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HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS
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We prove that, in the Gilbert model for a random geometric graph, almost
every graph becomes Hamiltonian exactly when it first becomes 2-connected.
This answers a question of Penrose.

We also show that in the k-nearest neighbor model, there is a constant κ

such that almost every κ-connected graph has a Hamilton cycle.

1. Introduction. In this paper we mainly consider one of the frequently stud-
ied models for random geometric graphs, namely the Gilbert model. Suppose that
Sn is a

√
n×√

n box and that P is a Poisson process in it with density 1. The points
of the process form the vertex set of our graph. There is a parameter r governing
the edges: two points are joined if their (Euclidean) distance is at most r .

Having formed this graph we can ask whether it has any of the standard graph
properties, such as connectedness. As usual, we shall only consider these for large
values of n. More formally, we say that G = Gn,r has a property with high proba-
bility (abbreviated to whp) if the probability that G has this property tends to one
as n tends to infinity.

Penrose [10] proved that the threshold for connectivity is πr2 = logn. In fact
he proved the following very sharp result: suppose πr2 = logn + α for some con-
stant α. Then the probability that Gn,r is connected tends to e−e−α

.
He also generalized this result to find the threshold for κ-connectivity for κ ≥ 2:

namely πr2 = logn + (2κ − 3) log logn. [Since the reader may be surprised that
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this formula does not work for κ = 1 we remark that this is due to boundary ef-
fects: the threshold for κ-connectivity is the maximum of two quantities: logn +
(κ − 1) log logn to κ-connect the central points and logn + (2κ − 3) log logn to
κ-connect the points near the boundary. If one worked on the torus instead of the
square, then these boundary effects would disappear.]

Moreover, he found the “obstruction” to κ-connectivity. Suppose we fix the
vertex set (i.e., the point set in Sn) and “grow” r . This gradually adds edges to the
graph. For a monotone graph property P let H(P ) denote the smallest r for which
the graph on this point set has the property P . Penrose showed that

H
(
δ(G) ≥ κ

) = H
(
connectivity(G) ≥ κ

)
whp: that is, as soon as the graph has minimum degree κ it is κ-connected whp.

He also considered the threshold for G to have a Hamilton cycle. Obviously a
necessary condition is that the graph is 2-connected. In the normal (Erdős–Rényi)
random graph this is also a sufficient condition in the following strong sense. If we
add edges to the graph one at a time, then the graph becomes Hamiltonian exactly
when it becomes 2-connected (see [5, 8, 9] and [14]).

Penrose asked whether the same is true for a random geometric graph. In this
paper we prove the following theorem answering this question.

THEOREM 1. Suppose that G = Gn,r is the two-dimensional Gilbert model.
Then

H(G is 2-connected) = H(G has a Hamilton cycle)

whp.

Combining this with Penrose’s results mentioned above we see that, if πr2 =
logn + log logn + α, then the probability that G has a Hamilton cycle tends to

e−e−α−√
πe−α/2

(the second term in the exponent is the contribution from points
near the boundary of the square).

Some partial progress has been made on this question previously. Petit [13]
showed that if πr2/ logn tends to infinity, then G is, whp, Hamiltonian, and Díaz,
Mitsche and Pérez [7] proved that if πr2 > (1 + ε) logn for some ε > 0 then G is
Hamiltonian whp. (Obviously, G is not Hamiltonian if πr2 < logn since whp G

is not connected!) Finally using a similar method to [7] together with significant
case analysis, Balogh, Kaul and Martin [4] proved for the special case of the �∞
norm in two dimensions that the graph does become Hamiltonian exactly when it
becomes 2-connected.

Our proof generalizes to higher dimensions and to other norms. The Gilbert
model makes sense with any norm and in any number of dimensions: we let Sd

n be
the d-dimensional hypercube with volume n. We prove the analog of Theorem 1
in this setting.
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THEOREM 2. Suppose that the dimension d ≥ 2 and ‖ · ‖, a p-norm for some
1 ≤ p ≤ ∞, are fixed. Let G = Gn,r be the resulting Gilbert model. Then

H(G is 2-connected) = H(G has a Hamilton cycle)

whp.

The proof is very similar to that of Theorem 1. However, there are some signif-
icant extra technicalities.

To give an idea why these occur consider connectivity in the Gilbert model
in the cube S3

n (with the Euclidean norm). Let A be the volume of a sphere of
radius r . We count the expected number of isolated points in the process which are
away from the boundary of the cube. The probability a point is isolated is e−A, so
the expected number of such points is ne−A, so the threshold for the existence of
a central isolated point is about A = logn.

However, consider the probability that a point near a face of the cube is iso-
lated: there are approximately n2/3 such points, and the probability that they are
isolated is about e−A/2 (since about half of the sphere about the point is outside the
cube S3

n). Hence, the expected number of such points is n2/3e−A/2, so the thresh-
old for the existence of an isolated point near a face is about A = 4

3 logn. In other
words isolated points are much more likely near the boundary. These boundary
effects are the reason for many of the extra technicalities.

We remark that Theorem 2 is trivially true for d = 1: indeed, if G is 2-connected
then there are two vertex disjoint paths from the left-most vertex to the right-most
vertex. By adding any remaining vertices to one of these paths these two paths
form a Hamilton cycle.

The k-nearest neighbor model. We also consider a second model for random
geometric graphs: namely the k-nearest neighbor graph. In this model the initial
setup is the same as in the Gilbert model: the vertices are given by a Poisson
process of density one in the square Sn, but this time each vertex is joined to its
k nearest neighbors (in the Euclidean metric) in the box. This naturally gives rise
to a k-regular directed graph, but we form a simple graph G = Gn,k by ignoring
the direction of all the edges. It is easily checked that this gives us a graph with
degrees between k and 6k.

Xue and Kumar [15] showed that there are constants c1, c2 such that if k <

c1 logn, then the graph Gn,k is, whp, not connected, and that if k > c2 logn then
Gn,k is, whp, connected. Balister et al. [1] proved reasonably good bounds on the
constants: namely c1 = 0.3043 and c2 = 0.5139, and later [3] proved that there is
some critical constant c such that if k = c′ logn for c′ < c, then the graph is dis-
connected whp, and if k = c′ logn for c′ > c, then it is connected whp. Moreover,
in [2], they showed that in the latter case the graph is s-connected whp for any
fixed s ∈ N.
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We would like to prove a sharp result like the above; that is, that as soon as the
graph is 2-connected it has a Hamilton cycle. However, we prove only the weaker
statement that some (finite) amount of connectivity is sufficient. Explicitly, we
show the following.

THEOREM 3. Suppose that k = k(n), that G = Gn,k is the two-dimensional
k-nearest neighbor graph (with the Euclidean norm) and that G is κ-connected
for κ = 5 · 107 whp. Then G has a Hamilton cycle whp.

Analogous results could be proved in higher dimensions and for other norms
but we do not do so here.

Binomial point process. To conclude this section we briefly mention a closely
related model: instead of choosing the points in Sn according to a Poisson process
of density one we choose n points uniformly at random, and then form the corre-
sponding graph. This new model is very closely related to our first model (the
Gilbert model). Indeed, Penrose originally proved his results for the Binomial
Point Process but it is easy to check that this implies them for the Poisson Process.

It is very easy to modify our proof to this new model. Indeed, in very broad
terms each of our arguments consists of two steps: first we have an essentially triv-
ial lemma that says the random points are “reasonably” distributed, and then we
have an argument saying that if the points are reasonably distributed and the re-
sulting graph is two-connected then the resulting graph necessarily has a Hamilton
cycle. The second of these steps is entirely deterministic, so only the essentially
trivial lemma needs modifying.

2. Proof of Theorem 1. We divide the proof into five parts: first we tile the
square Sn with small squares in a standard tessellation argument. Second we iden-
tify “difficult” subsquares. Roughly, these will be squares containing only a few
points, or squares surrounded by squares containing only a few points. Third we
prove some lemmas about the structure of the difficult subsquares. In stage 4 we
deal with the difficult subsquares. Finally we use the remaining easy subsquares to
join everything together.

Stage 1: Tessellation. Let r0 = √
(logn)/π (so πr2

0 = logn), and let r be the
random variable H(G is 2-connected). Let s = r0/c = c′√logn where c is a large
constant to be chosen later (1000 will do). We tessellate the box Sn with small
squares of side length s. Whenever we talk about distances between squares we
will always be referring to the distance between their centers. Moreover, we will
divide all distances between squares by s, so, for example, a square’s four nearest
neighbors all have distance one.

By Penrose’s result [11] mentioned in the Introduction we may assume that
(1 − 1/2c)r0 < r < (1 + 1/2c)r0: formally the collection of point sets which do
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not satisfy this has measure tending to zero as n tends to infinity, and we ignore
this set.

Hence points in squares at distance r−√
2s

s
≥ r0−2s

s
= c − 2 are always joined,

and points in squares at distance r+√
2s

s
≤ r0+2s

s
= c + 2 are never joined.

Stage 2: The “difficult” subsquares. We call a square full if it contains at least
M points for some M to be determined later (107 will do), and nonfull otherwise.
Let N0 be the set of nonfull squares. We say two nonfull squares are joined if
their �∞ distance is at most 4c − 1 and define N to be the collection of nonfull
components.

First we bound the size of the largest component of nonfull squares (here, and
throughout this paper, we use size to refer to the number of vertices in the compo-
nent).

LEMMA 4. For any M , the largest component of nonfull squares in the above
tesselation has size at most

U = 	π(c + 2)2

whp.

Also, the largest component of nonfull squares including a square within c of
the boundary of Sn has size at most U/2 whp. Finally, there is no nonfull square
within distance Uc of a corner whp.

PROOF. We shall make use of the following simple result: suppose that G is
any graph with maximal degree �, and v is a vertex in G. Then the number of con-
nected subsets of size n of G containing v is at most (e�)n (see, e.g., Problem 45
of [6]).

Hence, the number of potential components of size U containing a particular
square is at most (e(8c)2)U so, since there are less than n squares, the total number
of such potential components is at most n(e(8c)2)U . The probability that a square
is nonfull is at most 2s2Me−s2

/M!. Hence, the expected number of components of
size at least U is at most

n
(
2s2Me−s2

(e(8c)2)/M!)U ≤ n

(
2(logn)M

e(8c)2

M!
)U

exp
(
−(c + 2)2 logn

c2

)
,

which tends to zero as n tends to infinity; that is, whp, no such component exists.
For the second part there are at most 4c

√
n squares within distance c of the

boundary of Sn, and the result follows as above.
Finally, there are only 4U2c2 squares within distance Uc of a corner. Since the

probability that a square is nonfull tends to zero we see that there is no such square
whp. �
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Note that this is true independently of M which is important since we will want
to choose M depending on U .

In the rest of the argument we shall assume that there is no nonfull component
of size greater than U , no nonfull component of size U/2 within c of an edge and
no nonfull square within Uc of a corner.

Between these components of nonfull squares there are numerous full squares.
To define this more precisely let Ĝ be the graph with vertex set the small squares,
and where each square is joined to all others within (c − 2) of this square (in
the Euclidean norm). Since the probability a square is in N0 (i.e., is nonfull) is
1 − o(1), the graph Ĝ \ N0 has one giant component consisting of almost all the
squares. We call this component sea. (We give an equivalent formal definition just
before Corollary 8.)

The idea is that it is trivial to find a cycle visiting every point of the process in a
square in the sea, and that we can extend this cycle to a Hamilton cycle by adding
each nonfull component (and any full squares cut off by it) one at a time. However,
it is easier to phrase the argument by starting with the difficult parts and then using
the sea of full squares.

Stage 3: The structure of the difficult subsquares. Consider one component
N ∈ N of the nonfull squares, and suppose that it has size u. By Lemma 4 we
know u < U . We will also consider N2c: the 2c-blow-up of N : that is the set of all
squares with �∞ distance at most 2c from a square in N .

Now some full squares may be cut off from the rest of the full squares by nonfull
squares in N . More precisely the graph Ĝ \ N has one component A = A(N)

consisting of all but at most a bounded number of squares (since we have removed
at most U squares from Ĝ). We call Ac the cutoff squares.

We split the cutoff squares into two classes: those with a neighbor in A (in Ĝ)
which we think of as being “close” to A, and the rest, which we shall call far
squares. All the close squares must be in N (since otherwise they would be part
of A). However, we do not know anything about the far squares: they may be full
or nonfull. See Figure 1 for a picture.

LEMMA 5. No two far squares are more than �∞ distance c/10 apart.

REMARK. This does not say whp since we are assuming this nonfull compo-
nent has size at most U .

PROOF. Suppose not.
Suppose, first, that no point of N is within c of the edge of Sn, and that the two

far squares are at horizontal distance at least c/10. Then consider the left-most far
square. All squares which are to the left of this and with distance to this square
less than (c − 2) must be close and thus in N . Similarly with the right-most far
square. Also at least (c − 2) squares [in fact nearly 2(c − 2)] in each of at least
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FIG. 1. A small part of Sn containing the nonfull component N and the corresponding set A, far
squares and close squares. It also shows the two vertex disjoint paths from the far squares to A and
the path joining Q2 to Q1 (see stage 4).

c/10 columns between the original two far squares must be in N . This is a total of
about π(c − 2)2 + (c − 2)c/10 > U which is a contradiction (provided we chose
c reasonably large).

If there is a point of N within c of the boundary, then the above argument gives
more than U/2 nonfull squares. Indeed, either it gives half of each part of the above
construction, or it gives all of one end and all the side parts. This contradicts the
second part of our assumption about the size of nonfull components.

We do not need to consider a component near two sides: it cannot be large
enough to be near two sides. It also cannot go across a corner, since no square
within distance Uc of a corner is nonfull. �

This result can also be deduced from a result of Penrose, as we do in the next
section. We have the following instant corollary.

COROLLARY 6. The graph Ĝ restricted to the far squares is complete.

COROLLARY 7. The set of cutoff squares Ac is contained in Nc (the c-blow-up
of N ). In particular, the set 	(Ac) of neighbors in Ĝ of Ac is contained in N2c.

PROOF. Suppose Ac �⊆ Nc. Let x be a square in Ac \ Nc. First, x cannot be a
neighbor of any square in A or x would also be in A; that is, x is a far square.
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Now, let y be any square with �∞ distance c/5 from x. The square y cannot
be in N since then x would be in Nc. Therefore, y cannot be a neighbor of any
square in A since then it would be in A and, since x and y are joined in Ĝ, x would
be in A; that is, y is also a far square. Hence, x and y are both far squares with �∞
distance c/5 which contradicts Lemma 5. �

In particular, Corollary 7 tells us that the sets of squares cutoff by different
nonfull components and all their neighbors are disjoint (obviously the 2c-blow-
ups are disjoint).

We now formally define the sea Ã = ⋂
N∈N A(N). We show later (Corollary 11)

that Ã is connected and, thus, that this is the same as our earlier informal definition.
The following corollary is immediate from Corollary 7.

COROLLARY 8. For any N ∈ N we have Ã ∩ N2c = A(N) ∩ N2c.

The final preparation we need is the following lemma.

LEMMA 9. The set N2c ∩ A is connected in Ĝ.

Since the proof will be using a standard graph theoretic result, it is convenient
to define one more graph Ĝ1: again the vertex set is the set of small squares, but
this time each square is joined only to its four nearest neighbors; that is, Ĝ1 is the
ordinary square lattice. We need two quick definitions. First, for a set E ∈ Ĝ1 we
define the boundary ∂1E of E to be set of vertices in Ec that are neighbors (in Ĝ1)
of a vertex in E. Second, we say a set E in Ĝ1 is diagonally connected if it is
connected when we add the edges between squares which are diagonally adjacent
(i.e., at distance

√
2) to Ĝ. The lemma we need is the following; since its proof is

short we include it here for completeness. (It is also an easy consequence of the
unicoherence of the square (see, e.g., page 177 of [12]).)

LEMMA 10. Suppose that E is any subset of Ĝ1 with E and Ec connected.
Then ∂1E is diagonally connected: in particular, it is connected in Ĝ.

PROOF. Let F be the set of edges of Ĝ1 from E to Ec, and let F ′ be the
corresponding set of edges in the dual lattice. Consider the set F ′ as a subgraph of
the dual lattice. It is easy to check that every vertex has even degree except vertices
on the boundary of Ĝ1. Thus we can decompose F ′ into pieces, each of which is
either a cycle or a path starting and finishing at the edge of Ĝ1. Any such cycle
splits Ĝ1 into two components, and we see that one of these must be exactly E

and the other Ec. Thus F ′ is a single component in the dual lattice, and it is easy
to check that implies that ∂1E is diagonally connected. �

PROOF OF LEMMA 9. Consider Ĝ1 \ N2c. This splits into components
B1,B2, . . . ,Bm. By definition each Bi is connected. Moreover, each Bc

i is also
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connected. Indeed, suppose x, y ∈ Bc
i . Then there is an xy path in Ĝ1. If this is

contained in Bc
i we are done. If not then it must meet N2c, but N2c is connected.

Hence we can take this path until it first meets N2c, go through N2c to the point
where the path last leaves N2c and follow the path on to y. This gives a path in Bc

i .
Hence, by Lemma 10, we see that each ∂1Bi is connected in Ĝ for each i (where

∂1 denotes the boundary in Ĝ1). Obviously ∂1Bi ⊂ N2c.
As usual, for a set of vertices V let Ĝ[V ] denote the graph Ĝ restricted to the

vertices in V .

CLAIM. Any two vertices in
⋃m

i=1 ∂1Bi are connected in Ĝ[A ∩ N2c].

PROOF. Suppose not. Without loss of generality assume that, for some k < m,
Ĝ[⋃k

i=1 ∂1Bi] is connected and that no other ∂1Bi is connected via a path to it.
Pick x ∈ B1 and y ∈ Bm. Both x and y are in A (since they are not in N2c and
Ac ⊂ N2c by Corollary 7).

Hence there is a path from x to y in A. Consider the last time it leaves
⋃k

i=1 Bi .
The path then moves around in N2c before entering some Bj with j > k. This gives
rise to a path in A∩N2c from a point in

⋃k
i=1 ∂1Bi to a point in ∂1Bj , contradicting

the choice of k. �

We now complete the proof of Lemma 9. To avoid clutter we shall say that two
points are joined if they are connected by a path. Suppose that x, y ∈ A ∩ N2c.
Since A is connected there is a path in A from x to y. If the path is contained in
N2c we are done. If not, consider the first time the path leaves N2c. It must enter
one of the Bi , crossing the boundary ∂1Bi . Hence x is joined to some w ∈ ∂1Bi in
A ∩ N2c. Similarly, by considering the last time the path is not in N2c we see that
y is joined to some z ∈ ∂1Bj for some j . However, since the claim showed that w

and z are joined in A ∩ N2c, we see that x and y are joined in A ∩ N2c. �

COROLLARY 11. The set of sea squares Ã is connected in Ĝ.

PROOF. Given two squares x, y in Ã, pick a path in Ĝ from x to y. Now for
each nonfull component N in turn do the following. If the path misses N2c do
nothing. Otherwise let w be the first point on the path in N2c and z be the last
point in N2c. Replace the xy path by the path xw, any path wz in A(N) ∩ N2c and
then the path zy.

At each stage the modification ensured that the path now lies in A(N). Also,
the only vertices added to the path are in N2c which is disjoint from all the previ-
ous N ′

2c, and thus from all previous sets A(N ′). Hence, when we have done this
for all nonfull components the path lies in every A(N ′), that is, in Ã. Hence, Ã is
connected. �
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Stage 4: Dealing with the difficult subsquares. We deal with each nonfull com-
ponent N ∈ N in turn. Fix one such component N .

Let us deal with the far squares first. There are three possibilities: the far squares
contain no points at all, they contain one point in total or they contain more than
one point. In the first case, do nothing and proceed to the next part of the argument.

In the second case, by the 2-connectivity of G, we can find two vertex disjoint
paths from this single vertex v1 to points in squares in A. In the third case pick
two points v1 and v2 in the far squares. Again by 2-connectivity we can find vertex
disjoint paths from these two vertices to points in squares in A.

Suppose that the path from v1 meets A in square Q1 at point q1 and the other
path (either from v2 or the other path from v1 again) meets A in square Q2 at
point q2. Let P1,P2 be the squares containing the previous points on these paths.
Since no two points in squares at (Euclidean) distance (c + 2) are joined we see
that P1 is within (c + 2) of Q1. Since P1 /∈ A we have that some square on a
shortest P1Q1 path in Ĝ1 is in N and thus that Q1 ∈ N2c. Similarly Q2 ∈ N2c.
Combining we see that both Q1 and Q2 are in N2c ∩ A. By Lemma 9, we know
that N2c ∩ A is connected in Ĝ so we can find a path from Q1 to Q2 in N2c ∩ A

in Ĝ. This “lifts” to a path in G going from q2 to a point other than q1 in Q1 using
at most one vertex in each subsquare on the way and never leaving N2c.

Construct a path starting and finishing in Q1 by joining together the following
paths:

1. the path from q1 to v1;
2. a path starting at v1 going round all points in the far region (except any such

points on the q1v1 or q2v2 paths) finishing back at v2. (Corollary 6 guarantees
the existence of such a path.) We omit this piece if there is just one far vertex;

3. the path v2 to q2;
4. the path from q2 through the sea back to Q1 constructed above.

Since Q1 ∈ A∩N2c, by Corollary 8 we have that Q1 ∈ Ã. Combining, we have a
path starting and finishing in the same subsquare of the sea Ã (i.e., Q1) containing
all the vertices in the far region.

Next we deal with the close squares: we deal with each close square P in turn.
Since P is a close square we can pick Q ∈ A with PQ joined in Ĝ. In the following
we ignore all points that we have used in the path constructed above and any points
already used when dealing with other close squares.

If the square P has no point in it we ignore it. If it has one point in it, then join
that point to two points in Q.

If it has two or more points in it then pick two of them x, y: and pick two
points uv in Q (we choose M large enough to ensure that we can find these two
unused points in Q, see below). Place the path formed by the edge ux round all
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the remaining unused vertices in the cutoff square finishing at y and back to the
square Q with the edge yv in the cycle we are constructing.

The square Q is a neighbor of P ∈ Ac so, by Corollary 7 is in N2c. Since Q is
also in A we see, by Corollary 8 as above, that Q ∈ Ã.

When we have completed this construction we have placed every vertex in a
cutoff square on one of a collection of paths, each of which starts and finishes at
the same square in the sea (although different paths may start and finish in different
squares in the sea).

We use at most 2U + 2 vertices from any square in A = A(N) when doing
this, so, provided that M > 2U + 2 + (2c + 1)2, there are at least (2c + 1)2 un-
used vertices in each square of A when we finish this. Moreover, obviously the
only squares touched by this construction are in N2c, and for distinct nonfull com-
ponents these are all disjoint. Hence, when we have done this for every nonfull
component N ∈ N there are at least (2c + 1)2 unused vertices in each square of
the sea Ã.

Stage 5: Using the subsquares in the sea to join everything together. It just
remains to string everything together. This is easy. Since, by Corollary 11, the sea
of squares Ã is connected, there is a spanning tree for Ã. By doubling each edge
we can think of this as a cycle, as in Figure 2. This cycle visits each square at
most (2c + 1)2 times. (In fact, by choosing a spanning tree such that the sum of
the edge lengths is minimal we could assume that it visits each vertex at most six
times but we do not need this.) Convert this into a Hamilton cycle as follows. Start
at an unused vertex in a square of the sea. Move to any (unused) vertex in the next
square in the tree cycle. Then, if this is the last time the tree cycle visits this square,
visit all remaining vertices and join in all the paths constructed in the first part of
the argument, then leave to the next square in the tree cycle. If it is not the last time
the tree cycle visits this square, then move to any unused vertex in the next square

FIG. 2. A tree of subsquares and its corresponding tree cycle.
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in the tree cycle. Repeat until we complete the tree cycle. Then join in any unused
vertices and paths to this square constructed earlier before closing the cycle.

3. Higher dimensions. We generalise the proof in the previous section to
higher dimensions and any p-norm. Much of the argument is the same, in par-
ticular, essentially all of stages four and five. We include details of all differences
but refer the reader to the previous section where the proof is identical.

Stage 1: Tessellation. We work in the d-dimensional hypercube Sd
n of vol-

ume n (for simplicity we will abbreviate hypercube to cube in the following). As
mentioned in the Introduction, we no longer have a nice formula for the critical
radius: the boundary effects dominate.

Instead, we consider the expected number of isolated vertices E = E(r). We
need a little notation: let Ar denote the set {x ∈ Sd

n :d(x,A) ≤ r} and | · | denote
Lebesgue measure.

We have E = ∫
Sd

n
exp(−|{x}r |) dx. Let r0 = r0(n) be such that E(r0) = 1. As

before fix c a large constant to be determined later, and let s = r0/c. It is easy to
see that rd

0 = �(logn) and sd = �(logn). We tile the cube Sd
n with small cubes of

side length s.
As before, let r = H(G is 2-connected). By Penrose (Theorems 1.1 and 1.2

of [11] or Theorems 8.4 and 13.17 of [12]) the probability that r /∈ [r0(1 −
1/2c), r0(1 + 1/2c)] tends to zero and we ignore all these point sets. (Note that
these two of Penrose’s results are not claimed for p = 1. However, since for any
ε > 0 we can pick p > 1 such that B1(r) ⊂ Bp(r) ⊂ B1((1 + ε)r) [where B1(r)

and Bp denote the l1 and lp balls of radius r , resp.], the above bound on r for
p = 1 follows from Penrose’s results for p > 1.)

This time any two points in cubes at distance r−s
√

d
s

≥ r0−ds
s

= c−d are joined,

and no points in cubes at distance r+s
√

d
s

≤ r0+ds
s

= c + d are joined.

Stage 2: The “difficult” subcubes. Exactly as before we define nonfull cubes
to be those containing at most M points, and we say two are joined if they have
�∞ distance at most 4c − 1.

We wish to prove a version of Lemma 4. However, we have several possible
boundaries: for example, in three dimensions we have the center, the faces, the
edges and the corners. We call a nonfull component containing a cube Q bad if
it consists of at least (1 + 1/c)|Qr0 |/sd cubes. (Note a component can be bad for
some cubes and not others.)

LEMMA 12. The expected number of bad components tends to zero as n tends
to infinity. In particular there are no bad components whp.
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PROOF. The number of connected sets of size U containing a particular
cube is at most (e(8c)d)U . The probability that a cube is nonfull is at most
2sdMe−sd

/M!. Since min{|Qr0 | : cubes Q} = �(logn) and sd = �(logn), the ex-
pected number of bad components is at most

∑
cubes Q

(
2sdMe−sd

(e(8c)d)/M!)(1+1/c)|Qr0 |/sd

= ∑
cubes Q

(
2sdM(e(8c)d)/M!)(1+1/c)|Qr0 |/sd

exp
(−(1 + 1/c)|Qr0 |

)

= o(1)
∑

cubes Q

exp(−|Qr0 |)

≤ o(1)

∫
Sd

n

exp(−|{x}r0 |) dx

= o(1)E(r0)

= o(1). �

(Again, note that this is true independently of M .)
From now on we assume that there is no bad component.

Stage 3: The structure of the difficult subcubes. In this stage we will need
one extra geometric result of Penrose, a case of Proposition 5.15 of [12] (see also
Proposition 2.1 of [11]).

PROPOSITION 13. Suppose d is fixed and that ‖ · ‖ is a p-norm for some
1 ≤ p ≤ ∞. Then there exists η > 0 such that if F ⊂ Od (the positive orthant
in R

d ) is compact with �∞ diameter at least r/10, and x is a point of F with
minimal l1 norm; then |Fr | ≥ |F | + |{x}r | + ηrd .

We begin this stage by proving Lemma 5 for this model.

LEMMA 14. No two far cubes are more than �∞ distance c/10 apart.

PROOF. Suppose not. Then let F be the set of far cubes, let x be a point of F

closest to a corner in the l1 norm and let Q be the cube containing x (or any of the
possibilities if it is on the boundary between cubes). We know that all the cubes
within (c − d) of a far cube are not in A. Hence all such cubes which are not far
must be close, and thus nonfull.
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The number of close cubes is at least

|F(c−2d)s \ F |
sd

≥ |{x}(c−2d)s | + η((c − 2d)s)d

sd
by Proposition 13

≥ |Q(c−3d)s | + ηrd
0 /2

sd
provided c is large enough

= |Q(1−3d/c)r0 | + ηrd
0 /2

sd

≥ (1 − 3d/c)d |Qr0 | + ηrd
0 /2

sd

>
(1 + 1/c)|Qr0 |

sd
provided c is large enough.

This shows that the component is bad which is a contradiction. �

Corollaries 6, 7 and 8 hold exactly as before. Lemma 9 also holds, we just need
to replace Lemma 10 by the following higher-dimensional analogue. Note that,
even in higher dimensions we say two squares are diagonally connected if their
centers have distance

√
2.

LEMMA 15. Suppose that E is any subset of Ĝ1 with E and Ec connected.
Then ∂1E is diagonally connected: in particular, it is connected in Ĝ.

REMARK. Again the final conclusion of connectivity in Ĝ is an easy conse-
quence of unicoherence, this time of the hypercube.

PROOF. Let I be a (diagonally connected) component of ∂1E. We aim to show
the I = ∂1E and, thus, that ∂1E is diagonally connected.

CLAIM. Suppose that C is any circuit in Ĝ1. Then the number of edges of C

with one end in E and the other end in I is even.

PROOF. We say that a circuit is contractible to a single point using the fol-
lowing operations. First, we can remove an out and back edge. Second, we can
do the following two-dimensional move. Suppose that two consecutive edges of
the circuit form two sides of a square; then we can replace them by the other
two sides of the square keeping the rest of the circuit the same. For example, we
can replace (x, y + 1, �z) → (x + 1, y + 1, �z) → (x + 1, y, �z) in the circuit by
(x, y + 1, �z) → (x, y, �z) → (x + 1, y, �z).

Next we show that C is contractible. Let w(C) denote the weight of the circuit:
that is, the sum of all the coordinates of all the vertices in C. We show that, if C

is nontrivial, we can apply one of the above operations and reduce w. Indeed, let
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v be a vertex on C with maximal coordinate sum, and suppose that v− and v+ are
the vertices before and after v on the circuit. If v− = v+ then we can apply the
first operation removing v and v+ from the circuit which obviously reduces w. If
not, then both v− and v+ have strictly smaller coordinate sums than v, and we can
apply the second operation reducing w by two. We repeat the above until we reach
the trivial circuit.

Now, let J be the number of edges of C with an end in each of E and I . The
first operation obviously does not change the parity of J . A simple finite check
yields the same for the second operation. Indeed, assume that we are changing the
path from (x, y + 1), (x + 1, y + 1), (x + 1, y) to (x, y + 1), (x, y), (x + 1, y).
Let F be the set of these four vertices. If no vertex of I is in F , then obviously J

does not change. If there is a vertex of I in F , then, by the definition of diagonally
connected, F ∩ I = F ∩ ∂1E. Hence the parity of J does not change. [It is even if
(x, y + 1) and (x + 1, y) are both in E or both in Ec and odd otherwise.] �

Suppose that there is some vertex v ∈ ∂1E \ I and that u ∈ E is a neighbor of v.
Let y ∈ I and x ∈ E be neighbors. Since E and Ec are connected we can find
paths Pxu and Pvy in E and Ec, respectively. The circuit Pxu,uv,Pvy, yx contains
a single edge from E to I which contradicts the claim. �

To complete this stage observe that Corollary 11 holds as before.

Stage 4: Dealing with the difficult subcubes, and Stage 5: Using the subcubes in
the sea to join everything together. These two stages go through exactly as before
[with one trivial change: replace (2c + 1)2 by (2c + 1)d ]. This completes the proof
of Theorem 2.

4. Proof of Theorem 3. In this section we prove Theorem 3. Once again, the
proof is very similar to that in Section 2. We shall outline the key differences, and
emphasise why we are only able to prove the weaker version of the result.

Stage 1: Tessellation. The tessellation is similar to before, but this time some
edges may be much longer than some nonedges.

Let k = H(G is κ-connected) be the smallest k that Gn,k is κ-connected. Since
G is connected we may assume that 0.3 logn < k < 0.52 logn (see [1] and [2]).
Let r− be such that any two points at distance r− are joined whp; for example,
Lemma 8 of [1] implies that this is true provided πr2− ≤ 0.3e−1−1/0.3 logn, so we
can take r− = 0.035

√
logn.

Let r+ be such that no edge in the graph has length more than r+. Then, again
by Lemma 8 of [1], we have

πr2+ ≤ 4e(1 + 0.52) logn

whp, so we can take r+ = 2.3
√

logn ≤ 66r−.
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From here on, we ignore all point sets with an edge longer than r+ or a nonedge
shorter than r−.

Let s = r−/
√

8. We tessellate the box Sn with small squares of side length s.
(Since we are proving only this weaker result our tesselation does not need to be
very fine.) By the choice of s and the bound on r− any two points in neighboring
or diagonally neighbouring squares are joined in G. Also, by the bound on r+ no
two points in squares with centers at distance more than (66

√
5 + 2)s < 150s are

joined. Let D = 104; we have that no two points in squares with centers distance
Ds apart are joined.

Stage 2: The “difficult” subsquares. We call a square full if it contains at least
M = 109 points and nonfull otherwise. We say two nonfull squares are joined if
they are at �∞ distance at most 2D − 1.

First we bound the size of the largest component of nonfull squares.

LEMMA 16. The largest component of nonfull squares has size less than 7000
whp.

PROOF. The number of connected subgraphs of Ĝ of size 7000 containing a
particular square is at most (e(4D)2)7000, so, since there are less than n squares, the
total number of such connected subgraphs is at most n(e(4D)2)7000. The probabil-
ity that a square is nonfull is at most 2s2Me−s2

/M!. Hence, the expected number
of components of nonfull squares of size at least 7000 is at most

n
(
2s2Me−s2

(e(4D)2)/M!)7000

≤ n

(
2
(

(0.035)2 logn

8

)M e(4D)2

M!
)7000

exp
(−7000(0.035)2 logn

8

)
,

which tends to zero as n tends to infinity [since 7000(−0.035)2/8 > 1.07 > 1];
that is, whp, no such component exists. �

In the rest of the argument we shall assume that there is no nonfull component
of size greater than 7000.

Stage 3: The structure of the difficult subsquares. As usual we fix one com-
ponent N of the nonfull squares, and suppose that it has size u (so we know
u < 7000). This time we define Ĝ to be the graph on the small squares where
each square is joined to its eight nearest neighbors (i.e., adjacent and diagonal).
Let A = A(N) be the giant component of G \N , and again split the cutoff squares
into close and far depending whether they have a neighbor (in Ĝ) in A.

By the vertex isoperimetric inequality in the square there are at most u2/2
squares in Ac \ N so |Ac| ≤ u2/2 + u < 2.5 · 107.

Next we prove a result similar to Corollary 7.
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FIG. 3. Two paths from one cutoff square to the sea together with the path from the meeting point
in Q2 to the square Q1.

LEMMA 17. The set of cutoff squares Ac is in ND (where D = 104 as above).

PROOF. Suppose not, and that Q is a square in Ac not in ND . Then all squares
within �∞ distance of Q at most D are not in N . Hence they must be in Ac (since
otherwise there would be a path from Q to a square in A not going through any
square in N ). Hence |Ac| > D2 = 108 which contradicts Lemma 16. �

Finally, we need the analogue of Lemma 9 whose proof is exactly the same.

LEMMA 18. The set ND ∩ A is connected in Ĝ.

Stage 4: Dealing with the difficult subsquares. Let us deal with these cutoff
squares now. From each cutoff square that contains at least two vertices, pick any
2 vertices, and from each cutoff square that contains a single vertex pick that vertex
with multiplicity two. We have picked at most 5 · 107 vertices, so since G is κ =
5 · 107 connected we can simultaneously find vertex disjoint paths from each of
our picked vertices to vertices in squares in A (two paths from those vertices that
are repeated).

We remark that these are not just single edges; these paths may go through other
cutoff squares.

Call the first point of such a path which is in A a meeting point, and the square
containing this point a meeting square.

Fix a cutoff square and let v1, v2 be the two vertices picked above from this
square (let v1 = v2 if the square only contains one vertex). This cutoff square has
two meeting points, say q1 and q2 in subsquares Q1 and Q2, respectively. Since the
longest edge is at most r+, both Q1 and Q2 are in ND . Since A∩ND is connected
in Ĝ we construct a path in the squares in A∩ND from the meeting point in Q2 to
a vertex in Q1 using at most one vertex in each subsquare on the way, and missing
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all the other meeting points. This is possible since each full square contains at least
M = 109 vertices.

Construct a path starting and finishing in Q1 containing all the (unused) vertices
in this cutoff square by joining together the following paths:

1. the path from q1 to v1;
2. a path starting at v1 going round all points in the cutoff square finishing back at

v2 (omit this piece if there is just one far vertex);
3. the path v2 to q2;
4. the path from q2 through A ∩ ND back to Q1 constructed above.

Do this for every cutoff square. For each cutoff square this construction uses
at most two vertices from any square in A. Moreover, it obviously only touches
squares in ND . Since nonfull squares in distinct components are at distance at
least 2D the squares touched by different nonfull components are distinct. Thus
in total we have used at most 4 · 107 vertices in any square in the sea, and since
M = 109 there are many (we shall only need 8) unused vertices left in each full
square in the sea.

Stage 5: Using the subsquares in the sea to join everything together. This is
exactly the same as before.

5. Comments on the k-nearest neighbor proof. We start by giving some
reasons why the proof in the k-nearest neighbor model only yields the weaker
Theorem 3. The first superficial problem is that we use squares in the tesselation
which are of “large” size rather than relatively small as in the proof of Theorem 1,
(in other words we did not introduce the constant c when setting s depending on r).

Obviously we could have introduced this constant. The difficulty when trying
to mimic the proof of Theorem 1 is the large difference between r− and r+, which
corresponds to having a very large number of squares (many times πc2) in our
nonfull component N . This means that we cannot easily prove anything similar to
Lemma 5. Indeed, a priori, we could have two far squares with πc2 nonfull squares
around each of them.

A different way of viewing this difficulty is that, in the k-nearest neighbor
model, the graph Ĝ on the small squares does not approximate the real graph G

very well, whereas in the Gilbert model it is a good approximation. Thus, it is not
surprising that we only prove a weaker result.

This is typical of results about the k-nearest neighbor model; the results tend
to be weaker than for the Gilbert model. This is primarily because the obstruc-
tions tend to be more complex; for example, the obstruction for connectivity in
the Gilbert model is the existence of an isolated vertex. Obviously in the k-nearest
neighbor model we never have an isolated vertex; the obstruction must have at
least k + 1 vertices.
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Extensions of Theorem 3. When proving Theorem 3 we only used two facts
about the random geometric graph. First, that any two points at distance r− =
0.035

√
logn are joined whp. Secondly, that the ratio of r+ (the longest edge) to

r− (the shortest nonedge) was at most 60 whp. Obviously, we could prove the
theorem (with different constants) in any graph with r− = �(

√
logn) and r+/r−

bounded. This includes higher dimensions and different norms and to different
shaped regions instead of Sn (e.g., to disks or toruses). Indeed, the only place we
used the norm was in obtaining the bounds on r+ and r− in stage 1 of the proof.

Indeed, it also generalizes to irregular distributions of vertices provided that the
above bounds on r− and r+ hold. For example, it holds in the square Sn where
the density of points in the Poisson Process decrease linearly from 10 to 1 across
the square.

6. Closing remarks and open questions. A related model where the result
does not seem to follow easily from our methods is the directed version of the
k-nearest neighbor graph. As mentioned above, the k-nearest neighbor model nat-
urally gives rise to a directed graph, and we can ask whether this has a directed
Hamilton cycle. Note that this directed model is significantly different from the
undirected. For example, it is likely (see [1]) that the obstruction to directed con-
nectivity (i.e., the existence of a directed path between any two vertices) is a sin-
gle vertex with in-degree zero; obviously this cannot occur in the undirected case
where every vertex has degree at least k. In some other random graph models a
sufficient condition for the existence of a Hamilton cycle (whp) is that there are
no vertices of in-degree or out-degree zero. Of course, in the directed k-nearest
neighbor model every vertex has out-degree k so we ask the following question.

QUESTION. Let �G = �Gn,k be the directed k-nearest neighbor model. Is

H( �G has a Hamilton cycle) = H( �G has no vertex of in-degree zero)

whp?

It is obvious that the bound on connectivity in the k-nearest neighbor model can
be improved, but the key question is “should it be two?” We make the following
natural conjecture:

CONJECTURE. Suppose that k = k(n) such that the k-nearest neighbor graph
G = G(k,n) is a 2-connected whp. Then, whp, G has a Hamilton cycle.
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