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ANALYSIS OF MARKET WEIGHTS UNDER
VOLATILITY-STABILIZED MARKET MODELS

BY SOUMIK PAL1

University of Washington

We derive the joint density of market weights, at fixed times and suit-
able stopping times, of the volatility-stabilized market models introduced by
Fernholz and Karatzas in [Ann. Finan. 1 (2005) 149–177]. The argument
rests on computing the exit density of a collection of independent Bessel-
square processes of possibly different dimensions from the unit simplex. We
show that the law of the market weights is the same as that of the multi-allele
Wright–Fisher diffusion model, well known in population genetics. Thus, as
a side result, we furnish a novel proof of the transition density function of
the Wright–Fisher model which was originally derived by Griffiths by bi-
orthogonal series expansion.

1. Introduction. The multidimensional diffusion models named volatility-
stabilized market (VSM) models were introduced by Fernholz and Karatzas [13]
as toy models that nevertheless reflect some of the traits of a real-world equity
market. We refer the reader to an excellent survey article by the same authors [14].
These models reflect the fact that in real markets the smaller stocks tend to have a
greater volatility and a greater rate of growth than the larger ones.

The mathematical description of the model involves a vector-valued continu-
ous stochastic process X(t) = (X1(t),X2(t), . . . ,Xn(t)), where every coordinate
takes nonnegative values. Their dynamics are determined by the following sto-
chastic differential equation (SDE) with a single nonnegative parameter δ: for
i = 1,2, . . . , n, we have

dXi(t) = δ

2
S(t) dt + √

Xi(t)S(t) dWi(t), S(t) = X1(t) + · · · + Xn(t).(1)

The initial vector, X(0), is a point in the positive quadrant of R
n, which we will

denote by R
n+. Here, (W1,W2, . . . ,Wn) is an n-dimensional Brownian motion.

The original article by Fernholz and Karatzas [13] parametrizes the model by α =
δ − 1, which is assumed to be nonnegative. Our analysis will consider a more
general class of models where the scalar δ is replaced by a vector (δ1, . . . , δn) of
nonnegative coordinates with only the restriction

∑n
i=1 δi > 1.
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The intuition behind such a modeling becomes clear from the following consid-
eration. Define the vector of market weights

μi = Xi∑n
j=1 Xj

, i = 1,2, . . . , n.(2)

From an economic viewpoint, market weights are a measure of the influence that
the ith company exerts on the entire market. These have been studied extensively
in the literature; see, for example, articles by Hashemi [19], Ijiri and Simon [20],
Jovanovic [21] and Simon and Bonini [27]. For a probabilistic study in the context
of another interacting market model, see the article by Chatterjee and Pal [6].

One can alternatively express the SDE (1) (see [13]) by writing

d logXi(t) = δ − 1

2μi(t)
dt + 1√

μi(t)
dWi(t), i = 1,2, . . . , n,

which makes some of the features of the model immediate and visually appealing.
The smaller μi is, the greater the drift and the fluctuation of logXi are. This is the
primary empirical observation that the model is designed to capture.

In this article, we answer one of the questions left open in the articles [13] and
[14]: how can we describe the behavior of the vector of random market weights
(μ1, . . . ,μn)(t) under the law of the VSM model? Similar problems have been
studied by Irina Goia in her thesis [16]; see this for a discussion of the relationship
of these models with CIR models in mathematical finance and their relevance in
the bigger picture of stochastic portfolio theory.

As a natural culmination of the theory we develop in this article, we consider
the following generalization of VSM models.

DEFINITION 1. For any n nonnegative parameters (δ1, . . . , δn), consider the
solution of the stochastic differential equation

d logXi(t) = δi − 1

2μi(t)
dt + 1√

μi(t)
dWi(t), i = 1,2, . . . , n.(3)

We call the unique-in-law solution of the above equation the VSM model with
parameters (δ1, . . . , δn) and denote it by V (δ1, . . . , δn).

As mentioned in [13], the uniqueness in law of the above SDE is guaranteed by
results in the theory of degenerate stochastic differential equations as developed
by Bass and Perkins in [2].

A crucial observation made in [13] in analyzing the VSM model is the connec-
tion with Bessel-square (BESQ) processes. Given a solution of SDE (1), one can
construct n independent BESQ processes of dimension 2δ (say), Z1,Z2, . . . ,Zn,
such that the solution X is linked with Z = (Z1, . . . ,Zn) by an appropriate time
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change. Explicitly,

Xi(t) = Zi(�(t)), 0 ≤ t < ∞, i = 1,2, . . . , n,
(4)

�(t) = 1

4

∫ t

0
S(u)du, S(u) = X1(u) + · · · + Xn(u).

A straightforward generalization of the analysis of Fernholz and Karatzas shows
that a weak solution of the system in (3) can be obtained by the following mecha-
nism. Given a solution X of V (δ1, . . . , δn), there exist processes Z1, . . . ,Zn which
are independent BESQ processes of respective dimensions 2δ1, . . . ,2δn such that
the time change relation described in (4) continues to hold.

We have the following results.

PROPOSITION 1. Let X = (X1, . . . ,Xn) have the law V (δ1, . . . , δn) as in (3),
with initial Xi(0) = xi ≥ 0 for every i. Suppose

δi > 0 for all i and d =
n∑

i=1

δi > 1.

Let S(t) denote the total sum process X1(t) + X2(t) + · · · + Xn(t). Let ςa be the
stopping time

ςa = inf{t ≥ 0 :S(t) = a}, s :=
n∑

i=1

xi ≤ a.

The joint density of the market weights μ = (μ1, . . . ,μn) at the stopping time ςa

is then given by the following expression:

ϕx(y) = (1 − s/a)

∞∑
m=0

�(2m + d)

m!�(m + d)
(1 + s/a)−2m−d

× ∑
k≥0:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

(xi/a)ki Dir(y;k + δ),(5)

yi ≥ 0, for all i and
∑n

i=1 yi = 1.

Here, k + δ denotes the vector (k1 + δ1, . . . , kn + δn) and Dir(y;γ ) is the density
of the Dirichlet distribution with parameter γ given by

Dir(y;γ ) =
∏n

i=1 �(γi)

�(
∑n

i=1 γi)

n∏
i=1

y
γi−1
i , yi ≥ 0,

n∑
i=1

yi = 1.(6)

As mentioned in the abstract, the analysis requires us to compute the exit density
of a collection of independent BESQ processes, of dimensions δ1, . . . , δn, which
might be of independent interest.
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PROPOSITION 2. Suppose n ≥ 3 and let Z = (Z1, . . . ,Zn) be independent
BESQ processes of respective dimensions θ1, . . . , θn, where

θi > 0 for all i and θ0 =
n∑

i=1

θi > 2.

Assume that, initially, Z(0) = z = (z1, . . . , zn), where each zi ≥ 0 and Sz :=∑n
i=1 zi < 1. Consider the stopping time σ1 given by

σ1 = inf{t : ζ(t) ≥ 1}, ζ(t) = Z1(t) + · · · + Zn(t).

The density of (Z1,Z2, . . . ,Zn)(σ1) is then given by

ϕz(y) = (1 − Sz)

∞∑
m=0

�(2m + θ0/2)

m!�(m + θ0/2)
(1 + Sz)

−2m−θ0/2

× ∑
k≥0:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

z
ki

i Dir(y;k + θ/2),(7)

yi ≥ 0 for all i and
∑n

i=1 yi = 1.

Here, k + θ/2 denotes the vector (k1 + θ1/2, . . . , kn + θn/2).
Since each θi is assumed to be strictly positive, the above expression is also the

exit density of the Z process from the unit simplex {x ∈ R
n :xi ≥ 0,

∑n
i=1 xi ≤ 1}.

A deeper analysis can be undertaken by noting, as we will show in Section 3,
that the distribution of market weights under the VSM model is nothing but the
multi-allele Wright–Fisher diffusion model studied in population genetics. A short
introduction to this well-known and important model is provided in Section 1.2.

PROPOSITION 3. The process of market weights (μ1, . . . ,μn) under V (δ1,

. . . , δn) is itself a diffusion, independent of the total sum process S. Its law is
the same as that of a multi-allele Wright–Fisher model with mutation parameters
(δ1, . . . , δn).

Under the additional assumption that each δi is strictly positive, the unique
reversible invariant probability law for the market weights under V (δ1, . . . , δn) is
given by the multivariate Dirichlet distribution with parameters (δ1, . . . , δn).

Finally, we prove a transition density formula for the market weights. Since we
show that the market weights have the same law as the Wright–Fisher diffusions, it
follows that this is the same as the transition density for the Wright–Fisher model
which was originally derived by Griffiths in 1979 [18]; see also Griffiths [17]. Our
proof is novel and follows easily from Proposition 1 and suitably changing time.
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PROPOSITION 4. Let p(t, ξ, y) denote the transition density from an initial
point ξ to a final point y of the market weights under the VSM model which satisfies
the same assumptions as in Proposition 1. Then, p(t, ξ, y) is given by the formula

p(t, ξ, y) =
∞∑

m=0

�(2m + d)

m!�(m + d)
bm(t)

× ∑
k≥0:k1+···+kn=m

(
m

k1 · · · kn

) n∏
i=1

(ξi)
ki Dir(y;k + δ),(8)

ξi ≥ 0, yi ≥ 0,
∑n

i=1 ξi = ∑n
i=1 yi = 1.

The coefficients bm(·) can be expressed by the Laplace transform formula which
holds for all positive ρ:∫ ∞

0
bm(t)t−3/2e−γ 2t/2 exp

(
−ρ2

2t

)
dt

(9)
= √

2πρ−1e−(m+γ )ρ(1 − e−ρ)(1 + e−ρ)−2m−d, m = 0,1,2, . . . .

Here, γ = (d − 1)/2.

REMARKS. (i) Tavaré [28] gives a different proof of the above formula for
the Wright–Fisher model, where the coefficients bm(t) are themselves linked to
transition probabilities of a pure death process in Z

+ ∪ {∞}. Our formula above
establishes a Laplace transform representation of the same probabilities, which
might be of some interest.

(ii) The transition density function for the Wright–Fisher model, as derived by
Griffiths, has exactly the same form for all nonnegative values of (δ1, . . . , δn). It
should be possible, by extending our methods, to eliminate assumptions on the
parameters. However, it is not immediate and requires further work. We do not
pursue this here since the VSM models naturally assume that

∑n
i=1 δi > 1, which

corresponds to the fact that the entire equity market never hits zero.
(iii) There is an interest in determining whether the market weights in equilib-

rium exhibit power-law decay (i.e., the ith largest market weight μi is proportional
to i−γ for some positive γ ). This is empirically observed and can be proven in the
case of certain models; see Chatterjee and Pal [6] for further motivation, refer-
ences and some results involving the Poisson–Dirichlet families of point processes
with parameters (α,0) where this indeed takes place. However, there does not ap-
pear to be such a possibility for the VSM models. The finite-dimensional invariant
distributions have been identified in Proposition 3 as Dirichlet distributions. Un-
der standard Poisson convergence assumptions, the point processes of the order
statistics of Dirichlet distributions converge to Poisson–Dirichlet processes with
parameters (0, β) for some positive β , which do not exhibit power-law decay.
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The paper is arranged as follows. The next subsection describes the multi-allele
Wright–Fisher models and their limiting measure-valued diffusion, the Fleming–
Viot model. In Section 2 we provide proofs of Propositions 1 and 2. This is
achieved by defining a multidimensional functional transformation, akin to the
Kelvin transform for the Laplacian, that utilizes inversion with respect to the unit
simplex. In Section 3 we establish the fact that the process of market weights un-
der the VSM model is actually the Wright–Fisher model. The analysis is slightly
generalized to include the Fleming–Viot models, which shows the large n be-
havior of the market weights. In Section 3.1 we examine the practical situation
where one considers not the entire vector of market weights, but only a subset
of it. This situation can be handled due to a recursive property of VSM models.
Finally, in Section 4 we establish Proposition 4 as a corollary of the previous re-
sults.

1.1. Notation. This article sometimes requires notation that refers to similar,
and yet different, objects. To help the reader avoid confusion, we now list most of
the notation used repeatedly in the following sections.

VSM processes will be denoted throughout by X = (X1, . . . ,Xn), while BESQ
processes will be written Z = (Z1, . . . ,Zn). Their dimensions will be the vectors
δ and θ , respectively. The sum processes will be S = ∑n

i=1 Xi and ζ = ∑n
i=1 Zi ,

with corresponding dimensions

d =
n∑

i=1

δi and θ0 =
n∑

i=1

θi.(10)

The stopping times ςa and σa denote the random hitting times of level a by the
processes S and ζ , respectively. It will sometimes be convenient to consider the
following transformation of the parameter θ :

νi := θi/2 − 1, ν0 =
n∑

i=1

νi.(11)

The closed positive quadrant in n dimensions will be denoted by R
n+. We de-

note the n-dimensional closed unit simplex by

S =
{
x = (x1, . . . , xn) :xi ≥ 0 for all i = 1, . . . , n, and

n∑
i=1

xi ≤ 1

}
.(12)

The oblique boundary of the unit simplex will be denoted by

S̃ =
{
x = (x1, . . . , xn) :xi ≥ 0 for all i = 1, . . . , n, and

n∑
i=1

xi = 1

}
.(13)
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For any two vectors a = (a1, . . . , an) and b = (b1, . . . , bn), we will use the
following notation:

Sa =
n∑

i=1

ai, ab =
n∏

i=1

a
bi

i , a! =
n∏

i=1

ai !.(14)

1.2. A brief description of various models. In this subsection we describe the
various stochastic processes which are all linked to VSM models.

1.2.1. Bessel-square processes. A comprehensive treatment of BESQ process-
es can be found in the book by Revuz and Yor [25]. These one-dimensional diffu-
sions are indexed by a single nonnegative real parameter θ (called the dimension)
and are solutions of the stochastic differential equations

Z(t) = x + 2
∫ t

0

√
|Z(s)|dβ(s) + θt, x ≥ 0, t ≥ 0,(15)

where β is a one-dimensional standard Brownian motion. We denote the law of
this process by BESQθ

x . It can be shown that the above SDE admits a unique strong
solution which remains nonnegative throughout time.

For θ = 1,2,3,4, . . . however, the same process law can be obtained from an-
other perspective. It is well known that in dimension θ = 1,2,3,4, . . . the BESQ
process has the same law as that of the square of the Euclidean norm of Brownian
motion in dimension θ . The case θ = 0 is unique. The BESQ process for dimen-
sion zero is a nonnegative martingale which is a diffusion approximation to the
process of the size of the surviving population of a critical Galton–Watson branch-
ing process.

The applications of BESQ processes, and especially of derived Bessel processes,
are too numerous to list here. As a tip of this iceberg, we mention such diverse ar-
eas as: (i) branching process theory and superprocesses (see Etheridge [10]); (ii)
Brownian path decomposition and excursion theory (see the book by Revuz and
Yor [25], Chapter XII); (iii) Lévy processes (see the article by Carmona, Petit and
Yor [5]); (iv) local times of Markov processes and Dynkin’s isomorphism (see
Eisenbaum [9], Pitman [23] and Werner [30]); (v) mathematical finance (see Cox,
Ingersoll and Ross [7], Geman and Yor [15]); (vi) random matrices (see Bru [4]
and König and O’Connell [22]).

1.2.2. Wright–Fisher diffusions. The Wright–Fisher diffusion model (see,
e.g., Ethier and Kurtz [11], page 432) arises as the diffusion approximation of
the Wright–Fisher Markov chain model as the population size goes to infinity.
A good source for an introduction to the biology and mathematics of these models
is Chapter 1 in the book by Durrett [8].
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For the purposes of this article, it is a family of diffusions with state space S̃

and parametrized by a vector (δ1, . . . , δn) of nonnegative entries. These are the
solutions of the stochastic differential equations

dJ (t) = 1

2

(
δi − dJ (t)

)
dt + σ̃ (J ) dβ(t), d =

n∑
i=1

δi .(16)

Here, β is a standard multidimensional Brownian motion and the diffusion matrix
σ̃ is given by

σ̃i,j (x) = √
xi

(
1{i = j} − √

xixj

)
, 1 ≤ i, j ≤ n.(17)

The law of this process will be denoted by J (δ1, . . . , δn).
In the literature this process is sometimes identified by its Markov generator:

An = 1

2

n∑
i,j=1

xi(1{i = j} − xj )
∂2

∂xi ∂xj

+
n∑

i=1

1

2
(δi − dxi)

∂

∂xi

.(18)

For the case of n = 2, the first coordinate of the Wright–Fisher diffusion is also
known as the Jacobi diffusion; see the article by Warren and Yor [29]. Hence,
the general class is sometimes also referred to as that of multidimensional Jacobi
diffusions; see, for example, Goia [16].

It is known that for any n ∈ N and any strictly positive δ1, . . . , δn, the Dirich-
let distribution Dir(δ1, . . . , δn) is the unique reversible invariant measure for the
Wright–Fisher model J (δ1, . . . , δn); see Lemma 4.1 of [11].

1.2.3. Fleming–Viot diffusions. The large n limit of Wright–Fisher diffu-
sions is the family of measure-valued diffusions that are known as Fleming–Viot
processes; see the survey by Ethier and Kurtz [12]. These diffusions take values
from the set of all probability measures on an underlying space and can be parame-
trized by a linear operator. Fleming–Viot processes and Dawson–Watanabe super-
processes are probably the most important families of measure-valued diffusions
studied in probability. For an introduction to the rich literature in this area, see the
book by Etheridge [10].

We will hardly need the general theory in this article. In fact, the family of
Fleming–Viot processes we will use has no spatial component. Let B be any
Lebesgue-measurable subset of [0,∞) whose Lebesgue measure is θ0 for some
θ0 ≥ 0. By a Fleming–Viot process, we refer to a stochastic process which, at any
time, takes value in the metric space of P(B), the set of all probability measures
supported on B under the Prokhorov metric of weak convergence. This process,
say ν, is defined by the following property: for any n = 1,2, . . . and any partition
of B into disjoint Lebesgue-measurable sets A1, . . . ,An with respective Lebesgue
measures θ1, . . . , θn, where θi ≥ 0 and θ0 = ∑n

i=1 θi , the law of the derived process

(ν(A1), . . . , ν(An))(t), 0 ≤ t < ∞,
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is distributed as J (θ1/2, . . . , θn/2). We will denote the law of the process ν by
FV(B). We will construct such a process later in the text, which will prove its
existence. That it is uniquely defined by the above specification is clear.

2. Description of market weights under VSM models. Consider n nonneg-
ative parameters (θ1, . . . , θn) and n independent BESQ processes (Z1, . . . ,Zn),

where the dimension of Zi is θi and the assumptions of Proposition 2 are sat-
isfied. Then, as we have noted in (4), one can construct a process with law
V (θ1/2, . . . , θn/2) by an appropriate time change of the BESQ processes. We ex-
tend the notation introduced in (4). Recall the sum processes ζ = ∑n

i=1 Zi and
S = ∑n

i=1 Xi .
The market weights at any time t are then given by the relation

μi(t) = Xi(t)

S(t)
= Zi

ζ
(�(t)), �(t) = 1

4

∫ t

0
S(u)du.

Our first step is to eliminate the time change by studying the process at a random
stopping time ςa when the process S hits a level a.

Consider the corresponding hitting time σa for the process ζ . It then plainly
follows from the time change relationship S(t) = ζ(�(t)) that �(ςa) = σa and

μ(ςa) = Z

ζ
(�(ςa)) = Z

ζ
(σa) = 1

a
Z(σa).(19)

On the right-hand side above, we have the process Z the first time it escapes from
the set aS. Since each θi is positive, the BESQ process can only exit S through
the oblique boundary S̃ (all the other boundaries are reflecting). Our objective is
to compute this exit density, which, in turn, gives the exit density of the market
weights at ςa .

Before proceeding to computations, we remark that it is enough to take a = 1.
This is because of the following scaling property of BESQ processes. Let Y be a
BESQδ

x process. Then, for any positive a, the scaled process {a−1Y(at), t ≥ 0} is
a BESQδ process starting from x/a. In particular, by scaling each of Z1, . . . ,Zn

by a, we get that the law of the vector a−1Z(σa) is the same as the vector Z(σ1)

when the initial vector of values has been divided by a.
The other consideration is whether or not σa is finite. The sum ζ is a BESQ

process of dimension θ0. This process is transient if and only if θ0 > 2. Thus,
under the assumptions in Proposition 2, the finiteness of σ1 holds with probability
one.

2.1. Green kernel and the exit density of BESQ processes. Our main tool
is the definition of a functional transformation analogous to the classical Kelvin
transform. The intuition comes from the fact that when the dimensions of BESQ
processes are positive integers, they have the same law as that of the Euclidean
norm-square of multidimensional Brownian motion. Thus, the exit density from
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the unit simplex for BESQ processes can, in principle, be derived from the Poisson
kernel expansion for the exit density of the Brownian motion from the unit ball.
One way to obtain the Poisson kernel formula is by employing classical Kelvin
transform techniques (see the book on harmonic function theory [1], Chapter 4).
We generalize that concept below.

Consider the (generalized) Markovian generator of the process (Z1,Z2, . . . ,Zn)

acting on C2(Rn+), the space of functions that are twice continuously differen-
tiable in R

n+ up to the boundary. It is the following differential operator:

L =
n∑

i=1

θi

∂

∂xi

+ 2
n∑

i=1

zi

∂2

∂x2
i

.(20)

Any twice continuously differentiable function u that satisfies Lu = 0 in an (open)
domain D ⊆ R

n+ will be called L-harmonic on D.
Define the inversion map I : Rn+ \ {0} → R

n+ by

I (z) = z

(
∑n

i=1 zi)2 .(21)

It is easy to see that I is one-to-one and I ◦ I is the identity map. Also, I inverts
the interior of the punctured unit simplex S \ {0} to the interior of its complement
in R

n+ \ {0}. If D is a domain in R
n+ \ {0}, we will denote its image under the

inversion map by I (D).
Let D be a domain in R

n+ \ {0} and let u be a real-valued function on D. One
can define a function K[u] : I (D) → R as

K[u](z) :=
(

n∑
i=1

zi

)1−θ0/2

u(I (z)), θ0 > 2.(22)

Thus, K transforms a function on D to a corresponding function on I (D). We
prove that it takes L-harmonic functions on D to L-harmonic functions on I (D).
We have the following proposition.

PROPOSITION 5. For any C2 function u on D, define

�(z) =
(

n∑
i=1

zi

)2

Lu(z), z ∈ D.

K[u] is then a C2 function on I (D), and we have

LK[u](z) = K[�](z) for all z ∈ I (D).

Thus, if u is L-harmonic, then so is K[u].

To construct the proof we will need the following lemma.
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LEMMA 6. Let p be a polynomial in n variables that is homogeneous of de-
gree m. Then, on any domain D ⊆ R

n+ \ {0}, we have

L
((

n∑
i=1

zi

)1−θ0/2−2m

p(z)

)
=

(
n∑

i=1

zi

)1−θ0/2−2m

Lp(z).

PROOF. First note that for any two C2 functions f,g, we have

L(fg) = f L(g) + gL(f ) + 4
n∑

i=1

zi∂if ∂ig.(23)

Now, for any power r we have

L
(

n∑
i=1

zi

)r

= r

n∑
i=1

θi

(
n∑

j=1

zj

)r−1

+ 2r(r − 1)

n∑
i=1

zi

(
n∑

j=1

zj

)r−2

= r

n∑
i=1

θi

(
n∑

j=1

zj

)r−1

+ 2r(r − 1)

(
n∑

j=1

zj

)r−1

= r(θ0 + 2r − 2)

(
n∑

i=1

zj

)r−1

.

Thus, using the product formula (28) we get

L
((

n∑
i=1

zi

)r

p(z)

)
=

(
n∑

i=1

zi

)r

L(p) + r(θ0 + 2r − 2)

(
n∑

i=1

zi

)r−1

p(z)

+ 4r

n∑
i=1

zi

(
n∑

j=1

zj

)r−1

∂ip

=
(

n∑
i=1

zi

)r

L(p) + r(θ0 + 2r − 2)

(
n∑

i=1

zi

)r−1

p(z)

+ 4rm

(
n∑

i=1

zi

)r−1

p(z).

The final equality follows from the fact that for all homogeneous polynomials of
degree m, we should have 〈z,∇p〉 = mp. The easiest way to see this is to note that
p(αz) = αmp(z) for all α > 0, take the derivative with respect to α and finally put
α = 1.

Thus, we get

L
((

n∑
i=1

zi

)r

p(z)

)
=

(
n∑

i=1

zi

)r

L(p) + r(θ0 + 2r − 2 + 4m)

(
n∑

i=1

zi

)r−1

p(z).
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Choosing r such that θ0 + 2r − 2 + 4m = 0 proves the lemma. �

PROOF OF PROPOSITION 5. We first prove this proposition when u is a poly-
nomial p, homogeneous of degree m. By utilizing the property of homogeneity,
we can write

LK[p] = L
[(

n∑
i=1

zi

)1−θ0/2

p

(
z

(
∑n

i=1 zi)2

)]

= L
[(

n∑
i=1

zi

)1−θ0/2−2m

p(z)

]
(24)

=
(

n∑
i=1

zi

)1−θ0/2−2m

L(p).

The final equality is due to Lemma 6.
Now, note that since p is homogeneous of degree m, we have that L(p) is

homogeneous of degree m − 1. Thus,

K

[(
n∑

i=1

zi

)2

L(p)

]
=

(
n∑

i=1

zi

)1−θ0/2−2

Lp

(
z

(
∑

i zi)2

)

=
(

n∑
i=1

zi

)1−θ0/2−2−2(m−1)

Lp(z)(25)

=
(

n∑
i=1

zi

)1−θ0/2−2m

L(p).

Combining equalities (24) and (25) we get

LK[p] = K

[(
n∑

i=1

zi

)2

L(p)

]
,

which proves the proposition for the special case of homogeneous polynomials.
The general result now follows for all polynomials (obtained by taking linear

combinations of the homogeneous ones) and finally for all C2 functions (by taking
suitable limits of polynomial sequences). �

The explicit description of a Kelvin transform allows us to compute the Green
function for the independent BESQ processes inside the unit simplex. As before,
consider Z = (Z1, . . . ,Zn) to be a vector of independent BESQ processes with
respective dimensions θ1, . . . , θn, satisfying the assumptions of Proposition 2. In
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that case, the process Z is transient (the sum ζ being a BESQ process that is
transient).

Let pθ
t (x, y) denote the transition density of BESQθ . Define the potential kernel

of Z as follows:

uy(x) = u(x, y) =
∫ ∞

0

n∏
i=1

p
θi
t (xi, yi) dt, x, y ∈ R

n+.

We compute this kernel below.

PROPOSITION 7. The potential kernel u(x, y), when θ0 = ∑n
i=1 θi > 2, is

given by the following formula:

u(x, y) = 1

2
S1−θ0/2

n∏
i=1

y
θi/2−1
i

∞∑
m=0

�(θ0/2 − 1 + 2m)
S−2m

m!
(26)

× ∑
k:k1+···+kn=m

(
m

k1 · · · kn

) n∏
i=1

(xiyi)
ki

�(θi/2 + ki)
,

where S = ∑n
i=1(xi + yi).

PROOF. The transition density of a BESQ process is explicitly described in
[25], Appendix 7, page 549, to be t−1f (y/t, θ, x/t), where f (·, k, λ) is the den-
sity of a noncentral chi-square distribution with k degrees of freedom and a non-
centrality parameter value λ. In particular, it can be written as a Poisson mixture
of central chi-square (or gamma) densities. Thus, we have the expansion

pθ
t (x, y) = t−1

∞∑
k=0

e−x/2t (x/2t)k

k! gθ+2k(y/t),

where gr is the density of Gamma(r/2,1/2). Taking products over θi ’s, we get

n∏
i=1

p
θi
t (xi, yi) = t−n

n∏
i=1

[ ∞∑
ki=0

e−xi/2t (xi/2t)ki

ki ! gθi+2ki
(yi/t)

]
.(27)

Recall the special notation introduced in Section 1.1 to keep track of the various
product terms.

Since every term in (27) is nonnegative, we can expand the product as a series
and get

tn
n∏

i=1

p
θi
t (xi, yi) = ∑

k1,...,kn

n∏
i=1

e−xi/2t (xi/2t)ki

ki ! gθi+2ki
(yi/t)

= ∑
k1,...,kn

e−Sx/2t x
k

k! (2t)−Sk

n∏
i=1

1

�(θi/2 + ki)
2−θi/2−ki(28)
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×
(

yi

t

)θi/2−1+ki

e−yi/2t

= tn
∑

k1,...,kn

e−(Sx+Sy)/2t x
k

k! (2t)−Skβ(k)(2t)−θ0/2−Skyν+k.

Here, β(k) denotes the constant given by 1/β(k) = ∏n
i=1 �(θi/2 + ki).

To simplify (28), it will be convenient to define S = Sx + Sy = ∑
i (xi + yi).

Thus, by regrouping terms we get

n∏
i=1

p
θi
t (xi, yi) = yν

∞∑
m=0

e−S/2t (2t)−θ0/2−2m
∑

k1+···+kn=m

β(k)
xkyk

k! .(29)

For notational convenience let us define

C(m) = ∑
k1+···+kn=m

β(k)
xkyk

k!(30)

while we integrate out t from the expression in (29).
Thus, we get

u(x, y) =
∫ ∞

0

n∏
i=1

p
θi
t (xi, yi) dt = yν

∞∑
m=0

C(m)

∫ ∞
0

e−S/2t (2t)−θ0/2−2m dt.

Evaluating the inner integral is easy. Changing the variable to w = 1/2t , we get∫ ∞
0

e−S/2t (2t)−θ0/2−2m dt =
∫ ∞

0
e−Swwθ0/2+2m dw

2w2

= 1

2

∫ ∞
0

wθ0/2−2+2me−Sw dw

= 1

2
�(θ0/2 − 1 + 2m)S−2m+1−θ0/2.

Note that the assumption that θ0 > 2 is being used to show that the integral above
is finite when m = 0. This completes the derivation of the formula

u(x, y) = 1

2
yν

∞∑
m=0

�(θ0/2 − 1 + 2m)S−2m+1−θ0/2
∑

ki≥0,k1+···+kn=m

β(k)
xkyk

k! .

The expression in (26) can be obtained from above by dividing and multiplying by
m!’s inside the infinite sum. �

LEMMA 8. The potential kernel uy(x) is L-harmonic in the interior of R
n+.

Moreover, for a fixed value of y, it has a uniform decay of order O(
∑

i xi)
1−θ0/2

as
∑

i xi tends to infinity.
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PROOF. The first claim follows from the fact that u is the potential kernel,
although it can be verified through direct computation.

For the second claim, let sx = ∑
i xi and sy = ∑

i yi . In what follows, we assume
that sx is much larger than sy .

Since we fix y and the vector θ , it follows from (26) that there is a constant C

(depending on y and θ ) such that

u(x, y) ≤ Cs1−θ0/2
x

∞∑
m=0

(2m)!s
−2m
x

m!
∑

k:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

(xiyi)
ki

ki !
(31)

= Cs1−θ0/2
x

∞∑
m=0

(2m)!
(m!)2 s−2m

x

∑
k:k1+···+kn=m

(
m

k1 · · ·kn

)2 n∏
i=1

(xiyi)
ki .

Recall the identity∑
k:k1+···+kn=m

(
m

k1 · · · kn

) n∏
i=1

z
ki

i = (z1 + · · · + zn)
m.

Since all terms considered are positive, we get∑
k:k1+···+kn=m

(
m

k1 · · · kn

)2 n∏
i=1

(xiyi)
ki

≤
{ ∑

k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

x
ki

i

}{ ∑
k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

y
ki

i

}

= sm
x sm

y .

Substituting this bound into (31), we get

u(x, y) ≤ Cs1−θ0/2
x

∞∑
m=0

(
2m

m

)(
sy

sx

)m

≤ Cs1−θ0/2
x ,

when sx is large enough. This proves the claim. �

For the next proposition recall the stopping time σ1, which is the hitting time of
level one for the sum process ζ .

PROPOSITION 9. Consider the functional transform defined in (22) and define
the kernel

v(x, y) = uy(x) − K[uy](x) = u(x, y) − K[uy](x), x, y ∈ R
n+.(32)

Then, for every smooth nonnegative function f which is compactly supported away
from the origin and any x ∈ S, we get

Ex

∫ σ1

0
f (Z(s)) ds =

∫
S

f (y)v(x, y) dy.(33)
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In other words, v is the Green potential on the unit simplex S for the process Z.
Explicitly, the kernel v(x, y) is equal to

yν

2

∞∑
m=0

�(θ0/2 − 1 + 2m)

m! {(Sx + Sy)
−2m+1−θ0/2 − (SxSy + 1)−2m+1−θ0/2}

(34)

× ∑
ki≥0:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

(xiyi)
ki

�(θi/2 + ki)
.

Thus, v satisfies the symmetry property

v(x, y)

n∏
i=1

x
θi/2−1
i = v(y, x)

n∏
i=1

y
θi/2−1
i .(35)

PROOF. To prove this proposition we first note that for any compactly sup-
ported (in R

n+) smooth test function f , we have

U(f )(x) :=
∫

Rn+
f (y)u(x, y) dy = Ex

∫ ∞
0

f (Z(s)) ds.

Thus, by the Markov property, it follows that M1(t) = U(f )(Z(t))+∫ t
0 f (Z(s)) ds

is a martingale [Z(0) = x] and that (Lemma 8) Luy(x) = 0 for all x /∈ S when
y ∈ S.

Fix a y ∈ S \ S̃. We now use Proposition 5 for the domain D = {x ∈ R
n+ :xi >

0, x /∈ S}. It then follows that K[uy](x) is L-harmonic for all x in I (D), which is
the interior of S.

CLAIM. We now claim that if we define

W(f )(x) :=
∫

Rn+
f (y)K[uy](x) dy,

then M2(t) = W(f )(Z(t ∧ σ1 ∧ σε)) is a martingale for every ε > 0 when
Z(0) ∈ S.

To prove this claim, it suffices to show that K[uy](Z(t ∧σ1 ∧σε)) is a martingale
for every y in S. We apply Itô’s rule to the function K[uy]. Since K[uy](x) is
L-harmonic in the interior of S, the process K[uy](Z(t ∧ σ1 ∧ σε)) is a local
martingale with the decomposition

dK[uy](Z(t ∧σ1∧σε)
) = 2

n∑
i=1

√
Zi(t ∧ σ1 ∧ σε)

∂

∂zi

K[uy](Z(t)) dβi(t ∧σ1∧σε).

The square bracket of this local martingale can be easily computed as

d〈K[uy](Z)〉(t ∧ σ1 ∧ σε)

= 4
n∑

i=1

Zi(t ∧ σ1 ∧ σε)

{
∂

∂zi

K[uy](Z(t ∧ σ1 ∧ σε)
)}2

dt.
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Let us now compute the partial derivative:

∂

∂xi

K[uy](x) = ∂

∂xi

[(∑
i

xi

)1−θ0/2

u

(
x

(
∑

i xi)2

)]

= (1 − θ0/2)

(∑
i

xi

)−θ0/2

u

(
x

(
∑

i xi)2

)

+
(∑

i

xi

)1−θ0/2 n∑
j=1

uj

(
x

(
∑

i xi)2

)[
1{i = j}
(
∑

i xi)2 − 2xj

(
∑

i xi)3

]
.

Here, uj denotes the j th partial derivative of uy .
Now, it can be seen from its explicit series expansion (26) that uy is bounded and

has bounded partial derivatives in Sc when
∑

i yi < 1. Thus, from the expression
above, the partial derivatives of K[uy](x) are uniformly bounded when x ∈ S and∑

i xi > ε > 0. Hence, it follows that K[uy](Z)(t ∧ σ1 ∧ σε) is a martingale. By
integrating with respect to f (y) dy, we have shown that M2(t ∧σε) is a martingale
for every ε > 0.

Thus, the process

N(t) = U(f )
(
Z(t ∧ σ1 ∧ σε)

) − W(f )
(
Z(t ∧ σ1 ∧ σε)

) +
∫ t∧σ1∧σε

0
f (Z(s)) ds

is also a martingale.
We now apply the optional sampling theorem to this martingale at the stopping

time σ1 ∧ σε [notice that the martingale is bounded by c1 + c2(σ1 ∧ σε), which
has a finite expectation]. There are two cases to consider. When σ1 < σε , we have
Z(t ∧ σ1 ∧ σε) ∈ S̃. For any x ∈ S̃, we have uy(x) = K[uy](x) and hence

U(f )
(
Z(σ1 ∧ σε)

) − W(f )
(
Z(σ1 ∧ σε)

) = 0 when σ1 < σε.

In the other case (when σε < σ1), we get ζ(σ1 ∧ σε) = ε. Thus,

W(f )
(
Z(σ1 ∧ σε)

) = ε1−θ0/2U(f )
(
ε−2Z(σ1 ∧ σε)

)
.(36)

Thus, we get

Ex

∫ σ1∧σε

0
f (Z(s)) ds

=
∫
S

f (y)v(x, y) dy

+ Ex[−U(f )(Z(σε)) + W(f )(Z(σε)) | σε < σ1]P(σε < σ1).

Since ζ has dimension greater than two, it almost surely does not hit the origin.
Thus, it is clear that as ε tends to zero, the left-hand side of the above equation
converges to Ex

∫ σ1
0 f (Z(s)) ds. We now show that the right-hand side converges

to
∫
S f (y)v(x, y) dy.
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Using the scale functions for ζ , it is easy to see that

P(σε < σ1) = S
1−θ0/2
x − 1

ε1−θ0/2 − 1
= O(εθ0/2−1).(37)

Now, as ε tends to zero, U(f )(Z(σε)) remains bounded. The easiest way to see
this is to note that f has compact support away from the origin, and Z(σε) is away
from all points in the support for sufficiently small ε. Hence,

lim
ε→0

Ex[−U(f )(Z(σε)) | σε < σ1]P(σε < σ1) = 0.

On the other hand, from (36) and (37) we get

lim
ε→0

Ex[W(f )(Z(σε)) | σε < σ1]P(σε < σ1)

= S1−θ0/2
x lim

ε→0
Ex[U(f )(ε−2Z(σε)) | σε < σ1].

The limit on the right is zero since ε−2Z(σε) tends to infinity, and thus the function
U(f ) applied to it uniformly goes to zero, by Lemma 8.

This completes the proof of the equality in (33).
Now, we compute the kernel v(x, y) from the formula (26). We introduce the

temporary notation

Rm = �(θ0/2 − 1 + 2m)

m!
∑

k:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

(xiyi)
ki

�(θi/2 + ki)
.

Thus, from (26), we get

v(x, y) = u(x, y) −
(

n∑
i=1

xi

)1−θ0/2

u

(
x

(
∑

i xi)2 , y

)

= yν

2
S1−θ0/2

∞∑
m=0

RmS−2m

− S1−θ0/2
x

yν

2

(
1

Sx

+ Sy

)1−θ0/2 ∞∑
m=0

RmS−2m
x

(
1∑
i xi

+ ∑
i

yi

)−2m

= yν

2
S1−θ0/2

∞∑
m=0

RmS−2m

− yν

2
(1 + SxSy)

1−θ0/2
∞∑

m=0

Rm(1 + SxSy)
−2m

= yν

2

∞∑
m=0

Rm{(Sx + Sy)
−2m+1−θ0/2 − (SxSy + 1)−2m+1−θ0/2}.
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This completes the derivation of the Green kernel. �

Finally, we derive the exit distribution from S for the process (Z1,Z2, . . . ,Zn).
Note that the transition density can be guessed from the following version of
Green’s second identity for the generator of the BESQ processes.

LEMMA 10. Let L be the generator in (20). Let D ⊆ S be a compact domain
with piecewise smooth boundary. Let m = (m1, . . . ,mn) be the vector given by
mi = xini(x), where n is the outward unit normal vector at a boundary point x.

Let ω(x) be the weight function ω(x) := xν = ∏n
j=1 x

θj /2−1
j and let u, v be two

functions on D which are twice continuously differentiable (continuous up to the
boundary) on D.

Then, assuming that the right-hand side below is integrable, we have∫
D

(uLv − vLu)ω(x)dx = 2
∫
∂D

(
u

∂v

∂m
− v

∂u

∂m

)
ω(x)σ (dx).(38)

Here, σ is the surface Lebesgue measure on ∂D.

PROOF. Recall the generator L for BESQ processes:

Lv =
n∑

i=1

θi

∂

∂xi

v + 2
n∑

i=1

xi

∂2

∂x2
i

v = 2
n∑

i=1

x
1−θi/2
i

∂

∂xi

[
x

θi/2
i

∂v

∂xi

]
.

We now use the divergence theorem. Let n denote the outward unit normal
vector on a compact domain D with a piecewise smooth boundary. Given a vec-
tor field of continuously differentiable functions F = (f1, . . . , fn) on D, define
divF = ∑n

i=1 ∂ifi . Then,∫
D

divF(x)dx =
∫
∂D

F · n(y)σ (dy).

Here, ∂D is the boundary of D, and σ(dy) is the surface Lebesgue measure on
∂D.

Let μ be the measure on S given by the density ω(x). We now use the diver-
gence theorem to derive the following multivariate integration by parts:∫

D
uLv dμ = 2

∫
D

n∑
i=1

ux
1−θi/2
i

∂

∂xi

[
x

θi/2
i

∂v

∂xi

] n∏
j=1

x
θj /2−1
j dx

= −2
∫
D

n∑
i=1

xi

∂u

∂xi

∂v

∂xi

n∏
j=1

x
θj /2−1
j dx +

∫
∂D

F · n(y)σ (dy).

The last equality above is obtained by applying the divergence theorem to the
function F = (f1, . . . , fn), where

fi = 2xiu
∂v

∂xi

n∏
j=1

x
θj /2−1
j = 2u

[
x

θi/2
i

∂v

∂xi

] ∏
j �=i

x
θj /2−1
j .
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Interchanging u and v above and taking a difference, we arrive at (38). �

PROOF OF PROPOSITION 2. We first use the previous lemma to produce a
convincing heuristic derivation of the transition density.

Step 1: Heuristics. It suffices to prove formula (7) for an arbitrary z in the open
unit simplex. Fix any ε > 0, small enough that B(z, ε) is contained in the interior
of S.

Consider a smooth nonnegative function f on S̃. Let ψ be a function on R
n+

which is nonnegative, smooth and zero outside B(z, ε). We will use ψ as an ap-
proximation of the delta mass at z.

Consider the two functions defined on S: h(x) = ∫
v(x, y)ψ(y)dy and l(x) =

Exf (Zσ1). In the interior of S we have Lh = −ψ , by virtue of v being the Green
potential, and l(x) is L-harmonic, as a corollary of its definition. Assuming that
both of these functions are also smooth, with derivatives extending continuously
to the boundary, we can apply the extended Green’s identity (38) for u = l, v = h

and D = S to get

−
∫
B(z,ε)

l(y)ψ(y)ω(y) dy = 2
∫
∂S

(
l
∂h

∂m
− h

∂l

∂m

)
ω(x)σ (dx).(39)

Let us now analyze the right-hand side of the above equation. The surface ∂S is
piecewise linear and consists of the subsets S1, S2, . . . , Sn and S0 = S̃, where the
outward normal vector for Si is −ei for i = 1,2, . . . , n, and for S̃, the vector is
n−1/21, the normalized vector of all 1’s. Thus, integrating separately on each Si

and temporarily dropping the constant 2, we get∫
∂S

(
l
∂h

∂m
− h

∂l

∂m

)
ω(x)σ (dx) =

n∑
i=0

∫
Si

(
l
∂h

∂m
− h

∂l

∂m

)
ω(x)σ (dx)

= −
n∑

i=1

∫
Si

xi

(
l
∂h

∂xi

− h
∂l

∂xi

)
ω(x)σ (dx)(40)

+ 1√
n

∫
S̃

n∑
i=1

xi

(
l
∂h

∂xi

− h
∂l

∂xi

)
ω(x)σ (dx).

Over each Si , for i = 1,2, . . . , n, the ith coordinate xi is zero. Due to the fact that
each θi > 0, and assuming that h, l and their partial derivatives are well behaved,
the integral above must be zero. Over S̃, by definition, we have h = 0 and l = f .
Thus, combining (39) and (40) we get

−
∫
B(z,ε)

l(y)ψ(y)ω(y) dy = 2n−1/2
∫
S̃

n∑
i=1

xi

(
f (x)

∂h

∂xi

)
ω(x)σ (dx).(41)

We now take a sequence of ψ’s, functions approximating the delta function, such
that both h and its partial derivatives converge to vz and its corresponding partial
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derivatives. We thus infer that

l(z)ω(z) = −2
∫
S̃

f (x)ω(x)

n∑
i=1

xi

∂

∂xi

v(x, z) dx.(42)

The 1/
√

n factor gets absorbed when we parametrize the surface S̃ by R
n−1 (and

hence dx represents the induced measure from the Lebesgue measure on R
n−1).

Since l(z) = Ezf (Zσ1) this identifies the exit density as

ϕz(x) = ϕ(z, x) = −2
ω(x)

ω(z)

[
n∑

i=1

xi

∂

∂xi

v(x, z)

]
, x ∈ S̃, z ∈ S.(43)

The problem with the above argument is that a priori we do not know the regularity
of the exit distribution at the boundary of the simplex. However, once we have
guessed the solution, we can easily check that it must be the correct one.

Step 2: Computation based on heuristics. Let us now compute explicitly the
expression (43). To simplify matters, we introduce some temporary notation: for
m = 0,1,2, . . . let

Bm =
(

n∑
i=1

zi +
n∑

i=1

xi

)−2m+1−θ0/2

−
((

n∑
i=1

zi

)(
n∑

i=1

xi

)
+ 1

)−2m+1−θ0/2

,

Dm = ∑
k:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

(zixi)
ki

�(θi/2 + ki)
.

Thus, from (32), we get

∂

∂xi

v(x, z) = zν

2

∞∑
m=0

�(θ0/2 − 1 + 2m)

m!
[
Dm

∂

∂xi

Bm + Bm

∂

∂xi

Dm

]
.

Now, when z is in the open unit simplex and x ∈ S̃, we get

∂

∂xi

Bm = (−2m + 1 − θ0/2)

(
n∑

i=1

zi + 1

)−2m−θ0/2

− (−2m + 1 − θ0/2)

(
n∑

i=1

zi

)(
n∑

i=1

zi + 1

)−2m−θ0/2

= (1 − θ0/2 − 2m)

(
1 −

n∑
i=1

zi

)(
n∑

i=1

zi + 1

)−2m−θ0/2

.

We do not need to compute partial derivatives of Dm since Bm is zero on S̃.
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Thus, by combining the partial derivatives of Bm, we get that ϕ(z, x) is equal to

ω(x)

∞∑
m=0

�(θ0/2 − 1 + 2m)

m! (2m + θ0/2 − 1)

(44)

×
(

1 −
n∑

i=1

zi

)(
1 +

n∑
i=1

zi

)−2m−θ0/2

Dm,

which leads to formula (7) by substituting Sz for
∑

i zi , noting that �(θ0/2 − 1 +
2m)(2m+ θ0/2 − 1) = �(θ0/2 + 2m) and completing the terms in the Dir density.

Step 3: A rigorous proof. We now show rigorously that the above formula is the
true exit density. To do this we merely need to check that the heuristic derivation
shown in step 1 goes through.

We first claim that ϕ(z, x), as given by (43), is in the kernel of L in the first
coordinate. That is, Lzϕ(z, x) = 0 for all z in the open unit simplex when x ∈ S̃.
To see this, we use the symmetry property of the Green potential (35). Thus,

ϕ(z, x) = −2
ω(x)

ω(z)

[
n∑

i=1

xi

∂

∂xi

v(x, z)

]
= −2ω(x)

n∑
i=1

xi

∂

∂xi

v(x, z)

ω(z)

(45)

= −2ω(x)

n∑
i=1

xi

∂

∂xi

v(z, x)

ω(x)
.

Since Lzv(z, x) = 0 for all z in the interior of S, it immediately follows that
Lzϕ(z, x) must also be zero.

Now, consider any smooth test function f on S̃ and, following step 1, for any
y �= 0 in S \ S̃, define

l(y) =
∫
S̃

f (x)ϕ(y, x) dx.(46)

Now, from the explicit formula for ϕ(·, x) in (44) and usual analysis, it follows
that ∂ϕ/∂m (and hence ∂l/∂m) is a well-defined power series up to the boundary
of S. The function h in (39) is a convolution with a smooth mollifier ψ and is
obviously smooth. Thus, (39) and (40) go through and we arrive at the following
modification of (42):

l(z)ω(z) = −2
∫
S̃

l(x)ω(x)

n∑
i=1

xi

∂

∂xi

v(x, z) dx =
∫
S̃

l(x)ω(z)ϕ(z, x) dx.(47)

We now cancel the factor ω(z) appearing on both sides of (47) and compare
with the definition of l(z) in (46) to get∫

S̃
f (x)ϕ(z, x) dx =

∫
S̃

l(x)ϕ(z, x) dx.(48)

We now vary z in S and use the following claim.
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CLAIM. If u : S̃ → R is a bounded continuous function such that∫
S̃

u(x)ϕ(z, x) dx = 0 for all z ∈ S,(49)

then u is identically zero.

Assuming the claim for now, we get l(x) = f (x) for all x ∈ S̃. Thus, the func-
tion l is harmonic with the correct boundary condition. The rest of the proof
is now immediate. Since our density ϕ is supported over a compact set, it is
enough to evaluate expectations of monomials under the density. For any mono-
mial p = ∏n

i=1 x
γi

i with each γi ≥ 1, we consider the function

H(z) =
∫
S̃

p(x)ϕ(z, x) dx, z ∈ S.

We claim that the process H(Z)(t ∧ σ1 ∧ σε) is a martingale for any ε > 0. We
have already shown that LH = 0 inside S (since Lϕ = 0, and taking the derivative
inside the integral sign, which is allowed since everything is smooth and bounded).
Thus, the claim follows by noting from the explicit expansion of ϕ that the first
partial derivatives of H are bounded on any domain away from the origin. By
applying the optional sampling theorem we get H(Z(0)) = EH(Z(σ1 ∧ σε)). We
can now take ε to zero, arguing exactly as in the proof of Proposition 9, to claim
that H(Z(0)) = EH(Z(σ1)). However, by (48) and the above claim, we see that
H(Z(σ1)) = p(Z(σ1)). Hence, we get

Ezp(Z(σ1)) =
∫
S̃

p(x)ϕ(z, x) dx.

Since the above identity holds for all monomials p, this completes the proof.
It remains to prove the above claim. Note that since ϕ is a power series, one can

take the integral inside the sum in expression (7). Let ϕu be the resulting power
series in z which is identically zero under (49). Let us define a change of variables,
qi = (1 + Sz)

−2zi, in expression (7) and expand ϕu as below:

ϕu(z) = (1 − Sz)(1 + Sz)
−θ0/2

∞∑
m=0

t (m)
∑

k1+···+kn=m

ρ(k)

n∏
i=1

q
ki

i ≡ 0.(50)

Here, t (m) is the coefficient of the mth internal summand, as in (7), and

ρ(k) =
(

m

k1 · · ·kn

)∫
S̃

u(x)Dir(x, k + θ/2) dx.

Since the right-hand side of (50) is identically zero for all z ∈ S, it follows that
the inner power series (as a function of the variables q1, . . . , qn) must be zero.

Now, fix any collection of positive integers k1, . . . , kn. By taking repeated partial
derivatives ∂

k1
1 · · · ∂kn

n ϕu(q) and letting each qi tend to zero, we obtain that ρ(k)

must be zero for all k = (k1, . . . , kn). However, from the structure of the Dirichlet
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densities, this shows that all multivariate moments of the measure u(x)ω(x) dx on
S̃ must be zero. Since S̃ is compact, this identifies u as the zero function. �

The proof of Proposition 1 follows immediately by combining Proposition 2,
equation (19) and the discussion following it. One simply needs to keep in mind
that in keeping with the time change relationship (4), to compute the distribution
of market weights under the model V (δ1, . . . , δn), we need to compute the exit
density for n independent BESQ’s with dimensions θi = 2δi for i = 1,2, . . . , n.

Readers might wonder if there is any direct way of seeing that the density ex-
pression in (7) [and hence (5)] integrates to 1. Although not elementary, the fol-
lowing argument is such a direct method and serves as a sanity check.

Assume, for notational simplicity, that θ0/2 is a positive integer r . Let s denote
Sz. Since the integral of each Dir density appearing on the right-hand side of (7)
equals 1, by an application of the Fubini–Tonelli theorem, we get∫

S̃
ϕz(y) dy = (1 − s)

∞∑
m=0

(
2m + r − 1

m

)
(1 + s)−2m−r

× ∑
k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

z
ki

i

= (1 − s)

∞∑
m=0

(
2m + r − 1

m

)
(1 + s)−2m−r sm(51)

= (1 − s)

∞∑
m=0

(
2m + r − 1

m

)
pmqm+r , p = s

1 + s
= 1 − q

= (1 − s)q

∞∑
m=0

P0(S2m+r−1 = 1 − r).

Here, Pa refers to the law of a downward-biased random walk {Sk} with probability
p of going up at each step and starting from a at time zero.

Let Nk denote the (almost surely finite) number
∑∞

m=1 1{Sm = k}. It then fol-
lows easily that

∞∑
m=0

P0(S2m+r−1 = 1 − r) = E0N1−r = 1 + E1−rN1−r = 1 + E0N0 = 1

1 − π
.

Here, π is the return probability of the walk to zero, starting at zero. Since π is
well known to be 2p, one can substitute this value into (51) and get∫

S̃
ϕz(y) dy = (1 − s)q

1 − 2p
= 1

since s = p/q . This completes the verification.
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3. A skew-product decomposition result. The BESQ family of measures is
well known to be an additive family. This can be utilized to embed multidimen-
sional BESQ processes in a measure-valued BESQ process, as done by Shiga and
Watanabe [26] and Pitman and Yor [24]. We follow the statement and notation
from [24], Theorem 4.1.

Let C[0,∞) be the canonical space of continuous paths with the usual topology.
There exists a C[0,∞)-valued process (Y θ

x , θ ≥ 0, x ≥ 0) such that Y θ
x has law

BESQθ
x . Moreover, we have the additive decomposition

Y θ
x = Y 0

x + Y θ
0 , x ≥ 0, θ ≥ 0,

where (Y 0
x , x ≥ 0) and (Y θ

0 , θ ≥ 0) are independent processes with stationary in-
dependent increments, each having trajectories which are increasing and right-
continuous with left limits in C[0,∞). In other words both Y θ

0 and Y 0
x are inde-

pendent C[0,∞)-valued Lévy processes.
Now, fix any nonnegative θ0. Let F be any distribution function (increasing,

right-continuous with left limits) on [0, θ0]. Consider the C[0,∞)-valued process
(�d,0 ≤ d ≤ θ0), where

�d = Yd
F(d) = Y 0

F(d) + Yd
0 , 0 ≤ d ≤ θ0.

Let P([0, θ0]) be defined as in Section 1.2.3. Given a realization of {�d,0 ≤
d ≤ θ0}, one can construct a P([0, θ0])-valued process μ(t). For a fixed value of t

and a subinterval (a, b] in [0, θ0], it assigns a mass

μ(t)(a, b] = �b(t) − �a(t)

�θ0(t)
.

This defines a probability measure uniquely, which we denote by the following
notation:

μ(t)(A) = 1

�θ0(t)

∫ θ0

0
1(s ∈ A)�ds(t) for all A ∈ B([0, θ0]).

We have the following skew-product decomposition result. Recall the definition of
the Fleming–Viot processes from Section 1.2.

PROPOSITION 11. Let σ0 be the hitting time of zero for the process �θ0 . There
then exists an FV[0, θ0] process {ν(t), t ≥ 0}, independent of �θ0 , such that

μ(t) = ν(4Ct), where Ct =
∫ t

0

ds

�θ0(s)
, t < σ0.

The proof is essentially one step away from the simpler finite-dimensional ver-
sion that follows.
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PROPOSITION 12. Let Z = (Z1, . . . ,Zn) be a vector of n independent BESQ
processes, of dimensions θ1, . . . , θn. Let ζ be the sum

∑n
i=1 Zi , which is a BESQ

of dimension θ0 = θ1 + · · · + θn. Assume that ζ(0) > 0 and let

σ0 = inf{t > 0 : ζ(t) = 0}.(52)

Then, there is an n-dimensional diffusion ν, independent of ζ , and having law
J (θ1/2, . . . , θn/2), for which

Z(t) = ζ(t)ν(4Ct), Ct =
∫ t

0

ds

ζ(s)
, t < σ0.(53)

REMARK 1. The condition t < σ0 is clearly necessary to guarantee that the
time change Ct does not blow up. For n = 2 this result was noted by Warren and
Yor in [29]; see also the thesis by Goia [16].

PROOF OF PROPOSITION 12. By our assumption, each Zi satisfies the fol-
lowing SDE:

dZi(t) = θi dt + 2
√

Zi(t) dβi(t), i = 1,2, . . . , n.

Let Ri = Zi/ζ . The SDE for Ri for t < σ0 can then be found by Itô’s rule:

dRi(t) = ζ−1 dZi(t) + Zi(t) dζ−1(t) + d〈Zi, ζ
−1〉

= ζ−1[
θi dt + 2

√
Zi(t) dβi(t)

] + Zi(t)[−ζ−2 dζ(t) + ζ−3 d〈ζ 〉(t)]
− 4Ziζ

−2 dt

= [θiζ
−1 − θ0Ziζ

−2 + 4Ziζ
−2 − 4Ziζ

−2]dt

+ 2ζ−1
√

Zi(t) dβi(t) − 2ζ−2Zi(t)

n∑
j=1

√
Zj dβj

= ζ−1[θi − θ0Ri]dt + 2ζ−1
√

Zi(t)[1 − ζ−1Zi(t)]dβi(t)

− 2ζ−2Zi

∑
j �=i

√
Zj dβj

= ζ−1[θi − θ0Ri]dt + ζ−1/22
√

Ri

n∑
j=1

(
1{i = j} −

√
RiRj

)
dβj (t).

Define the sequence of local martingales

dMi(t) = ζ−1/2
√

1 − Ri

n∑
j=1

(
1{i = j} −

√
RiRj

)
dβj (t)(54)
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so that

dRi(t) = ζ−1[θi − θ0Ri]dt + 2
√

Ri(1 − Ri)dMi(t).(55)

However, since

(1 − Ri)
2 + ∑

j �=i

RiRj = (1 − Ri)
2 + (1 − Ri)Ri = (1 − Ri),

it is guaranteed that 〈Mi〉(t) = Ct .
Let τu be the inverse of the increasing function 4Ct , that is, τu = inf{t :Ct ≥

u/4}. Let ν = (ν1, ν2, . . . , νn) be the process obtained by time-changing R by τ .
In other words, νi(u) = Ri(τu). Applying this time change to the SDE for Ri in
(55), we get

dνi(t) = 1
4 [θi − θ0νi]dt + √

νi(1 − νi)W̃i(t),(56)

where W̃i is the Dambis–Dubins–Schwarz (DDS) Brownian motion (see [25],
page 181) associated with Mi . This is the SDE for J (θ1/2, . . . , θn/2) (see Sec-
tion 1.2) once we prove that the diffusion matrix is given by σ̃ . To compute it, note
that

〈νi, νj 〉(4Ct) = 〈Ri,Rj 〉(t) = 4

ζ(t)

√
Ri(t)Rj (t)

(
1{i = j} −

√
RiRj

)
.

Now, changing time by τ , we immediately get 〈νi, νj 〉 = σ̃ (i, j), as desired.
All that now remains to show is that the process ν above is independent of ζ .

The SDE for ζ involves another martingale:

dζ(t) = θ0 dt + 2
√

ζ

n∑
j=1

√
Rj dβj (t) = θ0 dt + 2

√
ζ dβ∗(t).(57)

Here, β∗ is the local martingale
∫ ∑√

Rj dβj , which is a standard Brownian mo-
tion by Lévy’s theorem ([25], page 150). Note that

d〈β∗,Mi〉(t) = 1√
1 − Ri

[√
Ri(1 − Ri) − √

Ri

∑
j �=i

Rj

]
= 0.

Thus, by Knight’s theorem ([25], page 183), the DDS Brownian motions of
(M1, . . . ,Mn) and β∗ are independent. This shows independence of (W̃1, . . . , W̃n)

and β∗. It is known ([25], page 439) that ζ is a strong solution of the SDE (57).
Thus, from the independence proved above, it follows that ζ is independent of the
vector (W̃1, . . . , W̃n) and hence ν in (56). This completes the proof. �

PROOF OF PROPOSITION 3. It will be useful for us now to analyze the time
change Ct in Proposition 12. Let us define S(u) = ζ(τu), where τ , used in the
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proof above, is the inverse of 4Ct . Since the derivative of Ct with respect to t is
1/ζ(t), it follows that

d

du
τu = 1

4/ζ(τu)
= 1

4
S(u).

In other words, 4τu = ∫ u
0 S(t) dt . Thus, if we define Xi(u) = Zi(τu) for i =

1,2, . . . , n, it follows that

Xi(u) = Zi(τu), τu = 1

4

∫ u

0
S(t) dt,

which is exactly the solution of V (θ1/2, . . . , θn/2) described in the Introduction.
The first part of Proposition 3 is now established. The rest follows from known

invariant distributions of Wright–Fisher diffusions; see, for example, [11]. �

PROOF OF PROPOSITION 11. Consider any finite sequence of Lebesgue mea-
surable sets {A1,A2, . . . ,An}. By our construction of the Lévy process of BESQ
processes, it follows that

Zi(t) =
∫ θ0

0
1(s ∈ Ai)�ds(t), i = 1,2, . . . , n,(58)

are independent BESQ processes of respective dimensions θ1, . . . , θn, where θi is
the Lebesgue measure of Ai . Note that the sum ζ = �θ0 is a BESQ process of
dimension θ0 = θ1 + · · · + θn.

By Proposition 12, there is a Wright–Fisher diffusion process ν(t) such that the
time change relationship (53) holds for all t less than σ0. As before, let τu be the
inverse of the increasing continuous function 4Ct .

One can then define a measure on the σ -algebra generated by {A1, . . . ,An}, by
defining

ν(u)(Ai) := νi(u) = 1

�θ0(τu)
Zi(τu), i = 1,2, . . . , n.

Note that in the pathwise construction (58), the time change is the same for all
choices of n and sets {A1,A2, . . . ,An}. Thus, it follows that the measure ν(u) is
consistently defined over any refinement of the sets A1, . . . ,An. Moreover, ν(u) is
countably additive since it is derived from the measure �ds(τu). Thus, by a stan-
dard argument invoking the Carathéodory extension theorem, a unique probability
measure ν(u) is established on the Borel sets in [0, θ0]. It is now clear that the
entire measure-valued process {ν(u), u ≥ 0} satisfies all the defining properties of
the Fleming–Viot model as described in Section 1.2. �
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3.1. Weights in a subset of the market. Thus far, our analysis has considered
the entire vector of market weights. It is often not possible to deal with all the
stocks in a single large market. Transactions are expensive and the different market
indices often concentrate on a chosen subcollection of stocks.

Thus, it is of interest to study the following problem. Suppose, without loss of
generality, we consider the first m out of the total of n stocks in the equity market
and define the process of submarket weights as the vector

μ̃ = (μ̃1, . . . , μ̃m), μ̃i(t) = Xi(t)

S̃(t)
, S̃(t) =

m∑
i=1

Xi(t).(59)

Can one describe the behavior of these submarket weights? The answer is “yes,”
and the logic behind this relies on a self-recursive property of the VSM models.
Our next proposition makes this clear.

PROPOSITION 13. Consider the submarket weight vector μ̃, as defined above.
There then exists a Wright–Fisher diffusion ν̃, independent of the sum process∑

i μ̃i , such that

μ̃i(t) = ν̃i

(∫ t

0

du∑m
j=1 μ̃j (u)

)
, i = 1, . . . ,m,

the equality holding for all t until
∑

i μ̃i hits zero.

Since we have already shown that the market weights have the same law as the
Wright–Fisher models, we prove the proposition for the latter. We take, without
loss of generality, m = n − 1, the case of a general m following similar lines.

LEMMA 14. Let J = (J1, . . . , Jn) be the multidimensional diffusion J (δ1, . . . ,

δn). Consider the process

Y =
(

J2

1 − J1
,

J3

1 − J1
, . . . ,

Jn

1 − J1

)
,

up to the stopping time τ1 = inf{t ≥ 0 :J1(t) = 1}.
There is then a diffusion ν̃ which is J (δ2, δ3, . . . , δn), independent of J1, such

that

Y(t) = ν̃

(∫ t

0

ds

1 − J1(s)

)
, 0 ≤ t < τ1.

PROOF. Let Z1,Z2, . . . ,Zn be n independent BESQ processes with respective
dimensions 2δ1,2δ2, . . . ,2δn. Then, as shown in Proposition 12, the process

Ji(t) = Zi(τt )

ζ(τt )
, where τt = inf

{
u ≥ 0 : 4

∫ u

0

ds

ζ(s)
≥ t

}
,(60)
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is distributed as J (δ1, . . . , δn).
The proof utilizes the independence of the BESQ processes to derive the stated

result. We first claim that the time change
∫ t

0 ds/ζ(s) grows to infinity almost
surely. To see this, note that ζ is a BESQ process of dimension d = ∑n

i=1 δi . When
d < 2, the ζ process is recurrent, and thus the time change

∫ t
0 ds/ζ(s) grows to

infinity in finite time.
When d > 2, it is known (see, e.g., [14], page 43) that

lim
u→∞

1

logu

∫ u

0

ds

ζ(s)
= 1

d − 2
.(61)

Thus, the time change again grows to infinity with time u. The case when d = 2
can be sandwiched between the two cases above by using stochastic comparison
theorems for BESQ processes. Thus, the process Ji(t) in (60) has been constructed
for all time 0 ≤ t < ∞.

Now, let ζ1 = ∑n
i=2 Zi be the sum of all the BESQ processes except the first one.

Exactly as before, there exists a (n − 1)-dimensional diffusion ν̃ = (ν̃2, . . . , ν̃n),
independent of ζ1, with law J (δ2, . . . , δn) such that

Zi(t) = ζ1(t)ν̃i(4ht ), ht =
∫ t

0

ds

ζ1(s)
, i = 2, . . . , n.

Thus, for any i > 1, we get

Ji(t)

1 − J1(t)
= Zi(τt )

ζ1(τt )
= ν̃i (4h(τt )) where h(τt ) = hτt .

Let us now analyze the time change h(τt ). We get

4
d

dt
h(τt ) = 4h′(τt )τ

′
t = ζ(τt )

ζ1(τt )
= 1

1 − J1(t)
.

The computation of τ ′
t was carried out in the proof of Proposition 3.

Thus, we get the following description: for i = 2, . . . , n,

Ji(t)

1 − J1(t)
= ν̃i

(∫ t

0

ds

1 − J1(s)

)
for all t < τ1.

Note that ν̃ is independent of both ζ1 and Z1. Thus, ν̃ is also independent of J1.
This completes the proof of this result. �

4. Transition density of the market weights. Finally, we combine all the
results we have derived so far to obtain the transition density for the market weights
of the VSM model.

Our first step is to analyze the stopping time ςa in Proposition 1. To do this we
return to the SDE (3) in the definition of the VSM model. As done in [13] we can
express this SDE as

dXi(t) = δi

2
S(t) dt + √

Xi(t)S(t) dWi(t), i = 1,2, . . . , n.
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Summing over all the coordinates, we recover the SDE for the process S as

dS(t) = d

2
S(t) dt + √

S(t)

n∑
i=1

√
Xi(t) dWi(t) = d

2
S(t) dt + S(t) dβ(t),

where β is the local martingale
∫

S−1/2(t)
∑√

Xi(t) dWi(t), which is a standard
Brownian motion by Lévy’s theorem ([25], page 150).

Thus, S is a geometric Brownian motion and can be alternatively expressed as

S(t) = S(0) exp
(
(d − 1)t/2 + β(t)

)
.

Thus, when S(0) = s, we get

ςa = inf{t ≥ 0 :β(t) + (d − 1)t/2 ≥ log(a/s)}.
The density of the ςa is well known and can be found in the book by Borodin

and Salminen [3]. To simplify notation, let us temporarily define

γ := (d − 1)/2 and ρ = log(a/s).

Note that ρ is assumed to be positive.
The density of ςa is then given by

P(ςa ∈ dt) = log(a/s)√
2πt3

exp
(
−(log(a/s) − γ t)2

2t

)
dt

(62)

= ρ√
2πt3

exp
(
−(ρ − γ t)2

2t

)
dt.

Recall now from Proposition 3 that the process S is independent of the market
weights μ. Thus, μ and ςa are also independent. Suppose we denote the transition
density function of μ at time t by p(t, ξ, y), where the initial position ξ and the
terminal position y are both elements of S̃. Then, by the independence, it follows
that ∫ t

0
p(t, ξ, y)P (ςa ∈ dt) = ϕx(y), x = sξ = ae−ρξ,(63)

where ϕ is the exit density computed in Proposition 1.
Note that the above integral transform (63) has a single parameter ρ if we fix

a = 1. Equation (63) is an integral transform. If this transform can be inverted, we
can recover p(t, ξ, y) from ϕ. As we show below, this integral transform is nothing
but a Laplace transform in disguise.

To see this, note that for any function h(t) (keeping a = 1), we get∫ ∞
0

h(t)P (ς1 ∈ dt) =
∫ ∞

0
h(t)

ρ√
2πt3

exp
(
−(ρ − γ t)2

2t

)
dt

= ρ√
2π

∫ ∞
0

h(t)t−3/2 exp
(
−(ρ2 + γ 2t2 − 2ργ t)

2t

)
dt

= ρeργ

√
2π

∫ ∞
0

h(t)t−3/2e−γ 2t/2 exp
(
−ρ2

2t

)
dt.
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If we now change the variable from t to u = 1/t , we get

ϒ(ρ) =
∫ ∞

0
h(t)P (ς1 ∈ dt) = ρeργ

√
2π

∫ ∞
0

g(u)e−ρ2u/2 du,(64)

where the function g is defined by

g(u) = h(1/u)u3/2e−γ 2/(2u)u−2 = h(1/u)u−1/2e−γ 2/(2u).

Thus, we get that
√

2πϒ(ρ)ρ−1e−ργ = �(g)(ρ2/2),(65)

where �(g)(·) represents the Laplace transform of g. In other words, the function
g (hence h) can be recovered by inverting the Laplace transform.

We are now going to apply the preceding analysis to the function h(t) =
p(t, ξ, y) for fixed values of ξ and y in the set S̃. In that case, from (63) and
the formula (5) (taking a = 1 and x = e−ρξ ), we get that

ϒ(ρ) = (1 − e−ρ)

∞∑
m=0

�(2m + d)

m!�(m + d)
(1 + e−ρ)−2m−d

× ∑
k≥0:k1+···+kn=m

(
m

k1 · · · kn

) n∏
i=1

(e−ρξi)
ki Dir(y;k + δ), y ∈ S̃.

Simplifying slightly, we get

ϒ(ρ) = (1 − e−ρ)

∞∑
m=0

�(2m + d)

m!�(m + d)
(1 + e−ρ)−2m−de−mρ

× ∑
k≥0:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

(ξi)
ki Dir(y;k + δ), y ∈ S̃.

In particular, this nice series representation allows us to take the inverse Laplace
transform inside the infinite sum and obtain the final formula:

g(u) =
∞∑

m=0

�(2m + d)

m!�(m + d)
�m(u)

× ∑
k:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

(ξi)
ki Dir(y;k + δ), y ∈ S̃.

Here, �m(u) is defined by the Laplace transform formula

�(�m)(ρ2/2) = √
2πρ−1e−(m+γ )ρ(1 − e−ρ)(1 + e−ρ)−2m−d, m = 0,1, . . . .
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Changing the variable back to t = 1/u, we obtain

h(t) = h(1/u) = u1/2eγ 2/(2u)g(u)

=
∞∑

m=0

�(2m + d)

m!�(m + d)
u1/2eγ 2/(2u)�m(u)

× ∑
k:k1+···+kn=m

(
m

k1 · · ·kn

) n∏
i=1

(ξi)
ki Dir(y;k + δ)

=
∞∑

m=0

�(2m + d)

m!�(m + d)
bm(t)

∑
k:k1+···+kn=m

(
m

k1 · · · kn

) n∏
i=1

(ξi)
ki Dir(y;k + δ).

Here, the coefficients bm are given by [see (64)]∫ ∞
0

bm(t)t−3/2e−γ 2t/2 exp
(
−ρ2

2t

)
dt = �(�m)(ρ2/2).

This establishes Proposition 4.
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