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OCCUPATION AND LOCAL TIMES FOR SKEW BROWNIAN
MOTION WITH APPLICATIONS TO DISPERSION

ACROSS AN INTERFACE1

BY THILANKA APPUHAMILLAGE, VRUSHALI BOKIL, ENRIQUE THOMANN,
EDWARD WAYMIRE AND BRIAN WOOD

Oregon State University

Advective skew dispersion is a natural Markov process defined by a dif-
fusion with drift across an interface of jump discontinuity in a piecewise
constant diffusion coefficient. In the absence of drift, this process may be
represented as a function of α-skew Brownian motion for a uniquely de-
termined value of α = α∗; see Ramirez et al. [Multiscale Model. Simul. 5
(2006) 786–801]. In the present paper, the analysis is extended to the case of
nonzero drift. A determination of the (joint) distributions of key functionals of
standard skew Brownian motion together with some associated probabilistic
semigroup and local time theory is given for these purposes. An application
to the dispersion of a solute concentration across an interface is provided that
explains certain symmetries and asymmetries in recently reported laboratory
experiments conducted at Lawrence–Livermore Berkeley Labs by Berkowitz
et al. [Water Resour. Res. 45 (2009) W02201].

1. Introduction. Skew Brownian motion was introduced by Itô and McKean
(1963) to construct certain stochastic processes associated with Feller’s classifi-
cation of one-dimensional diffusions in terms of second order differential oper-
ators. This spawned further research leading to a number of subsequent founda-
tional probability papers that highlight interesting and sometimes surprising spe-
cial structure of skew Brownian motion, see, for example, Walsh (1978), Harrison
and Shepp (1981), Ouknine (1990), Le Gall (1984), Barlow, Pitman and Yor
(1989), Barlow et al. (2001), Burdzy and Chen (2001), Ramirez (2010).

Skew Brownian motion has more recently emerged in connection with diverse
applications ranging from a variant on the multi-arm bandit problem [Barlow
et al. (2000)], mathematical finance [Decamps, Goovaerts and Schoutens (2006)],
Monte-Carlo simulation schemes [Lejay and Martinez (2006)] and dispersion in
heterogeneous media [Freidlin and Sheu (2000), Ramirez et al. (2006, 2008)]. The
present paper provides new theoretical results for functionals of skew Brownian
motion and its associated semi-group theory (p.d.e.), together with an application
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to recently reported laboratory experiments for advection-dispersion across a sharp
interface by Berkowitz et al. (2009). A simple version of one of the basic issues in
this regard may be posed as follows.

QUESTION. Consider one-dimensional diffusion with two different diffusion
coefficients, say D− < D+, on the left and right half-lines, respectively. Which is
more likely to be removed first: a particle injected at −1 and removed at +1, or a
particle injected at +1 and removed at −1?

We will see that the answer to this question is fundamentally tied to a corre-
sponding effect of the interface on α-skew Brownian motion, where α = α∗ is a
function of the diffusion coefficients D− and D+ to be determined, together with a
delicate balance with its respective diffusive scalings to the left and right of the in-
terface. In view of this basic role of skew Brownian motion, the paper is organized
with an initial focus on new properties of skew Brownian motion to be followed by
the more specific application to dispersion across an interface. Readers primarily
interested in the application may skip from the end of this introductory section to
Section 5.

To set some notation and basic definitions, let B = {Bt : t ≥ 0} denote standard
Brownian motion on a probability space (�, F ,P ). Next, let J1, J2, . . . denote a
fixed enumeration of the excursion intervals of the reflected process {|Bt | : t ≥ 0}.
For a given parameter α ∈ (0,1), let {Am :m = 1,2, . . .} be an i.i.d. sequence,
independent of B , of Bernoulli ±1 valued random variables also defined on � with
P(A1 = 1) = α. Define α-skew Brownian motion process B(α) = {B(α)

t : t ≥ 0} by

B
(α)
t =

∞∑
m=1

1Jm(t)Am|Bt |,(1.1)

where 1S denotes the indicator function of the set S. While skew Brownian mo-
tion is a continuous semi-martingale, Walsh (1978) showed that its local time is
discontinuous. We note that throughout the paper the cases α = 0, and α = 1 are
excluded for simplicity of presentation. All the results in the paper are stated for
0 < α < 1, with obvious extensions to these other values of the parameter α.

Although the excursion representation (1.1) does not extend to define a “skew
Brownian motion with drift,” a number of natural alternatives are available.2 We
mention two. The first describes the fundamental process intrinsic to the appli-
cation to dispersion in porous media from the perspective of semi-group theory.
The second is an equivalent formulation from the perspective of martingale the-
ory. In preparation for these descriptions and through the paper, we denote by
R0 = (−∞,0) ∪ (0,∞) = R \ {0}.

2To the best of our knowledge this process has not been previously named in the literature. How-
ever this terminology is consistent with the usual nomenclature associated with the infinitesimal
generator.
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DEFINITION 1.1. For 0 < α < 1, v ∈ (−∞,∞), the α-skew Brownian mo-
tion with drift v B(α,v) is the Markov process with continuous sample paths de-
termined by the infinitesimal generator 1

2
d2

dx2 + v d
dx

with domain Dα,0 = {u ∈
C2(R0) ∩ C(R) :αu′(0+) = (1 − α)u′(0−)}.

The existence of unique strong solutions to stochastic differential equations of
the form

dYt = (2α − 1) dLY
t (0) + v dt + dBt ,(1.2)

where B = {Bt : t ≥ 0} is standard Brownian motion, and LY
t (0) denotes sym-

metric local time of the process Y at y = 0, was established by Le Gall (1984).
One may also check that the interface condition in Definition 1.1 implies that for
f ∈ Dα,0

Mt = f (Yt ) −
∫ t

0

{
1

2

d2

dx2 + v
d

dx

}
f (Ys) ds, t ≥ 0,(1.3)

defines a martingale. The following result is generally attributed to Le Gall (1982).

THEOREM 1.1. α-skew Brownian motion with drift v is the unique strong
solution Y = B(α,v) to (1.2).

In the study of properties of B(α,v), we are naturally lead to introduce a process
which we denote by (α,γ )B and refer as γ -elastic α-skew Brownian motion (without
drift) in analogy to elastic Brownian motion; see, for example, Itô and McKean
(1996), page 45. To define this process, let γ > 0,0 < α < 1. The process (α,γ )B

is the Markov process with continuous sample paths with infinitesimal generator
1
2

d2

dx2 on the domain Dα,γ , where

Dα,γ = {u ∈ C2(R0) ∩ C(R) :αu′(0+) − (1 − α)u′(0−) = γ u(0)}.
The construction of elastic skew Brownian motion defines a process with sample
paths in [�(α)

t < Rγ ] ⊂ C[0,∞), where Rγ denotes an exponentially distributed
random variable with parameter γ , independent of B(α). In particular, the elastic
skew Brownian motion agrees with the skew Brownian motion up to the first time
�
(α)
t > Rγ , after which it is defined to be infinite; see, for example, Itô and McKean

(1996) for the case α = 1/2.
In the next section, we modify techniques of Itô and McKean (1963) to obtain

a Feynman–Kac formula for elastic (driftless) skew Brownian motion. Using this,
we show that an approach of Karatzas and Shreve (1984) for Brownian motion
can be extended to derive the trivariate density of position, symmetric local time at
zero, and occupation time of the positive half-line, (B

(α)
t , �

(α)
t ,�

(α)
t ), for (driftless)

skew Brownian motion started at zero. Properties of the hitting time at zero for
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(driftless) skew Brownian motion are then shown to be sufficient to extend this to
the trivariate density for the (driftless) skew Brownian motion started at arbitrary
x ∈ R. Some interesting new marginal distributions also follow as corollaries.

NOTE 1.1. The special notation �
(α)
t will be reserved to denote the symmetric

local time of α-skew Brownian motion at zero throughout this paper. Definitions
of left, right, and symmetric local time used here can be found in Revuz and Yor
(1991), and will be reviewed in Section 5.

This part of the main results can be more precisely summarized as follows.

THEOREM 1.2. Let l > 0, and 0 < τ < t . Then

P0
(
B

(α)
t ≥ y;�(α)

t ∈ dl,�
(α)
t ∈ dτ

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2α(1 − α)l

2π(t − τ)3/2τ 1/2

× exp
{
−((1 − α)l)2

2(t − τ)
− (y + αl)2

2τ

}
dl dτ, if y ≥ 0,

2α(1 − α)l

2π(t − τ)1/2τ 3/2

× exp
{
−(αl)2

2τ
− ((1 − α)l − y)2

2(t − τ)

}
dl dτ, if y ≤ 0.

The proof of Theorem 1.2 is obtained from a Feynman–Kac formula for an elas-
tic skew Brownian motion to obtain a soluble differential equation for the Laplace
transform of the trivariate density that may then be inverted; an approach already
known from Karatzas and Shreve (1984) to work for standard Brownian motion.

COROLLARY 1.1.

P0
(
B

(α)
t ∈ dy, �

(α)
t ∈ dl

)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2α(l + y)√

2πt3
exp

{
−(l + y)2

2t

}
dl dy, if y > 0, l > 0,

2(1 − α)(l − y)√
2πt3

exp
{
−(l − y)2

2t

}
dl dy, if y < 0, l > 0.

For an initial state x, one has the following.

COROLLARY 1.2. For y ≥ 0, l > 0,0 < τ < t ,

Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ dl,�

(α)
t ∈ dτ

)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α[(1 − α)l][αl + y + x]
π(t − τ)3/2τ 3/2

× exp
{
−((1 − α)l)2

2(t − τ)
− (αl + y + x)2

2τ

}
dy dl dτ, if x ≥ 0,

α[(1 − α)l − x](αl + y)

π(t − τ)3/2τ 3/2

× exp
{
−((1 − α)l − x)2

2(t − τ)
− (αl + y)2

2τ

}
dy dl dτ, if x ≤ 0,

whereas for y ≤ 0, l > 0,0 < τ < t ,

Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ dl,�

(α)
t ∈ dτ

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − α)[αl + x][(1 − α)l − y]
π(t − τ)3/2τ 3/2

× exp
{
−(αl + x)2

2τ
− ((1 − α)l − y)2

2(t − τ)

}
dy dl dτ, if x ≥ 0,

(1 − α)(αl)[(1 − α)l − y − x]
π(t − τ)3/2τ 3/2

× exp
{
−(αl)2

2τ
− ((1 − α)l − y − x)2

2(t − τ)

}
dy dl dτ, if x ≤ 0.

The following basic corollary identifies the role of the interface of skew Brown-
ian motion in eventually providing an answer to the first passage time question
raised at the outset. Define

T (α)
y = inf

{
t ≥ 0 :B(α)

t = y
}
.(1.4)

COROLLARY 1.3. Fix y ≥ 0. If 1 > α > 1/2 then

P−y

(
T (α)

y > t
)
< Py

(
T

(α)
−y > t

)
, t > 0.

Theorem 1.3 below establishes a change of measure under which α-skew
Brownian motion with drift parameter v is replaced by the elastic (driftless) α-
skew Brownian motion with a specific elasticity parameter γ ≡ γ (α, v). We refer
to this as an elastic change of measure.

The elastic change of measure (via finite-dimensional distributions) is deter-
mined on a time interval prior to an elastic explosion as follows. Let

�t = [
�
(α)
t < Rγ

] ⊂ C[0,∞),

where Rγ denotes an exponentially distributed random variable with parameter
γ , independent of B(α). Then the elastic skew Brownian motion agrees with the
skew Brownian motion up to the first time �

(α)
t > Rγ . Denote the distributions of



188 T. APPUHAMILLAGE ET AL.

B(α,v) and (α,γ )B on �t by P
(α,v)
t and Q

(α,γ )
t , respectively. Also let p(α,v)(t, x, y)

and q(α,γ )(t, x, y) denote their corresponding transition probability densities; note
from the elastic construction that q(α,γ )(t, x, y) is substochastic.

THEOREM 1.3. Fix t > 0, and let γ = |(2α − 1)v|. Then

q(α,γ )(t, x, y) dy =
∫ ∞

0
e−γ �Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ d�

)
and

p(α,v)(t, x, y) = e−v(x−y)−(v2/2)t q(α,γ )(t, x, y).

In particular, on �t

E
P

(α,v)
t

Y = E
Q

(α,γ )
t

ZtY,

where Zt(ω) = evωt−(v2/2)t ,ω ∈ �t.

REMARK 1.1. For the case α = 1/2, the elastic change of measure exactly co-
incides with the Cameron–Martin–Girsanov (CMG) transformation for Brownian
motion with drift, that is, elastic standard Brownian motion with elasticity γ = 0
is a standard Brownian motion. However, in view of explosions for elastic dif-
fusions, it is generally much more restrictive than CMG. Notice that the elastic-
ity parameter γ (α, v) specifying the elastic change of measure is invariant under
α → 1 − α,v → −v.

The following formula for the distribution of α-skew Brownian motion with
drift v is obtained as a consequence of the elastic change of measure in terms of
the tail of the standard normal distribution 
c(y) = 1√

2π

∫ ∞
y e−z2/2 dz.

THEOREM 1.4. For γ = |(2α − 1)v|,
P0

(
B

(α,v)
t ∈ dy

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2α√
2πt

exp
{
−(y − vt)2

2t

}
×

[
1 − γ

√
2πt
c

(
γ t + y√

t

)
exp

{
(γ t + y)2

2t

}]
, if y > 0,

2(1 − α)√
2πt

exp
{
−(y − vt)2

2t

}
×

[
1 − γ

√
2πt
c

(
γ t − y√

t

)
exp

{
(γ t − y)2

2t

}]
, if y < 0.
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These are the essential preliminary general foundations required for the in-
tended application, but they may also be of independent theoretical value.

The specific application is treated in the last section. First, it involves explicit
computation of the concentration curves for particles undergoing dispersion across
an interface separating fine and coarse porous media; see Appuhamillage et al.
(2009) for plots of resulting concentration curves. The relative notions of fine and
coarse media are defined by their relative dispersion rates D− < D+; for example,
in a saturated fine medium, such as sand, the dispersion of solute concentrations
is slower than in a saturated coarse medium, such as large gravel. For the appli-
cation, we adopt the convention used in experiments in which the fine medium
is to the left of the interface and the coarse medium to the right. The injection
and retrieval points are located at equal distances from the interface in both fine
and coarse, coarse and fine regions, respectively. The flow is oriented in the direc-
tion of injection to retrieval points. Second, the application involves an analysis
of certain empirically observed symmetries and asymmetries in the concentration
curves and breakthrough times, respectively, of dispersion in symmetrically con-
figured fine to coarse and coarse to fine injections and removal arrangements. In
answer to the question raised at the outset, it was experimentally observed that
fine to coarse breakthrough is faster than coarse to fine breakthrough [Berkowitz
et al. (2009)]. This has been interpreted as a possible breakdown of basic Fickian
flux laws of transport; see Berkowitz et al. (2008). To the contrary, the results of
this paper explain the phenomena within the framework of Fickian flux laws. The
basic stochastic ordering in Corollary 1.3 will be applied to the process of physical
dispersion in the final section devoted to the application; that is, the mathematical
answer to the question raised at the outset is provided by Corollary 5.2.

Finally, the next two results are formulations of individual stochastic particle
properties that may serve in place of conservation properties of the concentration
in the determination of the transmission parameter α∗. The first is by a variation
on the martingale problem. Define the natural scale function by

s(x) = √
D+x+ − √

D−x−, x ∈ (−∞,∞).(1.5)

Martingale Problem (MP): For given D±, determine α so that

f
(
s
(
B

(α)
t

)) − 1

2

∫ t

0

d

dy

(
D(y)

df

dy

)∣∣∣∣
s(B

(α)
u )

du

is a martingale for all f ∈ DD± where

DD± =
{
g ∈ C2(R0) ∩ C(R) :D− dg

dy
(0−) = D+ dg

dy
(0+)

}
and

d

dy

(
D(y)

df

dy

)
= 1[B(α)

u >0]D
+ d2f

dy2 + 1[B(α)
u ≤0]D

− d2f

dy2 .(1.6)
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THEOREM 1.5. The solution of (MP) for given D± is given by the process
Y = s(B(α)) corresponding to the transmission parameter

α∗ =
√

D+
√

D+ + √
D− .

Alternatively, α∗ can be characterized as the parameter that makes a modifi-
cation of local time continuous for the skew diffusion. To be precise, for a given
stochastic process Y = {Yt : t ≥ 0}, define right or left modified local time at a,
respectively, by

ÃY+(t, a) = lim
ε→0

1

ε

∫ t

0
1([a ≤ Ys < a + ε]) ds(1.7)

and

ÃY−(t, a) = lim
ε→0

1

ε

∫ t

0
1([a − ε < Ys < a]) ds.(1.8)

As usual, define the symmetric local time by

ÃY = ÃY− + ÃY+
2

.(1.9)

The modification (1.7), (1.8), (1.9) to the customary definitions of one-sided
and symmetric local times is that the integration is with respect to ds and not
with respect to the quadratic variation of Y . However, for the case of Y = B(α), the
modified local time coincides with usual local time. A mathematical perspective on
Theorem 1.6, below, can be obtained by combining the theorem of Walsh (1978)
with the celebrated theorem of Trotter (1958) for the determination of the value
of α for which this local time is continuous, that is, this yields α = 1/2. For the
present paper, the extension is motivated by the physical problem as explained in
the following Remark 1.2 in connection with the application.

REMARK 1.2. One may notice that the units of local time coincide with the
units of the process, namely length (L) in the case of applications of the type
considered here. As a time unit this is interpreted probabilistically as the natural
time scale of the diffusion. The units of the modified local time (T/L) turn out
to be more appropriate for the continuity issue expressed by the following theo-
rem and generalizing Walsh (1978). In general, the reason to consider alternative
probabilistic determinations of α∗ lies in their potential utility for extensions of the
geometry to more complicated interfaces.

THEOREM 1.6. Let Yt = s(B
(α)
t ). Then the process ÃY is a.s. (spatially) con-

tinuous in a iff α = α∗.
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2. Elastic skew Brownian motion and a Feynman–Kac formula. Fix pa-
rameters α ∈ (0,1) and γ ≥ 0. A probability model for elastic skew Brownian
motion may be defined as follows. Let Rγ be an exponentially distributed ran-
dom variable with parameter γ > 0 on a probability space (�′, F ′,P ′). Define a
new process {(α,γ )Bt : t ≥ 0} as the skew Brownian motion B

(α)
t “killed” when its

local time at zero exceeds the level Rγ . More preciesly, on enlarged probability

space (�̃, F̃ , P̃ ) = (� × �′, F ⊗ F ′,P × P ′), define ζγ = inf{t ≥ 0 :�(α)
t > Rγ }.

Then we have P̃ (ζγ > t |Rγ ) = e−γ �
(α)
t and the elastic skew Brownian motion with

lifetime ζγ is defined by

(α,γ )Bt =
{

B
(α)
t , if t < ζγ ,

∞, if t ≥ ζγ .
(2.1)

In the case γ = 0, one obtains skew Brownian motion. The transition probability
densities p(α)(t, x, y) for skew Brownian motion were computed in Walsh (1978)
using judicious applications of the reflection principle for Brownian motion. We
record the result here for ease of reference

p(α)(t, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2πt

e−(y−x)2/(2t)

+ (2α − 1)√
2πt

e−(y+x)2/(2t), if x > 0, y > 0,

1√
2πt

e−(y−x)2/(2t)

− (2α − 1)√
2πt

e−(y+x)2/(2t), if x < 0, y < 0,

2α√
2πt

e−(y−x)2/(2t), if x ≤ 0, y > 0,

2(1 − α)√
2πt

e−(y−x)2/(2t), if x ≥ 0, y < 0.

(2.2)

Next, we obtain a Feynman–Kac formula for this process. To simplify the presen-
tation, let g(x, t) = 1√

2πt
e−x2/(2t), and let h(s;x) = |x|√

2π
s−3/2e−x2/(2s); as is very

well-known h(t, x) is the first passage time density to zero of standard Brownian
motion starting at x, see, for example, Bhattacharya and Waymire (2009), page 30.
Note that, by definition in terms of excursions, this coincides with the first passage
time to zero for any skew Brownian motion started at x as well. We also recall the
following Laplace transforms;∫ ∞

0
e−βtg(x, t) dt = 1√

2β
exp

(−|x|
√

2β
)
,(2.3) ∫ ∞

0
e−λth(x, t) dt = exp

(−|x|√2λ
)
.(2.4)
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THEOREM 2.1. Let x ∈ R, y > 0, and λ > 0. Suppose that f is a bounded
continuous function on R \ {y}. Define a function u by

u(x) = Ex

∫ ∞
0

e−λtf
((α,γ )

Bt

)
dt

= Ex

∫ ∞
0

e−λt e−γ �
(α)
t f

(
B

(α)
t

)
dt.

Then u is bounded and continuous on R, C1 on R0, C2 on R0 \ {y}, and(
λ − 1

2

d2

dx2

)
u = f, αu′(0+) − (1 − α)u′(0−) = γ u(0).

PROOF. To simplify notation let τ0 = T
(α)
·,0 ≡ T

(1/2)
·,0 . We first make the claim

that for f satisfying the hypothesis of the theorem and γ ≥ 0, one has

Ex

∫ ∞
τ0

e−λt e−γ �
(α)
t f

(
B

(α)
t

)
dt = Exe

−λτ0E0

∫ ∞
0

e−λt e−γ �
(α)
t f

(
B

(α)
t

)
dt.(2.5)

Indeed, by a simple change of variables and conditioning on the σ -field Fτ0 to use
the strong Markov property of B(α), the left-hand side can be written as

Ex

∫ ∞
0

e−λ(t+τ0)e
−γ �

(α)
t+τ0 f

(
B

(α)
t+τ0

)
dt

= Ex

[
Ex

[
e−λτ0

∫ ∞
0

e−λt e
−γ �

(α)
t+τ0 f

(
B

(α)
t+τ0

)
dt

∣∣∣Fτ0

]]
= Exe

−λτ0E0

∫ ∞
0

e−λt e−γ �
(α)
t f

(
B

(α)
t

)
dt

as claimed.
Then, from the definition of u, noting that l

(α)
t = 0 for t < τ0, and using (2.5),

one has

u(x) = Ex

∫ τ0

0
e−λtf

(
B

(α)
t

)
dt + Ex

∫ ∞
τ0

e−λt e−γ �
(α)
t f

(
B

(α)
t

)
dt

= Ex

∫ τ0

0
e−λtf

(
B

(α)
t

)
dt + Exe

−λτ0E0

∫ ∞
0

e−λt e−γ �
(α)
t f

(
B

(α)
t

)
dt

= Ex

∫ ∞
0

e−λtf
(
B

(α)
t

)
dt − Ex

∫ ∞
τ0

e−λtf
(
B

(α)
t

)
dt + u(0)Exe

−λτ0

= Ex

∫ ∞
0

e−λtf
(
B

(α)
t

)
dt + Exe

−λτ0

[
u(0) − E0

∫ ∞
0

e−λtf
(
B

(α)
t

)
dt

]
,

where in the last step we used (2.5) with γ = 0.
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Therefore, recalling Exe
−λτ0 = e−√

2λ|x|, and denoting the Laplace transform of
t → p(α)(t, x, y) for fixed x, y by p̂(α)(λ, x, y), one has

u(x) =
∫ ∞
−∞

p̂(α)(λ, x, y)f (y) dy + e−√
2λ|x|

{
u(0) −

∫ ∞
−∞

p̂(α)(λ,0, y)f (y) dy

}
.

From (2.2) and (2.4), one has

p̂(α)(λ,0, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α√
2λ

e−|y|√2λ, for y > 0,

2(1 − α)√
2λ

e−|y|√2λ, for y < 0.
(2.6)

In particular, it follows that λu − 1
2u′′ = f and

−{αu′(0+) − (1 − α)u′(0−)} + √
2λ

∫ ∞
−∞

p̂(α)(λ,0, y)f (y) dy

(2.7)
= √

2λu(0).

On the other hand, using the excursion definition of skew Brownian motion

u(0) = E0

∫ ∞
0

e−λt e−γ �
(α)
t f

(
B

(α)
t

)
dt

= E0

∫ ∞
0

e−λt e−γ �
(α)
t

[ ∞∑
n=1

1Jn(t)f (An|Bt |)
]

dt

= αE0

∫ ∞
0

e−λt e−γ �
(α)
t

[ ∞∑
n=1

1Jn(t)f (|Bt |)
]

dt

+ (1 − α)E0

∫ ∞
0

e−λt e−γ �
(α)
t

[ ∞∑
n=1

1Jn(t)f (−|Bt |)
]

dt

= αE0

∫ ∞
0

e−λt e−γ �
(α)
t f

(∣∣B(α)
t

∣∣)dt

+ (1 − α)E0

∫ ∞
0

e−λt e−γ �
(α)
t f

(−∣∣B(α)
t

∣∣)dt.

Since the local time at 0 of reflected Brownian motion starting at zero coincides
with the local time at 0 of skew Brownian motion with parameter α starting at zero,
the last expression can be written in terms of the local time of Brownian motion
and reflected Brownian motion to yield

u(0) = αE0

∫ ∞
0

e−λt e−γ �
(1/2)
t f (|Bt |) dt

+ (1 − α)E0

∫ ∞
0

e−λt e−γ �
(1/2)
t f (−|Bt |) dt.
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Now, in view of Karatzas and Shreve [(1984), (1.5), page 820], and after com-
puting the indicated Laplace transform, one has

u(0) = α

γ + √
2λ

2
∫ ∞

0
e−y

√
2λf (y) dy + 1 − α

γ + √
2λ

2
∫ ∞

0
e−y

√
2λf (−y)dy

=
√

2λ

γ + √
2λ

∫ ∞
−∞

p̂α(λ,0, y)f (y) dy,

where in the last step we used (2.6). Thus, noting (2.7), we have αu′(0+) − (1 −
α)u′(0−) = γ u(0). �

3. Trivariate density for skew Brownian motion. Here, we first com-
pute the Laplace transform of the density of the pair (�

(α)
t ,�

(α)
t ) on the event

[B(α)
t ≥ y] for y > 0 for the skew Brownian motion starting at 0. Since for

�
(α)−
t = t − �

(α)
t = meas{0 ≤ s ≤ t :B(α)

s < 0}, the triples (−B
(α)
t , �

(α)
t ,�

(α)−
t )

and (B
(1−α)
t , l

(1−α)
t ,�

(1−α)
t ) are equivalent in law and �

(α)
t = t − �

(1−α)
t , we can

easily find the Laplace transform of the density of the pair (�
(α)
t ,�

(α)
t ) on the event

[B(α)
t < y] for y < 0 using the previous case. The following is a direct extension

of Karatzas and Shreve (1984) analysis of the case of standard Brownian motion
(α = 1

2 ) to arbitrary α ∈ (0,1).

LEMMA 3.1. Let λ,β and γ be positive. Then

E0

∫ ∞
0

1[y,∞)

(
B

(α)
t

)
exp

{−λt − β�
(α)
t − γ �

(α)
t

}
dt

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2α exp{−y

√
2(λ + β)}√

2(λ + β)[γ + (1 − α)
√

2λ + α
√

2(λ + β)] , if y > 0,

2(1 − α) exp{y√
2(λ + β)}√

2(λ + β)[γ + α
√

2λ + (1 − α)
√

2(λ + β)] , if y < 0.

PROOF. For each x ∈ R, define

u(x) = Ex

∫ ∞
0

1[y,∞)

(
B

(α)
t

)
exp

(−λt − β�
(α)
t − γ �

(α)
t

)
dt.

According to Theorem 2.1, u ∈ Dα,γ and satisfies(
λ + β1[0,∞)(x)

)
u(x) = 1

2u′′(x) + 1[y,∞), x ∈ R \ {0, y},(3.1)

αu′(0+) − (1 − α)u′(0−) = γ u(0).(3.2)
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Considering the case y > 0, u has the form

u(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c1 exp

{
x
√

2λ
}
, if x ≤ 0,

c2 exp
{
x
√

2(λ + β)
} + c3 exp

{−x
√

2(λ + β)
}
, if 0 ≤ x ≤ y,

c4 exp
{−(x − y)

√
2(λ + β)

} + 1

λ + β
, if x ≥ y,

where the constants ci,1 ≤ i ≤ 4, are determined by the above conditions. The
lemma follows in the case y > 0, from the computation of c1 using the interface
condition in (3.1), (3.2). For y < 0, simply use the observation above that the
triples (−B

(α)
t , �

(α)
t ,�

(α)−
t ) and (B

(1−α)
t , l

(1−α)
t ,�

(1−α)
t ) have the same distribu-

tion. �

The expression in Lemma 3.1 is the Laplace transform of the density (if it exists)
of the pair (�

(α)
t ,�

(α)
t ) on the event [B(α)

t ≥ y]. As in Karatzas and Shreve (1984),
it is also possible to invert the Laplace transform to arrive at the trivariate density
asserted in Theorem 1.2 in the Introduction.

PROOF OF THEOREM 1.2 AND COROLLARY 1.1. We only consider the case
y > 0. The case y < 0 follows by similar arguments. Using Laplace transforms, it
is sufficient to establish∫ ∞

0

∫ t

0

∫ ∞
0

e−λt−βτ−γ l

×
[

2α(1 − α)l

2π(t − τ)3/2τ 1/2 exp
{
−((1 − α)l)2

2(t − τ)
− (y + αl)2

2τ

}]
dl dτ dt

= 2αe(−y
√

2(λ+β))

√
2(λ + β)[γ + (1 − α)

√
2λ + α

√
2(λ + β)] , y > 0.

Reversing the order of integration, and using (2.4) and (2.3), we can write the
left-hand side as

2α

∫ ∞
0

e−γ l
∫ ∞

0
e−βτ

∫ ∞
τ

e−λth
(
t − τ, (1 − α)l

)
dt g(τ, y + αl) dτ dl

= 2α

∫ ∞
0

e−γ l exp
(−(1 − α)l

√
2λ

) ∫ ∞
0

e−(λ+β)τ g(τ, y + αl) dτ dl

= 2α

∫ ∞
0

e−γ l 1√
2(λ + β)

exp
(−(1 − α)l

√
2λ − (y + αl)

√
2(λ + β)

)
dl

= 2αe(−y
√

2(λ+β))

√
2(λ + β)[γ + (1 − α)

√
2λ + α

√
2(λ + β)] . �
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The trivariate density of position, local time and occupation time of skew
Brownian motion, can be obtained by differentiating with respect to y to yield:

P0
{
B

(α)
t ∈ dy, �

(α)
t ∈ dl,�

(α)
t ∈ dτ

}
(3.3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α[(1 − α)l][αl + y]
π(t − τ)3/2τ 3/2

× exp
{
−((1 − α)l)2

2(t − τ)
− (αl + y)2

2τ

}
dy dl dτ,

if y > 0, l > 0,0 < τ < t,

(1 − α)[αl][(1 − α)l − y]
π(t − τ)3/2τ 3/2

× exp
{
−(αl)2

2τ
− ((1 − α)l − y)2

2(t − τ)

}
dy dl dτ,

if y < 0, l > 0,0 < τ < t.

Integrating out τ in (3.3), we obtain the joint distribution of skew Brownian motion
with parameter α and its local time at 0 asserted in Corollary 1.1.

Integrating out y, l in (3.3) we recover the probability density function of the
occupation time for skew Brownian motion with parameter α starting at 0; see
Revuz and Yor (1991), and Ramirez et al. (2008) for alternative approaches to this
particular case.

COROLLARY 3.1.

P0
(
�

(α)
t ∈ dτ

) = α(1 − α)t

π(t − τ)1/2τ 1/2[(1 − α)2τ + α2(t − τ)] dτ ; 0 < τ < t.

Integrating out y, τ in (3.3) provides the distribution of local time of skew
Brownian motion at zero. As expected, it coincides with that for reflected Brown-
ian motion but is included here as a simple verification.

COROLLARY 3.2.

P0
(
�
(α)
t ∈ dl

) = 2√
2πt

exp
{
− l2

2t

}
dl, t > 0.

PROOF OF COROLLARY 1.2. The computation of Px(B
(α)
t ∈ dy, �

(α)
t ∈

dl,�
(α)
t ∈ dτ) from Theorem 1.2 for x �= 0 will follow from standard convolu-

tion properties of first passage time densities at zero of Brownian motion since
they coincide with those of skew Brownian motion. Recall that h(·;x) denotes the
first passage time density to zero for (skew) Brownian motion starting at x > 0.
Then, the strong Markov property for Brownian motion yields

h(·;x1 + x2) = h(·;x1) ∗ h(·;x2), x1x2 > 0.(3.4)
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Thus, for l > 0,0 < τ < t, we can write the results of (3.3) as,

P0
(
B

(α)
t ∈ dy, �

(α)
t ∈ dl,�

(α)
t ∈ dτ

)
=

{
2αh

(
t − τ ; (1 − α)l

)
h(τ ;αl + y), if y > 0,

2(1 − α)h(τ ;αl)h
(
t − τ ; (1 − α)l − y

)
, if y < 0.

To obtain the trivariate density when B
(α)
0 = x, we use the strong Markov prop-

erty of skew Brownian motion and the already noted fact that T
(α)
0 = T

(1/2)
0 in

distribution under Px , to obtain

Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ dl,�

(α)
t ∈ dτ

)
= Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ dl,�

(α)
t ∈ dτ,T

(α)
0 ≤ τ

)
=

∫ τ

s=0
Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ dl,�

(α)
t ∈ dτ |T (α)

0 = s
)

× Px

(
T

(1/2)
0 ∈ ds

)
=

∫ τ

s=0
P0

(
B

(α)
t−s ∈ dy, l

(α)
t−s ∈ dl,�

(α)
t−s ∈ dτ − s

)
h(s;x)ds.

Considering the case x ≥ 0, y < 0, and using Theorem 1.2 the last expression can
be written as

= 2(1 − α)

∫ τ

0
h(τ − s;αl)h

(
t − τ ; (1 − α)l − y

)
h(s;x)ds dy dl dτ

= 2(1 − α)h(τ ;αl + x)h
(
t − τ ; (1 − α)l − y

)
dy dl dτ,

using the convolution property (3.4).
A similar computation yields that for x ≥ 0, y > 0,0 < τ < t and on the event

[T (α)
0 < t],

Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ dl,�

(α)
t ∈ dτ,

[
T

(α)
0 < t

])
= 2αh

(
t − τ ; (1 − α)l

)
h(τ ;αl + y + x)dy dl dτ. �

REMARK 3.1. We note that if x ≥ 0, y > 0 one also needs to consider the case
that the skew Brownian motion does not reach the origin. In this case, one has

Px

(
B

(α)
t ∈ dy, �

(α)
t = 0,�

(α)
t = t

)
= Px

(
B

(α)
t ∈ dy,T

(α)
0 ≥ t

)
= 1√

2πt

[
exp

{
−(y − x)2

2t

}
− exp

{
−(y + x)2

2t

}]
dy; x ≥ 0, y ≥ 0.
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COROLLARY 3.3. If x ≥ 0, we have

Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ d�

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − 2α)(l − y + x)√
2πt3

exp
{
−(l − y + x)2

2t

}
dy dl

+ 2(2l − y + x)√
2πt3

exp
{
−(2l − y + x)2

2t

}
dy dl,

if y ≤ 0, l > 0,

(1 − 2α)(l − y + x)√
2πt3

exp
{
−(l − y + x)2

2t

}
dy dl

+ 2(2l + y + x)√
2πt3

exp
{
−(2l + y + x)2

2t

}
dy dl

+ 1√
2πt

[
exp

{
−(y − x)2

2t

}
− exp

{
−(y + x)2

2t

}]
δ0(dl) dy,

if y ≥ 0, l > 0,

whereas if x ≤ 0, then

Px

(
B

(α)
t ∈ dy, �

(α)
t ∈ d�

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2α − 1)(l + y − x)√
2πt3

exp
{
−(l + y − x)2

2t

}
dy dl

+ 2(2l + y − x)√
2πt3

exp
{
−(2l + y − x)2

2t

}
dy dl,

if y ≥ 0, l > 0,

(2α − 1)(l + y − x)√
2πt3

exp
{
−(l + y − x)2

2t

}
dy dl

+ 2(2l + y − x)√
2πt3

exp
{
−(2l + y − x)2

2t

}
dy dl

+ 1√
2πt

[
exp

{
−(y − x)2

2t

}
− exp

{
−(y + x)2

2t

}]
δ0(dl) dy,

if y ≤ 0, l > 0.

While the following formula is relatively more complicated, it is easily com-
puted and plays an essential role in the application given in the next sec-
tion. For the application, it is sufficient to consider x < 0, y > 0, moreover,
the other cases may be obtained similarly obtained from the trivariate den-
sity.
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COROLLARY 3.4. For x < 0 and y ≥ 0,

Px

(
B

(α)
t ∈ dy,�

(α)
t ∈ dτ

)
= (1 − α)

π
√

τ(t − τ)

(1 − α)3τy − α3(t − τ)y

[α2(t − τ) + (1 − α)2τ ]2 exp
(−ξ(x2, y2, τ, t)

ξ(τ, t − τ, τ, t)

)

+
√

2

π

α(1 − α)2

[α2(t − τ) + (1 − α)2τ ]3/2 
c

(√
2ξ(αx,−(1 − α)y, τ, t)√

ξ(τ, t − τ, τ, t)

)

×
[
1 − 2

(ξ(x2, y2, τ, t) − ξ2(αx,−(1 − α)y, τ, t))

ξ(τ, t − τ, τ, t)

]

× exp
(
−(ξ(x2, y2, τ, t) − ξ2(αx,−(1 − α)y, τ, t))

(ξ(τ, t − τ, τ, t))

)
,

where

ξ(u,w, τ, t) = u(t − τ) + wτ

α2(t − τ) + (1 − α)2τ
.

PROOF. Let

A = αx(t − τ) − (1 − α)yτ

α2(t − τ) + (1 − α)2τ
, B = α2(t − τ) + (1 − α)2τ

2τ(t − τ)

and

C2 = x2(t − τ) + y2τ

α2(t − τ) + (1 − α)2τ
.

For x ≥ 0, y > 0, � > 0,0 < τ < t, one has after rather lengthy differentiations

Px

(
B

(α)
t ∈ dy,�

(α)
t ∈ dτ

)
= −2(1 − α)

2π
√

τ(t − τ)

× ∂

∂x

∂

∂y

∫ ∞
0

exp
{
−(α� + x)2

2τ

}
exp

{
−((1 − α)� − y)2

2(t − τ)

}
d�

(3.5)

= (1 − α)

π
√

τ(t − τ)

(1 − α)3τx − α3(t − τ)y

[α2(t − τ) + (1 − α)2τ ]2 exp(−BC2)

+ α(1 − α)2

π
√

τ(t − τ)

1

[α2(t − τ) + (1 − α)2τ ]
√

π√
B


c(A√
2B

)
× [1 − 2B(C2 − A2)] exp

(−B(C2 − A2)
)
. �
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4. Elastic change of measure and applications to skew Brownian motion
with drift. The objective of this section is to establish the elastic change of mea-
sure relation between skew Brownian motion with drift and the elastic (driftless)
skew Brownian motion defined by Theorem 1.3, and apply it to obtain transition
probabilities for skew Brownian motion with drift together with the stochastic or-
dering of passage times.

PROOF OF THEOREM 1.3. Recall that α-skew Brownian motion with drift
v is denoted by B(α,v) and its transition probability by p(α,v)(t, x, y). Then for
c(t, x) = Exc0(B

(α,v)) = ∫ ∞
−∞ c0(y)p(α,v)(t, x, y) dy one has c ∈ Dα,0 and

∂c

∂t
= 1

2

∂2c

∂x2 + v
∂c

∂x
,

c(t,0+) = c(t,0−), α
∂c

∂x
(t,0+) = (1 − α)

∂c

∂x
(t,0−),

c(0, x) = c0(x).

Defining c̃(t, x) = exp{vx}c(t, x) we obtain

∂c̃

∂t
= 1

2

∂2c̃

∂x2 − v2

2
c̃,

c̃(t,0+) = c̃(t,0−), α
∂c̃

∂x
(t,0+) − (1 − α)

∂c̃

∂x
(t,0−) = (1 − 2α)vc̃(t,0),

c̃(0, x) = exp{vx}c0(x).

Let γ = |(1 − 2α)v|. Then from the Feynman–Kac formula, we have

c̃(t, x) = Ex c̃0
((α,γ )

Bt

)
exp

{
−v2

2
t

}

=
∫ ∞
−∞

c̃0(y) exp
{
−v2

2
t

}
q(α,γ )(t, x, y) dy.

But since c(t, x) = exp{−vx}c̃(t, x), we have∫ ∞
−∞

c0(y)p(α,v)(t, x, y) dy

=
∫ ∞
−∞

c0(y) exp
{
−v(x − y) − v2

2
t

}
q(α,γ )(t, x, y) dy.

Thus, the elastic change of measure relation follows as

p(α,v)(t, x, y) = exp
{
−v(x − y) − v2

2
t

}
q(α,γ )(t, x, y). �
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PROOF OF THEOREM 1.4. Recall that (α,γ )Bt agrees with B
(α)
t when l

(α)
t ≤

Rγ . Thus, letting f (α)(t, x; ·, ·) denote the joint density of (B
(α)
t , �

(α)
t ) with

B
(α)
0 = x,

Exc̃0
((α,γ )

Bt

) = Ex

[
c̃0

(
B

(α)
t

)
1[l(α)

t (B(α))≤Rγ ]
]

=
∫ ∞

0
Ex

[
c̃0

(
B

(α)
t

)
1[l(α)

t ≤r]
]
γ exp{−γ r}dr

=
∫ ∞

0

∫ ∞
−∞

∫ r

0
c̃0(y)f (α)(t, x;y, l)γ exp{−γ r}dl dy dr

=
∫ ∞
−∞

∫ ∞
0

∫ ∞
l

c̃0(y)f (α)(t, x;y, l)γ exp{−γ r}dr dl dy

=
∫ ∞
−∞

∫ ∞
0

c̃0(y)f (α)(t, x;y, l) exp{−γ l}dl dy.

Also since

Exc̃0
((α,γ )

Bt

) =
∫ ∞
−∞

c̃0(y)q(α,γ )(t, x, y) dy,

one has

q(α,γ )(t, x, y) =
∫ ∞

0
f (α)(t, x;y, l) exp{−γ l}dl.(4.1)

From Corollary 1.1,

f (α)(t,0;y, l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2α(l + y)√

2πt3
exp

{
−(l + y)2

2t

}
, if y > 0, l > 0,

2(1 − α)(l − y)√
2πt3

exp
{
−(l − y)2

2t

}
, if y < 0, l > 0.

(4.2)

Recognizing from (4.1) that q(α,γ )(t,0, y) is the Laplace transform with respect to
local time l of f (α)(t,0, y, l), the theorem follows by a direct calculation of this
Laplace transform and Theorem 1.3. �

Our objective is to next prove the more fundamental stochastic ordering of
Corollary 1.3 for skew Brownian motion. Although the relevance to the question
raised in the Introduction is given in the next section, Corollary 1.3 may also be of
independent interest apart from the application.

LEMMA 4.1. Suppose that X = X1 +X2 and Y = Y1 +Y2 are respective sums
of independent nonnegative random variables. If Xi is stochastically smaller than
Yi , for i = 1,2, then X is stochastically smaller than Y .
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PROOF. For t > 0,

P(X > t) =
∫ t

0
P(X1 > t − s)P (X2 ∈ ds)

≤
∫ t

0
P(Y1 > t − s)P (X2 ∈ ds)

=
∫ t

0
P(X2 > t − s)P (Y1 ∈ ds)(4.3)

≤
∫ t

0
P(Y2 > t − s)P (Y1 ∈ ds)

= P(Y > t). �

PROOF OF COROLLARY 1.3. Let T0 ≡ T
(1/2)
0 denote the first time for standard

Brownian motion to reach zero. Also note that T
(α)
0 is distributed as T0 under Py

for y �= 0, 0 < α < 1. So clearly for t ≥ 0, one has

Py

(
T

(α)
0 > t

) = Py(T0 > t) = P−y(T0 > t) = P−y

(
T

(α)
0 > t

)
.(4.4)

Now observe, using the strong Markov property of skew Brownian motion,

P−y

(
T (α)

y > t
) =

∫ t

0
P0

(
T (α)

y > t − s
)
P−y(T0 ∈ ds)(4.5)

and

Py

(
T

(α)
−y > t

) =
∫ t

0
P0

(
T (1−α)

y > t − s
)
P−y(T0 ∈ ds).(4.6)

Next, consider the following coupled representations of the α-skew Brownian mo-
tion processes B(α) = {B(α)

t : t ≥ 0}: Let {Um :m = 1,2, . . .} be an i.i.d. sequence,
independent of B(α), of uniformly distributed random variables on [0,1] also de-
fined on � by

B
(α)
t =

∞∑
m=1

1Jm(t)
{
21[0,α)(Un) − 1

}|Bt |,(4.7)

where 1S denotes the indicator function of the set S. Then, for any t > 0, one has
for 1 > α > 1/2 that [

T (α)
y > t

] ⊂ [
T (1−α)

y > t
]
.

The asserted stochastic ordering follows by application of the lemma to (4.5) and
(4.6). �

5. Application to solute dispersion across an interface. In analogy with the
Fourier flux law for heat conduction, the standard model of advection-dispersion is
based on Ficks’ linear flux law together with continuity of concentration and flux
across the interface. For the application treated here, the flux is aligned with the y-
axis, and the concentration field is uniform in the other two orthogonal directions.
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Thus, the Fickian (macro-scale) conservation laws can be reduced to an advection-
dispersion equation of the form

∂c

∂t
= 1

2

∂

∂y

(
D(y)

∂c

∂y

)
− ∂vc

∂y
,(5.1)

c(t,0+) = c(t,0−), D+ ∂c

∂y
(t,0+) = D− ∂c

∂y
(t,0−),(5.2)

where

D(y) =
{

D−, if y < 0,
D+, if y ≥ 0.

(5.3)

NOTE 5.1. In treating the application in this paper we have adhered to the
standard probability notation of 1

2D in place of D in the concentration Equa-
tion (5.1).

In particular, from a probabilistic point of view the particle motion is given by
the unique strong solution to

dYt = D+ − D−

D+ + D− dL0
t (Y ) + v dt + √

D(Yt ) dBt ,(5.4)

where B = {Bt : t ≥ 0} is standard Brownian motion. In the case v = 0, Yt ≡ S∗
t is

given by

S∗
t = s

(
B

(α∗)
t

) =
{√

D+B
(α∗)
t , if B

(α∗)
t ≥ 0,√

D−B
(α∗)
t , if B

(α∗)
t < 0,

(5.5)

where α∗ =
√

D+√
D++√

D− and s(x) = √
D+x+ − √

D−x− is the natural scale func-
tion; see Ramirez (2007). In general, we refer to the process Y given by (5.4) as
the physical skew diffusion with drift v for the problem (5.1).

REMARK 5.1. The advective-dispersive movement of solutes through a
porous medium in the presence of a discontinuous interface separating fine and
coarse regions is a topic of both active experimental and theoretical interest [Hoteit
et al. (2002), LaBolle, Quastel and Fogg (1998), LaBolle et al. (2000), Kuo et al.
(1999), Berkowitz et al. (2009), Ramirez et al. (2006, 2008)]. The results obtained
in Ramirez et al. (2006) for a re-scaling of α-skew Brownian motion for a uniquely
determined value of α as the underlying stochastic particle motion governing the
(deterministic) Fickian advection-dispersion concentration in the presence of the
sharp interface parallel to the flow made it possible to obtain the time-asymptotic
central limit theorem and effective dispersion rate, extending the classic Taylor–
Aris formula to this setting. This also provided the theoretical foundation for the
correct Monte-Carlo approach among those considered in connection with ex-
periments parallel to the flow by Hoteit et al. (2002); see Ramirez et al. (2008).
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However, the absence of drift in the particle coordinate associated with the α-skew
Brownian motion was essential for those developments.

The results of the previous sections now provide an approach to explicitly com-
pute the concentration curves for flow orthogonal to an interface; see Berkowitz
et al. (2009). The following bivariate distribution of the position and occupation
time is algebraically more complicated than for that of position and local time, for
example, Corollary 1.1, but it is most relevant to our application in this section.

The transition probabilities of the physical skew dispersion with drift v are ob-
tained in the following theorem. Note that from the definition of S∗

t in (5.5), the
occupation time of the positive semiaxis of S∗ equals �

(α∗)
t , the occupation time

by B
(α∗)
t of the positive semiaxis. Likewise, the joint density of position and occu-

pation time of S∗ and B(α∗) satisfy

f
(S∗

t ,�
(α∗)
t )

(y; z, τ ) = 1√
D(z)

f
(B

(α∗)
t ,�

(α∗)
t )

(
y√

D(y)
; z√

D(z)
, τ

)
,(5.6)

where f
(B

(α∗)
t ,�

(α∗)
t )

is given in Corollary 3.4.

THEOREM 5.1. The transition probability densities for the physical skew dif-
fusion process Y with drift v defined by (5.4) are given by

p(t, y, z) = exp
{

v

D(z)
z − v2

2D− t

}
exp

{
− v

D(y)
y

}

× f̂
(S∗

t ,�
(α∗)
t )

(
z;y,

v2

2

(
1

D+ − 1

D−
))

,

where f̂
(S∗

t ,�
(α∗)
t )

(y; z,λ), λ ≥ 0, is given by

f̂
(S∗

t ,�
(α∗)
t )

(y; z,λ) =
∫ t

0
e−λτ f

(S∗
t ,�

(α∗)
t )

(y; z, τ ) dτ.

PROOF. For c(t, y) defined by (5.1), consider the change of concentration
given by

c̃(t, y) = e−(v/D(y))yc(t, y).(5.7)

Then, it is straightforward to show that c̃(t, y) evolves according to the following
skew reaction-dispersion equation

∂c̃

∂t
= 1

2

∂

∂y

(
D(y)

∂c̃

∂y

)
− v2

2D(y)
c̃,(5.8)

c̃(t,0+) = c̃(t,0−), D+ ∂c̃

∂y
(t,0+) = D− ∂c̃

∂y
(t,0−).(5.9)
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Moreover, from (5.7),

c̃(0, y) = c0(y)e−(v/D(y))y.(5.10)

It now follows from the Feynman–Kac formula that

c(t, y) = e(v/D(y))y c̃(t, y)
(5.11)

= e(v/D(y))y
Ey

(
c0(S

∗
t )e−(v/D(S∗

t ))S∗
t exp

{
−

∫ t

0
(v2/2D(S∗

r )) dr

})
,

where S∗
t , t ≥ 0, denotes the driftless rescaled (physical) skew Brownian motion

defined by (5.5).
In view of the special form (5.3) of the dispersion coefficient, this formula may

be reexpressed in terms of the occupation time,

�
(α)
t =

∫ t

0
1[0,∞)

(
B(α)

s

)
ds

of skew Brownian motion on the positive axis. Namely,

c(t, y) = e(v/D(y))ye−(v2/2D−)t

(5.12)

× Ey

(
c0(S

∗
t )e−(v/D(S∗

t ))S∗
t exp

{
−v2

2

(
1

D+ − 1

D−
)
�

(α∗)
t

})
.

From the relation (5.6), it follows that (5.12) may be expressed as

c(t, y) = exp
{

v

D(y)
y − v2

2D− t

}

×
∫ t

0

∫ ∞
−∞

c0(z)e
−(v/D(z))z

× exp
{
−v2

2

(
1

D+ − 1

D−
)
τ

}
f

(S∗
t ,�

(α∗)
t )

(y; z, τ ) dy dτ. �

In addition to concentration curves, as noted in the Introduction, breakthrough
fluxes have been the subject of recent experiments in which a particularly distin-
guished asymmetry in breakthrough curves have been reported under mirror sym-
metric flows from fine to coarse and coarse to fine geometries. The experiments
of Berkowitz et al. (2009) were intended to explore the so-called flux-averaged
breakthrough concentration curves cf (t) = cf (t, y), for fixed y as a function of t ,
defined by

cf (t, y) = c(t, y) − D(y)

2v

∂c

∂y
,(5.13)

in the presence of the two different configurations (fine-to-coarse and coarse-to-
fine) under mirror symmetric reversed flow conditions. Using Theorem 5.1, one
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may explicitly analyze the resulting fluxes defined by (5.13) for observed asym-
metries; see, for example, plots in Appuhamillage et al. (2009). While such curves
are consistent with experiment, from a probabilistic point of view first, passage
times provide a more natural formulation of this phenomena. Since the mirror im-
age of velocity is used in the fine to coarse and coarse to fine arrangements, we
take v = 0 to focus on the pure effect of the interface on dispersion. Also one re-
call from Remark 1.1 that the parameter γ ≡ γ (α, v) specifying the elastic change
of measure is invariant under the transformations α → 1 − α, v → −v.

The first symmetry result for concentration profiles provides a point of con-
trast to first passage times. In addition, it highlights a symmetrization of Walsh’s
formula (2.2) by the physical diffusion; that is, rescaling space by the respective
diffusivities symmetrizes the transition probabilities when α = α∗.

PROPOSITION 5.1. Let p(α)(t, x, y) denote the transition probabilities for α-
skew Brownian motion given in (2.2) and let p∗(t, x, y) denote the transition prob-
abilities for Y in the case v = 0. Then p(α)(t, x, y) is asymmetric and discontinu-
ous across the interface, while p∗(t, x, y) is symmetric and continuous across the
interface.

PROOF. The first assertion follows from inspection of Walsh’s formula (2.2)
and the second by the indicated change of variables to obtain the transition proba-

bilities of Yt = s(B
(α∗)
t ), t ≥ 0, for α∗ =

√
D+√

D++√
D− . Namely, if y ≥ 0 then

p∗(t, x, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
D+ + √

D−
1√
2πt

exp
{
−(y

√
D− − x

√
D+)2

2D−D+t

}
, if x ≤ 0,

1√
2πD+t

[
exp

{
−(y − x)2

2D+t

}
+

√
D+ − √

D−
√

D− + √
D+ exp

{
−(y + x)2

2D+t

}]
, if x > 0,

whereas if y ≤ 0, then

p∗(t, x, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2πD−t

[
exp

{
−(y − x)2

2D−t

}
−

√
D+ − √

D−
√

D− + √
D+ exp

{
−(y + x)2

2D−t

}]
, if x < 0,

2√
D+ + √

D−
1√
2πt

exp
{
−(y

√
D+ − x

√
D−)2

2D−D+t

}
, if x ≥ 0. �
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The resulting corollaries to Theorem 5.1 establish a simple probabilistic ba-
sis for the symmetries and asymmetries predicted by experimental results of
Berkowitz et al. (2009) and Kuo et al. (1999).

COROLLARY 5.1. Let Y (±v) denote the respective physical skew diffusions
with drift v. Then for any y, t ≥ 0,

P−y

(
Y

(v)
t ∈ dy

) = Py

(
Y

(−v)
t ∈ −dy

)
.

PROOF. In the case v = 0, this is the previously noted symmetrization of
Walsh’s formula given by Proposition 5.1, that is, p∗(t,−y, y) = p∗(t, y,−y).
The extension to v �= 0 may be checked from Theorem 5.1. �

On the other hand, as suggested by Corollary 1.3, mirror symmetry of the geo-
metric configuration results in an asymmetric stochastic ordering of the break-
through times. In particular, fine to coarse breakthrough is faster than coarse to
fine breakthrough! To isolate the role of the interface in the first passage time be-
tween symmetrically configured fine to coarse and coarse to fine media, we take
v = 0 and consider the fine to coarse configuration.

LEMMA 5.1. For c > 0, 0 < α < 1, let B(α) be skew Brownian motion starting
at B

(α)
0 = 0. Then the process {B(α)

ct : t ≥ 0} is distributed as c1/2B(α).

PROOF. This follows immediately from the formula (2.2) for the transition
probabilities through the finite dimensional distributions of the process started at
zero. �

COROLLARY 5.2. Suppose that
√

D− <
√

D+, v = 0. Let Y = s(B(α∗)) de-
note the corresponding physical diffusion. Also let

T ∗
y = inf{t ≥ 0 :Yt = y}.

Then for each t > 0,

P−y(T
∗
y > t) < Py(T

∗−y > t).

PROOF. Without loss of generality take y = 1. Using the scaling property from
Lemma 5.1 and symmetry of Brownian motion, one has

T ∗
0 =P1-dist 1

D+ T0(5.14)

and

T ∗
0 =P−1-dist 1

D− T0.(5.15)
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Next, one similarly has

T ∗
1 =P0-dist 1

D+ T
(α∗)

1(5.16)

and

T ∗−1 =P0-dist 1

D− T
(1−α∗)

1 .(5.17)

In particular, using the strong Markov property to obtain convolutions, one has

P−1(T
∗

1 > t) =
∫ t

0
P0

(
1

D+ T
(α∗)

1 > t − s

)
P0

(
1

D− T1 ∈ ds

)
(5.18)

and

P1(T
∗−1 > t) =

∫ t

0
P0

(
1

D− T
(1−α∗)
1 > t − s

)
P0

(
1

D+ T1 ∈ ds

)
.(5.19)

Now, for D− < D+, 1 > α∗ > 1/2. Thus, in view of Corollary 1.3, the term
1

D− T1 ≡ 1
D− T

(1/2)
1 is stochastically smaller than 1

D− T
(1−α∗)
1 under P0, and simi-

larly the term 1
D+ T

(α∗)
1 is stochastically smaller than 1

D+ T1 under P0. The assertion
follows by an application of Lemma 4.1. �

At the (macro) scale of particle concentrations, the determination of the appro-
priate parameter α = α∗ can be deduced from conservation (continuity) principles;
Uffink (1985), Ramirez et al. (2006). However, from a probabilistic point of view
we will see that one may also arrive at α∗ by two different but related “stochastic
balancing principles.” One may be viewed in terms of a martingale property, and
the other is equivalent to a continuity correction to a local time by the physical
skew diffusion. While simple, such principles at the scale of individual particle
motions provide a probabilistic basis for possible extensions of the theory to more
complex geometries not available at the scale of (5.1). We close by establishing
these two “principles.”

In establishing these principles, the Itô–Tanaka and the occupation time formu-
lae are repeatedly used. We find it convenient to use the versions of these formulae
utilizing the right local time of the processes involved. Namely, given a semi-
martingale Y with quadratic variation denoted by 〈Y,Y 〉 its right local time at a is
defined by

AY+(t, a) = lim
ε↓0

1

ε

∫ t

0
1[a≤Ys<a+ε] d〈Y,Y 〉s .

Recall also that the left local time, AY− and the symmetric local time LY are respec-
tively defined as

AY−(t, a) = lim
ε↓0

1

ε

∫ t

0
1[a−ε<Ys<a] d〈Y,Y 〉s
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and

LY
t (a) = 1

2 [AY+(t, a) + AY−(t, a)].
In the particular case of skew Brownian motion, the following relations among one
sided and the symmetric local times at 0 are known; see, for example, Ouknine
(1990).

2αLB(α)

t (0) = AB(α)

+ (t,0), 2(1 − α)LB(α)

t (0) = AB(α)

− (t,0).(5.20)

In particular,

dB
(α)
t = dBt + 2α − 1

2α
dAB(α)

+ (t,0).(5.21)

PROOF OF THEOREM 1.5 (Martingale determination of α∗). Recall that S∗
t =√

D+(B
(α∗)
t )+ − √

D−(B
(α∗)
t )−. First, note that with A∗

t (a) = AS∗
+ (t, a) one has

that at a = 0,

A∗
t (0) = √

D+AB(α∗)

+ (t,0).(5.22)

Indeed, from the definitions,

A∗
t (0) = lim

ε→0

1

ε

∫ t

0
1[0≤S∗

s <ε] d〈S∗, S∗〉s

= lim
ε→0

1

ε

∫ t

0
1[0≤B

(α∗)
s <ε/

√
D+]D

+ ds

= √
D+AB(α∗)

+ (t,0).

We make the claim that in terms of A∗
t (0),

dS∗
t =

√
D

(
B

(α∗)
t

)
dBt +

(
D+ − D−

2D+
)

dA∗
t (0).(5.23)

To see this, apply the Itô–Tanaka formula to (S∗
t )+ to get

d(S∗
t )+ = √

D+[
1[B(α∗)

t >0] dBt + 1
2 dAB(α∗)

+ (t,0)
]
.(5.24)

Similarly, an application of the Itô–Tanaka formula in connection with (S∗
t )−,

(5.21), and the fact that the local time of skew Brownian motion is supported at
x = 0, yields

d(S∗
t )− = √

D−
[
−1[B(α∗)

t ≤0] dBt

(5.25)

− (2α∗ − 1)

2α∗ dAB(α∗)

+ (t,0) + 1

2
dAB(α∗)

+ (t,0)

]
.
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Thus, recalling that α∗ = √
D+/[√D− + √

D+], it follows from (5.24), (5.25)
that

dS∗
t = d(S∗

t )+ − d(S∗
t )−

(5.26)

=
√

D
(
B

(α∗)
t

)
dBt +

(
D+ − D−

2
√

D+

)
dAB(α∗)

+ (t,0).

The claim now follows as a consequence of (5.26) and (5.22).
Now suppose f ∈ DD± . Hence, f is the difference of two convex functions and

its second generalized derivative is

f ′′(da) = f ′′(a) da + [f ′(0+) − f ′(0−)]δ0.(5.27)

From the Itô–Tanaka formula, and using (5.23)–(5.27), it follows that

f (S∗
t ) = f (S∗

0 ) +
∫ t

0
f ′−(S∗

s ) dS∗
s + 1

2

∫
R

A∗
t (a)f ′′(da)

= f (x) +
∫ t

0
f ′(S∗

s )
√

D(S∗
s ) dBs + 1

2

∫
R

A∗
t (a)f ′′(a) da(5.28)

+ D+ − D−

2D+
∫ t

0
f ′−(S∗

s ) dA∗
t (0) + 1

2

∫
R

A∗
t (a)[f ′(0+) − f ′(0−)]δ0.

By the occupation time formula, and noting that the quadratic variation of S∗ is
given by D(S∗

t ) dt,

1

2

∫
R

A∗
t (a)f ′′(da) = 1

2

∫ t

0
D(S∗

s )f ′′(S∗
s ) ds.

The theorem is established once we show that the expression in (5.28) vanishes.
To see this, note that this expression is the local time at the origin multiplied by

D+ − D−

2D+ f ′(0−) + 1

2
[f ′(0+) − f ′(0−)] = 1

2

(
f ′(0+) − D−

D+ f ′(0−)

)
.

This vanishes in light of the interface condition imposed on f ∈ DD± . �

PROOF OF THEOREM 1.6 (Continuity correction to local time). Note that as
a consequence of (5.20)

AB(α)

+ (t,0)

AB(α)

− (t,0)
= α

1 − α
.

Also, recalling the definition of s(B(α)), one obtains

Ã
s(B(α))
+ (t,0) = lim

ε↓0

1√
D+

√
D+
ε

∫ t

0
1[0≤B

(α)
s <ε/

√
D+] ds

= 1√
D+ AB(α)

+ .
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Similarly,

Ã
s(B(α))
− (t,0) = lim

ε↓0

1√
D−

√
D−
ε

∫ t

0
1[ε/√D−<B

(α)
s <0] ds

= 1√
D− AB(α)

− .

Thus,

Ã
s(B(α))
+ (t,0)

Ã
s(B(α))
− (t,0)

=
√

D−
√

D+
α

1 − α
.(5.29)

The continuity follows if and only if α = α∗ :=
√

D+√
D++√

D− . �

6. Summary and open problems. The foundational component of this paper
provides an extension of basic probability laws governing the trivariate density of
Brownian motion, local time and occupation time and their coordinate projections
to those for skew Brownian motion. Along the way the basic Feynman–Kac for-
mula for elastic skew Brownian motion was also obtained. The elastic change of
concentration measure to a reaction-dispersion concentration was shown to lead to
a closed form determination of the concentration curves and transition probabili-
ties for the physical skew diffusion with drift.

The presence of local time and drift presents new mathematical challenges for
both Monte-Carlo numerical simulations and other schemes for numerical compu-
tation of the fundamental solution to the advection-dispersion equation or, equiv-
alently, the transition probabilities of the process Y . The Zvonkin transformation,
see, for example, Rogers and Williams (1987) for background, was explored in
Lejay and Martinez (2006) to remove drift for Monte-Carlo purposes. For the
present problem (5.1), this transformation results in a coefficient ρ(x) of the
second order operator that their theory requires to be bounded. However, in the
present application the coefficient ρ(x) is unbounded, in fact, it grows exponen-
tially. In particular, while some interesting examples are included to illustrate their
approach, the particle methods developed in Lejay and Martinez (2006) do not
apply to (5.1). Another interesting alternative to the more rigorously developed
Itô–Tanaka stochastic calculus, that avoids the use of local time and deals directly
with generalized stochastic processes, was somewhat formally explored in LaBolle
et al. (2000). A companion analytic approach has also been developed by Portenko
(1990) in the context of pde’s. The results of the present paper together with those
of Portenko (1990) may prove useful in putting some of the ideas in LaBolle et al.
(2000) on a more rigorous foundation. It certainly illustrates a rich general problem
area.

The main point of the application considered in this paper was to (1) pre-
cisely determine the structure of concentration as predicted by Fickian advection-
dispersion conservation laws in the presence of a sharp interface orthogonal to
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the flow direction, and (2) to analyze the role of the interface on breakthrough
in terms of first passage times. Part of the goal was to dispel speculation among
scientists of a need for refinements to the Fickian conservation laws in this con-
text; see Berkowitz et al. (2008). In particular, it has been rigorously established
that the Fickian laws provide general qualitative agreement with symmetries and
asymmetries observed in experiments.

A number of interesting directions are possible in connection with applica-
tions of this type. Having resolved the principal coordinate directions of flow, it
is natural to pursue applications to more complicated geometries; for example,
advective-dispersive flow in media with spherical intrusions of contrasting disper-
sion rates.

The solution provided here also provides a benchmark to test various possible
numerical and/or Monte-Carlo particle tracking schemes designed to address inter-
facial discontinuities. The role of local time presents one of the biggest challenges
to Monte-Carlo simulation of particle tracking schemes. The transformation to a
skew reaction-dispersion equation together with the Feynman–Kac formula and
importance sampling methods may make this theory amenable to Monte–Carlo
techniques.

We close by mentioning an important unsolved probability problem related to
other types of breakthrough measurements, namely, the explicit determination of
first passage time density of a particle injected at −1 to reach 1. An explicit for-
mula for this density is unknown to our best knowledge. [Added in Proof: Since
submission and acceptance of this article, a formula for the first passage time dis-
tribution of skew Brownian motion was obtained in Appuhamilage and Sheldon
(2010).]
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