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TRAVELING WAVES OF SELECTIVE SWEEPS

BY RICK DURRETT1 AND JOHN MAYBERRY2

Duke University and University of the Pacific

The goal of cancer genome sequencing projects is to determine the ge-
netic alterations that cause common cancers. Many malignancies arise during
the clonal expansion of a benign tumor which motivates the study of recurrent
selective sweeps in an exponentially growing population. To better under-
stand this process, Beerenwinkel et al. [PLoS Comput. Biol. 3 (2007) 2239–
2246] consider a Wright–Fisher model in which cells from an exponentially
growing population accumulate advantageous mutations. Simulations show
a traveling wave in which the time of the first k-fold mutant, Tk , is approxi-
mately linear in k and heuristics are used to obtain formulas for ETk . Here,
we consider the analogous problem for the Moran model and prove that as
the mutation rate μ → 0, Tk ∼ ck log(1/μ), where the ck can be computed
explicitly. In addition, we derive a limiting result on a log scale for the size
of Xk(t) = the number of cells with k mutations at time t .

1. Introduction. Recent studies have sought to identify the mutations that
give rise to common cancers by sequencing protein-coding genes in common tu-
mor types, including breast and colon cancer [23, 26], pancreatic cancer [13] and
glioblastoma [19, 24]. The last study is part of a 100 million dollar pilot project
of the NIH, which could lead to a 1.5 billion dollar effort. These studies have re-
discovered genes known to play a role in cancer (e.g., APC, KRAS and TP53 in
colon cancer), but they have also found that tumors contain a large number of mu-
tations. Analysis of 13,023 genes in 11 breast and 11 colorectal cancers in Sjoblom
et al. [23] revealed that individual tumors accumulate an average of ≈90 mutated
genes, but only a subset of these contribute to the development of cancer.

Follow-up work in Wood et al. [26] studied 18,191 distinct genes in the same
22 samples. Any gene that was mutated in a tumor but not normal tissue was
analyzed in 24 additional tumors, and selected genes were further analyzed in 96
colorectal cancers. Statistical analysis suggested that most of the ≈80 mutations in
an individual tumor were harmless and that <15 were likely to be responsible for
driving the initiation, progression or maintenance of the tumor. These two types
of mutations are commonly referred to as “drivers” and “passengers.” The latter
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provide no selective advantage to the growing cancer mass, but are retained by
chance during repeated rounds of cell division and clonal expansion (exponential
growth).

The results of [23] and [26] are in contrast with the long-held belief that most
cancers are the end result of a handful of mutations. Armitage and Doll [1] con-
structed log–log plots of cancer mortality versus age and found slopes of 5.18 and
4.97 for colon cancer in men and women, respectively. From this they predicted
that the occurrence of colon cancer was the result of a six-stage process. In essence
their argument is that the density function of the sum of six exponentials with rates
μi is

≈ μ1 · · ·μ6t
5/5! for small t .

This result yields the density of the well-known gamma distribution when all the
μi are equal, but only readers with well developed skills in calculus (or complex
variables) will succeed in deriving this result for unequal μi .

The work in [1] and the subsequent work of Knudson [14], who used statistics
to argue that retinoblastoma was the end result of two mutations, gave rise to a
large amount of work; see [15] and the books by Wodarz and Komarova [25] and
Frank [10] for surveys. From this large body of work on multistage carcinogenesis,
we will cite only two sources. Luebeck and Moolgavakar [17] used multistage
models to fit the age-specific incidence of colorectal cancers in the SEER registry
(which covers 10% of the US population) to conclude that a four-stage model
gives the best fit. Calabrese et al. [5] used data for 1022 colorectal cancers to argue
that “sporadic” cancers developed after six mutations, but that in the subgroup of
individuals with strong familial predispositions, only five mutations were required.

There is good reason to doubt some of the conclusions of [23] and [26]. First,
the statistical methods of [23] have been criticized (see letters on pages 762–763 in
the February 9, 2007 issue of Science). Furthermore, in [26], a follow-up study on
40 of the 119 highest scoring genes, chosen because they were in pathways of bi-
ological interest, showed that 15 of the 40 genes (37.5%) were not mutated in any
of the 96 tumors, casting doubt on the claimed 10% false discovery rate. However,
the more recent studies [13, 19, 24] using well-known and trusted statistical meth-
ods have found similar patterns: an average of 63 mutations in pancreatic cancers
and 47 in glioblastoma.

To better understand this process by which an exponentially growing cell mass
accumulates driver and passenger mutations, and, in particular, to understand the
data in [23], Beerenwinkel et al. [3] considered a Wright–Fisher model with selec-
tion and mutation in an exponentially growing population. They assumed that there
were 100 potential driver genes and asked for the waiting time until one cell has
accumulated k mutations. Simulations (see their Figure 3) showed that a traveling
wave developed, in which the time until the first k-fold mutant was approximately
linear in k, and the authors used heuristic arguments to obtain quantitative predic-
tions for the first time that a cell with k mutations appears.
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Here we will consider this problem for the analogous Moran model and prove
asymptotic results as the mutation rate μ → 0 for the behavior of X

μ
j (t) = the

number of cells with j mutations at time t . A cell with j mutations will be re-
ferred to as a type-j individual. Our main result is Theorem 2, which allows for
an exponentially growing population Nμ(t) of individuals. The process of fixa-
tion of advantageous mutations in a population of constant size has been the sub-
ject of much theoretical work (see, e.g., Chapter 6 of [7]), so it is natural to ask
how the behavior changes in an exponentially growing population. A second dif-
ference from the standard theory of the fixation of a single mutation is that we
consider a situation in which new mutations arise before older ones have gone to
fixation, a process often referred to as “stochastic tunneling.” The resulting “Hill–
Robertson” interference (see, e.g., Section 8.3 in [7]) can be analyzed here because
only the newest mutation is stochastic while the older mutations behave determin-
istically. This idea was used by Rouzine et al. in [21] (and later developed in more
detail in [4, 20]) as a heuristic, but here it leads to rigorous results.

The rest of the paper is organized as follows. In Section 1.1 we begin with a
fixed population size of N = μ−α individuals and state Theorem 1, which says
that when time is scaled by L = log(1/μ), the log sizes of Xj , divided by L, con-
verge to a limit that is deterministic and piecewise linear and so the time the first
type-j individual appears is O(log(1/μ)). Since we have assumed the population
size is μ−α , this time scale agrees with (i) results in [27, 28], which show that
the rate of adaptation (defined as the change in the mean fitness of the population)
for a related fixed-population-size Moran model is O(logN) and (ii) simulations
in [6] which suggest that the speed of adaptation depends logarithmically on both
the mutation rate and the population size. In Section 1.2 we return to the growing
population scenario and state our main result, Theorem 2, which generalizes The-
orem 1. Section 2 contains some examples elucidating the nature of the limit in
Theorem 2 and illustrating the traveling-wave-like behavior of the limit. We state
the main tools used to prove Theorem 2 in Section 3, and Sections 4 and 5 contain
the technical details.

1.1. Fixed population size: Main result. We begin by considering our Moran
model in a fixed population of N individuals and return to our analysis of the
exponentially growing population in Section 1.2. We assume that:

(i) initially, all individuals are of type 0;
(ii) type-j individuals mutate to individuals of type j + 1 at rate μ;

(iii) all individuals die at rate 1 and, upon death, are replaced by an individual
of type j with probability

(1 + γ )jX
μ
j (t)

Wμ(t)
,
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where (1+γ )j is the relative fitness of type-j individuals compared to type-0, and

Wμ(t) =
∞∑
i=0

(1 + γ )iX
μ
i (t)

is the “total fitness” of the population. We assume throughout that γ > 0 is fixed
(i.e., mutations are advantageous). Approximations of the time the first type-k in-
dividual appears have been carried out for the neutral case (γ = 0) in [9, 11, 12,
22] (and applied to regulatory sequence evolution in [8]). The case γ < 0 is of
interest in studying Muller’s ratchet [18], but since deleterious mutations behave
very differently from advantageous mutations, we will not consider this case here.

We will suppose throughout that N � 1/μ, that is, Nμ → ∞. If Nμ → 0, then
the 1’s arise and go almost to fixation before the first mutation to a 2 occurs, so the
times between fixations are independent exponentials. We will not here consider
the borderline scenario, although we note that in the case when Nμ → c1 > 0 and
Nγ → c2 > 0, the limiting behavior of the system has been well studied and we
obtain a diffusion limit describing the evolution of type-j frequencies (see, e.g.,
Sections 7.2 and 8.1 in [7]). Let T

μ
0 = 0, and for j ≥ 1 define

T
μ
j = inf{t ≥ 0 :Xμ

j (t) ≥ 1},
that is, T

μ
j is the time of the first appearance of a type-j individual. In order to

study the birth times T
μ
j we will prove a limit theorem for the sizes of the X

μ
j (t)

on a log scale. Let log+ x = max{logx,0}, L = log(1/μ) and define

γj = (1 + γ )j − 1

for all j ∈ Z. In what follows, we shall use 	x
 to denote the greatest integer less
than or equal to x and let �x� = 	x
 + 1.

THEOREM 1. Suppose that X
μ
0 (0) = N with N = �μ−α� for some α > 1 and

suppose that γ ∈ G(α), the set of generic parameter values defined in (1.2). Then,
as μ → 0,

Y
μ
j (t) ≡ 1

L
log+(

Xj(Lt/γ )
) → yj (t) in probability

uniformly on compact subsets of (0, t∗), where t∗ = t∗(α, γ ) > 0 is defined in
(1.1). The limit yj (t), which depends on the parameters α,γ , is deterministic and
piecewise linear and will be described by (a) and (b) below. Furthermore, if we
define

tj = tj (α, γ ) = inf{t :yj (t) = 1}
for j ≥ 0, then

T
μ
j+1

L/γ
→ tj in probability

as μ → 0 for all j ≥ 0.
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(a) Initial behavior. yj (0) = (α − j)+. The convergence only occurs on (0,∞)

because we have Y
μ
j (0) = 0 for all j ≥ 1 by assumption, so a discontinuity is

created at time 0.
(b) Inductive step. Let s0 = 0 and suppose that at some time sn ≥ 0, the following

conditions are satisfied:

(i) mn ≡ max{j :yj (sn) = α} and kn ≡ max{j :yj (sn) > 0} both exist and
yj (sn) > 0 for all mn ≤ j ≤ kn;

(ii) yj+1(sn) ≥ yj (sn) − 1 for all 0 ≤ j ≤ kn so that, in particular,
ykn(sn) ≤ 1.

Let k∗
n = kn if ykn(sn) < 1, k∗

n = kn + 1 if ykn(sn) = 1 and define

δn,j =
{ (

α − yj (sn)
)
γ /γj−mn, mn < j < k∗

n,(
1 − yk∗

n
(sn)

)
γ /γk∗

n−mn, j = k∗
n.

For all t ≤ �n ≡ min{δn,j :mn < j ≤ k∗
n}, we then have

yj (sn + t) =
{(

yj (sn) + tγj−mn/γ
)+

, j ≤ k∗
n,

0, j > k∗
n,

and conditions (i) and (ii) are satisfied at time sn+1 = sn + �n.
Our description of the limiting dynamical system can be understood as follows.

If type mn is the most fit of the dominant types in the population at time sn, then
the yj (sn + t), mn < j ≤ k∗

n , grow linearly with slope γj−mn/γ > 0, while the
yj (sn + t), j < mn, decrease linearly with slope γj−mn/γ < 0 until they hit zero
and ymn(sn + t) stays constant. These rates remain valid until either yj reaches
level α for some mn < j < k∗

n and there is a change in the most fit dominant type,
or yk∗

n
reaches level 1 and individuals of type k∗

n + 1 are born. These two events
correspond to �n = δn,j and �n = δn,k∗

n
, respectively. The condition yj+1(sn) ≥

yj (sn) − 1 guarantees that after birth, the growth of type-j individuals is driven
by selection and not by mutations from type-(j − 1) individuals. If this condition
failed, we would encounter a discontinuity in the limiting dynamics like the one at
time 0. We have rescaled time by γ −1 since, in most cases of interest, γ is small
(e.g., γ < 0.01) and when γ is small, we have γj/γ ≈ j so that the limit process
described above is almost independent of γ .

Parts (a) and (b) together describe the limiting dynamical system for all times

t < t∗ ≡
∞∑

n=1

�n(1.1)

since by part (a), (i) and (ii) in (b) hold at time s0 = 0, and it is easy to see from
the form of yj (t) that if (i) and (ii) hold at time sn, then they also hold at time
sn+1 = sn + �n. Note that the form of the limit implies that at times t /∈ {sn}n≥0,
there is always a unique j such that yj (t) = α, that is, a unique dominant type.
This observation will prove useful on a number of occasions. In Section 2 we shall
see examples in which t∗ = ∞, but in Section 2.4 we will prove the following
result.
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LEMMA 1. For any γ > 0, there exists αγ such that t∗ < ∞ whenever α > αγ .

Therefore, in general, our construction cannot be extended up to arbitrarily large
times. We prove this lemma by showing that if α is large, then an infinite number of
types will be born before any existing type-j ≥ 1 individual achieves dominance.
However, since it is easy to see by construction that we have t∗ ≥ tj for any j , this
is the only way that blow-up can occur. Hence, the limit process will accumulate
an infinite number of mutations before time t∗, which means our approximation is
valid on any time interval of practical importance.

The generic set of parameter values is

G(α) ≡ {γ ∈ (0,∞) : δn,j �= δn,i for all i �= j, n ≥ 0}.(1.2)

In other words, when γ ∈ G(α), there is always a unique jn such that �n = δn,jn .
For any given value of α, G(α) is clearly countable, so our result is good enough
for applications. If δn,i = δn,j for some i �= j , then either (i) type i’s and type j ’s
reach level α at the same time or (ii) type i’s reach level α at the same time that
type j ’s reach level 1. It is tempting to argue that since generic parameters are
dense, the result for general parameters follows, but proving this is made difficult
by the fact that the growth rates are not continuous functions of the parameters
since they depend on mn = max{j :yj (sn) = α}.

Theorem 1 is very general, but not very transparent. In Section 2 we will give
some examples in which more explicit expressions for the birth times tj are avail-
able. Figure 1 shows examples in the first three “regimes” of behavior that we will
consider. In the j th regime, type m + j arises (but not type m + j + 1) before
type m “fixates,” that is, is of order N = �μ−α�. These regimes closely correspond
to the different scenarios considered in [4], in which the “stochastic edge,” that is,
the class of the most fit mutant present at positive quantities, is always assumed
to be q fitness classes ahead of the population bulk. q is referred to as the “lead.”
In the notation of Theorem 1, the lead is always k∗

n on the interval [sn, sn+1),

and in regime j , the lead is always j . In all three examples in Figure 1, we see the
traveling-wave-like behavior observed in the simulations of Beerenwinkel et al. [3]
(see also [21]). The time between successive waves is constant in the example from
regime 1, while in the examples from regimes 2 and 3, the time between successive
waves is not constant, but converges to a constant as the number of waves goes to
infinity.

1.2. Growing population. We now consider a growing population of individ-
uals Nμ(t), t ≥ 0, with a random initial population in N = {1,2, . . .} distributed
according to some measure ν0. At time 0, all individuals are of type 0 and we sup-
pose that, in addition to the previously imposed Moran dynamics, at rate ρNμ(t),
ρ ≥ 0, new individuals are added and their type is chosen to be k with probability

(1 + γ )kX
μ
k (t)

Wμ(t)
.
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FIG. 1. Plot of the limiting dynamical system in Theorem 1 (fixed population size). Parameters:
γ = 0.01, α = 1.3,1.8,1.95 (top to bottom).
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As in the case of fixed population size, we are able to derive a limiting, piecewise
linear approximation to

Y
μ
k (t) ≡ (1/L) log+ X

μ
k (Lt/γ ).

To determine the correct growth rates, suppose that there are xj individuals of
type j and that the population size is N . We then have the jump rates

xj �→ xj + 1 rate: [(1 + ρ)N − xj ] (1 + γ )jxj∑
i≥0(1 + γ )ixi

+ μxj−1,

xj �→ xj − 1 rate: xj

∑
i �=j (1 + γ )ixi∑
i≥0(1 + γ )ixi

− μxj .

If mutations can be ignored, then the growth rate of type j ’s is∑
i≥0[(1 + ρ)(1 + γ )j − (1 + γ )i]xixj∑

i≥0(1 + γ )ixi

≈ [(1 + ρ)(1 + γ )j−m − 1]xj

if xi = o(N) for i �= m (recall that in the limiting dynamical system from Theo-
rem 1, there is a unique dominant type at time t for all but a countable number of
times). This yields the expression

λj−m ≡ (1 + ρ)(1 + γ )j−m − 1

for the limiting growth rate of type j ’s in a population dominated by type m.
If type-j individuals have size (1/μ)x at time 0, are growing at rate λ	(j) for

some 	(j) ≥ 1 and the initial total population size is (1/μ)z, then type j ’s will
achieve fixation at the approximate time t satisfying

(1/μ)xeλ	(j)t = (1/μ)zeρt or t = z − x

λ	(j) − ρ
log(1/μ).

This leads to the following result. Theorem 1 corresponds to the special case ρ = 0.

THEOREM 2. Let Fμ(t) = (1/L) logNμ(tL/γ ) and suppose that Fμ(0) → α

in probability for some α > 0. Then, for all γ ∈ G(α,ρ), the set of generic parame-
ter values given in (1.3), as μ → 0 we have Fμ(t) → α+ tρ/γ and Y

μ
j (t) → yj (t)

in probability uniformly on compact subsets of [0,∞) and (0, t∗), respectively,
where t∗ = t∗(α,ρ, γ ) is given in (1.4). The limits yj (t), which depend on the
parameters (α,ρ, γ ), are deterministic and piecewise linear and described by (a)
and (b) below. Furthermore, if we define

tj = tj (α,ρ, γ ) = inf{t :yj (t) = 1}
for j ≥ 0, then

T
μ
j+1

L/γ
→ tj in probability

as μ → 0 for all j ≥ 0.
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(a) Initial behavior. yj (0) = (α − j)+.
(b) Inductive step. Let s0 = 0 and suppose that at some time sn ≥ 0 the following

conditions are satisfied:

(i) mn ≡ max{j :yj (sn) = α + ρsn} and kn ≡ max{j :yj (sn) > 0} both ex-
ist and yj (sn) > 0 for all mn ≤ j ≤ kn;

(ii) yj+1(sn) ≥ yj (sn) − 1 for all 0 ≤ j ≤ kn so that, in particular,
ykn(sn) ≤ 1.

Let αn = α + ρsn, k∗
n = kn if ykn(sn) < 1, k∗

n = kn + 1 if ykn(sn) = 1 and define

δn,j =
{ (

αn − yj (sn)
)
γ /(λj−mn − ρ), mn < j < k∗

n,(
1 − yk∗

n
(sn)

)
γ /λk∗

n−mn, j = k∗
n.

For all t ≤ �n ≡ min{δn,j :mn < j ≤ k∗
n}, we then have

yj (sn + t) =
{(

yj (sn) + tλj−mn/γ
)+

, j ≤ k∗
n,

0, j > k∗
n,

and conditions (i) and (ii) are satisfied at time sn+1 = sn + �n.
The generic set of parameter values is

G(α,ρ) ≡ {γ ∈ (0,∞) : δn,j �= δn,i for all i �= j, n ≥ 0}(1.3)

and, of course,

t∗ ≡
∞∑

n=1

�n.(1.4)

The argument which we use to prove Lemma 1 implies that t∗ < ∞ whenever
ρ > 0 since αn → ∞ as n → ∞.

An example is given in Figure 2. Since the population size is growing, we
progress through the different “regimes” of behavior defined earlier for the fixed
population size, and the time between successive waves of sweeps decreases. This
behavior can also be seen in Figure 3 of [3]. Here we are dealing with the small
mutation limit so that our waves have sharp peaks.

Motivated by the statistical analysis of cancer data in [23], Beerenwinkel et
al. [3] were interested in the time T

μ
20 at which a cell first accumulates 20 mutations.

Their choice of the number 20 was inspired by data from [23]. Using heuristics
they obtained the approximation

T
μ
j ≈ sj = j

(log(γ /μ))2

γ log(N(0)N(T
μ

20))
(1.5)

for j ≤ 20. Their model evolves in discrete time, but the heuristics only use the fact
that the drift in the Wright–Fisher diffusion limit (ignoring mutations) is given by

bj (x) ≈ γ xj (j − 〈j〉),
where 〈j〉 = ∑

jxj (see [7], page 253). To get the same drift in continuous time,
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FIG. 2. Plot of the limiting dynamical system in Theorem 2 (growing population size). Parameters:
ρ = 0.0013, γ = 0.01 and α = 1.2.

we need to rescale time by 2/N , as opposed to 1/N, and hence we should replace
γ by γ /2 and μ by μ/2 to obtain the analogous approximations for the Moran
model. The important point to note is that the approximation in (1.5) is linear in
j and hence yields constant estimates for the increments T

μ
j − T

μ
j−1, whereas we

can see that in the limiting dynamical system, the increments are not constant, but
decrease in length as the population size increases. Figure 3 shows a plot of tj−1,

FIG. 3. Plot of tj−1, the constants from Theorem 2, as a function of j . Same parameter values as
in Figure 2.
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the constants from Theorem 2, as a function of j and illustrates the nonlinearity in
j .

2. Examples. In this section, we discuss some examples with constant popu-
lation size (ρ = 0) in which the explicit computation of the times tj is possible. To
do so, it is more convenient to study the increments

τ
μ
j ≡ T

μ
j − T

μ
j−1.

Theorem 1 then implies that

τ
μ
j

L/γ
→ βj ,

where βj = tj−1 − tj−2 for all j ≥ 1 if we use the convention that t−1 = 0. We
begin with the first regime of behavior where the lead is always 1 and we have
βj ≡ β for all j ≥ 2. In Section 2.2 we move on to discuss regime 2 where the lead
is always 2. In this case, we will see that βj depends on j , but we have βj → β

as j → ∞ so that asymptotically, the times between successive waves is constant.
Section 2.3 contains some conjectures on the parameter range for the regime j ≥ 3.
In all these scenarios, we conjecture that t∗ = ∞ and our limiting result holds for
all time. In Section 2.4, we will prove Lemma 1, showing that for any γ > 0, there
exists αγ such that t∗ < ∞ whenever α > αγ .

2.1. Results for regime 1. Let r2 = 1 + γ /γ2. The first regime occurs for 1 <

α < r2. If γ is small, then γ /γ2 ≈ 1/2 and the condition is roughly α ∈ (1,3/2).
If γ > 0, then γ /γ2 = 1/(2 + γ ) < 1/2, so α < 2 throughout regime 1.

Table 1 summarizes the situation. To explain the entries, we note that applying
part (a) of the limit description implies that y1(0) = α−1, and part (b) then implies
that

y1(s) = (α − 1) + s

TABLE 1
Sizes in regime 1. Times are given in units of L/γ , entries are the size given as a

power of 1/μ and 0 indicates when the first of the type is born. The first row
comes from (a), the next four from applications of (b)

Time Time increment Type 0 Type 1 Type 2 Type 3

0+ α α − 1
s1 �0 = 2 − α α 1 0
s2 �1 = α − 1 α α γ2(α − 1)/γ

s3 �2 = 1 − �1γ2/γ α 1 0
s4 �3 = α − 1 α α γ2(α − 1)/γ
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for s ≤ �0 = 2 − α. Since we have assumed that α < r2, we have

�1 = δ1,1 ∧ δ1,2 = (α − 1) ∧ γ2

γ
= α − 1,

and applying part (b) tells us that we have y2(s1 + t) = tγ2/γ for all t ≤ �1.
Another application of (b) then yields �2 = δ2,2 = 1 − y2(s2), which gives the
additional amount of time needed for y2 to hit 1. Since the relative sizes of 1’s, 2’s
and 3’s at time s3 are the same as the relative sizes of 0’s, 1’s and 2’s at time s1,
we obtain the following result giving the limiting coefficients of τ

μ
j .

COROLLARY 1. Suppose that N = μ−α for some α ∈ (1, r2). Then, as μ → 0,

τ
μ
1

L/γ
→ (2 − α), and for all j ≥ 2,

τ
μ
j

L/γ
→ β in probability,

where β ≡ �1 + �2 = (α − 1) + 1 − (α − 1)
γ2
γ

= (2 + γ ) − (1 + γ )α.

Figure 1 illustrates the limiting dynamical system in the case where γ = 0.01
and α = 1.3. We can see that in regime 1, the system is characterized by a “travel-
ing wave of selective sweeps” in type space, that is, the growth and decay of types
j ≥ 2 occur translated in time by a fixed amount. In Figure 4 we show the distrib-
utions of types at the times when type-5, -9, -13 and -17 individuals are born (the
times t4, t8, t12 and t16 from Theorem 1). As we move from time tj to tj+4, the
distribution is shifted by a constant amount.

2.2. Results for regime 2. Regime 2 occurs for r2 < α < r3 with r3 = r2 +
γ /γ3. When γ is small, γ /γ3 ≈ 1/3, so this regime is roughly α ∈ (3/2,11/6). In
general, r3 < 11/6, so we have α < 2 throughout this regime. As in the previous
section, it is easiest to explain the conclusions of Theorem 1 with a table; see
Table 2.

Since α < 2 the first two rows are the same as in regime 1, and we again have

τ
μ
1 ∼ (2 − α)L/γ.

However, we now have α > r2 so that

�1 = δ1,1 ∧ δ1,2 = (α − 1) ∧ (γ /γ2) = γ /γ2,

and hence the 2’s reach level 1/μ before the 1’s fixate. This yields

τ
μ
2 ∼ γ

γ2
· L

γ
.

Now y1(s2) = 1 + γ /γ2 = r2, so the additional time it takes y1 to reach level α

is δ2,1 = α − r2. Since α < r3, we have (α − r2)γ3/γ < 1 and hence δ2,1 < δ2,3,
that is, the 1’s will fixate before the 3’s reach level 1/μ. To show that the 1’s
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FIG. 4. Distribution of types at the times t4, t8, t12 and t16 (from left to right) with the same
parameters as Figure 1 (top to bottom).
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TABLE 2
log1/μ sizes in regime 2, time in units of L/γ

Time Time increment Type 1 Type 2 Type 3

0+ α − 1
s1 �0 = 2 − α 1 0
s2 �1 = γ /γ2 r2 1 0
s3 �2 = α − r2 α 1 + �2γ2/γ �2γ3/γ

s4 �3 = γ
γ2

(1 − �2
γ3
γ ) 1 + �2γ2/γ + �3 1

fixate before the 2’s and conclude that �2 = δ2,1 = α − r2, we need to show that
(α − r2) < (α − 1)γ /γ2, which holds if and only if

α <
2 + γ

1 + γ
.(2.1)

However, comparing r3 = 1 + γ /γ2 + γ /γ3 with the upper bound in (2.1), we can
see that

1 + γ /γ2 + γ /γ3 <
2 + γ

1 + γ
⇐⇒ (3 + 3γ + γ 2) + (2 + γ )

(2 + γ )(3 + 3γ + γ 2)
<

1

1 + γ

⇐⇒ 5 + 9γ + 5γ 2 + γ 3

6 + 9γ + 5γ 2 + γ 3 < 1.

The last inequality is always true and therefore (2.1) holds throughout regime 2
and �2 = α − r2, justifying the fourth line in Table 2. Finally, to check that the 2’s
have not yet fixated when the 3’s reach level 1/μ and prove

�3 = δ3,3 = γ

γ2

(
1 − �2

γ3

γ

)
,

we note that the size of y2(s3 + δ3,3) is

1 + �2γ2/γ + δ3,3 = 1 + γ2

γ
(α − r2) + γ

γ2
− γ3

γ2
(α − r2)

= 1 + γ /γ2 + 	(α − r2)

with

	 ≡ γ2/γ − γ3/γ2 = (2 + γ )2 − (3 + 3γ + γ 2)

2 + γ
= 1 + γ

2 + γ
∈ (0,1),

and hence y2(s3 + δ3,3) ∈ (r2, α). This justifies the final line of Table 2, and we
conclude that

τ
μ
3

L/γ
→ �2 + �3 = α − r2 + γ (1 − γ3(α − r2)/γ )

γ2
.



TRAVELING WAVES OF SELECTIVE SWEEPS 713

TABLE 3
Iteration in regime 2

Time increment Type k − 3 Type k − 2 Type k − 1 Type k

α x 1 0
t1
k = α − x α α 1 + γ2t1

k /γ γ3t1
k /γ

t2
k = γ

γ2
(1 − γ3(α − x)/γ ) α f (x) 1

In contrast to regime 1, the relative sizes of types when the 3’s reach 1/μ are
not exactly the same as the relative sizes when the 2’s reach level 1/μ. To describe
this more complicated situation, suppose that type-(k − 2) individuals have size
(1/μ)x at the time type-(k − 1) individuals reach level 1/μ. Then, if we assume:

(2a) type k − 2 reaches fixation before type k − 1;
(2b) type k − 2 reaches fixation before k’s reach 1/μ;
(2c) type k reaches level 1/μ before type k − 1 reaches fixation,

we can repeat the arithmetic leading to Table 2 to yield Table 3, where here f (x) =
1 + γ2t

1
k /γ + t2

k = r2 + 	(α − x) with 	 = (1 + γ )/(2 + γ ), as before.
Since the density of 2’s is f (r2) when the 3’s have reached size 1/μ, we see

that when type k ≥ 3 reaches size 1/μ, the density of type k − 1 is f k−2(r2). This
leads to the statement of our next result.

COROLLARY 2. Suppose N = μ−α for some α ∈ (r2, r3). Then, as μ → 0,

T
μ
1

L/γ
→ (2 − α), and for all j ≥ 2,

τ
μ
j

L/γ
→ βj in probability,

where β2 = γ /γ2, and if we let f 0(x) = x, then for all j ≥ 3 we have

βj = t1
j + t2

j = (
α − f k−3(r2)

) + 1 − (3 + 3γ + γ 2)(α − f k−3(r2))

2 + γ
.

Furthermore, the coefficients βj → β∞ as j → ∞, where

β∞ = α − r∗ + 1 − (3 + 3γ + γ 2)(α − r∗)
2 + γ

with r∗ = limj→∞ f j (r2) = (r2 + 	α)/(1 + 	).

PROOF. We need to show that conditions (2a)–(2c) above are satisfied for any
j ≥ 0 and that f j (r2) converges. The latter follows from the fact that f has slope
−	 with 	 ∈ (0,1), so, as j → ∞,

f j (r2) → r∗ = r2 + 	α

1 + 	
,
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the unique fixed point of f . It is easy to see that 	 ∈ (0,1) implies that

r2 ≤ f j (r2) < α(2.2)

for all j ≥ 0, and (2c) immediately follows. Since α < r3, we have γ3(α −
r2)/γ < 1, which, along with (2.2), tells us that (2b) holds for all j ≥ 0 as well.
Finally, (2a) is equivalent to

α − 1

γ2
>

α − f j−3(r2)

γ

and so (2.2) implies that to prove (2a), we need only show that

α − 1

γ2
>

α − r2

γ
.

Rearranging terms, we obtain the equivalent condition α < (2 + γ )/(1 + γ ) which
holds by (2.1), completing the proof. �

Again, the behavior of the limits yj (t) can be read from Tables 2 and 3. The for-
mulas are messy, but it is easy to compute yj (t) for a fixed value of α. As Figure 1
shows, after a short transient phase, the increments between the appearance of suc-
cessive types settle down into the steady-state behavior guaranteed by Corollary 2.
Figure 4 shows the distribution of types at various times throughout the evolution
of the system, which agree with simulations given in Figure 1 in the Appendix
of [3].

2.3. Regime j , j ≥ 3. Regime 3 occurs for α ∈ (r3, r4) with r4 = r3 + γ /γ4.
When γ is small, γ /γ4 ≈ 1/4, so this regime is roughly α ∈ (11/6,25/12). If
α < 2, then the initial phases are similar to regime 2, but now type 3 reaches 1/μ

before the 1’s fixate; see Table 4.
If we now assume that:

(3a) type k − 3 reaches fixation before types k − 2 and k − 1;
(3b) type k − 3 reaches fixation before type k’s reach 1/μ;
(3c) type k reaches level 1/μ before types k − 2 and k − 1 reaches fixation,

TABLE 4
log1/μ sizes in regime 3, time in units of L/γ

Time Time increment Type 1 Type 2 Type 3

0+ α − 1
s1 �0 = 2 − α 1 0
s2 �1 = γ /γ2 r2 1 0
s3 �2 = γ /γ3 r3 1 + γ2/γ3 1
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TABLE 5
Iteration in regime 3

Time increment Type k − 4 Type k − 3 Type k − 2 Type k − 1 Type k

α x y 1
t1
k = α − x α α y + t1

k γ2/γ 1 + t1
k γ3/γ t1

k γ4/γ

t2
k = γ

γ3
(1 − tk1 γ4/γ ) α f1(x, y) f2(x, y) 1

then the recursion in Table 3 becomes a pair of equations (see Table 5). To imitate
the proof in regime 2 we would have to show that (3a)–(3c) hold for x = r3 and y =
1 + γ2/γ , and for all of the iterates f k(x, y), where f ≡ (f1, f2). Figure 5 shows
that this is true when α = 1.95 and γ = 0.01; however, verifying this algebraically
is difficult because f (x, y) may fail to satisfy the conditions when (x, y) does.

In general, we conjecture that if we define

rj =
j∑

i=1

(γ /γi),

then we are in regime j if α ∈ [rj , rj+1) and we have βi → β∞ as i → ∞. In
particular, this would imply that t∗ = ∞ as long as

α < r∞ =
∞∑
i=1

(γ /γj ).

FIG. 5. Successive iterates of the two-dimensional map (x, y) �→ f (x, y) = (f1(x, y), f2(x, y))

given in Table 5, started with initial conditions (x0, y0) = (1 + γ /γ2 + γ /γ3,1 + γ2/γ3) and para-
meters α = 1.95, γ = 0.01. The star denotes the fixed point of f .
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FIG. 6. Plot of the limiting dynamical system in Theorem 1 (fixed population size). Parameters:
γ = 0.1, α = 3.2.

However, as Figure 6 shows, the converse is not true. There, we have α = 3.2, γ =
0.1 so that α > r∞ ≈ 3.1, but it appears that we still approach a constant increment
between waves.

2.4. Blow-up in finite time. In this section we prove Lemma 1, which shows
that for any γ > 0, we can choose α large enough to make t∗ finite. To this end,
let γ > 0, and for all j ≥ 1 define

Sj = Sj (γ ) =
∞∑
i=0

γj

γj+i

and let S = S(γ ) = sup{Sj (γ ) : j ≥ 1}. Note that since

Sj =
∞∑
i=0

1 − (1 + γ )−j

(1 + γ )i − (1 + γ )−j
≤

∞∑
i=0

1

(1 + γ )i
· 1

1 − (1 + γ )−j−i
,

we have S < ∞. With this notation to hand, we can prove the lemma.

PROOF OF LEMMA 1. Fix γ > 0, define S = S(γ ) as above and choose α

large enough so that α > 1 + 2S and

γa/2/γa < 1/S,

where a ≡ 	α
. We will show that �1 = (1 − (α − a))γ /γa and �n ≤ γ /γa+n−1
for n ≥ 2 so that

t∗ =
∞∑

n=1

�n ≤ γ

∞∑
n=0

[(1 + γ )a+n − 1]−1 < ∞.
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To prove that �n has the desired bound, we will show that for all n ≥ 0, ya+n(t)

hits level 1 before yj (t) hits level α for any 1 ≤ j ≤ a + n. Since this implies that
the growth rate of type (a +n)’s is γa+n/γ , we have, in the notation of Theorem 1,
k∗
n = a + n − 1 for all n ≥ 1 so that �1 = δ1,k∗

1
= (1 − (α − a))γ /γa and �n =

δn,k∗
n
= γ /γa+n−1 for all n ≥ 2.

We first note that since yj (0) = (α − j)+ for all j ≥ 0, we know that no type
1 ≤ j ≤ a −1 can reach level α before type-(a −1) individuals reach level 1. Now,
let n ≥ 0 and suppose that no individual of type 1 ≤ j ≤ a + (n − 1) reaches level
α before type-(a + (n− 1)) individuals reach level 1. Then, for a + 1 ≤ j ≤ a +n,
type-(j − 1) individuals reach level 1 at time

tj−1 = (
1 − (α − a)

)
γ /γa +

j−a−1∑
i=1

γ

γa+i

,

at which time type-j individuals are born and start to grow at rate γj/γ . If there
is no change in the dominant type, then type j ’s will reach level α at time jγ /γj

if j ≤ a and time tj−1 + αγ/γj if j > a, so if we define tj = 0 for all j ≤ a, then
the proof will be complete if we can show that

min(j, α)γ /γj > (ta+n−1 − tj−1) + γ /γa+n(2.3)

for all 1 ≤ j ≤ a +n. Suppose first that 1 ≤ j < a/2. Our choice of α then implies
that

j ≥ 1 >
γa/2

γa

S >
γj

γa

n∑
i=0

γa

γa+i

so that

j (γ /γj ) >

n∑
i=0

γ

γa+i

> ta+n−1 + γ

γa+n

.

If a/2 ≤ j ≤ a, we have

j ≥ a/2 > S >

n∑
i=0

γa

γa+i

>

n∑
i=0

γj

γa+i

so that, again,

j (γ /γj ) > ta+n−1 + γ

γa+n

.

Finally, if a + 1 ≤ j ≤ a + n, we have

α > S >

∞∑
i=0

γj

γj+i

> (γj/γ )(ta+n−1 − tj−1 + γ /γa+n),

which completes the proof of (2.3). �
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3. Ideas behind the proof. For the remainder of the paper, we suppose that
ρ ≥ 0 and that (α, γ ) ∈ Gρ . C will always denote a constant that does not depend
on μ and whose value may change from line to line. We begin with a simple, but
useful, lemma which explains why the limiting result for the birth times follows
from the limiting result for the sizes.

LEMMA 2. Let ε, b > 0. Then,

P
(
T

μ
j+1 ≤ Lt,X

μ
j (Ls) ≤ b(1/μ)1−ε for all s ≤ t

) → 0

as μ → 0 for any j ≥ 0.

PROOF. Let Mj(t) denote the number of mutations from j ’s to (j + 1)’s by
time t and let

A(t) = {Xμ
j (Ls) ≤ b(1/μ)1−ε for all s ≤ t}.

Since mutations to (j + 1)’s occur at rate μX
μ
j (t), we have

E[Mj(Lt);A(t)] ≤ bLtμε → 0

as μ → 0 and therefore Chebyshev’s inequality implies that

P
(
Mj(Lt) ≥ 1,A(t)

) ≤ E[Mj(Lt);A(t)] → 0

as μ → 0, yielding the result. �

Assuming we have the uniform convergence of Y
μ
i (t) → yi(t) for all i ≥ 0,

Lemma 2 implies that P(T
μ
j+1 ≤ (tj − ε)L/γ ) → 0, but since Y

μ
j+1(t) → yj+1(t)

also implies that

P
(
T

μ
j+1 > (tj + ε)L/γ

) ≤ P
(
X

μ
j+1

(
(tj + ε)L/γ

) = 0
) → 0,

the desired convergence of T
μ
j+1 follows.

Our next result gives an approximation for the population size Nμ(t) that yields
the desired uniform convergence of Fμ(t) and also proves useful in other situa-
tions.

LEMMA 3. Let ζ, a > 0. Then, as μ → 0,

P

(
sup

0≤t≤aL

∣∣∣∣ Nμ(t)

Nμ(0)eρt
− 1

∣∣∣∣ > ζ

)
→ 0.

PROOF. Let Nj(t), 0 ≤ t ≤ aL, be a family of i.i.d. pure birth (Yule) processes
in which individuals give birth at rate ρ and the initial population is Nj(0) = 1.
We then have

Nμ(t)
d=

Nμ(0)∑
j=1

Nj(t).
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It follows, for example, from [2], page 109, equation (5), that the moments mi
j (t) =

E(Ni
j (t)), i = 1,2, satisfy

m1
j (t) = eρt ,

m2
j (t) = 2e2ρt (1 − e−ρt ) ≤ Ce2ρt ,

and so Mj(t) = e−ρtNj (t) − 1, t ≥ 0, is a mean-zero martingale ([2], page 111)
with

var(Mj(t)) = m2
j (t)

e2ρt
− 1 ≤ C.

Since the Mj are independent,

M(t) =
Nμ(0)∑
j=1

Mj(t)

(which is itself a mean-zero martingale) has

E(M2
j (t)) = var(Mj (t)) ≤ CNμ(0).

Applying Chebyshev’s inequality and the L2-maximal inequality yields

P

(
sup

0≤t≤aL

∣∣∣∣
∑Nμ(0)

j=1 Nj(t)

Nμ(0)eρt
− 1

∣∣∣∣ > ζ

)

≤ P
(

sup
0≤t≤aL

|M(t)| > ζNμ(0)
)

≤ 4

ζ 2Nμ(0)2 E(M2(aL))

≤ C

ζ 2Nμ(0)
→ 0 as μ → 0,

which gives the desired result. �

There are four steps involved in proving the desired convergence of Yj (t), j ≥ 0,
in Theorem 2. The first step, taken in Section 4, is to prove a result about the initial
behavior of the process.

PROPOSITION 1. Let k = 	α
 be the largest integer ≤ α and define

δ0,j =
{

jγ /(λj − ρ), j < k,(
1 − (α − k)

)
γ /λk, j = k.
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Then, for any 0 < t1 < t2 < �0 ≡ min{δ0,j : j ≤ k}, Y
μ
j (t) → yj (t) in probability

uniformly on [t1, t2] with

yj (t) =
{

(α − j) + tλj /γ, j ≤ k,
0, j > k.

Proposition 1 yields the correct initial conditions (a). The proof of the inductive
step (b) is given in Section 5 and has three main parts that together roughly describe
how the limit changes during one iteration of (b), that is, on the interval [sn, sn+1].
Since we wish to apply the results below to Y

μ
j (t) at positive times, we consider a

version of our Moran model in which we allow for general initial conditions Xμ(0)

satisfying the following.

ASSUMPTIONS. As μ → 0, Fμ(0) → α > 0 and Y
μ
j (0) → y0

j in probability

for all j ≥ 0. Furthermore, we suppose that the y0
j , j ≥ 0, satisfy the conditions:

(i) there is a unique value of m with y0
m = α;

(ii) there is a k > 0 such that y0
j = 0 for all j > k, y0

j > 0 for m < j ≤ k and

y0
k < 1;

(iii) y0
j+1 > y0

j − 1 for 0 ≤ j ≤ k.

Define

δε
j ≡

{
(α − y0

j − ε)γ /(λj−m − ρ), m < j < k,

(1 − y0
k − ε)γ /λk−m, j = k

and let �ε ≡ min{δε
j :m < j ≤ k} for ε ≥ 0. For j ≥ 0 and t ≤ �0, define

yj (t) =
{

(y0
j + tλj−m/γ )+, j ≤ k,

0, j > k.

To connect the next three results below back to (b), we will use Proposition 2 to
describe the limit on the intervals [sn + ε, sn+1 − ε′] for small ε, ε′ > 0 and use
Propositions 3 and 4 to describe the limit on [sn+1 − ε′, sn+1 + ε], depending on
which of the following two possible outcomes occurs: (i) �0 = δ0

k and a new type
is born, or (ii) �0 = δ0

n for some n ∈ (m, k) and there is a change in the dominant
type.

PROPOSITION 2. Let ε > 0 and suppose that the above assumptions hold.
Then, Y

μ
j (t) → yj (t) in probability uniformly on [0,�ε] for all j ≥ 0.

PROPOSITION 3. Suppose that the above assumptions hold and that �0 = δ0
k .

For t ≤ ε, let

yj (�0 + t) =
{ (

yj (�0) + tλj−m/γ
)+

, j ≤ k + 1,
0, j > k + 1.
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There then exists ε1 = ε1(y
0) > 0 such that for all j �= k + 1, Y

μ
j (t) → yj (t) in

probability uniformly on [�ε,�0 + ε] and

P
(

sup
�ε/2≤t≤�0+ε

Yk+1(t) − (t − �ε/2)λk+1−m/γ > ε/2
)

→ 0,

P
(

sup
�0+(γ /λk−m)ε/2≤t≤�0+ε

Yk+1(t)(3.1)

− (
t − �0 − (γ /λk−m)ε/2

)
λk+1−m/γ < −ε/2

)
→ 0

as μ → 0, provided ε < ε1.

PROPOSITION 4. Suppose that the above assumptions hold and that �0 = δ0
n

for some n ∈ (m, k). For t ≤ ε, let

yj (�0 + t) =
{ (

yj (�0) + tλj−n/γ
)+

, j ≤ k,
0, j > k.

There then exists ε2 = ε2(y
0) > 0 such that Y

μ
j (t) → yj (t) in probability uni-

formly on [�ε,�0 + ε], provided ε < ε2.

Note that n �= m + 1 is possible (see Figure 6).

PROOF OF THEOREM 2 FROM PROPOSITIONS 1–4. Suppose that X
μ
0 (0) =

Nμ(0) and X
μ
j (0) = 0 for all j ≥ 1, and let yj (t) denote the dynamical systems

described by (a) and (b). Let K be a compact subset of (0, t∗), ζ > 0 and take
a ∈ (0,�0), n(K) ≥ 1 so that [a, sn(K)] ⊃ K , where sn is as defined in (b). Choose
ε > 0 small enough so that ε < ε1(y(sn)), ε2(y(sn)) for all n ≤ n(K), where ε1, ε2
are as in Propositions 3 and 4, respectively. Without loss of generality, suppose
that ε < ζ/(c + 1), where c = c(γ,ρ) > 1 is defined below. We also set sn,ε =
sn − εγ /λj∗

n−1−mn−1 , where j∗
n satisfies �n = δn,j∗

n
.

By Proposition 1, we obtain Yj (t) → yj (t) in probability uniformly on
[a, s1,ε]. Suppose now that we have uniform convergence on [a, sn,ε] for some
n ≤ n(K) − 1. We then have two cases to consider. If j∗

n = j for some j ∈
(mn, kn), then applying Proposition 4 up to time sn + ε and then Proposition 2
with y0

j = yj (sn + ε) for all j up to time sn+1,ε , we obtain the result. If j∗
n = kn,

then Proposition 4 clearly allows us to extend uniform convergence for Yj (t),
j �= kn +1 up to time sn + ε. To do this for j = kn +1, we first apply Proposition 2
to get convergence up to time sn,ε/2. Write

Yj (t) − yj (t) = (
Yj (t) − (t − sn,ε/2)λkn+1−mn/γ

)
+ (

(t − sn,ε/2)λkn+1−mn/γ − yj (t)
)
.

Recalling that yj (t) = 0 if t ≤ sn and yj (t) = (t − sn)λkn+1−mn/γ if sn ≤ t ≤
sn + ε, we can see that

(t − sn,ε/2)λkn+1−mn/γ − yj (t) ∈ [0, (λkn+1−mn/λkn−mn)ε/2] ⊂ [0, cε/2]
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for all sn,ε/2 ≤ t ≤ sn + ε, the last inclusion following from the fact that

λk+1/λk = (
(1 + ρ)(1 + γ )k+1 − 1

)
/
(
(1 + ρ)(1 + γ )k − 1

)
≤ (

(1 + ρ)(1 + γ )2 − 1
)
/
(
(1 + ρ)(1 + γ ) − 1

)
≡ c

for all k ≥ 1. Since Proposition 3 implies that Yj (t) − (t − sn,ε/2)λkn+1−mn/γ <

ε/2 for all sn,ε/2 ≤ t ≤ sn + ε with high probability and c > 1, we obtain

P
(

sup
sn,ε/2≤t≤sn+ε

Y
μ
k+1(t) − yk+1(t) > (c + 1)ε/2

)
→ 0

as μ → 0. To prove the lower bound, we note that Yk+1(t) − yk+1(t) ≥ 0 for
t ≤ sn, yk+1(t) ≤ cε/2 for all t ≤ sn + (γ /λkn−mn)ε/2 and, by a similar argu-
ment to the one above, using the second equation in (3.1) instead of the first,
Yk+1(t) − yk+1(t) < −(c + 1)ε/2 for all sn + (ε/2)(γ /λkn−mn) ≤ t ≤ sn + ε with
high probability. Therefore,

P
(

sup
sn,ε/2≤t≤sn+ε

Y
μ
k+1(t) − yk+1(t) < −(c + 1)ε/2

)
→ 0.

Since ε < ζ/(c + 1), we conclude that

P
(

sup
sn,ε/2≤t≤sn+ε

|Yμ
k+1(t) − yk+1(t)| > ζ

)
→ 0

as μ → 0, so we have convergence up to time sn + ε. Finally, to complete the
proof of the inductive step, apply Proposition 2 with y0

j = yj (sn + ε) to extend the
convergence up to time sn+1,ε . �

4. Initial behavior. In this section we prove Proposition 1 concerning the ini-
tial behavior of the limit, but before we can begin, we need to take care of some
preparatory details. We set N0 = {0,1, . . .} and for x = (x0, x1, . . .) ∈ R

N0 , we
write xj,k = x + ej − ek , where the ej ∈ R

N0 , j ≥ 0, are the standard basis vec-
tors. It is useful to note that we can define {(Nμ(t),Xμ(t))}t≥0 as the Markov
process with state space

S ≡
{
(N,x) ∈ N0 × N

N0
0 :

∑
j≥0

xj = N

}

and initial population (Nμ(0),Xμ(0)) = (Nμ(0), (Nμ(0),0,0, . . .)) with Nμ(0)

distributed according to ν0 in which (N,x) �→ (N,y) at rate pj,k(x)+μδj−1,kxj−1
if y = xj,k for some j, k ≥ 0, (N,x) �→ (N + 1, y) at rate ρN(1 + γ )jxj /w if
y = x + ej and (N,x) �→ (M,y) at rate 0 otherwise, where δj,k here denotes the
Kronecker delta symbol and

pj,k(x) = (1 + γ )jxjxk

w
, w = ∑

i≥0

(1 + γ )ixi .



TRAVELING WAVES OF SELECTIVE SWEEPS 723

We let

b0
j (x) = ρN(1 + γ )jxj /w + ∑

k �=j

pj,k(x), d0
j (x) = ∑

k �=j

pj,k(x)

denote the birth and death rates, respectively, of type j ’s, ignoring mutations, and
drop the 0’s when the mutation rates are included. Ft = σ {Xμ(s) : s ≤ t}, and un-
less otherwise explicitly stated, when we say a process is a martingale, submartin-
gale, etc., it will be with respect to the canonical filtration Ft . We will also use the
notation

S N =
{
x ∈ N

N0
0 :

∑
j≥0

xj = N

}

to denote a particular cross section of our state space S .
For convenience, we will assume for the remainder of this section that Nμ(0) =

μ−α . Our first lemma, which is similar in spirit to Lemma 2, takes care of the limits
for j ≥ k + 1. Recall that T

μ
k+1 = min{t :Xμ

k+1(t) > 0}.

LEMMA 4. If k = 	α
, then P(T
μ
k+1 < Lt/γ ) → 0 as μ → 0 for any t < δ0,k .

PROOF. Since type j ’s are born at rate bj (x) and die at rate dj (x), we have

d

dt
EX

μ
j (t) = E

(
bj (X

μ(t)) − dj (X
μ(t))

)
.

Using
∑

X
μ
i (t) = Nμ(t) and (1 + γ )i ≥ 1 for i ≥ 0, we have

bj (X
μ(t)) − dj (X

μ(t)) =
∑

i≥0[(1 + ρ)(1 + γ )j − (1 + γ )i]Xμ
i (t)X

μ
j (t)∑

i≥0(1 + γ )iX
μ
i (t)

+ μ
(
X

μ
j−1(t) − X

μ
j (t)

)
(4.1)

≤ λjX
μ
j (t) + μX

μ
j−1(t)

for any t ≥ 0. Thus, for j ≥ 1, we obtain

d

dt
EX

μ
j (t) ≤ λjEX

μ
j (t) + μEX

μ
j−1(t)

so that integrating both sides yields

EX
μ
j (t) ≤ μ

∫ t

0
EXj−1(s)e

λj (t−s) ds for j ≥ 1.

We claim that induction now implies

EX
μ
j (t) ≤ Cj(1/μ)α−j eλj t .(4.2)
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To prove this, we note that EX
μ
0 (t) ≤ ENμ(t) = (1/μ)αeρt [recall that Nμ(t) is

just a Yule process], so the result for j = 0 holds with C0 = 1. Using the induction
hypothesis and integrating, we have

EX
μ
j (t) ≤ μ

∫ t

0
Cj−1(1/μ)α−j+1eλj−1seλj (t−s) ds

≤ Cj−1(1/μ)α−j eλj t
∫ t

0
e−(λj−λj−1)s ds,

which proves the claim with Cj = Cj−1/(λj − λj−1).
From (4.2), it follows that∫ t

0
EX

μ
j (s) ds ≤ C(1/μ)α−j eλj t .

In particular, taking t < δ0,k = γ (1 − (α − k))/λk , we have

∫ Lt/γ

0
EX

μ
k (s) ds ≤ C(1/μ)1−(δ0,k−t)λk/γ .(4.3)

The rest of the proof is the same as the proof of Lemma 2. �

To obtain the appropriate limits for j ≤ k and complete the proof of Proposi-
tion 1, we will couple X

μ
j (t), j ≤ k, with upper- and lower-bounding branching

processes Z
μ
j,u(t) and Z

μ
j,	(t), respectively, so that Z

μ
j,	(t) ≤ X

μ
j (t) ≤ Z

μ
j,u(t) up

until some stopping time σ, which will be greater than Lt/γ with high probability
for any t < �0, and will then show that we have

(1/L) log+ Zj,a(Lt/γ ) → yj (t)

in probability uniformly on [t1, t2] for any 0 < t1 < t2 < �0 (see Lemma 7). The
coupling is made possible by applying the following result to bound the birth and
death rates of type j ’s on the interval [0,�0].

LEMMA 5. Suppose that x ∈ S N and that there exist m,M ∈ N0, η > 0 such
that (i)

∑
j �=m xj ≤ μηN and (ii) xj = 0 for all j > M . For all j �= m, we then

have the inequalities

(1 + ρ − μη)(1 + γ )j−mxj

1 + gμ

≤ b0
j (x) ≤ (1 + ρ)(1 + γ )j−mxj

1 − hμ

,

(1 − Mμη)xj

1 + gμ

≤ d0
j (x) ≤ xj ,

where gμ = γM−m(M − m)μη and hμ = −γ−mmμη.
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PROOF. From the definition,

b0
j (x) = xj (1 + γ )j

(1 + ρ)N − xj∑
i(1 + γ )ixi

= xj (1 + γ )j−m (1 + ρ) − xj/N

1 + ∑
i[(1 + γ )i−m − 1]xi/N

.

To get the lower bound, drop the terms in the denominator with i ≤ m, which are
≤ 0, and use the fact that j → γj is increasing. For the upper bound, drop the
terms with i ≥ m. The death rates are given by

d0
j (x) = xj

∑
i �=j (1 + γ )ixi∑
i (1 + γ )ixi

,

so the upper bound is trivial. The lower bound follows in the same way as the lower
bound for b0

j (x) once we write

d0
j (x) = xj

xm + ∑
i �=j,m(1 + γ )i−mxi

N + ∑
i[(1 + γ )i−m − 1]xi

≥ xj

N − ∑
i �=m xi

N + ∑
i[(1 + γ )i−m − 1]xi

. �

We now describe the bounding processes. Let 0 < t1 < t2 < �0,

η = η(t2) = λ1 − ρ

4γ
(�0 − t2).

The reason for this choice of η is that

yj (t) ≤ (α + tρ/γ ) − 4η

for all t ≤ t2, j ≥ 1. For our bounding processes, we set Z0,u(t) ≡ Nμ(t),
Z

μ
0,	(t) ≡ (1 − kμη)Nμ(t) and let Z

μ
j,a , 1 ≤ j ≤ k, a = u, 	, be (birth and death)

branching processes with rates given in Table 6, taking m = 0, M = k. Note that
the birth and death rates are per particle. The extra factor μ in the definition of
d

μ
j,	 takes care of deaths due to mutations. We also set λ

μ
j,a ≡ b

μ
j,a − d

μ
j,a to be the

growth rates of Z
μ
j,a , a = u, 	, so that we have λ

μ
j,a → λj as μ → 0 for j ≥ 1,

TABLE 6
Rates for the comparison branching processes, j ≥ 1

Z
μ
j,u(s) Z

μ
j,�(s)

Birth rate b
μ
j,u ≡ (1+ρ)(1+γ )j−m

1−hμ
b
μ
j,	 ≡ (1+ρ−μη)(1+γ )j−m

1+gμ

Death rate d
μ
j,u ≡ 1−Mμη

1+gμ
d

μ
j,	 ≡ 1 + μ

Immigration rate μZ
μ
j−1,u(t) μZ

μ
j−1,	(t)
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a = u, 	. If we use the convention that λ
μ
0,a = ρ for a = u, 	, this also holds for

j = 0.
For the next result, we use the notation Z

μ
a (t) = (Z

μ
0,a(t),Z

μ
1,a(t), . . . ,Z

μ
k,a(t),

0, . . .), for a = u, 	.

LEMMA 6. There exists a coupling of Xμ(t) with Z
μ
a (t), a = u, 	, such that

Z
μ
j,	(t) ≤ X

μ
j (t) ≤ Z

μ
j,u(t)

for all t ≤ (Lσ/γ ) ∧ T
μ
k+1, j ≤ k, where

σ = inf{t ≥ 0 :Yμ
i (t) > α + tρ/γ − 2η

for some i ≥ 1 or |Fμ(t) − (α + tρ/γ )| > η}.

PROOF. For t ≤ T
μ
k+1, we have Xj(t) = 0 if j > k. Furthermore, if t ≤ σL/γ ,

Nμ(Lt/γ )

(1/μ)αeρt
≤ (1/μ)η

so that

X
μ
j (Lt/γ )

Nμ(Lt/γ )
≤ μ2η

(1/μ)η
= μη

for all j ≥ 1 and hence we have the bounds on birth and death rates given in
Lemma 5 with m = 0 and M = k. The processes can therefore be coupled in an
elementary way by matching birth, deaths and immigrations in the appropriate
manner. �

The result which we will dedicate most of the remainder of this section to prov-
ing is the following.

LEMMA 7. Let 0 < t1 < t2 < δ0. For a = u, 	 and j ≤ k, we have

(1/L) log+ Z
μ
j,a(Lt/γ ) → yj (t)

in probability uniformly on [t1, t2].

Because y(t) ≤ (α + ρt) − 4η for all t ≤ t2, Lemma 7 implies that

P
(
(1/L) log+ Zμ

a (Lt/γ ) ≤ (α + ρt) − 2η,∀t ≤ t2, a = u, 	
) → 1

as μ → 0. This and Lemma 3 imply that P(σ > t2) → 1 as μ → 0 and therefore
Proposition 1 follows from Lemmas 7, 6 and 4.
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To prove Lemma 7, we begin by defining another level of upper and lower
bounds, Ẑ

μ
j,a , in which immigrations occur at deterministic rates. More specifi-

cally, for a = u, 	, we define Ẑ
μ
j,a(t) as a branching process with the same ini-

tial population and birth and death rates as Z
μ
j,a(t), but with immigrations at rate

μI
μ
j,a(t), where

I
μ
j,u(t) ≡ EẐ

μ
j−1,u(t) + e

λ
μ
j−1,ut

(1/μ)2(α−(j−1))/3

and

I
μ
j,	(t) ≡ EẐ

μ
j−1,	(t) − e

λ
μ
j−1,	t (1/μ)2(α−(j−1))/3.

We will use the convention that I
μ
0,a(t) ≡ 0 for all t . Note that

E(e
−λ

μ
j,a t

Ẑ
μ
j,a(t)) = μ

∫ t

0
e
−λ

μ
j,as

I
μ
j,a(s) ds(4.4)

for all j ≥ 1 and a = u, 	, an expression which will be used often throughout the
remainder of this section.

LEMMA 8. For j ≥ 0 and a = u, 	,

M
μ
j,a(t) ≡ e

−λ
μ
j,a t

Ẑ
μ
j,a(t) − E(e

−λ
μ
j,a t

Ẑ
μ
j,a(t))

is a martingale with respect to the filtration

Ga,t ≡ σ {Ẑμ
i,a(s) : 0 ≤ i ≤ j, s ≤ t}.

PROOF. We prove the result for a = u, the proof for a = 	 being similar, and
drop the subscripts u from all quantities for the remainder of the proof. It is easy
to see that

E
(
Ẑ

μ
j (t + h)|Gt

) = e
λ

μ
j h

Ẑ
μ
j (t) + E

(
μ

∫ t+h

t
e
λ

μ
j (t+h−s)

I
μ
j (s) ds

∣∣Gt

)

and multiplying by e
−λ

μ
j (t+h) gives

E

(
e
−λ

μ
j (t+h)

Ẑ
μ
j (t + h) − e

−λ
μ
j t

Ẑ
μ
j (t) − μ

∫ t+h

t
e
−λ

μ
j s

I
μ
j (s) ds

∣∣Gt

)
= 0.

Since (4.4) implies that

M
μ
j (t + h) − M

μ
j (t)

= e
−λ

μ
j (t+h)

Ẑ
μ
j (t + h) − e

−λ
μ
j (t)

Ẑ
μ
j (t) − μ

∫ t+h

t
e
−λ

μ
j s

I
μ
j (t) ds

for j ≥ 1 and the same equality clearly holds for j = 0 as well, the desired result,
E(M

μ
j (t + h) − M

μ
j (t)|Gt ) = 0, follows. �
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LEMMA 9. For all a = u, 	, T > 0 and μ sufficiently small, we have

P
(

sup
t≤T

|Mμ
j,a(t)| > (1/μ)2(α−j)/3

)
≤ Cμ(α−j)/3[

1 + μ(α−j+1)/3]
.

In particular, for all j ≤ k,

P
(|Ẑμ

j,a(t) − EẐ
μ
j,a(t)| > e

λ
μ
j,at

(1/μ)2(α−j)/3,∀t ≤ T
) → 0

as μ → 0

PROOF. The second part of the result follows directly from the first, along with
the definition of M

μ
j,a(t). To obtain the first part, we suppose for the remainder of

the proof that u = a and drop the subscript u. The proof for a = 	 is similar. We
will also assume that j ≥ 1 and leave the (simpler) j = 0 case to the reader.

We proceed by calculating the variance of e
−λ

μ
j t

Ẑ
μ
j (t) and then using the L2

maximum inequality to bound the second moment of M
μ
j (t) uniformly on [0, T ].

To begin, we claim that provided we choose μ small enough so that λ
μ
i > λ

μ
i−1 for

all 1 ≤ i ≤ j , we have

g(t)(1/μ)(α−j) ≤ E(e
−λ

μ
j t

Ẑ
μ
j (t)) ≤ C

[
(1/μ)(α−j) + μ1/3(1/μ)2(α−j)/3]

,(4.5)

where g(t) is continuous on [0,∞) and positive on (0,∞). To see this, we note
that EẐ0(t) = ENμ(t) = (1/μ)αeρt , so the result clearly holds for j = 1 by (4.4)
and the general case follows by induction on j . Now,

d

dt
E(e

−λ
μ
j t

Ẑ
μ
j (t))2

= −2λ
μ
j E(e

−λ
μ
j t

Ẑ
μ
j (t))2 + e

−2λ
μ
j t

E
[
b

μ
j Ẑ

μ
j (t)

(
2Ẑ

μ
j (t) + 1

)]
(4.6)

− d
μ
j e

−2λ
μ
j t

E
[
Ẑ

μ
j (t)

(
2Ẑ

μ
j (t) − 1

)] + μI
μ
j (t)e

−2λ
μ
j t

E[2Ẑ
μ
j (t) + 1]

= (b
μ
j + d

μ
j )e

−2λ
μ
j t

EẐ
μ
j (t) + μI

μ
j (t)e

−2λ
μ
j t + 2μI

μ
j (t)e

−2λ
μ
j t

EẐ
μ
j (t).

Equation (4.4) implies that∫ t

0
2μI

μ
j (s)e

−2λ
μ
j s

EẐ
μ
j (s) ds

= 2
∫ t

0
μI

μ
j (s)e

−λ
μ
j s

∫ s

0
μI

μ
j (r)e

−λ
μ
j r

dr ds = [E(e
−λ

μ
j t

Ẑ
μ
j (t))]2

so that integrating both sides of (4.6) and applying (4.5) yields

var(e−λ
μ
j t

Ẑ
μ
j (t)) ≤ (b

μ
j + d

μ
j )

∫ t

0
e
−2λ

μ
j s

EẐ
μ
j (s) ds +

∫ t

0
μI

μ
j (s)e

−2λ
μ
j s

ds

(4.7)
≤ C

[
(1/μ)(α−j) + μ1/3(1/μ)2(α−j)/3]

.
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By Lemma 8, M
μ
j is a martingale with respect to Gt and so the L2 maximum

inequality implies that

E
(

sup
t≤T

(M
μ
j (t))2

)
≤ 4E(M

μ
j (T ))2 = 4 var(e−λ

μ
j t2Ẑ

μ
j (T )),

the second equality following from the definition of M
μ
j . Applying Chebyshev’s

inequality and (4.7) then yields

P
(

sup
t≤t2

|Mμ
j (t)| > (1/μ)2(α−j)/3

)
≤ Cμ(α−j)/3[

1 + μ(α−j+1)/3]
,

completing the proof. �

COROLLARY 3. For a = u, 	, there exists a coupling of the process Z
μ
a with

Ẑ
μ
a such that

Ẑ
μ
j,	(t) ≤ Z

μ
j,	(t) ≤ Z

μ
j,u(t) ≤ Ẑ

μ
j,u(t)

for all t ≤ σ̂, where

σ̂ ≡ inf{t ≥ 0 : Ẑμ
j−1,u(t) > I

μ
j,u(t) or Ẑ

μ
j−1,	(t) < I

μ
j,	(t) for some j ≥ 1}.

Furthermore, P(σ̂ ≤ t2) → 0 as μ → 0.

PROOF. Arguing inductively, we can see that the immigration rates for type
j ’s in Ẑ

μ
	 ,Z

μ
	 ,Z

μ
u and Ẑ

μ
u , respectively, satisfy

μI
μ
j,	(t) ≤ μZ

μ
j−1,	(t) ≤ μZ

μ
j−1,u(t) ≤ μI

μ
j,u(t)

for t ≤ σ̂ . Therefore, we define a coupling for the two processes by coupling births,
deaths and immigrations. The fact that P(σ̂ ≤ t2) → 0 follows from Lemma 9. �

Define Ŷ
μ
j,a(t) ≡ (1/L) log+ Ẑ

μ
j,a(Lt/γ ). Lemma 7 follows from Corollary 3

along with our next result.

LEMMA 10. Let j ≤ k, a = u, 	. Then, Ŷ
μ
j,a(t) → yj (t) in probability uni-

formly on [t1, t2].
PROOF. Again, we only prove the result for u = a and drop the u subscript.

Let j ≤ k and write

Ŷ
μ
j (t) − yj (t)

= (
(1/L) log+[e−λ

μ
j Lt/γ

Ẑ
μ
j (Lt/γ )]

(4.8)
− (1/L) log+ E[e−λ

μ
j Lt/γ

Ẑ
μ
j (Lt/γ )])

+ (
(1/L) log+ E[e−λ

μ
j Lt/γ

Ẑ
μ
j (Lt/γ )] − (α − j)

) + (λ
μ
j − λj )t/γ.
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By Lemma 9,

P
(|Ẑμ

j,u(t) − EẐ
μ
j,u(t)| ≤ e

λ
μ
j t

(1/μ)2(α−j)/3,∀t ≤ t2
) → 1,

and on the set where

|Ẑμ
j,u(t) − EẐ

μ
j,u(t)| ≤ e

λ
μ
j s

(1/μ)2(α−j)/3 ∀t ≤ t2,

we have

(1/L) log+[e−λ
μ
j sL/γ

Ẑ
μ
j (Lt/γ )] − (1/L) log+ E[e−λ

μ
j Lt/γ

Ẑ
μ
j (Lt/γ )]

= 1

L
log

(
1 + Ẑ

μ
j (Lt/γ ) − EẐ

μ
j (Lt/γ )

EẐ
μ
j (Lt/γ )

)

≤ C

L

|Ẑμ
j (Lt/γ ) − EẐ

μ
j (Lt/γ )|

EẐ
μ
j (Lt/γ )

≤ C

L

(1/μ)2(α−j)/3

(1/μ)α−j
→ 0

uniformly on [t1, t2] as μ → 0, the last inequality following from (4.5) and the fact
that g(t) is bounded away from 0 on [t1, t2]. Therefore, the absolute value of the
first term on the right of (4.8) goes to zero uniformly on [t1, t2]. It is clear from
(4.5) that the second term goes to 0 as well and since λ

μ
j → λj as μ → 0, the result

follows. �

5. Inductive step. In this section we prove Propositions 2–4. We shall assume
throughout that the assumptions from Section 3 hold and begin with the proof of
Proposition 2. The reader should refer to the statement of that result for the notation
used throughout this section.

5.1. Interior convergence. Let ε > 0, set aj (t) ≡ α + tρ/γ for j �= k, ak(t) ≡
1 and choose η = η(ε) > 0 so that: (i) yj (t) < aj (t) − 2η for all t ≤ �ε , j �= m;
(ii) yj−1(t) − yj (t) < 1 − 2η for all t ≤ �ε , j ≥ 0. Given ζ > 0, we define the
stopping times

σ0(j) ≡ γ T
μ
j /L,

σ1(j) ≡ inf{t ≥ 0 :Yμ
j (t) ≥ aj (t) − η},

σ1 ≡ inf
j �=m

σ1(j),

σ ′
1 ≡ inf

j<m
σ1(j),

σ2(j) ≡ inf{t ≥ 0 :Yμ
i−1(t) − Y

μ
i (t) ≥ 1 − η, for some 1 ≤ i ≤ j},

σ3(j, ζ ) ≡ inf{t ≥ 0 :Yμ
j (t) ≤ ζ }.

For the remainder of this section, set σ0 = σ0(k + 1) and σ2 = σ2(k). We shall
prove convergence of Y

μ
j (t) up to time σ(j, ζ ) ≡ σ0 ∧ σ1 ∧ σ2 ∧ σ3(j, ζ ). For
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types j ≤ k, this will essentially amount to controlling the infinitesimal variance
of Y

μ
j (Lemma 11) and then showing that the infinitesimal mean converges to the

appropriate limit (Lemma 12), while for types j > k we will simply show that they
are unlikely to be born before time L�ε/γ , that is, σ0 > �ε with high probability
(this follows from Lemma 2). We then complete the proof of Proposition 2 by using
the structure of the limit yj (t) to extend convergence up to time �ε , as required.
If yj (t) is bounded away from 0, then this is easy since our choice of η implies
that σ1, σ2 are unlikely to occur before time �ε and if yj (t) is not bounded away
from 0 (which can only happen if j < m), we will define a stopping time σ ′ such
that Y

μ
j (t ∧ σ ′) is a supermartingale to conclude that once the j ’s drop below a

certain level, they will never climb up again.
The first step is to calculate the infinitesimal mean and variance. Writing yj =

(1/L) log(xj ), y = (y0, y1, . . .) and N = ∑
eLyi , noting the time rescaling and

using the fact that the change in yj when xj jumps to xj ±1 is (1/L) log(1±x−1
j ),

we can write the infinitesimal mean of Y
μ
j (t) as Bj(y) = Bj,r (y)+Bj,m(y), where

Bj,r (y) = γ −1 [(1 + ρ)N − eLyj ](1 + γ )j eLyj∑
i≥0(1 + γ )ieLyi

log(1 + e−Lyj )

+ γ −1

∑
i �=j (1 + γ )ieLyi∑
i≥0(1 + γ )ieLyi

eLyj log(1 − e−Lyj ),

Bj,μ = μγ −1eLyj−i log(1 + e−Lyj ) + μγ −1eLyj log(1 − e−Lyj ).

In words, Bj,r (y) is the rate of change due to death and subsequent replacement,
while Bj,μ(y) is the rate of change due to mutations. Similarly, the infinitesimal
variance is

Aj(y) = (1/L)

[
γ −1 [(1 + ρ)N − eLyj ](1 + γ )j eLyj∑

i≥0(1 + γ )ieLyi

(
log(1 + e−Lyj )

)2

+ γ −1

∑
i �=j (1 + γ )ieLyi∑
i≥0(1 + γ )ieLyi

eLyj
(
log(1 − e−Lyj )

)2

+ μγ −1eLyj−i
(
log(1 + e−Lyj )

)2 + μγ −1eLyj
(
log(1 − e−Lyj )

)2
]
.

Introducing f1(x) ≡ x log(1 + x−1), f2(x) ≡ x log(1 − x−1),

gj,1(y) ≡ (1 + γ )j

γ

[(1 + ρ)N − eLyj ]∑
i≥0(1 + γ )ieLyi

and

gj,2(y) ≡ 1

γ

∑
i �=j (1 + γ )ieLyi∑
i≥0(1 + γ )ieLyi

,
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we can write

Aj(y) = (1/L)[e−Lyj gj,1(y)f 2
1 (eLyj ) + e−Lyj gj,2(y)f 2

2 (eLyj )

+ μγ −1f 2
1 (eLyj )eLyj−i−2Lyj + μγ −1f 2

2 (eLyj )e−Lyj ].
Since gj,1(x) ≤ (1 + ρ)(1 + γ )j /γ , gj,2(x) ≤ 1/γ and f2(x) ≤ f1(x) ≤ 1 for all
x ∈ [0,∞), we obtain the bound

Aj(y) ≤ (C/L)
(
(1 + μ)e−Lyj + μeLyj−i−2Lyj

)
.(5.1)

Define

Mj(t) = Y
μ
j (t) − Y

μ
j (0) −

∫ t

0
Bj(Y

μ(s)) ds.

LEMMA 11. For any ξ > 0 and j ≥ 1,

P
(

sup
t≤σ2(j)

|Mj(t)| > ξ
)

→ 0.

PROOF. Since Y
μ
j−1(t) − Y

μ
j (t) < 1 − η for t ≤ σ2, we have

e
−LY

μ
j (t) ≤ 1 and μe

LY
μ
j−i (t)−2LY

μ
j (t) ≤ Cμη

and therefore the result follows from (5.1) and Corollary 2.8 in [16]. �

Our next step is to show that the infinitesimal means converge to the appropriate
limit. The key to the proof is that b

μ
j (Y

μ
j (t)) → λj−mγ for all t ≤ σ(j, ζ ), but we

write out the details carefully because we will need (I)–(IV) from the proof several
times in what follows.

LEMMA 12. If j �= m and ζ, ξ > 0, then as μ → 0,

P

(
sup

t≤σ(j,ζ )

∣∣∣∣
∫ t

0
Bj(Y

μ
j (s)) ds − λj−mt/γ

∣∣∣∣ > ξ

)
→ 0.

PROOF. Using the definition of fi , gj,i , i = 1,2, we write

Bj,r (y) = f1(e
Lyj )gj,1(y) + f2(e

Lyj )gj,2(y)

and

Bj,μ(y) = μγ −1[
f1(e

Lyj )eL(yj−1−yj ) + f2(e
Lyj )

]
.

We will complete the proof by proving the following four facts:

(I) for any ζ > 0, f1(e
LY

μ
j (t)

) → 1 and f2(e
LY

μ
j (t)

) → −1 in probability uni-
formly on [0, σ3(j, ζ )];
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(II) gj,2(Y
μ
j (t)) → 1/γ in probability uniformly on [0, σ1(j)];

(III) for any ζ > 0,

P
(

sup
t≤σ ′

1

gj,1(Y
μ
j (t)) > (1 + ρ)(1 + γ )j−m/γ + ζ

)
→ 0

and, furthermore, gj,1(Y
μ
j (t)) → (1 + ρ)(1 + γ )j−m/γ in probability uni-

formly on [0, σ0 ∧ σ1];
(IV) Bj,μ(Yμ(t)) → 0 in probability uniformly on [0, σ2(j)].
(I) follows immediately since f1(x) → 1, f2(x) → −1 as x → ∞ and Y

μ
j (t) ≥ ζ

on [0, σ3(j, ζ )]. To prove (II), write

gj,2(y) = 1

γ

(
1 − (1 + γ )j eLyj∑

i≥0(1 + γ )ieLyi

)

and note that if
∑

eLyi = N and yi ≤ a, then

0 ≤ (1 + γ )j eLyj∑
i≥0(1 + γ )ieLyi

≤ (1 + γ )j eLyj /N ≤ C(1/μ)a/N.

Now, Lemma 3 and the assumption that Fμ(0) → α imply that Nμ(Lt/γ ) ≥
(1/μ)α+tρ/γ−η/2 for all t ≤ �0 with high probability so that since

∑
eLY

μ
i (t) =

Nμ(t) and Y
μ
j (t) ≤ α + tρ/γ − η, if t ≤ σ1(j), (II) follows. For (III) we note that

if
∑

eLyi = N , then using the definition of γj = (1 + γ )j − 1, we have

gj,1(y) = (1 + γ )j−m

γ

(
1 + ρ − eLyj /N

1 + ∑
i �=m γi−meLyi /N

)
.

The first part of (III) then follows from the fact that∑
i �=m

γi−meLyi /N ≥ ∑
i<m

γi−meLyi /N ≥ γ−m(1/μ)a/N

if yi ≤ a for all i < m, while the second part follows from the fact that we also
have (

1 + ρ − eLyj /N

1 + ∑
i �=m γi−meLyi /N

)
≥ 1 + ρ − (1/μ)a/N

1 + (k − m)γk−m(1/μ)a/N

if yj ≤ a for all j ≤ k and yj = 0 for all j > k. Finally, to prove (IV), we use the
bound

Bj,μ(y) ≤ Cμ
[
f1(e

Lyj )eL(yj−1−yj ) + f2(e
Lyj )

]
so that since f2(x), f1(x) ≤ 1 for all x ≥ 0, the result follows from the fact that

μeL(yj−1−yj ) ≤ μη

if yj−1 − yj < 1 − η. �
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PROOF OF PROPOSITION 2. Lemma 2 implies that if we have the result for
j ≤ k, then P(σ0 ≤ �ε) → 0, so it suffices to prove the result for j ≤ k. Lem-
mas 11 and 12 and the assumption that Y

μ
j (0) → y0

j in probability together imply
that Yj (t) → yj (t) in probability uniformly on [0, σ (j, ζ )] for any ζ > 0. Note
that since yi(t) ≤ ai(t) − 2η for all t ≤ �ε , i �= m, by our choice of η, we have
P(σ1 ≤ �ε ∧ σ0 ∧ σ2) → 0. Furthermore, yk(t) < 1 − ε for all t ≤ �ε and hence
P(σ0 ≤ �ε ∧ σ2) → 0 by Lemma 2. Therefore, we obtain uniform convergence
on [0,�ε ∧ σ2 ∧ σ3(j, ζ )] for any ζ > 0. We will show that the convergence is
uniform on [0,�ε ∧ σ2]. Proposition 2 follows since yj−1(t) − yj (t) < 1 − 2η for
all t ≤ �ε , j ≥ 0.

Suppose first that j ≥ m. There then exists ζ > 0 such that yj (t) ≥ ζ for all
t ≤ �ε and hence we obtain uniform convergence on [0,�ε ∧ σ2(j)]. The same
argument applies if j < m and yj (t) is bounded away from 0 on [0,�ε]. If j < m

and yj (t) is not bounded away from 0 on [0,�ε], set

σ ′ = σ0 ∧ σ1 ∧ σ2,

let ζ, ξ > 0 be small and choose a time t0 < �ε such that yj (t0) = ζ ξ/4. If no
such time exists [i.e., yj (t) = 0 for all t], set t0 = 0. Then, yj (s) ≤ ζ ξ/4 for all
t0 ≤ s ≤ �ε and

P
(

sup
t≤�ε∧σ ′

|Yj (t) − yj (t)| > ζ
)

≤ P
(

sup
t≤t0∧σ ′

|Yj (t) − yj (t)| > ζ
)

+ P
(

sup
t0≤t≤�ε

Yj (t ∧ σ ′) > ζ(1 + ξ/4)
)

(5.2)
≤ P

(
sup

t≤t0∧σ ′
|Yj (t) − yj (t)| > ζ

)
+ P

(
Yj (t0 ∧ σ ′) > ζξ/2

)

+ P
(

sup
t0≤t≤�ε

Y
μ
j (t ∧ σ ′) > ζ(1 + ξ/4)

∣∣Yμ
j (t0 ∧ σ ′) ≤ ζ ξ/2

)
.

The argument in the last paragraph implies that Y
μ
j (t) → yj (t) uniformly on

[0, t0 ∧ σ ′] and hence the first and second terms on the right-hand side of (5.2) are
each < ξ/4 for all μ sufficiently small. To control the third term, we note that (II)–
(IV) from the proof of Lemma 12, along with the bounds f1(x) ≤ 1, f2(x) ≤ −1
for all x ≥ 0, imply that if μ is sufficiently small, then Bj(Y

μ(t)) ≤ 0 for all t ≤ σ ′
with high probability so that Yμ(t ∧ σ ′) is a supermartingale. Therefore,

P
(

max
t0≤t≤�0

Y
μ
j (t ∧ σ ′) > ζ(1 + ξ/4)

∣∣Yμ
j (t0 ∧ σ ′) ≤ ζ ξ/2

)
≤ ξ/2

1 + ξ/4
≤ ξ/2.

Since ζ, ξ were arbitrary, this proves that Yj (t) → yj (t) in probability uniformly
on [0,�ε ∧ σ ′]. Since we have already shown that P(σ0 ∨ σ1 ≤ σ2) → 0, this
completes the proof. �
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5.2. Birth of a new type. In this section, we prove Proposition 3. Note that
yk(�ε) = 1 − ε for small ε since �0 = δ0

k and choose ε̄ = ε̄(y0) small enough so
that the limiting dynamical system satisfies yj (�0 + t) < α + tρ/γ − 2η, j �= m,

and yj−1(t)−yj (t) < 1−2η for all j ≥ 0, t ≤ ε̄ and η sufficiently small. Since the
result for j �= k follows from the arguments used to prove Proposition 2, we only
need to prove (3.1). To explain these inequalities we note that our limiting process
has yk+1(�0 + t) = λk+1−mt/γ and yk+1(�0 − t) = 0 for small t . However, when
t is small the number of type-(k + 1) individuals is small and deterministic ap-
proximations are not valid. The best we can do is to say that Y

μ
k+1(t) cannot get

too far above the line with slope λk+1−m/γ that starts just before time �0 [the first
inequality in (3.1)] or too far below the line with slope λk+1−m/γ that starts just
after time �0 (the second inequality).

We begin by defining branching processes Z
μ
k+1,a(t), a = u, 	, with initial pop-

ulations Z
μ
k+1,a(0) = 0 and per particle birth and death rates given by Table 6 in

Section 4, but with immigrations at rate eλk−mt . The methods used in the proof of
the next result closely parallel the methods used to prove Lemmas 8–10 in Sec-
tion 4.

LEMMA 13. Let 0 < t1 < t2. Then,

Y
μ
k+1,a(t) ≡ (1/L) log+ Zk+1,a(Lt/γ ) → tλk+1−m/γ

in probability uniformly on [t1, t2] as μ → 0 for a = u, 	.

PROOF. We prove the result for a = u and drop the subscripts u from all quan-
tities. For ease of notation, we will also write Z(t) = Z

μ
k+1(t) but leave the μ

superscript on λ
μ
k+1 to distinguish it from λk+1 = (1 + ρ)(1 + γ )k − 1. Notice that

λ
μ
k+1 = (1 + ρ)(1 + γ )j−m

1 + γ−mmμη
− 1 − (k + 1)μη

1 + γk+1−m(k + 1 − m)μη
→ λk+1−m

as μ → 0.
Define M(t) = e−λ

μ
k+1tZ(t) − E(e−λ

μ
k+1tZ(t)). The same argument in the proof

of Lemma 8 then implies that M(t) is a martingale (with respect to the σ -algebra
generated by Z(s), s ≤ t). Furthermore, we have

E(e−λ
μ
k+1tZ(t)) = (

1 − e−(λ
μ
k+1−λk−m)t )/(λμ

k+1 − λk−m)(5.3)

and a similar argument to the one used to prove (4.7) in Section 1 implies that

var(e−λ
μ
k+1tZ(t)) ≤ C.

From the L2 maximum inequality and Chebyshev’s inequality, we can conclude
that

P
(

sup
0≤s≤t2

M(s) > L1/2
)

→ 0
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as μ → 0. This yields a result analogous to Lemma 9 in Section 4. The conclusion
of Lemma 13 then follows using the same argument as in the proof of Lemma 10
since λ

μ
k+1 → λk+1−m > λk−m as μ → 0 and so (5.3) implies that there exist

c1, c2 > 0 such that

c1 ≤ sup
t≤s

E(e−λ
μ
k+1sZ(s)) ≤ c2

for all t > 0 if μ sufficiently small. �

PROOF OF PROPOSITION 3. Suppose that ε < ε1 = ε̄∧1/(2(λk+1−m/λk−m +
λk+1−m/γ )). Let η > 0 and define

A1 = {|Yμ
k (t) − yk(t)| ≤ ε/4, Y

μ
j (t) < α + ρt − η,∀j ≤ k, j �= m, t ≤ �0 + ε},

A2 = {T μ
k+1 ≥ �3ε/4L/γ },

A3 = {T μ
k+2 ≥ (�0 + ε)L/γ,Y

μ
k+1(t) < 1 − η,∀t ≤ �0 + ε},

A = A1 ∩ A2 ∩ A3.

Note that P(Ac
1) → 0 by Propositions 2 and 3 applied to j �= k, while P(Ac

2) → 0
by Lemma 2. Recalling that

yk(�3ε/4 + t) = 1 − 3ε/4 + tλk−m/γ,

we have

X
μ
k

(
L(�3ε/4 + t)/γ

)
e−λk−mLt/γ ≤ 1/μ

for all t ≤ (�0 + ε) − �3ε/4 on A. Therefore, using the bounds on the birth
and death rates given in Lemma 5, we can couple X

μ
k+1(L(�3ε/4 + t)/γ ) with

Z
μ
k+1,u(Lt/γ ), a = u, in a similar manner to Lemma 6 so that on A, we have

X
μ
k+1

(
L(�3ε/4 + t)/γ

) ≤ Z
μ
k+1,u(Lt/γ )

for all t ≤ �0 + ε − �3ε/4. Lemma 13 then yields the first limit in (3.1), provided
we are on A. However, we then have

P
({Yμ

k+1(t) ≤ 1 − η,∀t ≤ �0 + ε} ∩ A
) → 1,

and it follows from this that P(Ac
3) → 0 for small η, which proves that the first

limit in (3.1) holds. To prove the second limit, we use the fact that

yk

(
�0 + (ε/4)(γ /λk−m) + t

) = 1 + ε/4 + tλk−m/γ

to conclude that

X
μ
k

(
L

(
�0 + (ε/4)(γ /λk−m) + t

)
/γ

)
e−λk−mLt/γ ≥ 1/μ

for all t ≤ ε(1 − γ /(4λk−m)) on A. Hence, we can couple X
μ
k+1(L(�0 +

(ε/4)(γ /λk−m) + t)/γ ) with Z
μ
k+1,	(Lt/γ ) so that

X
μ
k+1

(
L

(
�0 + (ε/4)(γ /λk−m) + t

)
/γ

) ≥ Z
μ
k+1,	(Lt/γ )

for all t ≤ ε(1 − γ /(4λk−m)) on A and the second part of (3.1) again follows from
Lemma 13. �
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5.3. Change in dominant type. In this section, we prove Proposition 4. We
begin with some notation. Let

ŷj (t) ≡
{

(y0
j + λj−mt/γ )+, if j ≤ k,

0, if j > k.

Note that yj (t) ≤ ŷj (t) for all t with equality if t ≤ �0. As in Section 4.1, let
aj (t) = α+ρt if j �= k, ak = 1 and choose ε̄ = ε̄(y0) and η > 0 so that: (i) ŷj (t) <

aj (t) − 2η for all t ≤ �0 + ε̄, j �= m,n; (ii) yj−1(t) − yj (t) < 1 − 2η for all
t ≤ �0 + ε̄; (iii) yj (t) ≥ α + ρt − η/4 for all �ε̄ ≤ t ≤ �0 + ε̄, j = m,n. Without
loss of generality, suppose that η < (α + �ερ/γ )/4. Let σi(j), i = 0,1,2,3, be
as in Section 4.1 and set

σ̄ (j) = σ0(k + 1) ∧
(

min
i �=m,n

σ1(i)
)

∧ σ2(j) ∧ σ3(j).

Our first lemma sets the stage for the battle between types m and n by showing
that all other types remain smaller than these two.

LEMMA 14. If j �= m,n and ξ > 0, then

P
(

sup
t≤σ̄ (j)

(
Y

μ
j (t) − ŷj (t)

)
> ξ

)
→ 0.

PROOF. This follows directly from Lemma 11 and (I)–(IV) from Lemma 12.
�

Note that Lemma 14, Lemma 3 and our choice of ε̄ imply that

sup
t≤�0+ε̄

Xj (Lt/γ )

Nμ(t)
≤ μη(5.4)

for all j �= n,m with high probability. Furthermore, Xk(Lt/γ ) < (1/μ)1−η for all
t ≤ �0 + ε̄ with high probability, and hence Lemma 2 implies that as μ → 0,

P
(
T

μ
k+1 ≤ (�0 + ε̄)L/γ

) → 0.(5.5)

Let

R
μ
j (t) ≡ X

μ
j (L�ε/γ + t)

Nμ(t)

be the fraction of j ’s in the population at times greater than L�ε/γ . Then, as a
consequence of (5.4) and (5.5), we have

0 ≤ 1 − (
Rm(Lt/γ ) + Rn(Lt/γ )

) ≤ (k + 1)μη(5.6)

for all t ≤ �0 + ε̄ − �ε on a set A with P(Ac) → 0. Our next result concerns the
change of power from m’s to n’s. To state the result, let

f (r) ≡ r(1 − r)
λn−m

1 + γn−mr
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and define r
μ
j (t), j = n,m, as the (random) solutions to the initial value problem

dr
μ
m

dt
= −f (1 − rμ

m) ≡ fm(rμ
m),

(5.7)
dr

μ
n

dt
= f (rμ

n ) ≡ fn(r
μ
n ),

with initial conditions r
μ
j (0) = R

μ
j (0), j = n,m.

LEMMA 15. There exists an ε2 = ε2(y
0) > 0 such that for j = n,m,

P
(

sup
t≤�0−�ε+ε

|Rμ
j (Lt/γ ) − r

μ
j (Lt/γ )| > μη/2

)
→ 0

as μ → 0 for all ε < ε2.

PROOF. We will prove the result by calculating the infinitesimal mean and
variance of R

μ
j (t). Without loss of generality, we assume that ε < ε̄ so that by

(5.4)–(5.6), we have∑
j �=n,m

R
μ
j (t) ≤ (k + 1)μη,

(5.8)
0 ≤ 1 − (

Rμ
n (t) + Rμ

m(t)
) ≤ (k + 1)μη

for all t ≤ L(�0 +ε−�ε)/γ on a set A with P(Ac) → 0 as μ → 0. Note also that
Lemma 3, the fact that Nμ is nondecreasing and our choice of η < (α+�ερ/γ )/4
together imply that

Nμ(t) ≥ C(1/μ)α+�ερ/γ−η ≥ C(1/μ)3η ∀t ≥ L�ε/γ(5.9)

on a set A with P(Ac) → 0 as μ → 0. We will therefore assume that the in-
equalities in (5.8) and (5.9) hold for the remainder of the proof and write O(μη)

for any quantity whose absolute value is bounded above by Cμη uniformly for
t ≤ L(�0 + ε − �ε)/γ on a set A with P(Ac) → 0 as μ → 0. It all also conve-
nient to write

cε = �0 + ε − �ε = (
1 + γ (λn−m − ρ)−1)

ε.

By looking at the rates for the chain (Nμ(t),Xμ(t)), the fraction R
μ
j (t) has the

following jump rates corresponding to the events xj/N �→ (xj + 1)/N , xj/N �→
(xj − 1)/N , xj/N �→ (xj + 1)/(N + 1) and xj/N �→ xj/(N + 1), respectively:

rj �→ rj + 1/N rate: N(1 − rj )
(1 + γ )j rj

w
+ μNrj−1;

rj �→ rj − 1/N rate: Nrj
w − (1 + γ )j rj

w
+ μNrj ;
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rj �→ rj + (1 − rj )/(N + 1) rate: ρN
(1 + γ )j rj

w
;

rj �→ rj − rj /(N + 1) rate: ρN
w − (1 + γ )j rj

w
,

where w ≡ ∑
i≥0(1 + γ )iri . From these expressions for the rates, we can see that

the infinitesimal mean of R
μ
j is given for r ∈ S N/N by

Bj(r) = (1 + γ )j rj (1 − rj )

w
+ μrj−1 −

(
rj (w − (1 + γ )j rj )

w
+ μrj

)

+ ρN

N + 1

(1 + γ )j rj (1 − rj )

w
− ρN

N + 1

rj (w − (1 + γ )j rj )

w

=
(

1 + ρN

N + 1

)(
rj ((1 + γ )j − w)

w

)
+ μ(rj−1 − rj ).

Similarly, the infinitesimal variance is given by

Aj(r) = 1

N

(
(1 + γ )j rj (1 − rj )

w
+ μrj−1 + rj (w − (1 + γ )j rj )

w
+ μrj

)

+ ρN

(N + 1)2

(
(1 + γ )j rj (1 − rj )

2

w
+ r2

j (w − (1 + γ )j rj )

w

)

= 1

N

((
1 + ρN2

(N + 1)2

)
rj ((1 + γ )j − 2(1 + γ )j rj + w)

w

− ρrj (1 − rj )N
2

(N + 1)2 + μ(rj−1 + rj )

)
,

where, in the second line, we have added and subtracted ρrjN/(N + 1)2 from the
first. Note that (5.9) and the fact that rj ∈ [0,1] together imply that

A
μ
j (Rμ(s)) = O(μ3η)(5.10)

for all s ≤ Lcε/γ .
Now, (5.8) implies that

w(Rμ(s)) = (1 + γ )mRμ
m(s) + (1 + γ )nRμ

n (s) + O(μη)

= (1 + γ )m[1 + γn−mrμ
n (s)] + O(μη)

for all s ≤ Lcε/γ and hence

Bn(R
μ(s))

=
(

1 + ρNμ(L�ε/γ + s)

Nμ(L�ε/γ + s) + 1

)
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× Rμ
n (s)

(
(1 + γ )n − (1 + γ )m[1 + γn−mR

μ
n (s)] + O(μη)

(1 + γ )m[1 + γn−mR
μ
n (s)] + O(μη)

)
+ O(μη)

=
(

1 + ρNμ(L�ε/γ + s)

Nμ(L�ε/γ + s) + 1

)
Rμ

n (s)

(
γn−m − γn−mR

μ
n (s)

1 + γn−mR
μ
n (s)

)
+ O(μη)

= fn(R
μ
n (s)) + O(μη)

for all s ≤ Lcε/γ , the last equality following from (5.9) and the definition of fn.
Similarly, writing

w(Rμ) = (1 + γ )mRμ
m + (1 + γ )nRμ

n + O(μη)
(5.11)

= (1 + γ )m[1 + γn−m(1 − Rμ
m)] + O(μη),

we obtain

Bm(Rμ(s)) = fm(Rμ
m(s)) + O(μη)

for all s ≤ Lcε/γ . Combining this with (5.10), the fact that |f ′(rj )| ≤ γ (1 + γ )

for all rj ∈ [0,1] and the proof of Theorem 2.11 in [16], we obtain the result.
(Theorem 2.11 in [16] applies directly if we replace r

μ
j (t) with rj (t), the solution

to (5.7) with initial conditions rj (0) = limμ→0 R
μ
j (0), but it is easy to see that the

same proof applies if we use r
μ
j (t) since r

μ
j (t) is the solution to (5.7) with random

initial conditions R
μ
j (0).) �

The next step is to analyze the differential equations for j = m,n in Lemma 15.
We will carry out the analysis for j = n [for j = m, apply the analysis below to
1 − r

μ
m(s)]. To begin, write

rμ
n (t) = X

μ
n (L�ε/γ )

Nμ(L�ε/γ )
exp

{∫ t

0
gn(r

μ
n (s)) ds

}

with

gn(r) ≡ λn−m(1 − r)

1 + γn−mr
.

Note that we have the following set of bounds on the growth rate gn:

(1 − L−2)
λn−m

1 + γn−mL−2 ≤ gn(r
μ
n ) ≤ λn−m when rμ

n < L−2;

(1 − rμ
n )

λn−m

1 + γn−m

≤ gn(r
μ
n ) ≤ (1 − rμ

n )λn−m

(5.12)
when L−2 ≤ r

μ
n ≤ 1 − L−2;

0 ≤ gn(r
μ
n ) ≤ L−2λn−m when rμ

n ≥ 1 − L−2.
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LEMMA 16. Let s
μ
1 = inf{s : rμ

n (s) ≥ L−2} and s
μ
2 = inf{s : rμ

n (s) ≥ 1−L−2}.
We then have s

μ
i /(L/γ ) → �0 for i = 1,2 and (s

μ
2 − s

μ
1 )/L → 0 as μ → 0.

PROOF. Let

r
μ
	 (s) = X

μ
n (L�ε/γ )

Nμ(L�ε/γ )
eλn−mcμs and rμ

u (s) = X
μ
n (L�ε/γ )

Nμ(L�ε/γ )
eλn−ms,

where cμ = (1 − L−2)(1 + γn−mL−2)−1. It is then clear from the first bound in
(5.12) that

r
μ
	 (s) ≤ rμ

n (s) ≤ rμ
u (s)

for all s ≤ s
μ
1 . Since Yn(�ε) → yn(�ε), Fμ(�ε) → α +�ερ/γ by Proposition 2,

letting s
μ
	 and s

μ
u be the times that r

μ
	 and r

μ
u hit L−2, we have s

μ
a /(L/γ ) → �0 as

μ → 0 for a = 	,u, which proves the result for i = 1. To prove the result for i = 2
we use the bounds in the second line of (5.12) along with the fact that the logistic
dx/dt = βx(1 − x) rises from L−2 to 1 − L−2 in time (4/β) logL, to conclude
that

s
μ
2 − s

μ
1

L
≤ C logL

L
→ 0

as μ → 0, which completes the proof. �

LEMMA 17.

(1/L) log+[Nμ(Lt/γ )r
μ
j (Lt/γ )] → yj (�ε + t)

uniformly on [0, T ] for any T > 0, j = n,m.

PROOF. We prove the result for j = n. Write

(1/L) log+[Nμ(Lt/γ )r
μ
j (Lt/γ )] − yj (�ε + t)

= [Yμ
j (�ε) − yj (�ε)]

+ (1/L)

[∫ Lt/γ

0

(
gn(r

μ
n (s)) − 	n(s)

)
ds

]
,

where 	n(s) = λn−m1s≤(�0−�ε). The first term in brackets converges to 0 in prob-
ability by Proposition 2. To control the second term, split up the integral as

∫ tL/γ

0
=

∫ s
μ
1 ∧t

0
+

∫ s
μ
2 ∧t

s
μ
1 ∧t

+
∫ t

s
μ
2 ∧t

.

Using the bounds in (5.12) and applying Lemma 16, we conclude that each of
these integrals is o(L), which yields the result. �
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PROOF OF PROPOSITION 4. Let ε < ε2 and suppose first that j = m,n. Writ-
ing

Y
μ
j (t) − yj (t) = (1/L) log+ R

μ
j (Lt/γ ) − (1/L) log+ r

μ
j (Lt/γ )

+ (1/L) log+[Nμ(Lt/γ )r
μ
j (Lt/γ )] − yn(t),

we can see that since

r
μ
j (0) ≥ X

μ
n (L�ε/γ )

Nμ(L�ε/γ )
≥ μη/3

for all t ≥ 0 with high probability as μ → 0 by our choice of ε̄, the result follows
from Lemmas 15 and 17. Suppose now that j �= m,n. If j > k, the result follows
from (5.5), so it remains to prove the result for j ≤ k. In view of Lemma 11, it
suffices to show that

P

(
sup

t≤(�0+ε)∧σ̄ (j)

∣∣∣∣y0
j +

∫ t

0
Bj(Y

μ
j (s)) ds − yj (t)

∣∣∣∣ > ξ

)
→ 0

and then follow the argument from the proof of Proposition 2 to yield the result.
However, now that we have proven that Proposition 4 holds for j = m,n, we can
argue as in the proof of Lemma 12 to conclude that

gj,1(Y
μ(t)) →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + ρ)(1 + γ )j−m

γ
, 0 ≤ t < �0,

(1 + ρ)(1 + γ )j−n

γ
, �0 < t ≤ (�0 + ε),

uniformly on compact subsets of [0, (�0 + ε) ∧ σ̄ (j)] − {�0}. This replaces the
second part of (IV) from the proof of Lemma 12, and the result follows after using
(I)–(III) from the proof of Lemma 12. �
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