij (n)

|β̂(LS)
i − β̂

(LS)
j |

√
n

(∣∣∣∣β∗
i − β∗

j + ui − uj√
n

∣∣∣∣ − |β∗
i − β∗

j |
)

→p 0, respectively.

This also makes clear that assumption λn = Op(
√

n) is not enough. If β∗
i = 0 or

β∗
i = β∗

j , however,

√
n

(∣∣∣∣β∗
i + ui√

n

∣∣∣∣ − |β∗
i |

)
= |ui |, and

√
n

(∣∣∣∣β∗
i − β∗

j + ui − uj√
n

∣∣∣∣ − |β∗
i − β∗

j |
)

= |ui − uj |, respectively.
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Moreover, if β∗
i = 0 or β∗

i = β∗
j , due to

√
n-consistency of the ordinary least

squares estimate (which is ensured by condition ni/n → ci , 0 < ci < 1 ∀i),

lim
n→∞P

(√
n
∣∣β̂(LS)

i

∣∣ ≤ λ1/2
n

) = 1, respectively,

lim
n→∞P

(√
n
∣∣β̂(LS)

i − β̂
(LS)
j

∣∣ ≤ λ1/2
n

) = 1,

since λn → ∞ by assumption. Hence,

λn√
n

φi0(n)

|β̂(LS)
i |

√
n

(∣∣∣∣β∗
i + ui√

n

∣∣∣∣ − |β∗
i |

)
→p ∞, or

λn√
n

φij (n)

|β̂(LS)
i − β̂

(LS)
j |

√
n

(∣∣∣∣β∗
i − β∗

j + ui − uj√
n

∣∣∣∣ − |β∗
i − β∗

j |
)

→p ∞,

if ui 	= 0, resp. ui 	= uj . That means if for any i, j > 0 with β∗
i = β∗

j or β∗
i = 0,

ui 	= uj or ui 	= 0, respectively, then (λn/
√

n)J̃ (u) →p ∞. The rest of the proof of
part (a) is almost identical to Bondell and Reich (2009). Let X∗ denote the design
matrix corresponding to the correct structure, that is, columns of dummy variables
with equal coefficients are added and collapsed, and columns corresponding to
zero coefficients are removed. Since ∀i ni/n → ci (0 < ci < 1),

1

n
X∗T X∗ → C > 0 and

εT X∗
√

n
→d w, with w ∼ N(0, σ 2C).

Let θCc denote the vector of differences θij = βi − βj which are truly zero, that
is, not from C , and uCc the subset of entries of θCc which are part of u. By contrast,
uC denotes the subset of θC which are in u. As given in Zou (2006), by Slutsky’s
theorem, Vn(u) →d V (u) for every u, where

V (u) =
{

uT
C CuC − 2uT

C w, if θCc = 0,
∞, otherwise.

Since Vn(u) is convex and the unique minimum of V (u) is (C−1w,0)T , we have
[cf. Zou (2006); Bondell and Reich (2009)]

ûC →d C−1w and ûCc →d 0.

Hence, ûC →d N(0, σ 2C−1). By changing the reference category, that is, changing
the subset of entries of θ which are part of u, asymptotic normality can be proven
for all pairwise differences in θ̂C .

To show the consistency part, we first note that limn→∞ P((i, j) ∈ Cn) =
1, if (i, j) ∈ C , follows from part (a). We will now show that if (i, j) /∈ C ,
limn→∞ P((i, j) ∈ Cn) = 0. The proof is a modified version of the one given by
Bondell and Reich (2009). Let Bn denote the (nonempty) set of pairs of indices
i > j which are in Cn but not in C . Then we may choose reference category 0 such
that β̂q = β̂q − β̂0 > 0 is the largest difference corresponding to indices from Bn.
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Moreover, we may order categories such that β̂1 ≤ · · · ≤ β̂z ≤ 0 ≤ β̂z+1 ≤ · · · ≤ β̂k .
That means estimate β̂ from (2) with penalty (3) is equivalent to

β̂ = argmin
{β1≤···≤βz≤0≤βz+1≤···≤βk}

{(y − Xβ)T (y − Xβ) + λnJ (β)},

with

J (β) = ∑
i>j ;i,j 	=0

φij (n)
βi − βj

|β̂(LS)
i − β̂

(LS)
j |

+ ∑
i≥z+1

φi0(n)
βi

|β̂(LS)
i | − ∑

i≤z

φi0(n)
βi

|β̂(LS)
i | .

Since β̂q 	= 0 is assumed, at the solution β̂ this optimization criterion is differ-
entiable with respect to βq . We may consider this derivative in a neighborhood
of the solution where coefficients which are set equal remain equal. That means
terms corresponding to pairs of indices which are not in Cn can be omitted, since
they will vanish in J (β̂). If xq denotes the qth column of design matrix X, due to
differentiability, estimate β̂ must satisfy

Q′
q(β̂)√
n

= 2xT
q (y − Xβ̂)√

n
= An + Dn,

with

An = λn√
n

( ∑
j<q;(q,j)∈C

φqj (n)

|β̂(LS)
q − β̂

(LS)
j | − ∑

i>q;(i,q)∈C

φiq(n)

|β̂(LS)
i − β̂

(LS)
q |

)

and

Dn = λn√
n

∑
j<q;(q,j)∈Bn

φqj (n)

|β̂(LS)
q − β̂

(LS)
j | .

If β∗ denotes the true coefficient vector, Q′
q(β̂)/

√
n can be written as

Q′
q(β̂)√
n

= 2xT
q (y − Xβ̂)√

n
= 2xT

q X
√

n(β∗ − β̂)

n
+ 2xT

q ε√
n

.

From part (a) and applying Slutsky’s theorem, we know that 2xT
q X

√
n(β − β̂)/n

has some asymptotic normal distribution with mean zero, and 2xT
q ε/

√
n as well

(by assumption, and applying the central limit theorem); cf. Zou (2006). Hence,
for any ε > 0, we have

lim
n→∞P

(
Q′

q(β̂)/
√

n ≤ λ1/4
n − ε

) = 1.
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Since λn/
√

n → 0, we also know ∃ε > 0 such that limn→∞ P(|An| < ε) = 1.
By assumption, λn → ∞; due to

√
n-consistency of the ordinary least squares

estimate, we know that

lim
n→∞P

(√
n
∣∣β̂(LS)

q − β̂
(LS)
j

∣∣ ≤ λ1/2
n

) = 1,

if (q, j) ∈ Bn. Hence,

lim
n→∞P(Dn > λ1/4

n ) = 1.

As a consequence,

lim
n→∞P

(
Q′

q(β̂)/
√

n = An + Dn

) = 0.

That means if (i, j) /∈ C , also

lim
n→∞P

(
(i, j) ∈ Cn

) = 0. �

PROPOSITION 2. Suppose 0 ≤ λ < ∞ has been fixed, and all class-wise sam-
ple sizes ni satisfy ni/n → ci , where 0 < ci < 1. Then weights wij = φij (n), with
φij (n) → qij (0 < qij < ∞) ∀i, j , ensure that estimate β̂ from (2) with penalty (3)
is consistent, that is, limn→∞ P(‖β̂ − β∗‖2 > ε) = 0 for all ε > 0.

PROOF. If β̂ minimizes Qp(β) from (1), then it also minimizes Qp(β)/n. The
ordinary least squares estimator β̂(LS) minimizes Q(β) = (y − Xβ)T (y − Xβ),
resp. Q(β)/n. Since Qp(β̂)/n →p Q(β̂(LS))/n and Qp(β̂)/n →p Q(β̂)/n, we
have Q(β̂)/n →p Q(β̂(LS))/n. Since β̂(LS) is the unique minimizer of Q(β)/n,
and Q(β)/n is convex, we have β̂ →p β̂(LS), and consistency follows from consis-
tency of the ordinary least squares estimator β̂(LS), which is ensured by condition
ni/n → ci , with 0 < ci < 1 ∀i. �

Asymptotic properties for the ordered case. Let now C = {i > 0 :β∗
i 	=

β∗
i−1} denote the set of indices corresponding to differences of neighboring (true)

dummy coefficients β∗
i which are truly nonzero, and again, Cn denote the set cor-

responding to those difference which are estimated to be nonzero, based on esti-
mate β̂ from (2) with penalty (4). The vector of first differences δi = βi − βi−1,
i = 1, . . . , k, is now denoted as δ = (δ1, . . . , δk)

T . In analogy to the unordered
case, δ∗

C denotes the true vector of (first) differences included in C , and δ̂C the cor-

responding estimate. With β̂
(LS)
i denoting the ordinary least squares estimate of

βi , the following proposition holds.

PROPOSITION 3. Suppose λ = λn with λn/
√

n → 0 and λn → ∞, and all
class-wise sample sizes ni satisfy ni/n → ci , where 0 < ci < 1. Then weights
wi = φi(n)|β̂(LS)

i − β̂
(LS)
i−1 |−1, with φi(n) → qi (0 < qi < ∞) ∀i, ensure that:
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(a)
√

n(δ̂C − δ∗
C ) →d N(0,�),

(b) limn→∞ P(Cn = C) = 1.

REMARKS. The proof is a direct application of Theorem 2 in Zou (2006), as
sketched below. As before in the unordered case, if λ is fixed and wi = φi(n),
with φi(n) → qi (0 < qi < ∞) ∀i, j , simple consistency limn→∞ P(‖β̂ − β∗‖2 >

ε) = 0 for all ε > 0 is reached. The proof is completely analogue to the proof of
Proposition 2 before.

PROOF OF PROPOSITION 3. In Section 2.3 it has been shown that the pro-
posed estimate given an ordinal class structure is equivalent to a Lasso type es-
timate, if ordinal predictors are split-coded. That means since φi(n) → qi (0 <

qi < ∞) ∀i by assumption, and employing Slutsky’s theorem (the proof of), The-
orem 2 about the adaptive Lasso by Zou (2006) can be directly applied. Condition
ni/n → ci , with 0 < ci < 1 ∀i, ensures that the ordinary least squares estimate is√

n-consistent. �

Precision of the approximate solution.

PROPOSITION 4. If restriction θij = θi0 − θj0 is represented by Aθ = 0,
define θ̂γ,λ = argminθ {(y − Zθ)T (y − Zθ) + γ (Aθ̂)T Aθ̂ + λ|θ |}, where θ =
(θ10, . . . , θk,k−1)

T and |θ | = ∑
i>j |θij |. Then with γ > 0 and λ ≥ 0, 	γ,λ =

(Aθ̂γ,λ)
T Aθ̂γ,λ is bounded above by

	γ,λ ≤ λ(|θ̂ (LS)| − |θ̂0,λ|)
γ

,

where θ̂ (LS) denotes the least squares estimate (i.e., λ = 0) where Aθ̂(LS) = 0
holds.

PROOF. Obviously, for all γ > 0 and λ ≥ 0,

(y − Zθ̂γ,λ)
T (y − Zθ̂γ,λ) + λ|θ̂γ,λ| + γ	γ,λ

≤ (
y − Zθ̂(LS))T (

y − Zθ̂(LS)) + λ
∣∣θ̂ (LS)

∣∣.
Since also

(y − Zθ̂0,λ)
T (y − Zθ̂0,λ) + λ|θ̂0,λ| ≤ (y − Zθ̂γ,λ)

T (y − Zθ̂γ,λ) + λ|θ̂γ,λ|,
and

(y − Zθ̂0,λ)
T (y − Zθ̂0,λ) ≥ (

y − Zθ̂(LS))T (
y − Zθ̂(LS)),

we have

γ	γ,λ ≤ λ
(∣∣θ̂ (LS)

∣∣ − |θ̂0,λ|). �
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