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Massive datasets in the gigabyte and terabyte range combined with the
availability of increasingly sophisticated statistical tools yield analyses at the
boundary of what is computationally feasible. Compromising in the face of
this computational burden by partitioning the dataset into more tractable sizes
results in stratified analyses, removed from the context that justified the ini-
tial data collection. In a Bayesian framework, these stratified analyses gener-
ate intermediate realizations, often compared using point estimates that fail
to account for the variability within and correlation between the distributions
these realizations approximate. However, although the initial concession to
stratify generally precludes the more sensible analysis using a single joint hi-
erarchical model, we can circumvent this outcome and capitalize on the inter-
mediate realizations by extending the dynamic iterative reweighting MCMC
algorithm. In doing so, we reuse the available realizations by reweighting
them with importance weights, recycling them into a now tractable joint hi-
erarchical model. We apply this technique to intermediate realizations gener-
ated from stratified analyses of 687 influenza A genomes spanning 13 years
allowing us to revisit hypotheses regarding the evolutionary history of in-
fluenza within a hierarchical statistical framework.

1. Introduction.

1.1. Studying the evolution of influenza A. Influenza A continues to evade
eradication resulting in ongoing economic and human cost. Yearly epidemics are
responsible for 36,000 deaths on average in the United States. Three times in
the past century global pandemics, including the infamous Spanish influenza of
1918, resulted in catastrophic mortality rates [Salomon and Webster (2009)]. In-
fluenza epidemiologists believe a future influenza pandemic is an imminent threat
[Webster and Walker (2003)]. Nearly 400 documented transfers [Salomon and
Webster (2009)] of the highly virulent and potentially pandemic [Fauci (2005)]
H5N1 strain of avian flu to humans in addition to the recent development of H1N1
swine flu [Butler (2009)] bolster the threat. The increasingly relevant necessity of
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preventing future influenza pandemics requires a clear understanding of the evolu-
tionary mechanisms of influenza as it is the key to vaccine development [Ghedin
et al. (2005)].

Influenza A is a negative single-stranded RNA virus composed of 8 segments
that total approximately 13 kb in length and encode 11 proteins. The three largest
segments encode polymerases PB1, PB1-F2, PB2 and PA all of which are involved
in RNA transcription and replication. The next three segments code for the two
surface glycoproteins haemagglutinin (HA) and neuraminidase (NA) as well as
the nucleoprotein (NP). The two smallest segments encode the matrix proteins M1
and M2 and the nonstructural proteins NS1 and NS2 [Yewdell and Garcia-Sastre
(2002), Nelson and Holmes (2007)]. Influenza A research typically focuses on
the epitope-rich HA and NA segments because they exhibit strong evolutionary
selective pressure due to their direct interaction with the host immune system and
are the primary determinants of the antigenic variation of influenza [Ghedin et al.
(2005)]. The 16 HA and 9 NA glycoproteins found in the avian reservoir, referred
to as H1 to H16 and N1 to N9, respectively, characterize and name the subtypes of
influenza A [Nelson and Holmes (2007)].

The evolutionary history of influenza A involves the interaction of a number
of mechanisms including mutation and reassortment. Approximately one random
sequence mutation every replication cycle combined with the selective pressure
on the surface glycoproteins results in an accumulation of point mutations on the
HA and NA segments termed antigenic drift. The influenza genome also evolves
through reassortment in which two subtypes coinfect a single host cell and ex-
change segments. This exchange of genetic material can lead to an antigenic shift
or the creation of a new, potentially lethal, subtype. Reassortment between a virus
in the avian reservoir and human influenza A resulted in the subtypes responsible
for the Asian and Hong Kong influenza pandemics [Clercq (2006)] and the current
swine flu pandemic derives from a triple reassortment event [Smith et al. (2009)].

As critically important events in influenza evolution occur at the genome-level,
complete genome analysis yields scientific insight that single segments cannot af-
ford. For example, Holmes et al. (2005) clarify a perplexing question in the evo-
lutionary dynamics of HA by considering the varying histories of each segment.
Analyzing 156 complete H3N2 viruses over a five-year time span from 1999 to
2004, Holmes et al. (2005) discover that while the Fujian-variant HA segment has
been co-circulating since at least 2000, the variant only rises to dominance in 2002
after other segments within the influenza genome reassort and provide a synergis-
tic background. This important reassortment event is only understood by studying
the influenza genome in its entirety.

A more recent study by Rambaut et al. (2008) emphasizes the importance of in-
corporating model parameter uncertainty in drawing conclusions about influenza
evolution through a Bayesian analysis of a truly massive dataset. Rambaut et al.
(2008) compile 687 H3N2 influenza A full genomes sampled from New York over
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a twelve-year period. Rambaut et al. (2008) address a host of biologically and clin-
ically relevant questions including: (1) Are reassortment events coincident with
shifts in HA antigenicity? (2) Do certain segments maintain greater genetic diver-
sity? (3) Are the genetic histories of certain segments correlated? However, due
to a dearth of Bayesian massive data techniques, computational constraints force
Rambaut et al. (2008) to partition the data by stratifying on segment, using the data
inefficiently, and drawing ad hoc conclusions about potential correlation. This cur-
rent study rectifies the stratified analyses by fully capitalizing on the hierarchical
nature of the influenza data and making formal inference after modeling the com-
plete data in a single Bayesian analysis.

1.2. Statistical context. Despite optimized algorithms for missing data inte-
gration [Suchard and Rambaut (2009)], phylogenetic analysis of DNA sequences
is lengthy and computationally intensive. Massive data measure in the gigabyte
to terabyte range [Cressie, Olsen and Cook (1997)] and are increasingly common
[Lambert (2003), Allison et al. (2009)]. This pervasiveness is particularly poignant
in Bayesian models with missing data and especially in Bayesian models for sto-
chastic processes where the dimensionality of the missing data can far outweigh
the observed data. Such is the case in the evolutionary reconstruction of Rambaut
et al. (2008).

One strategy pertinent to massive data inference is stratification [Cressie, Olsen
and Cook (1997), Kettenring (2009)], often undesirable because it comes shack-
led with the host of difficulties arising from subgroup analysis [Glymour et al.
(1997), Lagakos (2006)]. This identifies the direction that Rambaut et al. (2008)
originally follow as they treat each of the eight segments independently. Shared
computer memory and communication latency between computers limit hopes for
considering a proper hierarchical model across segments simultaneously through
which to share information and learn about segment-to-segment correlation. Even
on state-of-the-art equipment, simulating sufficient realizations from posterior dis-
tributions conditional only on the data from a single segment, or what we refer to
as “stratified distributions,” still compels one to devote weeks of computing time
per segment. This huge computational investment raises a critical point regarding
a massive dataset with hierarchical structure. Often researchers perform prelimi-
nary analysis stratified by the exchangeable identifiers in the data simply because
the statistical tools and computational resources exist for the stratified analysis.
In attempting to fit the full hierarchical analysis, the ability to reuse the results
from these suboptimal analyses represents a major savings in terms of time and
resources and may even be the only feasible option.

To this end, we examine the dynamic iteratively reweighting MCMC algorithm
(DyIRMA) [Liang and Weiss (2007), Liang et al. (2009)]. DyIRMA is based on
the meta-analysis technique of using summary statistics from independent studies
to infer a single hierarchical model [Carlin (1992), Warn, Thompson and Spiegel-
halter (2002)]. Instead of summary statistics, however, DyIRMA combines realiza-
tions from independent distributions using importance sampling and Markov chain
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Monte Carlo (MCMC) in an iterative process. Importantly, we can adopt DyIRMA
to reuse realizations from preliminary stratified analyses. This desire to not waste
intermediate realizations from the stratified analyses is particularly relevant in our
influenza example because the realizations themselves require massive computing
resources to generate. We further extend the insight of Liang and Weiss (2007) who
combine intermediate realizations from two uncorrelated distributions. Our exten-
sion is necessary to accommodate correlated sequence data sampled over a span
of thirteen years and allows us to entertain a much richer collection of hierarchical
models motivated by the science at hand.

Our scientific aim in this study is to create a joint hierarchical model that ad-
dresses the questions raised by Rambaut et al. (2008) regarding the evolutionary
history of influenza A. To this end, the hierarchical model must account for an un-
known correlation structure between segments and allow for a flexible time-course
in the model response, for which we exploit Gibbs variable selection (GVS) [Kuo
and Mallick (1998), Dellaportas, Forster and Ntzoufras (2002)] to estimate a non-
parametric response. The influenza A example illustrates that DyIRMA is a partic-
ularly flexible and valuable approach that reuses realizations via reweighting from
computationally expensive distributions in a hierarchical framework. This widely
applicable technique can be used to jointly model other independently generated,
but in truth correlated, massive datasets.

As a preview, the paper continues as follows: Section 2.1 describes the gener-
ation of realizations from the stratified analyses, Section 2.2 introduces the basic
framework used to estimate genealogies. Section 3 relates the machinery neces-
sary to combine these realizations to estimate the joint hierarchical model along
with computational concerns. Section 4 reviews the hierarchical model proposed,
prior distributions, MCMC sampling concerns, and various modeling extensions.
Sections 5 and 6 present results and conclude with a discussion.

2. Genomic-scale phylogenetic models.

2.1. Intermediate phylogenetic realizations. Rambaut et al. (2008) compile
aligned sequence data for coding regions of each of the eight segments of the
influenza A genome from the Influenza Genome Sequencing Project NCBI data-
base [Ghedin et al. (2005)]. These alignments contain all 687 H3N2 influenza A
genomes available over the 12 influenza seasons between 1993 and 2005. Season
2002 yields no sequences as it was predominantly an H1N1 season. From these
data, Rambaut et al. (2008) are most interested in estimating and formally compar-
ing the times to most recent common ancestor (TMRCA) of all the sequences sam-
pled within each season for each segment. TMRCA can be thought of as a measure
of genetic diversity because evolutionarily distant present-day sequences converge
to a genealogy with longer branch lengths and consequently a larger TMRCA.
To keep computation manageable, Rambaut et al. (2008) are forced to partition
these data into independent blocks by segment. As the virus evolves through time,
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samples from different seasons are highly interrelated through their shared history.
Standard phylogenetic software packages account for this correlation. On the other
hand, joint models across segments are less developed [Suchard et al. (2003)].
Consequently, initial analyses consider the segments independently, clouding con-
clusions about segment–segment interactions important to influenza A evolution.

Rambaut’s et al. (2008) analyses provide samples from the intermediate distri-
butions of TMRCAs given sequences from each individual segment. We are in-
terested in the interaction of the evolutionary dynamics of influenza A segments
over time and we use as our starting point realizations from these analyses strati-
fied on segment. We let Tij be the TMRCA for segment i and season j and Di the
sequence data for segment i. From each of the stratified analyses, we tabulate sam-
ples {T (m)

ij |Di} or {T (1)
ij , . . . , T

(M)
ij |Di} for all (ij) where m = (1, . . . ,M) indexes

the MCMC sample, M is the total number of MCMC samples, i = (1, . . . , I ) in-
dexes the segment, and j = (1, . . . , J ) indexes the season. Next, let T(m) be the
matrix constructed from J columns T(m)

·j or I rows T(m)
i· , where T(m)

·j is an I × 1

vector with all samples of TMRCA at iteration m for season j and T(m)
i· is a J × 1

vector for segment i with all samples of TMRCA at iteration m for all J seasons.
These M matrices T(m) are the intermediate samples from the stratified distribu-
tions provided by Rambaut et al. (2008) that we propose to recycle into a hierar-
chical model.

To describe the construction of this stratified distribution, we first introduce
some nomenclature. In brief, let g be the genealogy composed of a bifurcating
acyclic graph (commonly called a topology) that describes the relatedness of a set
of sequences and a vector of edge weights for the edges in this topology. Edges
reflect the passage of time between bifurcation events and are also called branch
lengths. Estimates of c different TMRCA, T, embed in g because T = f (g) where
f (·) is a deterministic mapping :g → �c≥0. Here, T represents a c × 1 vector con-
taining the TMRCAs of interest and we use this general vector as the starting point
before building up to T·j .

In order to describe f (·), a brief introduction to the coalescent process is war-
ranted [Hudson (1991)]. In the isochronous case, there are N sequences sampled
at the same time t0 where t0 = 0 represents the present-day. Formation of a geneal-
ogy begins by randomly selecting two lineages at time te, e = (1, . . . ,E) where
e indexes the coalescent event and E = (N − 1) is the total number of coales-
cent events. Proceeding back in time, the inter-coalescent time between the eth
and (e − 1)th event is ue = te − te−1 where (u1, . . . , uE) are independent expo-
nential random variables. Let S be the set of all N taxa; then the E independent
intercoalescent intervals yield an estimate TS , the TMRCA of set S. Since each
inter-coalescent interval is distributed as an exponential, the summation is a con-
volution of exponential distributions [Hein, Schierup and Wiuf (2005)].

We can estimate T for any subset of taxa. Let S̃ ⊆ S be a subset of the taxa,
F represent the first event in this subset which for the isochronous case occurs
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at F = 1, and L the last so that 0 < F ≤ L ≤ E. Then T
S̃

is calculated similarly
by identifying g

S̃
, the subtree formed within g from the tips at t0 and proceeding

back in time to the last coalescent event occurring at tL for all taxa in S̃. We then
calculate T

S̃
= f (g

S̃
) = ∑L

e=F ue. Finally, as a nomenclature device, let G̃ be the
set of all times of coalescent events identified in S̃, G̃ = {tF , . . . , tL}, and let G̃c

be the complement. Then the genealogy can be decomposed into two disjoint sets
of coalescent times as g = (G̃, G̃c), a device that will prove useful in Section 3.1.

One particularly interesting subset S̃j arises in the case of heterochronous data,
namely Tj or TMRCA for all sequences sampled in a given season j . Because we
have influenza A sequences sampled over time, our data are commonly called “het-
erochronous.” We know the exact date of sampling for the influenza A sequences
and can extend the coalescent to reflect this additional information. Elaborating
on the description of the coalescent process above, the heterochronous case has
two events of interest, coalescent and sampling, both of which can occur at mul-
tiple times. If there are O sampling times, there are now a total of (N + O − 2)

intervals, so in the heterochronous case, E = (N + O − 2). Let (t0, . . . , tE) rep-
resent the times of coalescent or sampling events where t0 is the most recent
chronological sample and as before, the inter-event intervals are ue = te − te−1.
For S̃j identify the earliest event F and the last event L and again we have
T

S̃j
= f (g

S̃j
) = ∑L

e=F ue.
We can now fully describe the intermediate realizations available from Rambaut

et al. (2008). Recall that our research goals require we extract estimates of Tij for
a specific influenza season j where j = (1, . . . , J ) indexes the J distinct seasons
from a gi for segment i = (1, . . . , I ). We accomplish this by allowing the subset
S̃ = Sij to be the set of all taxa for a given influenza season j . Then Tij = f (gij )

is the summary statistic of interest for segment i and season j . Finally, let Ti· =
(Ti1, . . . , TiJ ) contain all estimates of TMRCA for a given segment and let T·j =
(T1j , . . . , TIj ) be all estimates of TMRCA for a given year. Refer to Figure 1 for a
simple example.

2.2. Estimating TMRCA. Although we have outlined how to generate our
summary statistics of interest given a genealogy, further description is necessary
regarding sampling from the distribution of the unknown genealogy gi conditional
on the data Di for segment i. This posterior distribution can be represented as

P(gi |Di ) ∝
∫ ∫

L(Di |gi,Qi)P (gi |�i )P (�i )P (Qi )d�i dQi ,(1)

where L(Di |gi,Qi) is the likelihood of the sequence data given the genealogy
and other phylogenetic parameters Qi that model sequence change over time and
P(gi |�i ), P(�i ), and P(Qi ) are the prior distributions for the genealogy and phy-
logenetic parameters. The above decomposition specifies a marginal prior distrib-
ution on gi because P(gi) = ∫

P(gi |�i )P (�i )d�i . We take note of this marginal
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FIG. 1. Phylogenetic tree: calculating T, the time to most recent common ancestor (MRCA). Five
influenza A sequences are represented by gray rectangles and labeled with the sampling season.
Present time is labeled as t0 and extends back into the past until t7 or the T for all five sequences.
Inferred ancestral nodes between the samples are represented by circles. The black circle is the
most recent common ancestor for both of the sequences sampled in the 1993 influenza season. We
calculate T1993 by isolating the relevant branches, represented here by the purple subtree, and sum-
ming the inter-coalescent intervals, T1993 = u4 + u5 + u6 + u7. Similarly, the gray circle is the
most recent common ancestor of all three sequences sampled in the 1994 influenza season and
T1994 = u1 + u2 + u3 + u4.

distribution because we wish to ultimately replace
∏

i P (gi) by a joint prior dis-
tribution P(g1, . . . , gI ) in our hierarchical model. From Rambaut et al. (2008),
P(gi) derives from a semiparametric relaxation of the coalescent process parame-
terized in terms of time-varying effective population size vector �i that follows
a piecewise constant multiple-changepoint-process hyperprior distribution [Drum-
mond et al. (2002, 2005)]. Effective population size is meant to reflect amount of
genetic diversity rather than census count [Wright (1931)] and can be thought of as
the average number of unique individuals that actually contribute genes to subse-
quent generations. Investigators generate samples from P(gi |Di ) using MCMC in
the Bayesian software BEAST [Drummond et al. (2002, 2005)] for each segment
independently.

Due to the prominence the prior distribution P(gi) plays in the iterative
reweighting scheme, it is outlined in some detail as follows, where we drop the
subscript i for clarity. Recall that (t0, . . . , tE) are the times of events going into
the past and (u1, . . . , uE) are the inter-coalescent intervals. Let (k1, . . . , kE) be the
number of lineages that exist in g during a given inter-coalescent interval. We want
to generate a sequence of effective population sizes of length B where 1 ≤ B ≤ E
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indexed by b = (1, . . . ,B) with time similarly partitioned into (t̃1, . . . , t̃B). Essen-
tially, we want to partition � into B groups (φ1, . . . , φB) where φb is constant
between t̃b and t̃b−1. In the heterochronous case, the number of lineages can in-
crease (for a sampling event) or decrease (for a coalescent event) so there are two
events of interest that can change the number of lineages. These events are dis-
tinguished by the indicator function 1coa(e) which indicates that e is a coalescent
event. Rambaut et al. (2008) specify the following heterochronous semiparametric
coalescent prior distribution (again, ignoring dependence on i for clarity):

P(g|�) =
N+O−2∏

e=1

{
ke(ke − 1)

2φh(e)

}1coa(e)

exp
(
−ke(ke − 1)ue

2φh(e)

)
,(2)

where the function h maps from the larger number of E events to the B groups,
or in other words h(e) = b if te is between t̃b and t̃b−1. Finally, to complete the
specification of the prior distribution, the first effective population size follows a
scale-invariant prior distribution, P(φ1) ∝ 1

φ1
[Drummond et al. (2005)] and the re-

maining B − 1 effective population sizes are distributed as exponential with scale
parameter equal to the previous effective population size, φb ∼ Exp(φb−1). We
make no claims about the appropriateness of this prior distribution choice. How-
ever, since the mean and variance of this prior distribution on φb grow with b and
lead to some difficulty later, we point out that Minin, Bloomquist and Suchard
(2008) provide a stable alternative with the joint skyride prior distribution on
P(gi,�i ).

Now we have a foundation for understanding how genealogies are sampled and
summarized using Tij and what realizations from the intermediate distributions
of the stratified analyses we have available. We wish to point out the benefits of
the hierarchical model whose estimation we describe in the next section. These
benefits include shrinkage estimators, a framework for statistical inference that
accounts for correlation between strata, and models based on all available data.
We now delve into how these independently generated estimates are combined
into a joint statistical model reusing the preliminary realizations.

3. Computational recycling.

3.1. Reweighting realizations. In addition to the stratified realizations, the
process of reweighting the stratified analysis samples of Ti· to generate the joint hi-
erarchical posterior distribution through DyIRMA requires P(gi) and the ability to
evaluate the marginal prior distribution P(Ti·). We first present the DyIRMA ma-
chinery and then comment on how we extend it to accommodate this dataset. We
save computational concerns regarding the calculation of P(Ti·) for Section 3.2.

Recall that we employ the following decomposition of genealogy gi = (G̃, G̃c)

which allows us to relate the summary statistic Ti· to gi as

P(T
i,G̃

|Di ,�0) =
∫

P(gi |Di ,�0)dT
i,G̃c .(3)
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The symbol �0 identifies the stratified analyses and for notational consistency
can be viewed as the forthcoming hierarchical model parameters, � fixed at an
arbitrary value. The subscript G̃ is dropped in the following equations to simplify
notation.

We have intermediate realizations of the multivariate vector of Ti· = (Ti1, . . . ,

TiJ ) under the individual models generated during the initial stratified analysis. We
combine these realizations into a single joint posterior distribution conditional on
all of the sequence data, P(T|D) where D = (D1, . . . ,DI ) and T = (T1·, . . . ,TI ·),
by preferentially weighting samples that have a high likelihood under the hierar-
chical model relative to the probability of the prior distribution in the individual
models. We make the following assumptions of conditional independence, namely
that given T the sequence data are independent of the parameters in the hierarchical
model, or P(D|T,�) = P(D|T). We also assume that given the hierarchical para-
meters, the TMRCAs Ti·, which we treat as exchangeable units, are independent
or in other words we assume P(T|�) = ∏

i P (Ti·|�). Given these assumptions,
we can then use the following relationship:

P(T|D) ∝
∫ I∏

i=1

(
P(Ti·|Di ,�0)

P (Ti·|�)

P (Ti·|�0)

)
P(�)d�.(4)

Therefore we reuse all available M realizations from P(Ti·|Di ,�0) by identifying
the following importance weights which are calculated for every sample of the
stratified distributions:

w(Ti·,�) = P(Ti·|�)

P (Ti·|�0)
.(5)

The numerator of the weights, P(Ti·|�), is the conditional density under the hi-
erarchical model. These hierarchical parameters are updated during each round of
Gibbs sampling requiring recalculation of the weights for each iteration. The pro-
posal density, P(Ti·|�0), is conditional on the parameters in the stratified analyses.
As the variance of the estimate in (4) relies on the proposal density, some thought
should be given toward selecting an appropriate prior distribution during individ-
ual analysis. Generally it is desirable to have a proposal density with heavier tails
than the numerator of the weights [Robert and Casella (2004)].

As shown by Liang and Weiss (2007) and relying on the concept of importance
sampling [Rubin (1988)], we can solve for the conditional distribution of the Ti·’s
under the hierarchical model, which is specified as the following:

P(Ti·|D,�)DyIRMA = 1

Wi

M∑
m=1

w
(
T(m)

i· ,�
)
δT(m)

i·
(Ti·),(6)

where Wi = ∑M
m=1 w(T(m)

i· ,�) and δT(m)
i·

(Ti·) is a degenerate distribution at T(m)
i· .

The weighted stratified realizations are sampled during each round of Gibbs up-
dates to generate samples from the hierarchical posterior distributions of Ti· condi-
tional on the current values of the parameters in the hierarchical model, � = �(m).
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These samples in turn are then used to update the parameters in the hierarchical
model from �(m) to �(m+1) which completes another iteration of sampling and
contributes the last remaining piece of machinery necessary to jointly model our
intermediate realizations from stratified analyses.

3.2. Practical computational concerns. We now describe in detail the strategy
we employed to calculate P(Ti·) which is necessary for the calculation of weights.
We include this description because for many scientifically interesting choices of
the mapping f (·), such as jointly modeling TMRCAs, P(Ti·) remains intractable
in analytic form. Fortunately, standard machinery already exists to draw simulants
from this distribution, namely the MCMC sampler exploited to generate the strat-
ified samples. A single additional run of this sampler without data provides all
ingredients necessary to tackle the seemingly computationally intractable joint in-
ference. Each partitioned dataset assumes identical prior distributions so a single
simulation of P(Ti·) suffices for the reweighting of all the stratified distributions.

Two successful approaches to estimating marginal distributions from MCMC
samples are multivariate kernel density [Scott (1992), Cacoullos (1964)] and im-
portance weighted marginal density estimation (IWMDE) [Chen (1994)]. IWMDE
proceeds by identifying a weighting function and sampling from a weighted ratio
of the likelihood at a given value of the marginal of interest (here T

G̃
= t

G̃
) and re-

alizations of the full joint distribution. The weighting function ideally has a similar
shape to the unknown conditional marginal density, a Catch-22 circumvented with
multivariate kernel density estimation. As a consequence of the strictly nonnega-
tive support of Ti· we control for potential boundary effects during kernel density
estimation by using a gamma kernel [Chen (2000)] that removes the boundary
effect and has the best mean integrated squared error among all nonnegative densi-
ties. For computational ease, we select the bandwidth using a multivariate adapted
Scott’s rule-of-thumb in which the bandwidth for the ath variable, a = (1, . . . ,A),
is M1/(A+4)σ̂a [Härdle et al. (2004)] where σ̂a is the univariate sample standard
deviation and bandwidths are allowed to vary for each univariate kernel resulting
in a multiplicative kernel [Härdle (1990)].

The importance of selecting an appropriate prior distribution in a Bayesian
framework is a topic of considerable depth [Gelman (2004), Efron (1986)]. Even
the less contentious tactic of selecting a noninformative prior distribution by plac-
ing a uniform distribution over the parameter space can prove to be subjective
[Kass and Wasserman (1996), Zwickl and Holder (2004)]. In the case where the
likelihood function overwhelms the prior distribution, a potentially informative
uniform prior distribution is rendered noninformative and specification of the prior
distribution is deceptively unimportant. When Rambaut et al. (2008) specify a mul-
tiple changepoint prior distribution, the effective population sizes, �i , were further
constrained to lie between 0 and 120,000. This truncated prior distribution is well
outside of the desired range of the values of Ti·, a fact that is inconsequential
when sampling from the distribution conditional on the data. However, this creates
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FIG. 2. Prior density predicted by kernel density estimation (KDE) under different constraints on
the prior distribution for a single representative season (1993). A prior density predicted by KDE with
a gamma kernel conditional on the mean of the other eleven dimensions T1994, . . . , T2005. We want
the value of the prior density used during stratified analyses for the intermediate realizations sampled
in the range illustrated in gray dot and black line. We have a KDE constructed with coverage from
realizations of the prior distribution we generated in the range in black line. The gray dot region, or
the region of interest the KDE is forced to extrapolate, expands as the maximum allowable �, �max,
increases. The density with �max =120,000 approaches the flat line illustrated with the perhaps
more reasonable �max = 15.

difficulties for evaluating the prior distribution at the realized values of the distri-
bution conditional on the stratified data as they mostly lie well outside the region
of the kernel density estimate. Luckily, when the maximum population size is con-
strained to be lower than 120,000 and coverage extends to the region of interest
the KDE of the prior distribution reveals a relatively flat density surface.

As the maximum is gradually increased to 120,000, this surface decreases in the
value of the density but remains relatively flat. This is illustrated in Figure 2, which
shows a representative (T1993) prior density predicted by KDE conditional on the
mean of the other parameters for different maximum allowable �i sizes along with
realizations from the prior distribution. The range of the values for the realizations
from the prior distribution we wish to evaluate are indicated in the lower range of
the density and the realizations used to predict the KDE are in the upper range.
Taken together, this indicates the region the KDE is forced to extrapolate. As the
addition of a constant value on the log scale does not affect the weights, a constant
density equivalent to some arbitrary ε can be selected. For computational ease it
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is desirable for ε to be similar in range to the density under the joint hierarchical
model.

4. Hierarchical model: Antigenic shifts and diversity through time. Our
methods enable us to conceive of a model that tests a greater range of hypotheses
than those based on a single stratum. We revisit each of the statements of Rambaut
et al. (2008) aimed at understanding the evolutionary history of influenza A with
the advantages afforded by a hierarchical framework. We construct our model out
of three basic elements. The first modeling element identifies seasons with a sig-
nificant change in TMRCA from the previous year using GVS on the timepoints.
A significant increase in TMRCA between timepoints suggests a reassortment
event, whereas a significant decrease suggests a selective sweep. The second el-
ement introduces fixed segment effects that test whether certain segments have a
higher TMRCA and therefore greater genetic diversity than others across time.
Finally, we address correlation between the segments by exploring constrained
variance matrices. To recycle random samples generated under existing stratified
analyses, we implement an additional DyIRMA step during each round of Gibbs
sampling of the joint model parameters. We first build up to the biologically moti-
vated mean structure of the model containing GVS and fixed segment effects with
an independent variance matrix and then introduce extensions for modeling the
variance structure.

4.1. Flexible modeling of time course through Gibbs variable selection. At the
most basic biological level, we must identify significant changes in TMRCA be-
tween influenza seasons and test if these correspond with shifts in HA antigenicity.
We accomplish this with GVS as parameterized by Kuo and Mallick (1998) where
the outcomes of the regression are the TMRCAs and season effects represent po-
tential predictors. Note that this analysis would not be possible using a single seg-
ment as there would be insufficient degrees of freedom. The goal of Bayesian
stochastic search variable selection is to identify the underlying generative model
M0 from the set of all possible models M . If J is the total number of possible
predictors in the regression model, the model space has dimension 2J , an arduous
dimension from which to draw inference. Kuo and Mallick (1998) bypass this task
by introducing indicator variables, γj ∼ Bernoulli(pj ), that identify the potential
predictors of the outcome variable. To clarify, if the j th predictor has a marked
effect on the outcome, the posterior probability that the corresponding indicator
variable is one, P(γj = 1|D), is high. On the other hand, if the j th predictor is not
critical, the posterior probability that the corresponding indicator variable is zero,
P(γj = 0|D), is high. This implies that estimates of γj clarify which timepoints
correspond to significant changes in TMRCA.

In order to proceed, we must introduce some additional nomenclature. Let
Z be the (IJ ) × (J − 1) additive design matrix for all seasons where we re-
move the intercept in order to avoid overparameterization. In other words, z′

ij
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is a row vector where the first (j − 1) entries are 1 and the remaining (J − j)

are 0’s. Then Zj is made of I identical rows of z′
ij and stacking the J matrices

of (Z1, . . . ,ZJ ) generates Z. Let � equal the diagonal matrix diag(γ1, . . . , γJ−1)

and β = (β1, . . . , βJ−1)
′ be the unknown season effect sizes. The flexible GVS-

induced mean time-course for MRCAs for all segments at season j becomes
Zj�β and is identical for all segments i. We select the following conjugate, in-
dependent, and noninformative priors distributions: βj ∼ N(μβ, τ−1

β ) and γj ∼
Bernoulli(pj0) where μβ, τβ , and pj0 are hyperprior constants. Estimation of γj

addresses questions about the evolution of influenza data over time and clarify
whether shifts in HA antigenicity correlate with significant changes in TMRCA.

4.2. Modeling the segment effect. Modeling the segment effect highlights the
importance of jointly modeling the influenza genome in concert in order to draw
meaningful inference about similarities and differences in their evolutionary his-
tories. Segment effects identify consistent differences in TMRCA over time and
can test the hypothesis that NP has higher genetic diversity than HA. We also gar-
ner indirect information regarding the unresolved physical location of segments
within the influenza A genome because we can resolve the correlation between
segments and highly correlated segment histories are consistent with close prox-
imity. Multidimensional scaling (MDS) suggests a relationship with decreasing in-
tensity among the following three groupings: (1) {HA, M1/2}, (2) {NS1/2, NP},
and (3) {PA, PB1, PB2} [Rambaut et al. (2008)]. The NA segment is not grouped
with any other segments. Let θ = (θ1, . . . , θI ) be unknown segment effects. Then
we model

T·j ∼ N(θ + Zjφ,�),(7)

where in its most general form � is assumed to be an I × I unstructured (UNS)
covariance matrix. Conjugate prior distributions for this portion of the model are
θi ∼ N(μθ , τ

−1
θ ) for all i and �−1 ∼ Wishart(ν,R−1) where μθ, τ

−1
θ , and ν are

hyperprior constants and R−1 is the inverse of the hyperprior constant (I ×I ) scal-
ing matrix. When combined with the prior distributions above, drawing realiza-
tions from the conditional posterior distributions for �, θ,β , and � helps address
questions about segment effects, significant timepoints, and segment correlation
simultaneously.

4.3. Sampling from the complete model. We now specify how to draw MCMC
samples from the complete model. Let � = (θ ,�,�,β) contain the unknown
parameters of the hierarchical model, of which we wish to draw inference. Re-
call that we specify the conditional distribution for Ti· in (6), which shows how
we obtain realizations from P(T|�,D) = ∏I

i=1 P(Ti·|�,D) by reweighting sam-
ples from P(Ti·|D,�0). Therefore to estimate the parameters from this complete
model using Gibbs sampling, we use DyIRMA during each Gibbs cycle over
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(T, θ,�,�,β). We have stated the denominator of the weights previously as the
predictions from the KDE of the stratified prior distributions that do not depend
on � and hence are constant during MCMC sampling. The numerator is updated
at each iteration of MCMC and is simply the density of the vector of TMRCAs
given the parameters in the hierarchical model, a straightforward way to determine
multivariate normal. At this stage we are replacing the standard coalescent prior
distribution with a normal prior distribution, a trade-off that yields straightforward
interpretability as it allows us to directly test Rambaut et al. (2008) hypotheses,
in addition to a simple computational implementation. For details on the other up-
date steps for (θ ,�,β,�) and a schematic of sampling refer to the supplementary
material [Tom, Sinsheimer and Suchard (2010)].

4.4. Modeling extensions.

4.4.1. Constrained covariance matrices. To identify segments with similar
evolutionary histories, several constraints to � may provide more effective esti-
mates. We explore an independent (IND) parameterization, such that � = σ 2II ,
with marginal variance σ 2 unknown that implies the evolutionary history of seg-
ments is not correlated. This specification allows inference to focus on the segment
effects and has the additional advantage of substantially decreasing the number of
inferred parameters. Also informative is compound symmetry (CS) which gives
a general estimate of correlation between segments and provides a model nested
within UNS to test for similar levels of correlation between segments. CS implies
that the evolutionary histories of all segments are correlated with the same strength.
Finally, autoregressive first order (AR1) and tridiagonal (TRI) structures with an
estimable ordering of the segments directly identifies which segments have similar
evolutionary histories. The motivation for nonexchangeable structures relies on the
reasoning that segments with similar evolutionary histories have higher correlation
than those with dissimilar histories.

For the CS model, we modify the Gibbs sampling by replacing the step for �
with a Metropolis–Hastings step. Let � = �(ξ) = �(σ 2, ρ) where ρ is the seg-
ment correlation and assume prior distributions σ 2 ∼ Inverse-Gamma(ασ 2, λ

−1
σ 2 )

and ρ ∼ Beta(αρ, λ−1
ρ ) where ασ 2, λ

−1
σ 2 , αρ , and λ−1

ρ are hyperprior constants. Re-
fer to the supplementary material [Tom, Sinsheimer and Suchard (2010)] for fur-
ther details on this modification to sampling.

4.4.2. Finding the optimal correlation between segments. Segments are not
exchangeable in the TRI and AR1 parameterizations of the covariance matrix. In
AR1, nearest-neighbor segments in the covariance matrix have higher correlation
than those further apart. In TRI, the structure is more restrictive with segments
more than one neighbor away from each other having no correlation. As the order-
ing of the segments i is not known and of paramount scientific interest, we estimate
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the labeling or ordering of the segments within the covariance matrix by parameter-
izing a permutation vector πv where v = (1, . . . , I !) indexes the different possible
permutations. Sampling πv requires an additional Metropolis–Hastings step. We
propose π∗

v by randomly swapping two positions in the current permutation πv .
We accept this proposal with probability min(1, απv ) where απv is

απv = P(π∗
v)P (T|π∗

v,β, θ,�,�,D)

P (πv)P (T|πv,β, θ,�,�,D)
.(8)

Assuming all permutations occur with equal probability, the terms P(π∗
v) and

P(πv) cancel. We proceed with caution when drawing inference due to label
switching [Celeux, Hurn and Robert (2000)]. Instead of focusing inference on the
permutation itself, we concentrate on the posterior probability that a given pair of
segments are nearest neighbors, suggesting these segments have similar evolution-
ary histories. Our reasoning is that because only nearest neighbors are correlated,
segments with similar evolutionary histories have a high posterior probability of
adjacent positions within the permutation vector conditional on the correlation ρ

being positive. This model that includes estimation of πv (TRI-P) clarifies which
evolutionary histories of segments are strongly correlated, which in turn has im-
plications regarding structural interaction.

5. Results. Rambaut et al. (2008) have run stratified analyses for each of the
eight influenza segments. Each analysis required an exhausting 2–3 weeks on high-
end computers to approximate the stratified distributions P(gi |Di ) via MCMC.
Each MCMC chain runs for 108 iterations and subsampling every 105 iterations
yields 103 approximately independent samples from these stratified distributions.
We recycle these precomputed random samples to fit our hierarchical model that
corrects for the stratification using the Bayesian machinery described in Sections
2 and 3. In particular, we implemented the DyIRMA Gibbs sampling scheme
in cross-platform Java. We simulate three independent MCMC chains for each
hierarchical model for 106 iterations with 10% burn-in and a 10-fold thinning.
Each chain takes only approximately five hours to run on a mid-end desktop com-
puter, representing a compelling and efficient alternative to fitting a joint hierar-
chical model starting from the sequence data. We assess the combined chains from
three independent chains via several convergence criteria including trace plots, his-
tograms, Geweke’s convergence diagnostic [Geweke (1992)], and Rhat [Gelman
(2004)].

Table 1 presents mean time-course estimates for the across-segments indepen-
dent (IND) and tridiagonal with permutation (TRI-P) models. An additional sub-
script of IND or TRI-P clarifies the model for the parameter estimate. The additive
parameterization of the design matrix results in parameter estimates that reflect an
increase or decrease from the previous season. Table 1 therefore reports both the
relative posterior conditional mean of βj , E(βj |D, γj = 1), that reflects the rela-
tive change in TMRCA (from the previous season) and, what we term, the absolute
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TABLE 1
Posterior estimates for parameters summarizing time-course via Gibbs variable selection. We report

both the relative, E(βj |D, γj = 1), and absolute, E(θ·|D) + E(
∑J

j=1994 βj |D, γj = 1) where

θ. = 1
I

∑I
i=1 θi , values of TMRCA. Additive change is captured by posterior mean values for βj

conditional on selection in a given iteration for both the independent (IND) and tridiagonal with
permutations (TRI-P) models. The superscript † indicates influenza seasons during which

there was an HA antigenic shift

Relative posterior Absolute posterior
Year P(γ j = 1|D) mean TMRCA mean TMRCA

Model—Independent (IND)
1994 0.143 0.166 2.24
1995 0.113 0.110 2.35
1996 0.00667 0.00327 2.35
1997† 0.00115 0.0104 2.34
1998† 0.0748 −0.0665 2.30
1999 0.0207 −0.0128 2.28
2000 0.0133 −0.00605 2.27
2002 0.207 −0.242 2.03
2003 1.00 3.02 5.05
2004† 0.00852 0.00538 5.05
2005† 1.00 −3.86 1.20

Model—Tridiagonal (TRI-P)
1994 0.0500 0.0568 2.11
1995 0.0356 0.0326 2.14
1996 0.00593 0.00235 2.14
1997† 0.00556 0.00122 2.14
1998† 0.00100 −0.00511 2.14
1999 0.00815 −0.00346 2.13
2000 0.00852 −0.00268 2.13
2002 0.0437 −0.0456 2.09
2003 1.00 2.89 4.96
2004† 0.0159 0.0118 4.98
2005† 1.00 −3.79 1.18

posterior conditional mean or posterior conditional mean of the segment effect av-
erage added to the cumulative posterior mean of βj , E(θ· +∑J

j=1994 βj |D, γj = 1)

where θ. = 1
I

∑I
i=1 θi . Additionally, we report the posterior mean estimates for γj

that reflect the posterior probability that βj is included in the model.
Looking first at the IND model, an indicator estimate of 1 at season 2003 sug-

gests that there exists a significant difference between the average segment time
to MRCA, T , at influenza season 2002 and that of 2003 because the posterior
probability that the inclusion of a regression parameter captures this difference
approaches 1. This decisive support of a significant jump in T suggests an infu-
sion of genetic diversity and is consistent with a reassortment event. Similarly, the
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posterior probability for the indicator representing the shift between seasons 2004
and 2005 also approaches 1. However, in this instance, as the negative sign of the
estimate for βIND,2005 reflects, this suggests a decrease in genetic diversity which
is consistent with a selective sweep.

Looking more closely at the IND model, the 2003 shift corresponds to an in-
crease in T with a posterior mean regression parameter estimate of β̂IND,2003 =
3.02 and 95% Bayesian credible interval (BCI) (2.23,4.28). The 2005 shift sug-
gests a β̂IND,2005 = −3.86 (−4.78,−3.00) decrease in T and is concomitant with
the FU02-CA04 HA antigenic shift. No other indicators have posterior probabil-
ities greater than 0.95. Similarly, the TRI-P model furnishes strong support for
including seasons 2003 (γ̂TRI-P,2003 = 1) and 2005 (γ̂TRI-P,2005 = 1) and shows
the similar pattern of jump in T of β̂TRI-P,2003 = 2.89 (2.00,3.91) followed by
decrease of β̂TRI-P,2005 = −3.79 (−5.03,−2.55). The increase in genetic diversity
at season 2003 followed by a decrease at 2005 clearly identify themselves in the
third column of Table 1 that shows that the posterior conditional segment means
for the seasons between 1994 and 2002 as around 2 but jumps to nearly 5 in sea-
sons 2003 and 2004 before undergoing a decline in 2005 and decreasing to around
1.2. Figure 3 reiterates this finding. In general, the TRI-P indicator probabilities
are closer to 0 or 1 than in the IND model. For example, the posterior probability
of the season 2002 shift (γ̂TRI-P,2002 = 0.0437) is less than that for the IND model
(γ̂IND,2002 = 0.207). One explanation for the differences between the two models
is that the parameter estimate standard errors are generally reduced for the TRI-P
model.

There exists a wide number of covariance structures that are biologically in-
teresting to explore within our framework. Specifically, we also consider the un-
structured (UNS) and first order autoregressive with permutation (AR1-P) models.
Although we observe a similar pattern of increase and decrease in TMRCA in 2003
and 2005, these models that allow a high level of correlation between the segments
lose identifiability of the indicator variables across time, presumably because the
variation present in the observations is used to model the correlation instead of the
mean structure. Combined with the fact that inference focuses on the mean struc-
ture, we continue to exclusively discuss results for sparse covariance matrices such
as those used in the IND and TRI-P models.

Summarizing the posterior probability of a model that contains all of the anti-
genic shifts addresses our question regarding whether HA shifts are concomitant
with significant changes in T. Antigenic shifts occur at 1997 (BE93-WU95), 1998
(WU95-SY97), 2004 (SY97-FU02), and 2005 (FU02-CA04) and these seasons are
superscripted in Table 1. We refer to these seasons from now on as shifts 1, 2, 3,
and 4, respectively, and use these shift numbers as subscripts on a given model
M to clarify which model variables are included. For example, M13 describes a
model where both the first and third antigenic shifts are included (γ̂1997 = 1 and
γ̂2004 = 1). As we have already noted, the posterior probability that the FU02-
CA04 shift in 2005 is included in both the IND and TRI-P models approaches 1.
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FIG. 3. Realizations from stratified and hierarchical analyses. Stratified (gray) and hierarchical
(colored line) sample means and 95% highest density intervals conditioned on data for the eight
segments (PB2, PB1, PA, HA, NP, NA, M1/2, and NS1/2) of H3N2 influenza A listed from largest
to smallest. Samples from the hierarchical posterior distributions are from the tridiagonal with per-
mutations (TRI-P) model. Twelve seasons are depicted with season 2001 missing due to an H1N1
dominant season. Segment distributions are staggered for clarity. The y-axis represents TMRCA and
HA antigenicity (BE93, WU95, SY97, FU02, and CA04) is indicated across the top. Hierarchical
posterior distributions exhibit shrinkage toward the mean relative to the stratified.

However, the posterior probability of this being the only antigenic shift selected is
also large because PIND(M4|D) = 0.91 and PTRI-P(M4|D) = 0.97. The posterior
probability of a model with all four antigenic shifts, P(M1234|D), approaches zero
for both TRI-P and IND. This strongly suggests that HA antigenic shifts are not
strictly concomitant with significant changes in TMRCA from the previous sea-
son after correcting for the correlation structure of the segments. Rambaut et al.
(2008) are unable to correct for the correlation structure across segments. Given
the limited time series data available relative to the number of antigenic shifts,
more data would certainly enhance the understanding of the relationship between
reassortment events, selective sweeps, and HA antigenic shifts.

To more thoroughly unravel the evolutionary history of influenza A, we need
to address the relative level of evolutionary diversity between segments. To this
end we include segment-specific effects whose posterior estimates we summa-
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TABLE 2
Posterior mean and 95% Bayesian credible intervals (BCIs) for segment-specific
effects. Posterior mean and probability intervals for segment effects in both the

independent (IND) and tridiagonal with permutations (TRI-P) models. The
superscript † indicates our comparison of particular interest. The posterior

probability of NP being greater than HA is 0.995 in the IND model (BFIND = 179),
assuming equal prior probability. Similarly, for the TRI-P model, the posterior
probability is 0.941 (BFTRI-P = 16.1). Both provide strong evidence that the

evolutionary history of NP has greater diversity than that of HA

Posterior mean 95% BCI

Model—Independent
PB2 2.51 (1.30, 3.40)

PB1 2.65 (1.42, 3.49)

PA 2.11 (0.888, 2.96)

HA† 1.37 (0.161, 2.17)

NP† 2.53 (1.30, 3.36)

NA 2.21 (1.01, 3.02)

M1/2 1.39 (0.244, 2.19)

NS1/2 1.78 (0.585, 2.62)

Model—Tridiagonal
PB2 2.35 (1.24, 3.17)

PB1 2.52 (1.29, 3.37)

PA 2.08 (1.03, 2.91)

HA† 1.54 (0.381, 2.47)

NP† 2.46 (1.25, 3.28)

NA 2.20 (1.04, 3.04)

M1/2 1.37 (0.168, 2.44)

NS1/2 1.88 (0.770, 2.79)

rize in Table 2 for both the IND and the TRI-P models. We report both the
posterior mean and the 95% BCIs with the range of the TRI-P intervals gen-
erally slightly reduced from the IND, perhaps indicative of the TRI-P being a
more appropriate covariance structure with which to model the correlated para-
meters of the different segments. PB1 returns the highest posterior mean esti-
mates of T which at season 1993 for IND is θ̂IND,PB2 = 2.51 (1.30, 3.40) and for
TRI-P is θ̂TRI-P,PB2 = 2.35 (1.24,3.17). HA and M1/2 yield the lowest posterior
means of T which, also given at season 1993, are θ̂IND,HA = 1.37 (0.161,2.17)

and θ̂IND,M1/2 = 1.39 (0.244,2.19) respectively for IND and θ̂TRI-P,HA = 1.54
(0.381,2.47) and θ̂TRI-P,M1/2 = 1.37 (0.168,2.44) respectively for TRI-P. This
implies that genetic diversity is maintained longer in PB1 than HA and M1/2 with
the difference between these segments for T on the order of an entire year. We go
further than Rambaut et al. (2008) who simply observe the differences in the T

of different segments of influenza A by formally testing whether certain segments
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maintain greater diversity than others. One relationship of particular interest, ex-
plored but not formally tested by Rambaut et al. (2008), is the comparison between
NP and HA, superscripted in Table 2. When assuming equal prior probability of
both outcomes (0.5 each), the Bayes factors (BF) of whether the T of NP is greater
than HA are 179 for the IND model and 16.1 for TRI-P. This means that the poste-
rior probability of NP being greater than HA in the IND model is 0.994 and 0.941
in the TRI-P, providing strong support for the hypothesis that NP maintains greater
genetic diversity than HA.

Finally, we approach teasing out the correlation between segments by estimat-
ing the posterior distribution of all possible segment order permutation within the
tridiagonal covariance matrix in the TRI-P model. The three groupings of {HA,
M1/2}, {NP, NS1/2}, and {PA, PB1, PB2} originally posited by Rambaut et al.
(2008) arise from ad hoc multidimensional scaling results. For notational conve-
nience, we now refer to these segments by number and place them in alphabetical
order as 1 (HA), 2 (M1/2), 3 (NA), 4 (NS1/2), 5 (NP), 6 (PA), 7 (PB1), and 8
(PB2). This notational device means that we refer to a model with both the {HA,
M1/2} and {PA, PB1, PB2} grouping as M{12}{678}. Note that there is no implied
ordering of the remaining unlisted segments so that M{12} and M{678}, say, have
some overlapping groupings. There are seven pairs of neighbors possible in the
tridiagonal matrix because the two segments occupying the corners of the diag-
onal of the covariance matrix are restricted to having a single neighbor and the
middle six segments can each have two neighbors.

We are interested specifically in positive correlation between segments as we
want to clarify which segments have similar evolutionary histories. With this
purview, we focus on results conditional on the correlation ρ being greater than
0.2; this provision occurs with approximately 0.593 posterior probability, but
eases interpretation. In general, we assume there are two segments i and i ′ where
i, i′ ∈ {1, . . . ,8}, and i �= i ′ which are selected as neighbors. We summarize the
posterior probability of models in which two segments are neighbors for our
subset of interest, P(M{ii′}|D, ρ > 0.2), in Table 3. The posterior probability
of the strongly hypothesized {HA, M1/2} group is very high, P(M{12}|D, ρ >

0.2) = 0.768. The posterior probability of the {PB1, PB2} pairing is also high,
P(M{78}|D, ρ > 0.2) = 0.493. Previously unidentified as a potential pairing is
{NP, PB2}, P(M{48}|D, ρ > 0.2) = 0.378 as well as {NP, PA}, P(M{46}|D, ρ >

0.2) = 0.313 which implies that the NP segment might be just as strongly aligned
with the {PA, PB1, PB2} grouping as with NS1/2 because the posterior probabil-
ity of the {NP, NS1/2} grouping is similar, P(M{45}|D, ρ > 0.2) = 0.335.

Again, we formally test these hypothetical groupings against the null hypothesis
that all permutations of the tridiagonal covariance matrix are equally likely and
summarize the results in Table 4. We make these calculations unconditional on the
correlation ρ. Notice in column 2 of Table 4, the posterior probability of grouping
{HA, M1/2} is 0.624 and has a prior probability of 0.0357 leading to a significant
BF of 17.5. Again, {NP, NS1/2} has a weaker BF of 8.50 lending some doubt to
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TABLE 3
Posterior probability of segments as neighbors. The values represent the posterior probability of two
segments having correlation in the tridiagonal with permutation (TRI-P) model conditional on the
correlation being greater than 0.2 which occurs with 0.593 probability. For notational convenience
we refer to the segments by number, 1 (HA), 2 (M1/2), 3 (NA), 4 (NP), 5 (NS), 6 (PA), 7 (PB1), and
8 (PB2), so the model with HA and M1/2 as neighbors is M{12}. Hypothesized structural groupings
are indicated by the superscript, {HA, M1/2} is {12}, {NS1/2, NP} is {45}, and {PA, PB1, PB2} is a
subset of {678}. The posterior probability of {HA, M1/2} being grouped as neighbors is the highest
(P (M{12}|D, ρ > 0.2) = 0.768) suggesting these two segments share similar evolutionary histories

PB2 PB1 PA HA NP NA M1/2 NS1/2

PB2 — 0.493{78} 0.297{68} 0.181 0.378 0.123 0.185 0.165
PB1 — 0.284{67} 0.151 0.257 0.313 0.0990 0.160
PA — 0.192 0.313 0.230 0.173 0.290
HA — 0.0620 0.154 0.768{12} 0.157
NP — 0.345 0.0880 0.335{45}
NA — 0.222 0.283
M1/2 — 0.304
NS1/2 —

the hypothesis that these two segments have similar evolutionary histories. Finally,
the posterior probability that all three pairings are found is 0.0741 which, given
all models are thought a priori to have equal probability, has a prior probability
of 0.000600. This leads to a very decisive BF of 124 which strongly supports
Rambaut’s et al. (2008) hypothesized groupings of segments.

We have already demonstrated the ease with which BF can be assigned to com-
peting joint hierarchical analysis models once we have recycled the realizations
from stratified analyses into a single statistical framework. However, an additional

TABLE 4
Bayes factors (BFs) of hypothesized structural groupings being nearest neighbors. BFs are
calculated for the tridiagonal with permutations (TRI-P) model testing the support for the

hypothesized structural groupings of {HA, M1/2}, {NS1/2, NP}, and {PA, PB1, PB2}.
The posterior odds, prior odds, and BFs are reported for each grouping individually

and then for all three occurring together. All possibilities of groupings are considered
equally probable for the prior odds. There is strong support for the {HA, M1/2}

pairing (BF = 17.5) and decisive support for all three structural groupings
being selected as neighbors (BF = 124)

{HA, M1/2} {NP, NS1/2} {PA, PB1, PB2} All three

Posterior odds 0.624 0.304 0.195 0.0741
Prior odds 0.0357 0.0357 0.0179 0.000600
Bayes factor 17.5 8.50 10.9 124
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FIG. 4. Box plots of stratified and hierarchical estimates for select seasons. Box plots of stratified
(gray) and hierarchical (blue) for the selected seasons 1993, 1997, and 2004. On the x-axis are seg-
ments listed from left to right in descending order of size, and on the y-axis are adjusted TMRCA.
Selected seasons clearly display shrinkage toward the mean of the hierarchical versus stratified dis-
tributions.

advantage is that this hierarchical posterior distribution demonstrates shrinkage to-
ward the mean when compared against the stratified results, leading to more sensi-
ble segment-specific estimates. Figure 3 displays the marginal hierarchical poste-
rior distributions superimposed on the stratified results for all eight segments over
time. In Figure 3 we demonstrate that overall the direction of shrinkage estimates
from the stratified mean (black) to the hierarchical mean (color) draws toward the
grand mean for that time. Shrinkage toward the mean especially tempers outliers,
a phenomenon illustrated in Figure 4. Focusing on 1993, this season emits posi-
tive outliers in PB1 and NA. Season 1997 has positive outliers in PB2 and PB1
and 2004 yields a negative outlier in HA and a positive outlier in NP. In 1993,
coverage drastically shifts down for PB1 and NA as well as shifts up for M1/2
and NS1/2. In season 1997, coverage greatly decreases and shifts downward for
the outlier PB2 and in season 2004, coverage shifts up for HA and shifts down
for NP. Figure 3 also illustrates further advantages of this technique, including the
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reduced credible intervals for the hierarchical distribution relative to the stratified.
Finally, especially apparent in this figure is a cautionary reminder of the wide vari-
ability present in the inappropriately independent, stratified results. For example in
1993, the stratified estimate uncertainty of PB1 spans around 3 years whereas that
for PB2 spans around 0.5. These differences in variability mitigate when basing
conclusions on the point estimates of the stratified results. Therefore the advan-
tages of reusing the stratified analyses in a joint model lie not only in the ability
to assign across-segment BFs and the incorporation of highly desirable shrinkage
estimators that lead to improved estimation [Efron and Morris (1977)], but also
in enhanced modeling capabilities that more accurately represent the variability in
the segments.

6. Conclusions. Increasing dataset sizes are engulfing the scientific commu-
nity [Anderson (2008)] demanding novel approaches to statistical analysis. While
the introduction of GPU programming to the statistical community promises solu-
tions in the near-future [Suchard et al. (2010)], the daunting task of analyzing these
massive datasets is currently made realistic by partitioning them into smaller, more
tractable sizes. This stratification, while facilitating fast estimation, results in over-
parameterization and ignores the correlation between parameters across strata. Ad-
ditionally, stratification fails to profit from the massive amounts of data available
because parameters are estimated from siloed strata, removed from the implicit
context that motivated the initial data collection.

Ideally, given no computational constraints, related and exchangeable groups
are represented by a hierarchical model. This framework efficiently pools informa-
tion across groups while accounting for the correlation between them. This single
unified model also makes it easy to draw dataset-wide inference. Finally, hierar-
chical models lead to improved estimators due to shrinkage toward the mean; this
well-known phenomenon is termed Stein’s paradox [Efron and Morris (1977)].

Perhaps a more familiar approach to constructing this full hierarchical model is
sequential Monte Carlo (SMC) [Doucet, de Freitas and Gordon (2001)]. Chopin
(2002), Ridgeway and Madigan (2003), and Balakrishnan and Madigan (2006) use
particle filtering as a SMC solution to the massive data problem, building up the
posterior distribution of the complete data by incrementally introducing a small
number of data into the posterior distribution using importance sampling [Cappé,
Godsill and Moulines (2007)]. This form of SMC is highly effective for linearly
organized data such as time series observations but is inappropriate for data divided
into exchangeable groups. Further, particle filters do not completely recycle the
preliminary analyses.

Our methods in this paper create a new strategy, combining the advantages of
stratification, namely speed, with the statistical framework of hierarchical model-
ing. Any hypothesis addressed in the subpar stratified model can be reused, ben-
efiting from assigned measures of statistical certainty. Our methods capitalize on
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the intermediate realizations from stratified analyses, recycling them into the hi-
erarchical model by reweighting via importance sampling. From the standpoint of
the evolutionary history of influenza A, Rambaut et al. (2008) are ambitious in
their goal of understanding individual segments within the larger context of the
complete genome. Our methods enable us to revisit Rambaut et al. (2008)’s con-
clusions with the insight afforded by a hierarchical statistical framework.

We find that for these data, the TRI-P model is quite sufficient for our re-
examination of the biological questions. However, in some circumstances it may
be necessary to allow for some small degree of correlation between segments that
are not nearest neighbors. One way to accommodate this correlation is by as-
signing a prior inverse-Wishart distribution to �. Our approach is to center the
inverse-Wishart distribution on the structured covariance matrix [as in Boscardin
and Zhang (2004)]. The degrees of freedom of the inverse-Wishart provide a tun-
ing parameter. As the degrees of freedom go to infinity the extra correlation goes
to zero and we recover our original model. The use of this model requires that we
replace the Gibbs sampling step for � with a Metropolis–Hastings step, and so
adds some computational burden.

The applications of reusing, recycling, and reweighting are limited only by the
biological questions of interest. This flexible framework has far-reaching value into
areas such as resequencing and phylogeography [Knowles (2004)], in other words,
situations where computational complexity forces data partitioning, preventing the
more appropriate hierarchical model. From an applied statistician’s perspective,
this technique delivers a much needed strategy for analyzing massive datasets.
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SUPPLEMENTARY MATERIAL

Supplement A: Details of sampling from the complete model (DOI: 10.1214/
10-AOAS349SUPP; .pdf). We detail the sampling steps for our complete model
outlined in Section 4.3 and our constrained covariance matrices model outlined in
Section 4.4.1.
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