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This paper presents a heavy-traffic analysis of the behavior of a single-
server queue under an Earliest-Deadline-First (EDF) scheduling policy in
which customers have deadlines and are served only until their deadlines
elapse. The performance of the system is measured by the fraction of reneged
work (the residual work lost due to elapsed deadlines) which is shown to
be minimized by the EDF policy. The evolution of the lead time distribution
of customers in queue is described by a measure-valued process. The heavy
traffic limit of this (properly scaled) process is shown to be a deterministic
function of the limit of the scaled workload process which, in turn, is iden-
tified to be a doubly reflected Brownian motion. This paper complements
previous work by Doytchinov, Lehoczky and Shreve on the EDF discipline in
which customers are served to completion even after their deadlines elapse.
The fraction of reneged work in a heavily loaded system and the fraction of
late work in the corresponding system without reneging are compared using
explicit formulas based on the heavy traffic approximations. The formulas are
validated by simulation results.

1. Introduction.

1.1. Background and the reneging EDF model. In the last decade, attention
has been paid to queueing systems in which customers have deadlines. Exam-
ples include telecommunication systems carrying digitized voice or video traffic,
tracking systems and real-time control systems. In the case of voice or video, pack-
etized information must be received, processed and displayed within stringent tim-
ing bounds so that the integrity of the transmission is maintained. Similarly, there
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are processing requirements for tracking systems that guarantee that a track can
be successfully followed. Real-time control systems (e.g., those associated with
modern avionics systems, manufacturing plants or automobiles) also gather data
that must be processed within stringent timing requirements in order for the sys-
tem to maintain stability or react to changes in the operating environment. We
refer to queueing systems that process tasks with deadlines as “real-time queueing
systems.”

The performance of a real-time queueing system is measured by its ability to
meet the deadlines of the customers. This is in contrast to ordinary queueing sys-
tems in which the measure of performance is often customer delay, queue length or
utilization of a service facility. We use the fraction of “reneged work,” defined as
the residual work not serviced due to elapsed deadlines, as our performance mea-
sure. To minimize this quantity, it is necessary to use a scheduling policy that takes
deadlines into account. We use the Earliest-Deadline-First (EDF) policy, which re-
duces to the more familiar First-In-First-Out (FIFO) policy when all customers
have the same deadline. Under general assumptions, we prove that EDF is optimal
with respect to this performance measure. A related result for G/M/c queues, in
which the number of reneging customers is used as a performance measure, was
obtained by Panwar and Towsley [29].

Heavy traffic analysis of a single real-time queue was initiated by Lehocz-
ky [27]. This was put on a firm mathematical foundation by Doytchinov, Lehoczky
and Shreve (DLS) [7]. The accuracy of heavy traffic approximations was devel-
oped in [22, 24]. The results of DLS were generalized to the case of acyclic net-
works in [23]. In these papers it was assumed that all customers are served to com-
pletion. The case in which late customers leave the system and their residual work
is lost is addressed here. The main result of this paper is a heavy traffic convergence
theorem, from which is derived a simple and practically useful approximation for
the fraction of lost work when the system is heavily loaded.

The mathematical formulation used by DLS and related papers is based on ran-
dom measures. In addition to the usual queue length and workload processes as-
sociated with the queueing system, to model the evolution of a real-time queue-
ing system, one must keep track of the lead time of each customer, that is, the
time until the customer’s deadline elapses. This is done by measure-valued queue
length and workload processes. The measure-valued queue length process puts
unit mass on the real line at the lead time of each customer in the system, while
the measure-valued workload process puts mass equal to the remaining service
time of each customer at the lead time of that customer. These measures evolve
dynamically as customers arrive, age and depart. Under the usual heavy traffic as-
sumptions, since customers are served to completion in the DLS framework, it is
easy to see that the ordinary scaled workload process converges weakly to a re-
flected Brownian motion with drift. DLS showed that the suitably scaled workload
and queue length measure-valued processes converge to an explicit deterministic
function of the workload process.
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In this paper customers leave the system when their deadlines elapse, which
we refer to as reneging. Due to the preemptive nature of the EDF policy, it is not
possible to determine at the time of admission whether a customer will be fully
serviced before its deadline elapses. It is thus natural to have the controller make
the decision only at the time the deadline elapses. The system with reneging shows
marked improvement in performance over the DLS system, in the sense that the
fraction of reneged work in this system is much less than the fraction of work that
becomes late in the DLS system. This improvement is because once a customer
misses its deadline, the processor devotes no further effort to it, but rather turns its
attention to customers that are not late.

The system with reneging is considerably more difficult to analyze than the DLS
system. In the reneging system, the evolution of the scalar total workload process
depends on the entire lead time distribution of customers in queue and the nature
of the EDF discipline. This is in stark contrast to the DLS system, where the total
workload process is independent of the scheduling discipline, and is identical to
that of any GI/G/1 queue with a work-conserving scheduling discipline. A key
ingredient of our analysis is a mapping on the space of measure-valued functions
which, when applied to the DLS system, yields another system (that we call the ref-
erence system) whose difference from the reneging system vanishes in heavy traf-
fic. This mapping can be viewed as a generalization of the scalar double reflection
map to measure-valued processes, and, using its continuity properties, we identify
the heavy traffic limit of the reference and hence the reneging systems. Specifi-
cally, we show that the limit of the scaled workload process is a doubly reflected
Brownian motion with lower barrier zero and upper barrier at the mean of the lead
time distribution. We also show that, conditional on the limiting workload, the re-
sulting limiting measure-valued workload process is the same limiting process as
when customers are served to completion, that is, in the DLS system. However, the
workload processes in these two systems differ, and so the unconditional limiting
lead-time profiles of these two systems differ accordingly. In particular, unlike in
the DLS system, the measure-valued workload process in the reneging system is
always concentrated on the positive real line due to the absence of late work in the
reneging system.

1.2. Prediction formulas. The results of this paper suggest a simple formula
for the fraction of lost work in the EDF system with reneging. In particular, con-
sider a single-server queue with traffic intensity ρ = λ/μ that is near one, where
1/λ is the mean interarrival time and 1/μ is the mean service time. Let α and
β be the standard deviations of the interarrival times and service times, respec-
tively, and set σ 2 = λ(α2 + β2), which we assume is nonzero. Let D denote the
mean lead time for arriving customers. Finally, set θ = 2(1 − ρ)/σ 2. Under these
circumstances,

Fraction of lost work in reneging system ≈ e−θD

(
1 − ρ

ρ(1 − e−θD)

)
.(1.1)
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This formula is derived in Section 7.1 and compared with simulations in Sec-
tion 7.2. If ρ = 1, in place of (1.1) we have

Fraction of lost work in reneging system ≈ σ 2

2D
.(1.2)

Analysis of the limit of the standard (nonreneging) system suggests that when
ρ < 1 [see (7.8) and (7.9)],

Fraction of late work in standard system ≈ e−θD,(1.3)

which, together with (1.1), yields the approximation
Lost work in reneging system

Late work in standard system
≈ 1 − ρ

ρ(1 − e−θD)
.(1.4)

If ρ ≥ 1 then all work is late in the limiting standard (nonreneging) system, which
leads to the approximation

Lost work in reneging system

Late work in standard system
≈ σ 2

2D
.(1.5)

When plotted on a log scale, the fraction of lost work in the reneging system and
the fraction of late work in the standard system will be linear in D, provided that
eθD � 1, and these two plots will be separated by log((1 − ρ)/ρ). When perfor-
mance is measured in terms of the work whose service requirement is not met
by the time its deadline elapses, then the reneging system is far superior to the
nonreneging system. We refer the reader to the simulations in Section 7.2.

The situation with reneged customers as opposed to reneged work is more com-
plicated. DLS shows that the number of customers in the limiting standard system
at any time is just λ times the amount of work, the number of late customers is λ

times the amount of late work and hence

Fraction of late customers in the standard system
(1.6)

≈ Fraction of late work in the standard system

[see also (7.8) and its derivation for the case ρ < 1]. In the limiting reneging sys-
tem, the number of customers who arrive by a certain time and the number of
customers in system at that time is λ times the amount of arrived work and λ times
the amount of work in the system (Corollary 3.7), respectively, but the number
of customers who renege by a certain time is not necessarily λ times the amount
of reneged work by that time (see Remark 7.2). In particular, we do not have a
formula like (1.6) for the reneging system. If the arrival process is Poisson, the
fraction of lost customers in the reneging system can be estimated by a heuristic
argument [see (7.7)] which gives instead

Fraction of lost customers in reneging system
(1.7)

≈ 2

μ2β2 + 1
× (Fraction of lost work in reneging system).
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1.3. Related work and outline of paper. Measure-valued processes have re-
cently gained prominence in queueing theory. Decreusefond and Moyal [5] use
such processes to obtain the fluid limit of an EDF M/M/1 queue with reneg-
ing. Unlike our scaling (2.4) of lead times by

√
n, they scale lead times by n and

obtain a characterization of the limiting lead-time measure-valued process via a
transport equation. In a different setting, Ward and Glynn [33, 34] find limits of
FIFO queues with reneging. Measure-valued processes have also proved useful in
the heavy traffic analysis of queues with scheduling disciplines other than EDF
such as last-in-first-out [28], processor sharing [11, 12], and shortest remaining
processing time [6, 13]. As dynamical systems, queueing systems present a math-
ematical challenge due to discontinuities in their evolution at boundaries (which
denote empty queues). The heavy traffic analysis of queueing systems described
by R

n-valued processes has been facilitated by the use of representations in terms
of continuous mappings on R

n [4, 8, 14, 31, 36]. This work demonstrates that this
perspective can also be useful when the queueing system is represented by a more
complicated, measure-valued process (see also [18] for recent work that takes a
similar perspective).

Section 2 introduces our model. Section 3 summarizes the main results, and
proofs of these results are given in Section 6. Section 4 introduces the reference
workload process and its decomposition, and describes its evolution. This refer-
ence workload process is easier to analyze than the workload process with reneg-
ing but the two are shown to have the same asymptotic behavior. Comparisons
between the reference workload process and the reneging workload process are
presented in Section 5. Section 7 presents simulation results. A proof of optimality
of EDF, that may be of independent interest, is in the Appendix.

2. The model, assumptions and notation.

2.1. Notation. Let R be the set of real numbers. For a, b ∈ R, a ∨ b is the
maximum of a and b, a ∧ b is the minimum and a+ is the maximum of a and 0.
Also, inf{∅} should be understood as +∞, while sup{∅} and max{∅} should be
understood as −∞. Moreover, if a < b, then the interval [b, a] is understood to
be ∅.

Denote by M the set of all finite, nonnegative measures on B(R), the Borel sub-
sets of R. Under the weak topology, M is a Polish space. We denote the measure
in M that puts one unit of mass at the point x ∈ R, that is, the Dirac measure at x,
by δx . When ν ∈ M and B is an interval (a, b] or a singleton {a}, we will simply
write ν(a, b] and ν{a} instead of ν((a, b]) and ν({a}).

Let T > 0 be given. Given a Polish space X, we use DX[0,∞) (resp., DX[0, T ])
to denote the space of right-continuous functions with left-hand limits (RCLL
functions) from [0,∞) (resp., [0, T ]) to X, equipped with the Skorokhod J1 topol-
ogy. See [9] for details. When dealing with DX[0,∞) or DX[0, T ], we typically
consider X = R or R

d , with appropriate dimension d for vector-valued functions,
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or X = M, unless explicitly stated otherwise. When X = R or M, for t > 0 and
x ∈ DX[0,∞), we write x(t−) for the left-hand limit lims↑t x(s), and we define

�x(t) to be the jump in x at time t , that is, �x(t)

= x(t) − x(t−). Finally, given

DX[0,∞)-valued random variables Zn,n ∈ N, defined, respectively, on the prob-
ability spaces (�n, Fn,Pn), n ∈ N, and a DX[0,∞)-valued random variable Z de-
fined on a probability space (�, F ,P), we say Z(n) converges in distribution to Z

and write Zn ⇒ Z, if for every bounded continuous function f on DX[0,∞),
limn→∞ En[f (Zn)] = E[f (Z)]. Here En and E are expectations taken with re-
spect to Pn and P, respectively.

2.2. The model with reneging. We have a sequence of single-station queue-
ing systems, each serving one class of customers. The queueing systems are in-
dexed by superscript (n). The inter-arrival times for the customers are {u(n)

j }∞j=1,
a sequence of strictly positive, independent, identically distributed random vari-
ables with common mean 1

λ(n) and standard deviation α(n). The service times are

{v(n)
j }∞j=1, another sequence of positive, independent, identically distributed ran-

dom variables with common mean 1
μ(n) and standard deviation β(n).

If the initial condition of the nth queue were not zero, then we would need to
specify an initial workload measure-valued process and frontier [these terms are
defined in (2.17) and (2.19) below] in such a way that these have limits under the
heavy traffic scaling. However, if the limit of the initial scaled workload process
were not of the form appearing in Theorem 3.2 below, then the workload process
would be expected to have a jump at time zero. To avoid these complications, we
assume that each queue is empty at time zero.

We define the customer arrival times

S
(n)
0


= 0, S
(n)
k


=
k∑

i=1

u
(n)
i , k ≥ 1,(2.1)

the customer arrival process

A(n)(t)

= max

{
k;S(n)

k ≤ t
}
, t ≥ 0,(2.2)

and the work arrival process

V (n)(t)

=

�t�∑
j=1

v
(n)
j , t ≥ 0.(2.3)

The work that has arrived to the queue by time t is then V (n)(A(n)(t)).
Each customer arrives with an initial lead time L

(n)
j , the time between the arrival

time and the deadline for completion of service for that customer. These initial lead
times are independent and identically distributed with

P
{
L

(n)
j ≤ √

ny
}= G(y),(2.4)
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where G is a right-continuous cumulative distribution function. We define

y∗ 
= inf{y ∈ R|G(y) > 0}, y∗ 
= min{y ∈ R|G(y) = 1}(2.5)

and assume that 0 < y∗ ≤ y∗ < +∞. We assume that for every n, the sequences
{u(n)

j }∞j=1, {v(n)
j }∞j=1 and {L(n)

j }∞j=1 are mutually independent. See Remark 3.9 for
a discussion of these assumptions.

We assume that customers are served using the Earliest-Deadline-First (EDF)
queue discipline, that is, the customer with the shortest lead time receives service.
Preemption occurs when a customer more urgent than the customer in service ar-
rives (we assume preempt-resume). There is no set up, switch-over, or other type
of overhead. If the j th customer is still present in the system (either waiting for
service or receiving it) when his deadline passes, that is, at the time S

(n)
j + L

(n)
j ,

he leaves the queue immediately. This may be interpreted as either reneging or the
result of an action of an external controller.

We define W(n)(t), the workload process at time t , as the remaining processing
time of all the customers in the system at this time. We define R

(n)
W (t) to be the

amount of work that reneges in the time interval [0, t]. The queue length process
Q(n)(t) is the number of customers in the queue at time t . The queueing system
described above will be referred to as the EDF system with reneging.

2.3. The standard EDF model. We also have a sequence, indexed by super-
script (n), of standard EDF systems, with the same stochastic primitives as the
EDF systems with reneging. In each of these standard systems, the server serves
the customer with the shortest lead time, preemption occurs as in the reneging sys-
tem, but late customers (customers with negative lead times) stay in the system
until served to completion. The performance processes associated with the stan-
dard system will be denoted by the same symbols as their counterparts from the
system with reneging, but with additional subscript S. For example, W

(n)
S (t) de-

notes the workload in the standard system at time t . The arrival processes A(n)(t)

and V (n)(t) are the same for the both systems, so we will not attach the subscript
S to them.

The standard EDF system is easier to analyze than the EDF system with reneg-
ing in several ways. For instance, the workload W

(n)
S in the standard system coin-

cides with the workload of a corresponding G/G/1 queue (with the same primitives)
under any nonidling scheduling policy. More precisely, in the standard system the
netput process

N(n)(t)

= V (n)(A(n)(t)

)− t(2.6)

measures the amount of work in queue at time t provided that the server is never
idle up to time t , and the cumulative idleness process

I
(n)
S (t)


= − inf
0≤s≤t

N(n)(s)(2.7)
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gives the amount of time the server is idle. Adding these two processes together,
we obtain the workload process for the standard system

W
(n)
S (t) = N(n)(t) + I

(n)
S (t).(2.8)

(All the above processes are RCLL.) In contrast, the evolution of the workload
W(n) in the reneging system is more complex and depends not only on the residual
service times but also on the lead times of all customers in the queue. Our analysis
of the reneging system will be facilitated by results from [7] on the heavy traffic
analysis of the standard EDF system.

2.4. Heavy traffic assumptions. We assume that the following limits exist:

lim
n→∞λ(n) = λ, lim

n→∞μ(n) = λ,

(2.9)
lim

n→∞α(n) = α, lim
n→∞β(n) = β,

and, moreover, λ > 0 and α2 + β2 > 0. Define the traffic intensity ρ(n) 
= λ(n)

μ(n) . We
make the heavy traffic assumption

lim
n→∞

√
n
(
1 − ρ(n))= γ(2.10)

for some γ ∈ R. We also impose the Lindeberg condition on the inter-arrival and
service times: for every c > 0,

lim
n→∞E

[(
u

(n)
j − (λ(n))−1)2

I{|u(n)
j −(λ(n))−1|>c

√
n}
]

(2.11)
= lim

n→∞ E
[(

v
(n)
j − (μ(n))−1)2

I{|v(n)
j −(μ(n))−1|>c

√
n}
]= 0.

We introduce the heavy traffic scaling for the idleness process in the standard
system and the workload and queue length processes for both EDF systems

Î
(n)
S (t) = 1√

n
I

(n)
S (nt), Ŵ

(n)
S (t) = 1√

n
W

(n)
S (nt),

Q̂
(n)
S (t) = 1√

n
Q

(n)
S (nt), Ŵ (n)(t) = 1√

n
W(n)(nt),

Q̂(n)(t) = 1√
n
Q(n)(nt)

and the centered heavy traffic scaling for the arrival processes

Ŝ(n)(t) = 1√
n

�nt�∑
j=1

(
u

(n)
j − 1

λ(n)

)
, V̂ (n)(t) = 1√

n

�nt�∑
j=1

(
v

(n)
j − 1

μ(n)

)
,

Â(n)(t) = 1√
n

[
A(n)(nt) − λ(n)nt

]
.
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The scaled netput process (which is the same for both systems) is given by

N̂ (n)(t) = 1√
n

[
V (n)(A(n)(nt)

)− nt
]
.(2.12)

Note that, by (2.8), Ŵ
(n)
S (t) = N̂ (n)(t) + Î

(n)
S (t).

It follows from Theorem 3.1 in [30] and Theorem 7.3.2 in [36] that(
Ŝ(n), Â(n))⇒ (S∗,A∗),(2.13)

where A∗ is a zero-drift Brownian motion with variance α2λ3 per unit time and

S∗(λt) = −1

λ
A∗(t), t ≥ 0.(2.14)

It is a standard result [16] that(
N̂ (n), Î

(n)
S , Ŵ

(n)
S

)⇒ (N∗, I ∗
S ,W ∗

S ),(2.15)

where N∗ is a Brownian motion with variance (α2 + β2)λ per unit time and drift
−γ ,

I ∗
S (t)


= − min
0≤s≤t

N∗(s), W ∗
S (t) = N∗(t) + I ∗

S (t).(2.16)

In other words, W ∗
S is a Brownian motion reflected at 0 with variance (α2 + β2)λ

per unit time and drift −γ and I ∗
S causes the reflection.

2.5. Measure-valued processes and frontiers. To study whether tasks or cus-
tomers meet their timing requirements, one must keep track of customer lead times.
The action of the EDF discipline requires knowledge of the current lead times of
all customers in system. We represent this information via a collection of measure-
valued stochastic processes.

Customer arrival measure-valued process:

A(n)(t)(B)

=
{

Number of arrivals by time t , whether or not still in the
system at time t , having lead times at time t in B ∈ B(R)

}
.

Workload arrival measure-valued process:

V (n)(t)(B)

=
{

Work arrived by time t , whether or not still in the sys-
tem at time t , having lead times at time t in B ∈ B(R)

}
.

Queue length measure-valued process:

Q(n)(t)(B)

=
{

Number of customers in the queue at time
t having lead times at time t in B ∈ B(R)

}
.

Workload measure-valued process:

W (n)(t)(B)

=
{

Work in the queue at time t associated with cus-
tomers having lead times at time t in B ∈ B(R)

}
.(2.17)
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The latter two processes describe the behavior of the EDF system with reneging.
Their counterparts for the standard EDF system will be denoted by Q(n)

S (t) and

W (n)
S (t), respectively. The following relationships easily follow:

A(n)(t) = A(n)(t)(R), V (n)(A(n)(t)
)= V (n)(t)(R),

W(n)(t) = W (n)(t)(0,∞), Q(n)(t) = Q(n)(t)(0,∞),

W
(n)
S (t) = W (n)

S (t)(R), Q
(n)
S (t) = Q(n)

S (t)(R).

In addition, we can represent the reneged work as follows:

R
(n)
W (t) = ∑

0<s≤t

W (n)(s−){0}.(2.18)

In order to study the behavior of the EDF queue discipline, it is useful to keep
track of the largest lead time of all customers, whether present or departed, who
have ever been in service. We define the frontier

F (n)(t)

=
⎧⎨⎩

The maximum of the largest lead time of
all customers who have ever been in service,
whether still present or not, and

√
ny∗ − t

⎫⎬⎭(2.19)

for the EDF system with reneging, and its counterpart F
(n)
S (t) for the standard EDF

system. Prior to arrival of the first customer, F (n)(t) and F
(n)
S (t) equal

√
ny∗ − t .

For the EDF system with reneging, we define the current lead time

C(n)(t)

=
{

Lead time of the customer in service
or F (n)(t) if the queue is empty

}
.

In the reneging system, there is no customer with lead time smaller than C(n)(t),
and there has never been a customer in service whose lead time, if the customer
were still present, would exceed F (n)(t). Furthermore, C(n)(t) ≤ F (n)(t) for all
t ≥ 0. The processes C(n), F (n) and F

(n)
S are RCLL.

We introduce heavy traffic scalings. For the real-valued processes Z(n) =
C(n),F (n),F

(n)
S ,W(n),Q(n),R

(n)
W , we define Ẑ(n)(t)


= 1√
n
Z(n)(nt) and for the

measure-valued processes Z (n) = Q(n), W (n), Q(n)
S , W (n)

S , A(n), V (n), we define

Ẑ (n)(t)(B)

= 1√

n
Z (n)(nt)(

√
nB) for every Borel set B ⊂ R.

3. Main results. Before stating our main results, we summarize the results for
the standard EDF system that were obtained in [7]—in particular, we recall Propo-
sition 3.10 and Theorem 3.1 of [7] which characterize the limiting distributions of
the workload measure and the queue length measure in the standard system. Let

H(y)

=
∫ ∞
y

(
1 − G(η)

)
dη =

⎧⎪⎨⎪⎩
∫ y∗

y

(
1 − G(η)

)
dη, if y ≤ y∗,

0, if y > y∗.
(3.1)
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The function H maps (−∞, y∗] onto [0,∞) and is strictly decreasing and Lip-
schitz continuous with Lipschitz constant 1 on (−∞, y∗]. Therefore, there exists
a continuous inverse function H−1 that maps [0,∞) onto (−∞, y∗].

PROPOSITION 3.1 (Proposition 3.10 [7]). We have F̂
(n)
S ⇒ F ∗

S as n → ∞,
where the limiting scaled frontier process F ∗

S for the standard EDF system is ex-
plicitly given by

F ∗
S (t)


= H−1(W ∗
S (t)), t ≥ 0,(3.2)

with W ∗
S equal to Brownian motion with variance (α2 + β2)λ per unit time and

drift −γ , reflected at 0.

THEOREM 3.2 (Theorem 3.1 [7]). Let W ∗
S and Q∗

S be the measure-valued
processes defined, respectively, by

W ∗
S(t)(B)


=
∫
B∩[F ∗

S (t),∞)

(
1 − G(y)

)
dy, Q∗

S(t)(B)

= λW ∗

S(t)(B),(3.3)

for all Borel sets B ⊆ R. Then Ŵ (n)
S ⇒ W ∗

S and Q̂(n)
S ⇒ Q∗

S , as n → ∞.

REMARK 3.3. The proofs in [7] can be modified to show that the conver-
gences in (3.3) are in fact joint, that is, (Ŵ (n)

S , Q̂(n)
S ) ⇒ (W ∗

S , Q∗
S).

There is lateness in the standard EDF system if and only if the measure-valued
workload process has positive mass on the negative half line. Theorem 3.2 shows
that, in the heavy traffic limit, this occurs exactly when the limiting scaled frontier
process F ∗

S lies to the left of 0 or, equivalently (by Proposition 3.1), when W ∗
S is

greater than H(0) = E[L(n)
j /

√
n], the mean of the scaled lead-time distribution.

In the reneging system, there is no lateness, and the amount of work that reneges
is precisely the amount required to prevent lateness. Thus it is natural to expect
that the limiting workload in the reneging system will be constrained to remain
below H(0). Let W ∗ be a Brownian motion with variance (α2 + β2)λ per unit
time and drift −γ , reflected at 0 and H(0). The first main result of this paper is
that W ∗ is the limiting workload in the reneging system.

THEOREM 3.4. As n → ∞, Ŵ (n) ⇒ W ∗.

The next two results of this paper are the following counterparts of Proposi-
tion 3.1 and Theorem 3.2 for the EDF system with reneging.

PROPOSITION 3.5. We have F̂ (n) ⇒ F ∗ as n → ∞, where

F ∗(t) 
= H−1(W ∗(t)), t ≥ 0.(3.4)
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In other words, the process F ∗ defined by (3.4) is the limiting scaled frontier
process for the EDF system with reneging.

THEOREM 3.6. Let W ∗ and Q∗ be the measure-valued processes defined by

W ∗(t)(B)

=
∫
B∩[F ∗(t),∞)

(
1 − G(y)

)
dy, Q∗(t)(B)


= λW ∗(t)(B),(3.5)

for all Borel sets B ⊆ R. Then (Ŵ (n), Q̂(n)) ⇒ (W ∗, Q∗) as n → ∞.

By Theorem 3.6, the total masses of W (n) and Q(n) must converge jointly to
the total masses of W ∗ and Q(n), respectively. Substituting B = R in (3.5) and
using (3.1) and (3.4), we see that W ∗(t)(R) = H(F ∗(t)) = W ∗(t) and we recover
Theorem 3.4. In fact, we have a stronger result.

COROLLARY 3.7. As n → ∞, (Ŵ (n), Q̂(n)) ⇒ (W ∗, λW ∗).

Theorem 3.6 also shows that the limiting instantaneous lead-time profiles of
customers in the EDF system with reneging conditioned on the value of the (lim-
iting) workload in the system are the same as in the case of the standard EDF
system. However, the limiting real-valued workload process for the EDF system
with reneging is W ∗, the doubly reflected Brownian motion and the unconditional
limiting lead-time profiles for these two systems differ accordingly.

We also have a characterization of the limiting amount of reneged work.

THEOREM 3.8. As n → ∞, R̂
(n)
W ⇒ R∗

W , where R∗
W is the local time at H(0)

of the doubly reflected Brownian motion W ∗.

Although these results are intuitive in light of the behavior of the standard EDF
system, the proofs are challenging. Moreover, counter to what one might expect,
the result for queue lengths analogous to Theorem 3.8 is false. Specifically, al-
though Corollary 3.7 shows that Q̂(n) converges to the doubly reflected Brownian

motion Q∗ 
= λW ∗ on [0, λH(0)], the scaled sequence R̂
(n)
Q ,n ∈ N, of reneged

customers does not converge to the local time λR∗
W of Q∗ at λH(0). This obser-

vation, which is elaborated upon in Section 7, emphasizes the need for a rigorous
justification of intuitive statements.

The proof of Theorem 3.4 is in Section 6.1.1, the proofs of Proposition 3.5 and
Theorem 3.6 are in Section 6.1.2, and Section 6.2 contains the proof of Theo-
rem 3.8. We also establish an optimality property for EDF, Theorem 5.1.

REMARK 3.9. The assumption made in (2.5) that the support of the lead time
distribution is bounded above by y∗ < ∞ is mainly technical. It is expected that
the analysis in [21] for the standard EDF system under a weaker second moment
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condition can be applied to the reneging system as well. On the other hand, the
lower bound y∗ > 0 on the lead time distribution or some restriction on the behav-
ior of the density of the lead time distribution at 0 appears to be necessary. Indeed,
the work of Ward and Glynn [33, 34] on FIFO queues with reneging suggests that
in the absence of such an assumption, the limiting workload process may no longer
be a reflected Brownian motion, and its properties may exhibit strong sensitivity
to the density of the lead-time distribution near 0. From a modeling point of view,
it is reasonable to impose a strictly positive lower bound y∗ > 0 so as to avoid
nonnegligible “intrinsic lateness,” in which an arriving customer has such a small
initial lead time that he would be late even if there were no other customers in the
system.

In [21] the assumption of independence between the sequence of interarrival
times and lead times is also removed and a more complex version of Theorem 3.2 is
obtained. Starting from that more complex result, the limit of the reneging system
can be obtained along the lines of this paper.

4. The reference system. In this section we introduce an auxiliary reference
workload measure-valued process U (n) and the corresponding real-valued refer-
ence workload process U(n). In the special case of constant initial lead times
(i.e., y∗ = y∗), in which EDF reduces to the well-known FIFO service disci-
pline, U (n) and U(n) coincide with W (n) and W(n), respectively. In general, these
processes do not coincide (see Example 4.6), but, as we will show in Section 6.1,
the difference between the diffusion-scaled versions of U(n) and W(n) is negligible
under heavy-traffic conditions. The advantage of working with the reference sys-
tem, rather than the reneging system, is that U (n) can be represented explicitly as a
certain mapping � of the measure-valued workload process W (n)

S in the standard
system. As shown in Section 6.1, continuity properties of the mapping � enable an
easy characterization of the limiting distributions of U (n) and U(n) in heavy traffic.

We begin with Section 4.1, where we define the reference system and provide
a useful decomposition of the process U(n). In Section 4.2 we provide a detailed
description of the evolution of U (n).

4.1. Definition and properties of the reference workload. In Section 4.1.1, we
introduce a deterministic mapping on the space of measure-valued functions that
is used to define the reference workload. Then, in Section 4.1.2, we provide a
decomposition of the reference workload process.

4.1.1. A mapping � of measure-valued processes. We define a sequence of
reference workload measure-valued processes for the EDF system with reneging
by the formula

U (n) 
= �
(

W (n)
S

)
,(4.1)
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where the mapping � :DM[0,∞) �→ DM[0,∞) is defined by

�(μ)(t)(−∞, y]
(4.2)


=
[
μ(t)(−∞, y] − sup

s∈[0,t]

(
μ(s)(−∞,0] ∧ inf

u∈[s,t]μ(u)(R)
)]+

for every μ ∈ DM[0,∞), t ≥ 0 and y ∈ R. (The claim that � does indeed map
DM[0,∞) into DM[0,∞) is justified in Lemma 4.1 below.) We also define the
(real-valued) reference workload process U(n) as the total mass of U (n), that is,

U(n)(t)

= U (n)(t)(R) ∀t ∈ [0,∞).(4.3)

The frontier F
(n)
S defined in Section 2.3 played a crucial role in the description and

analysis of the evolution of the standard system in [7]. In a similar fashion, it will
be useful to define the reference frontier

E(n)(t)

=
{

inf
{
y ∈ R|U (n)(t)(−∞, y] > 0

}
, if U(n)(t) > 0,

+∞, if U(n)(t) = 0.
(4.4)

By definition, E(n)(t) is the leftmost point of support of the random measure
U (n)(t) [understood as ∞ if U (n)(t) ≡ 0]. The process E(n) has RCLL paths.

From (4.1)–(4.3) we have

U (n)(t)(−∞, y] = [W (n)
S (t)(−∞, y] − K(n)(t)

]+
,(4.5)

U(n)(t) = W
(n)
S (t) − K(n)(t),(4.6)

where

K(n)(t)

= max

s∈[0,t]
{

W (n)
S (s)(−∞,0] ∧ inf

u∈[s,t]W
(n)
S (u)

}
.(4.7)

In (4.7) we may write maximum rather than supremum because the process
W (n)

S (·)(−∞,0] never jumps down. Note from (4.6) and (4.7) that 0 ≤ K(n)(t) ≤
W

(n)
S (t) and so for all t ≥ 0,

0 ≤ U(n)(t) ≤ WS(t).(4.8)

According to (4.6), the reference workload process U(n) is the standard work-
load process W

(n)
S with mass K(n) removed. Equation (4.5) shows that this mass

is removed from the left-hand side of the support of W (n)
S . Moreover, since

U (n)(t)(−∞, y] > 0 for all y to the right of the frontier E(n)(t), it is clear from
(4.1) and (4.2) that for t ∈ [0,∞), y2 ≥ y1 > E(n)(t),

U (n)(t)(y1, y2] = U (n)(t)(−∞, y2] − U (n)(t)(−∞, y1] = W (n)
S (t)(y1, y2],(4.9)

which shows that U (n) coincides with W (n)
S strictly to the right of E(n).
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In the following lemma, we establish some basic properties of � that show, in
particular, that U (n)(t), t ≥ 0, and U(n)(t), t ≥ 0, are stochastic processes with
sample paths in DM[0,∞) and DR+[0,∞), respectively. Although � is not con-
tinuous on DM[0,∞), the lemma shows that it satisfies a certain continuity prop-
erty that will be sufficient for our purposes.

LEMMA 4.1. For every t ∈ [0,∞), �(μ)(t)(−∞,0] = 0. Moreover, � maps
DM[0,∞) to DM[0,∞). Furthermore, if a sequence μn,n ∈ N, in DM[0,∞)

converges to μ ∈ DM[0,∞), where μ is continuous and for every t ∈ [0,∞),
μ(t){0} = 0, then �(μn) converges to �(μ) in DM[0,∞).

PROOF. The first statement follows from the simple observation that, due to
the nonnegativity of μ and (4.2),

0 ≤ �(μ)(t)(−∞,0] ≤ [μ(t)(−∞,0] − μ(t)(−∞,0] ∧ μ(t)(R)
]+ = 0.

Also, since the right-hand side of (4.2) is nondecreasing and right-continuous
in y, we know that �(μ)(t) ∈ M for every t ≥ 0. Now, observe that �(μ)(t) =
�(μ(t),�(μ)(t)), where � : M × R �→ M is the mapping �(ν, x)(−∞, y] 
=
(ν(−∞, y] − x)+ for all y ∈ R and � :DM[0,∞) �→ R is defined by

�(μ)(t)

= sup

s∈[0,t]

(
μ(s)(−∞,0] ∧ inf

u∈[s,t]μ(u)(R)
)

∀t ∈ [0,∞).

Using the fact that weak convergence of measures on R is equivalent to conver-
gence of the cumulative distribution functions at continuity points of the limit, one
can verify that � is continuous on M × R. To show that �(μ) ∈ DM[0,∞), it
suffices to show that �(μ) ∈ D[0,∞). For this, we fix t ∈ [0,∞) and write

�(μ)(t + ε) − �(μ)(t)

= sup
s∈[0,t]

[
μ(s)(−∞,0] ∧ inf

u∈[s,t]μ(u)(R) ∧ inf
u∈[t,t+ε]μ(u)(R)

]
∨ Z(μ, ε)(t)

− sup
s∈[0,t]

[
μ(s)(−∞,0] ∧ inf

u∈[s,t]μ(u)(R)
]
,

where we define

Z(μ, ε)(t)

= sup

s∈[t,t+ε]

[
μ(s)(−∞,0] ∧ inf

u∈[s,t+ε]μ(u)(R)
]
.

Since μ ∈ DM[0,∞) implies μ(u) converges weakly to μ(t) as u ↓ t , we have
limu↓t μ(u)(R) = μ(t)(R) and μ(t)(−∞,0] ≥ lim sups↓t μ(s)(−∞,0] by Port-
manteau’s theorem. This, in turn, implies that limε→0 Z(μ, ε)(t) = μ(t)(−∞,0]
for all t ≥ 0. Combining the above properties, it is easy to deduce that �(μ)(t +
ε)−�(μ)(t) → 0 as ε ↓ 0, and the right-continuity of �(μ) follows. The existence
of left limits for �(μ), and hence for �(u), can be established by an analogous but
simpler argument.
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Now, suppose μn converges to μ in DM[0,∞) and μ is continuous with
μ(t){0} = 0 for every t ≥ 0. Then μn(t) converges weakly to μ(t) uniformly for
t in compact sets (u.o.c.) (see [2]). Since 0 is a continuity point for μ(t), this im-
plies μn(t)(−∞,0] and μn(t)(R) converge u.o.c. to μ(t)(−∞,0] and μ(t)(R),
respectively. This shows that �(μn)(t) converges u.o.c. to �(μ)(t), which, when
combined with the continuity of � , shows that �(μn)(t) converges weakly u.o.c.
to �(μ)(t). In particular, this shows �(μn) converges to �(μ) in DM[0,∞). �

As an immediate consequence of the lemma, the definitions of U (n) and E(n),
and the fact that U (n)(t) is a purely atomic measure, we have, for all t ≥ 0,

U (n)(t)(−∞,0] = 0 and E(n)(t) > 0.(4.10)

4.1.2. A decomposition of the reference workload. We establish a decom-

position of K(n) into its increasing and decreasing parts. Define σ
(n)
0


= 0 and

W
(n)
S (0−)


= 0. For k = 0,1,2, . . . , define recursively

τ
(n)
k


= min
{
t ≥ σ

(n)
k |W(n)

S

(
σ

(n)
k −)∨ max

s∈[σ (n)
k ,t]

W (n)
S (s)(−∞,0]

(4.11)
≥ W

(n)
S (t)

}
,

σ
(n)
k+1


= min
{
t ≥ τ

(n)
k |W(n)

S (t) > W
(n)
S (t−)

}
.(4.12)

In addition, for t ∈ [0,∞), define

K
(n)
+ (t)


=∑
k∈N

[
W

(n)
S

(
σ

(n)
k −)∨ max

s∈[σ (n)
k ,t∧τ

(n)
k ]

W (n)
S (s)(−∞,0]

(4.13)
− W

(n)
S

(
σ

(n)
k −)],

K
(n)
− (t)


= −∑
k∈N

[(
W

(n)
S

(
τ

(n)
k−1

)− (σ (n)
k ∧ t − τ

(n)
k−1

))+
(4.14)

− W
(n)
S

(
τ

(n)
k−1

)]
.

THEOREM 4.2. We have

K(n) = K
(n)
+ − K

(n)
− ,(4.15)

where K
(n)
+ and K

(n)
− are the positive and negative variations of K(n). Moreover,∫

[0,∞)
I{U(n)(s)>0} dK

(n)
− (s) = 0.(4.16)
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The theorem is easily deduced from Propositions 4.3 and 4.4 and Remark 4.5
below. The rest of the section is devoted to establishing these results.

Observe that the late work W (n)
S (s)(−∞,0] is right-continuous in s, remaining

constant or moving down at rate one and jumping up. Therefore, the maximum
on the right-hand side of (4.11) is obtained. Additionally, because of the right-
continuity of W (n)

S and W
(n)
S , the minimum in this equation is also obtained. Fi-

nally, W (n)
S (s)(−∞,0] can never exceed W

(n)
S (s) = W (n)

S (s)(R), and W
(n)
S never

jumps down, so we must in fact have

W
(n)
S

(
σ

(n)
k −)∨ max

s∈[σ (n)
k ,τ

(n)
k ]

W (n)
S (s)(−∞,0] = W

(n)
S

(
τ

(n)
k

)
.(4.17)

For k ≥ 1, σ
(n)
k is the first arrival time after τ

(n)
k−1. We thus have

W
(n)
S (t) = (W(n)

S

(
τ

(n)
k−1

)− (t − τ
(n)
k−1

))+
, τ

(n)
k−1 ≤ t < σ

(n)
k .(4.18)

We further have

0 = σ
(n)
0 = τ

(n)
0 < σ

(n)
1 < τ

(n)
1 < σ

(n)
2 < · · · .(4.19)

PROPOSITION 4.3. For each k ≥ 1, we have

K(n)(t) = W
(n)
S

(
σ

(n)
k −)∨ max

s∈[σ (n)
k ,t]

W (n)
S (s)(−∞,0](4.20)

for t ∈ [σ (n)
k , τ

(n)
k ]. In particular, K(n) is nondecreasing on the interval [σ (n)

k , τ
(n)
k ].

PROOF. We proceed by induction on k. For the base case k = 1, note that the
standard EDF system is empty before the time σ

(n)
1 . Therefore, W

(n)
S (σ

(n)
1 −) = 0,

and to prove (4.20), we must show that

K(n)(t) = max
s∈[0,t] W (n)

S (s)(−∞,0], σ
(n)
1 ≤ t ≤ τ

(n)
1 .(4.21)

For t ∈ [σ (n)
1 , τ

(n)
1 ], let s(n)(t) be the largest number in [σ (n)

1 , t] satisfying

W (n)
S

(
s(n)(t)

)
(−∞,0] = max

s∈[0,t] W (n)
S (s)(−∞,0].(4.22)

For u ∈ [s(n)(t), t], we have

W (n)
S

(
s(n)(t)

)
(−∞,0] = max

s∈[σ (n)
1 ,u]

W (n)
S (s)(−∞,0],

which is less than or equal to W
(n)
S (u) by the definition of τ

(n)
1 and equation (4.17).

Therefore,

max
s∈[0,t] W (n)

S (s)(−∞,0] = W (n)
S

(
s(n)(t)

)
(−∞,0] ≤ inf

u∈[s(n)(t),t]
W

(n)
S (u).
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Equation (4.21) follows from (4.7).
We assume (4.20) holds for some k and prove it for k + 1. For t ∈ [σ (n)

k+1, τ
(n)
k+1],

K(n)(t) = max
s∈[0,σ

(n)
k+1)

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
(4.23)

∨ max
s∈[σ (n)

k+1,t]

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
.

Equation (4.20) with k replaced by k + 1 will follow once we show that

max
s∈[0,σ

(n)
k+1)

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
= W

(n)
S

(
σ

(n)
k+1−

)
(4.24)

and

max
s∈[σ (n)

k+1,t]

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
(4.25)

= max
s∈[σ (n)

k+1,t]
W (n)

S (s)(−∞,0].

For (4.24), we observe that because W (n)
S (s)(−∞,0] and infs≤u≤t W

(n)
S (u), re-

garded as functions of s, cannot increase except by a jump, the maximum on the
left-hand side of (4.24) is attained. Let s

(n)
k be the largest number in [0, σ

(n)
k+1) at-

taining this maximum. We have

max
s∈[0,σ

(n)
k+1)

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
= W (n)

S

(
s
(n)
k

)
(−∞,0] ∧ inf

u∈[s(n)
k ,t]

W
(n)
S (u) ≤ W

(n)
S (u) ∀u ∈ [s(n)

k , σ
(n)
k+1

)
,

and so

max
s∈[0,σ

(n)
k+1)

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
≤ W

(n)
S

(
σ

(n)
k+1−

)
.(4.26)

On the other hand, by the inequalities τ
(n)
k < σ

(n)
k+1 ≤ t ≤ τ

(n)
k+1, definition (4.7), the

induction hypothesis, and equation (4.17), we have

max
s∈[0,σ

(n)
k+1)

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
≥ max

s∈[0,τ
(n)
k ]

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,τ (n)

k ]
W

(n)
S (u) ∧ inf

u∈[τ (n)
k ,t]

W
(n)
S (u)

}
= K(n)(τ (n)

k

)∧ inf
u∈[τ (n)

k ,t]
W

(n)
S (u)
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=
(
W

(n)
S

(
σ

(n)
k −)∨ max

s∈[σ (n)
k ,τ

(n)
k ]

W (n)
S (s)(−∞,0]

)
∧ inf

u∈[τ (n)
k ,t]

W
(n)
S (u)

= W
(n)
S

(
τ

(n)
k

)∧ inf
u∈[τ (n)

k ,t]
W

(n)
S (u) = inf

u∈[τ (n)
k ,t]

W
(n)
S (u).

Equation (4.18) implies W
(n)
S (u) ≥ W

(n)
S (σ

(n)
k+1−) for τ

(n)
k ≤ u < σ

(n)
k+1. For σ

(n)
k+1 ≤

u ≤ t < τ
(n)
k+1, (4.11) implies that

W
(n)
S

(
σ

(n)
k+1−

)∨ max
s∈[σ (n)

k+1,u]
W (n)

S (s)(−∞,0] ≤ W
(n)
S (u),

and so again we have W
(n)
S (u) ≥ W

(n)
S (σ

(n)
k+1−). Finally, if u = t = τ

(n)
k+1, then

(4.17) implies that W
(n)
S (u) ≥ W

(n)
S (σ

(n)
k+1−). It follows that

inf
u∈[τ (n)

k ,t]
W

(n)
S (u) ≥ W

(n)
S

(
σ

(n)
k+1−

)
.

This gives the reverse of the inequality (4.26), and thus (4.24) is proved.
For (4.25), we let t

(n)
k attain the maximum in max

s∈[σ (n)
k+1,t] W (n)

S (s)(−∞,0]. For

u ∈ [t (n)
k , t], we have from (4.11) and (4.17) that

W (n)
S

(
t
(n)
k

)
(−∞,0] = max

s∈[σ (n)
k+1,u]

W (n)
S (s)(−∞,0] ≤ W

(n)
S (u),

and hence W (n)
S (t

(n)
k )(−∞,0] ≤ inf

u∈[t (n)
k ,t] W

(n)
S (u). It follows that

max
s∈[σ (n)

k+1,t]

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
≤ W (n)

S

(
t
(n)
k

)
(−∞,0] = W (n)

S

(
t
(n)
k

)
(−∞,0] ∧ inf

u∈[t (n)
k ,t]

W
(n)
S (u)

≤ max
s∈[σ (n)

k+1,t]

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
,

which establishes (4.25). �

PROPOSITION 4.4. For each k ≥ 1, we have

K(n)(t) = (W(n)
S

(
τ

(n)
k−1

)− (t − τ
(n)
k−1

))+
, τ

(n)
k−1 ≤ t < σ

(n)
k .(4.27)

In particular, K(n) is nonincreasing on [τ (n)
k−1, σ

(n)
k ).

PROOF. For all t ≥ 0, we have K(n)(t) ≤ W
(n)
S (t), and for τ

(n)
k−1 ≤ t < σ

(n)
k ,

we further have from (4.18) that

K(n)(t) ≤ W
(n)
S (t) = (W(n)

S

(
τ

(n)
k−1

)− (t − τ
(n)
k−1

))+
.(4.28)
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On the other hand, Proposition 4.3 and (4.17) with k replaced by k − 1 imply

max
s∈[0,τ

(n)
k−1]

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,τ (n)

k−1]
W

(n)
S (u)

}
= K(n)(τ (n)

k−1

)= W
(n)
S

(
σ

(n)
k−1−

)∨ max
s∈[σ (n)

k−1,τ
(n)
k−1]

W (n)
S (s)(−∞,0]

= W
(n)
S

(
τ

(n)
k−1

)
.

For t ∈ [τ (n)
k−1, σ

(n)
k ), it follows from (4.18) and the above equality that

K(n)(t) = max
s∈[0,t]

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,t]W

(n)
S (u)

}
≥ max

s∈[0,τ
(n)
k−1]

{
W (n)

S (s)(−∞,0]

∧ inf
u∈[s,τ (n)

k−1]
W

(n)
S (u) ∧ inf

u∈[τ (n)
k−1,t]

W
(n)
S (u)

}
= max

s∈[0,τ
(n)
k−1]

{
W (n)

S (s)(−∞,0] ∧ inf
u∈[s,τ (n)

k−1]
W

(n)
S (u)

}
(4.29)

∧ (W(n)
S

(
τ

(n)
k−1

)− (t − τ
(n)
k−1

))+
= W

(n)
S

(
τ

(n)
k−1

)∧ (W(n)
S

(
τ

(n)
k−1

)− (t − τ
(n)
k−1

))+
= (W(n)

S

(
τ

(n)
k−1

)− (t − τ
(n)
k−1

))+
.

Equation (4.27) follows from (4.28) and (4.29). �

REMARK 4.5. In light of (4.6) and Proposition 4.3, we have the characteriza-
tion of τ

(n)
k as

τ
(n)
k = min

{
t ≥ σ

(n)
k |K(n)(t) ≥ W

(n)
S (t)

}= min
{
t ≥ σ

(n)
k |U(n)(t) = 0

}
.(4.30)

Because σ
(n)
k+1 is the time of first arrival after τ

(n)
k , we in fact have

U(n)(t) = 0, τ
(n)
k ≤ t < σ

(n)
k+1.(4.31)

Evaluating (4.20) at σ
(n)
k and using W

(n)
S (σ

(n)
k −) ≥ W (n)

S (σ
(n)
k )(−∞,0], we obtain

K(n)(σ (n)
k

)= W
(n)
S

(
σ

(n)
k −).(4.32)

But (4.18) and Proposition 4.4 show that

K(n)(σ (n)
k −)= W

(n)
S

(
σ

(n)
k −),(4.33)
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and so

�K(n)(σ (n)
k

)= 0.(4.34)

By contrast �K(n)(τ
(n)
k ) can be positive. Evaluating (4.20) at τ

(n)
k and using (4.17),

we obtain

K(n)(τ (n)
k

)= W
(n)
S

(
τ

(n)
k

)
.(4.35)

In conclusion,

K(n)(t) = K(n)(σ (n)
k

)∨ max
s∈[σ (n)

k ,t]
W (n)

S (s)(−∞,0], σ
(n)
k ≤ t ≤ τ

(n)
k ,(4.36)

K(n)(t) = (K(n)(τ (n)
k−1

)− (t − τ
(n)
k−1

))+
, τ

(n)
k−1 ≤ t < σ

(n)
k .(4.37)

4.2. Dynamics of the reference workload process. The evolutions of U (n) and
W (n) are similar; the difference between them is asymptotically negligible. Before
proving the properties of U (n), we provide a summary of these properties. The
reader may work out the evolution of W (n)

S , U (n) and W (n) in Example 4.6 to
follow along. This example appears in detail in [26].

EXAMPLE 4.6. Consider a system realization in which

u
(n)
1 = 1, v

(n)
1 = 4, L

(n)
1 = 3, S

(n)
1 = 1,

u
(n)
2 = 1, v

(n)
2 = 4, L

(n)
2 = 5, S

(n)
2 = 2,

u
(n)
3 = 3, v

(n)
3 = 2, L

(n)
3 = 1, S

(n)
3 = 5,

u
(n)
4 = 2, v

(n)
4 = 1, L

(n)
4 = 4, S

(n)
4 = 7,

u
(n)
5 = 2, v

(n)
5 = 1, L

(n)
5 = 1, S

(n)
5 = 9.

Recall that δa is a unit point mass at a. It is straightforward to compute

W (n)
S (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t < 1,
(5 − t)δ4−t , 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t , 2 ≤ t < 5,
(7 − t)δ6−t + 4δ7−t , 5 ≤ t < 7,
(11 − t)δ7−t + δ11−t , 7 ≤ t < 9,
2δ−2 + δ1 + δ2, t = 9,
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U (n)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t < 1,
(5 − t)δ4−t , 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t , 2 ≤ t < 4,
(8 − t)δ7−t , 4 ≤ t < 5,
(6 − t)δ6−t + 4δ7−t , 5 ≤ t < 6,
(10 − t)δ7−t , 6 ≤ t < 7,
(8 − t)δ11−t , 7 ≤ t < 8,
0, 8 ≤ t < 9,
δ2, t = 9,

W (n)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t < 1,
(5 − t)δ4−t , 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t , 2 ≤ t < 4,
(8 − t)δ7−t , 4 ≤ t < 5,
(7 − t)δ6−t + 3δ7−t , 5 ≤ t < 6,
(9 − t)δ7−t , 6 ≤ t < 7,
(8 − t)δ11−t , 7 ≤ t < 8,
0, 8 ≤ t < 9,
δ1, t = 9.

Recall that K(n) is the amount of mass removed from the standard workload
W

(n)
S to obtain the reference workload U(n). To understand the process K(n), we

consider the dynamics of U (n). In the absence of new arrivals, all atoms of U (n)

move left with unit speed. Moreover, the mass of the leftmost atom of U (n) de-
creases with unit speed until it vanishes, corresponding to the work being done on
the most urgent job in queue until it is served to completion [Proposition 4.8(i)].
However, if the leftmost atom of U (n) hits zero, this atom is immediately removed
from U (n) [Proposition 4.8(ii), (v)]. This may be interpreted as reneging of a cus-
tomer or deletion of a late customer from the system. When there is a new arrival
at time t with lead time not smaller than the leftmost point of support of U (n)(t−),
and this point of support is strictly positive, then a mass of the size v

(n)

A(n)(t)
located

at L
(n)

A(n)(t)
is added to U (n)(t−) [Proposition 4.8(iii)]. Similarly, if there is a new

arrival and the leftmost point of the support of U (n) hits zero at the same time, then
both of the above actions take place [(4.53) of Proposition 4.8(v)]. This is the case
of a simultaneous new arrival and ejection of a late customer. The EDF system with
reneging W (n) shows the same behavior in all these cases. However, if a customer
arrives to start a new busy period for U (n) or, if at time t , there is a new arrival
with lead time more urgent than the leftmost point of the support of U (n)(t−) (i.e.,
we have a “preemption”), then the mass v

(n)

A(n)(t)
associated with the new arrival is

distributed in [L(n)

A(n)(t)
,∞), or more precisely, on some atoms of W (n)

S (t) located
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on this half-line, but it is not necessarily located at the single atom L
(n)

A(n)(t)
. This

possibility is described in Lemma 4.7 and Proposition 4.8(iv). In this respect, the
evolution of U (n) differs from that of W (n), for which all the new mass is always
placed at the lead time of the arriving customer. Example 4.6 illustrates this.

We now begin the rigorous study of U (n). As shown in Section 4.1, the
time interval [0,∞) can be decomposed into a union of the disjoint intervals
(τ

(n)
k , σ

(n)
k+1] and (σ

(n)
k , τ

(n)
k ], k ≥ 0, such that K(n) = W

(n)
S −U(n) is nonincreasing

on (τ
(n)
k , σ

(n)
k+1] and nondecreasing on (σ

(n)
k , τ

(n)
k ]. In Lemma 4.7 below, we analyze

the behavior of U (n) on the time intervals [τ (n)
k−1, σ

(n)
k ], k ≥ 1, while Proposition 4.8

describes the dynamics of U (n) on the intervals (σ
(n)
k , τ

(n)
k ), k ≥ 1. The section ends

with Corollary 4.9, which describes the time evolution of the reference workload
process U(n).

We make use of the following elementary facts about the standard workload.
Since the interarrival times are strictly positive, �A(n)(t) ∈ {0,1}, and

W (n)
S (t) = W (n)

S (t−) + �A(n)(t)v
(n)

A(n)(t)
δ
L

(n)

A(n)(t)

, t ≥ 0,(4.38)

which implies

�W
(n)
S (t) = �A(n)(t)v

(n)

A(n)(t)
, t ≥ 0.(4.39)

For any functions f and g on [0,∞) (taking finite or infinite values) such that
whenever s < t and t − s is small enough, f (s) = f (t−) + t − s and g(s) =
g(t−) + t − s, we have

lim
s↑t

W (n)
S (s)[f (s), g(s)] = W (n)

S (t−)[f (t−), g(t−)].(4.40)

This is true because the lead times of the customers present in the standard sys-
tem decrease with unit rate. Equation (4.40) remains valid if the closed intervals
[f (·), g(·)] are replaced by either [f (·), g(·)), (f (·), g(·)] or (f (·), g(·)). These
facts will be used repeatedly in the following arguments, sometimes without men-
tion.

LEMMA 4.7. Let k ≥ 1. We have

U(n)(t) = 0, τ
(n)
k−1 ≤ t < σ

(n)
k ,(4.41)

�U(n)(σ (n)
k

)= v
(n)

A(n)(σ
(n)
k )

,(4.42)

U (n)(σ (n)
k

)(−∞,L
(n)

A(n)(σ
(n)
k )

)= 0.(4.43)

PROOF. Equation (4.41) follows immediately from (4.6), (4.18) and Proposi-
tion 4.4. By (4.6), (4.34), (4.39) and the fact that �A(n)(σ

(n)
k ) = 1, we have

�U(n)(σ (n)
k

)= �W
(n)
S

(
σ

(n)
k

)− �K(n)(σ (n)
k

)= v
(n)

A(n)(σ
(n)
k )

,
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and (4.42) follows. For y < L
(n)

A(n)(σ
(n)
k )

, (4.5), (4.38), (4.34) and (4.33) imply

U (n)(σ (n)
k

)
(−∞, y] = [W (n)

S

(
σ

(n)
k

)
(−∞, y] − K(n)(σ (n)

k

)]+
= [W (n)

S

(
σ

(n)
k −)(−∞, y] − K(n)(σ (n)

k −)]+
≤ [W(n)

S

(
σ

(n)
k −)− K(n)(σ (n)

k −)]+ = 0,

and so (4.43) also follows. �

Lemma 4.7 shows that σ
(n)
k begins a busy period for the reference system. Equa-

tion (4.30) implies that U(n)(t) > 0 for σ
(n)
k < t < τ

(n)
k , and thus the intervals

[σ (n)
k , τ

(n)
k ), k ≥ 1, are precisely the busy periods for the reference system. We an-

alyze the behavior of U (n) during these busy periods. We start with the observation
that, by (4.5) and Proposition 4.3, for t ∈ (σ

(n)
k , τ

(n)
k ),

U (n)(t)(−∞, y] =
[

W (n)
S (t)(−∞, y]

(4.44)
−
(
W

(n)
S

(
σ

(n)
k −)∨ max

s∈[σ (n)
k ,t]

W (n)
S (s)(−∞,0]

)]+
.

In what follows, given ν ∈ M and any interval I ⊂ R, we will use ν|I to denote
the measure in M that is zero on I c and coincides with ν on I :ν|I (B) = ν(B ∩ I)

for all B ∈ B(R).

PROPOSITION 4.8. For k ≥ 1 and σ
(n)
k < t < τ

(n)
k , the following five proper-

ties hold:

(i) If �A(n)(t) = 0 and E(n)(t−) > 0, then

�K(n)(t) = 0,(4.45)

�U(n)(t) = 0.(4.46)

In this case, if U (n)(t−){E(n)(t−)} > 0, then both U (n)(·){E(n)(·)} and U(n)(t)

decrease with unit rate in a neighborhood of t . On the other hand, if

U (n)(t−)
{
E(n)(t−)

}= 0,

then U (n)(t) = W (n)
S (t)|[E(n)(t),∞).

(ii) If �A(n)(t) = 0 and E(n)(t−) = 0, then

U (n)(t−){0} = �K(n)(t) = − � U(n)(t)(4.47)

and U (n)(t) = W (n)
S (t)|(0,∞).
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(iii) If �A(n)(t) = 1 and L
(n)

A(n)(t)
≥ E(n)(t−) > 0, then (4.45) holds,

�E(n)(t) ≥ 0 and

U (n)(t) = U (n)(t−) + v
(n)

A(n)(t)
δ
L

(n)

A(n)(t)

.(4.48)

(iv) If �A(n)(t) = 1, L
(n)

A(n)(t)
< E(n)(t−), then (4.45) holds and

L
(n)

A(n)(t)
≤ E(n)(t) ≤ E(n)(t−),(4.49)

�U(n)(t) = v
(n)

A(n)(t)
,(4.50)

U (n)(t)|(E(n)(t−),∞) = U (n)(t−)|(E(n)(t−),∞),(4.51)

U (n)(t)
{
E(n)(t−)

} ≥ U (n)(t−)
{
E(n)(t−)

}
.(4.52)

(v) If �A(n)(t) = 1 and L
(n)

A(n)(t)
> E(n)(t−) = 0, then

U (n)(t) = U (n)(t−) + v
(n)

A(n)(t)
δ
L

(n)

A(n)(t)

− U (n)(t−){0}δ0.(4.53)

PROOF. Fix k ≥ 1 and t ∈ (σ
(n)
k , τ

(n)
k ). We start with the general observation

that, by (4.4) and (4.44),

E(n)(t) = min
{
y
∣∣W (n)

S (t)(−∞, y]
(4.54)

> W
(n)
S

(
σ

(n)
k −)∨ max

s∈[σ (n)
k ,t]

W (n)
S (s)(−∞,0]

}
,

and because W (n)
S (t) is purely atomic, the minimum on the right-hand side of

(4.54) is obtained at the atom of W (n)
S (t) located at y0 = E(n)(t). In particular,

W (n)
S (t)

{
E(n)(t)

}
> 0.(4.55)

We now consider each of the five different cases of the proposition.
(i) Let a = E(n)(t−). By (4.4) and (4.5), for all s < t sufficiently near t ,

W (n)
S (s)(−∞, a/2] ≤ K(n)(s).(4.56)

Also, for s ∈ [t − a/2, t) sufficiently near t so that A(n)(s) = A(n)(t) holds [such
s exist due to the assumption that �A(n)(t) = 0], we have

W (n)
S (t)(−∞,0] ≤ W (n)

S (s)(−∞, a/2].(4.57)

The last two relations show that W (n)
S (t)(−∞,0] ≤ K(n)(t−), and so, by Propo-

sition 4.3, (4.45) holds. Equation (4.46) follows from (4.6), (4.45), (4.39) and the
assumption �A(n)(t) = 0. Because W

(n)
S (t) > 0 [see (4.55)], W

(n)
S decreases at
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unit rate in a neighborhood of t [see (2.6)–(2.8)]. In addition, (4.6), (4.45) and
the fact that, again by Proposition 4.3, K(n) cannot increase on [σ (n)

k , τ
(n)
k ] ex-

cept by a jump and hence is constant in a neighborhood of t , together imply that
U(n) also decreases at unit rate in a neighborhood of t . Furthermore, the nature
of the EDF discipline and (4.55) show that at t , the standard system is serving a
customer with lead time no greater than E(n)(t). Combining the above properties
with the fact that U (n)(t)|(E(n)(t),∞) = W (n)

S (t)|(E(n)(t),∞) by (4.9), we conclude
that if U (n)(t−){E(n)(t−)} > 0, then U (n)(·){E(n)(·)} decreases with unit rate in
a neighborhood of t . On the other hand, if U (n)(t−){E(n)(t−)} = 0, then since

A(n)(t) = 0, E(n) jumps up at t . Indeed, in this case,

W (n)
S (t)

(−∞,E(n)(t−)
]= W (n)

S (t−)
(−∞,E(n)(t−)

]= K(n)(t−) = K(n)(t).

This means that

E(n)(t) = min
{
y ∈ R|W (n)

S (t)(−∞, y] > K(n)(t)
}

= min
{
y > E(n)(t−)|W (n)

S (t){y} > 0
}
.

It follows that

W (n)
S (t)

(
E(n)(t−),E(n)(t)

)= 0.(4.58)

Using the definition of E(n)(t), (4.46), (4.9), the assumption U (n)(t−){E(n)(t−)}
= 0, the assumption �A(n)(t) = 0, and (4.58), we obtain

U (n)(t)
[
E(n)(t),∞)= U(n)(t) = U(n)(t−)

= U (n)(t−)
[
E(n)(t−),∞)

= U (n)(t−)
(
E(n)(t−),∞)

= W (n)
S (t−)

(
E(n)(t−),∞)

= W (n)
S (t)

(
E(n)(t−),∞)

= W (n)
S (t)

[
E(n)(t),∞).

From (4.9) we see now that U (n)(t) = W (n)
S (t)|[E(n)(t),∞).

(ii) By (4.30), (4.4) and (4.5), for s ∈ (σ
(n)
k , t) we have

W (n)
S (s)

(−∞,E(n)(s)
]
> K(n)(s).(4.59)

As s ↑ t in (4.59), by (4.40), (4.38), and the case (ii) assumptions �A(n)(t) = 0
and E(n)(t−) = 0, we get

W (n)
S (t)(−∞,0] = W (n)

S (t−)(−∞,0] ≥ K(n)(t−).(4.60)
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When combined with Proposition 4.3, this implies

K(n)(t) = K(n)(t−) ∨ W (n)
S (t)(−∞,0] = W (n)

S (t)(−∞,0].(4.61)

By (4.4) and (4.5), for s ∈ (σ
(n)
k , t),

U (n)(s)
{
E(n)(s)

}= W (n)
S (s)

(−∞,E(n)(s)
]− K(n)(s).

Letting s ↑ t , invoking (4.40), (4.60) and (4.61), and recalling the assumption
E(n)(t−) = 0, we obtain

U (n)(t−){0} = W (n)
S (t−)(−∞,0] − K(n)(t−) = K(n)(t) − K(n)(t−),(4.62)

and the first equality in (4.47) follows. The second equality in (4.47) follows from
(4.6), (4.39) and the assumption �A(n)(t) = 0. Moreover, by (4.5) and (4.61), for
every y ∈ R,

U (n)(t)(−∞, y] = [W (n)
S (t)(−∞, y] − W (n)

S (t)(−∞,0]]+
(4.63)

= W (n)
S (t)|(0,∞)(−∞, y].

(iii) Let a = E(n)(t−). We can deduce (4.45) from (4.56) and (4.57) as in (i),
with the only difference that now (4.57), for s < t sufficiently close to t such that
A(n)(t−) = A(n)(s), follows from the fact that L

(n)

A(n)(t)
> 0, since this implies that

the work for the system associated with the customer arriving to the system at
time t does not contribute to W (n)

S (t)(−∞,0]. Next, let y < a, let ε = (a − y)/2

and note that by assumption, L
(n)

A(n)(t)
≥ a > y + ε. Thus, for s < t , s sufficiently

close to t [so as to ensure that A(n)(t−) = A(n)(s)], we have W (n)
S (t)(−∞, y] ≤

W (n)
S (s)(−∞, y + ε] ≤ K(n)(s), where the last inequality uses (4.5) and the fact

that y + ε < E(n)(t−). Letting s ↑ t , we obtain W (n)
S (t)(−∞, y] ≤ K(n)(t−),

which, together with (4.45), shows that y < E(n)(t). Thus, E(n)(t−) ≤ E(n)(t)

or, equivalently, �E(n)(t) ≥ 0.
We now turn to the proof of (4.48). Equation (4.5) implies

U (n)(t−)(−∞, y] = [W (n)
S (t−)(−∞, y] − K(n)(t−)

]+
.(4.64)

Indeed, for any y such that W (n)
S (t−){y} = 0, (4.64) follows from (4.5), in which

t is replaced by s < t , by taking s ↑ t . However, the family of sets (−∞, y] with
W (n)

S (t−){y} = 0 forms a separating class in B(R), and so (4.64) holds for all y.
Moreover, using (4.38), (4.45) and (4.5), we see that

U (n)(t)(−∞, y]
(4.65)

= [W (n)
S (t−)(−∞, y] − K(n)(t−) + v

(n)

A(n)(t)
δ
L

(n)

A(n)(t)
(t)

(−∞, y]]+.
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When combined with (4.64), this shows that

U (n)(t)(−∞, y] = U (n)(t−)(−∞, y], y < L
(n)

A(n)(t)
(t).(4.66)

On the other hand, if y ≥ L
(n)

A(n)(t)
(t), then y ≥ E(n)(t−) and (4.64) becomes

U (n)(t−)(−∞, y] = W (n)
S (t−)(−∞, y] − K(n)(t−).

From (4.65), we now have

U (n)(t)(−∞, y] = U (n)(t−)(−∞, y] + v
(n)

A(n)(t)
, y ≥ L

(n)

A(n)(t)
.(4.67)

When combined, (4.66) and (4.67) prove (4.48).
(iv) We have L

(n)

A(n)(t)
> 0, and so (4.45) holds by the same argument as in

case (iii), but now with a = L
(n)

A(n)(t)
. The assumptions L

(n)

A(n)(t)
< E(n)(t−) and

�A(n)(t) = 1, along with the relations (4.38), (4.5), (4.45) and the definition of
E(n), imply that

W (n)
S (t)

(−∞,E(n)(t−)
]= W (n)

S (t−)
(−∞,E(n)(t−)

]+ v
(n)

A(n)(t)

> W (n)
S (t−)

(−∞,E(n)(t−)
]

≥ K(n)(t−)

= K(n)(t).

Invoking (4.5) again, this shows that U (n)(t)(−∞,E(n)(t−)] > 0, which implies
E(n)(t) ≤ E(n)(t−). Now, let y < a = L

(n)

A(n)(t)
and let ε = (a − y)/2. Then, com-

bining (4.38), the inequalities y + ε < a < E(n)(t−) and (4.45), we obtain

W (n)
S (t)(−∞, y] ≤ W (n)

S (t−)(−∞, y + ε] ≤ K(n)(t−) = K(n)(t).

This shows that y < E(n)(t), which proves (4.49). In addition, by (4.6) and (4.45),
we have

U(n)(t) = W
(n)
S (t) − K(n)(t)

= W
(n)
S (t−) + v

(n)

A(n)(t)
− K(n)(t−)

= U(n)(t−) + v
(n)

A(n)(t)
,

and (4.50) follows. Furthermore, since E(n)(t) ≤ E(n)(t−) by (4.49), the relations
(4.9), (4.38) and the assumption L

(n)

A(n)(t)
< E(n)(t−) imply

U (n)(t)|(E(n)(t−),∞) = W (n)
S (t)|(E(n)(t−),∞)

= W (n)
S (t−)|(E(n)(t−),∞)

= U (n)(t−)|(E(n)(t−),∞).
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This establishes (4.51).
Finally, to prove (4.52), we will consider two cases.
Case I. E(n)(t) < E(n)(t−).
By (4.9), we know that

U (n)(t)
{
E(n)(t−)

}= W (n)
S (t)

{
E(n)(t−)

}
.

In turn, when combined with (4.64) and the definition of E(n), this shows that

U (n)(t−)
{
E(n)(t−)

}
= U (n)(t−)

(−∞,E(n)(t−)
]− U (n)(t−)

(−∞,E(n)(t−)
)

= W (n)
S (t−)

(−∞,E(n)(t−)
]− K(n)(t−)

− [W (n)
S (t−)

(−∞,E(n)(t−)
)− K(n)(t−)

]+
≤ W (n)

S (t−)
(−∞,E(n)(t−)

]− W (n)
S (t−)

(−∞,E(n)(t−)
)

= W (n)
S (t)

{
E(n)(t−)

}
= U (n)(t)

{
E(n)(t−)

}
,

and so (4.52) holds.
Case II. E(n)(t) = E(n)(t−).
By (4.5), (4.38), (4.45), (4.64) and the definition of E(n),

U (n)(t)
{
E(n)(t)

}= U (n)(t)
(−∞,E(n)(t)

]
= W (n)

S (t)
(−∞,E(n)(t)

]− K(n)(t)

= W (n)
S (t−)

(−∞,E(n)(t−)
]+ v

(n)

A(n)(t)
− K(n)(t−)

= U (n)(t−)
(−∞,E(n)(t−)

]+ v
(n)

A(n)(t)

= U (n)(t−)
{
E(n)(t−)

}+ v
(n)

A(n)(t)
,

which establishes (4.52) in this case as well. Since E(n)(t) ≤ E(n)(t−), the two
cases above are exhaustive, and so (4.52) is proved.

(v) Equation (4.63) holds by the same argument as in (ii), but where now the

equality in (4.60) follows from the fact that L
(n)

A(n)(t)
> 0. Let U (n)

1 (t)

= U (n)(t−)+

v
(n)

A(n)(t)
δ
L

(n)

A(n)(t)

− U (n)(t−){0}δ0. We want to show that U (n)(t) = U (n)
1 (t). By

(4.10), U (n)(t) and U (n)(t−) are supported on (0,∞) and [0,∞), respectively.
Thus,

U (n)(t)(−∞, y] = U (n)
1 (t)(−∞, y] = 0, y ≤ 0.(4.68)
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By (4.9) and the fact that E(n)(t−) = 0, we have U (n)(t−)|(0,∞) = W (n)
S (t−)|(0,∞).

The last two statements, along with (4.38), (4.63) and another application of (4.9),
show that

U (n)
1 (t)|(0,∞) = U (n)(t−)|(0,∞) + v

(n)

A(n)(t)
δ
L

(n)

A(n)(t)

= W (n)
S (t−)|(0,∞) + v

(n)

A(n)(t)
δ
L

(n)

A(n)(t)

= W (n)
S (t)|(0,∞)

= U (n)(t)|(0,∞).

This, together with (4.68), shows that U (n)(t) = U (n)
1 (t). �

The last result of this section concerns the evolution of U(n). Despite the differ-
ent ways in which arriving mass is distributed in the system with reneging and the
reference system, in both systems one can keep track of the total mass in system by
beginning with the arrived mass (which is the same in both systems), subtracting
the reduction in mass due to service (which occurs continuously at unit rate per
unit time whenever mass is present), and subtracting the mass that has become late
and been deleted. In particular, a simple mass balance shows that

W(n)(t) = V (n)(A(n)(t)
)− ∫ t

0
I{W(n)(s)>0} ds − R

(n)
W (t),(4.69)

where we recall that R
(n)
W is the total amount of reneged work in the reneging

system, which admits the representation (2.18), R
(n)
W (t) =∑0<s≤t W (n)(s−){0},

for all t ∈ [0,∞). We now show that the following analogous relation holds for
the reference workload:

U(n)(t) = V (n)(A(n)(t)
)− ∫ t

0
I{U(n)(s)>0} ds − R

(n)
U (t),(4.70)

where

R
(n)
U (t)


= ∑
0<s≤t

U (n)(s−){0}.(4.71)

Also, for notational convenience, we set R
(n)
W (0−) = R

(n)
U (0−) = 0.

COROLLARY 4.9. For every t ≥ 0, equation (4.70) holds. Moreover, R
(n)
U =

K
(n)
+ and hence

U(n) = N(n) + I
(n)
U − K

(n)
+ ,(4.72)

where, for t ≥ 0,

I
(n)
U (t)


=
∫ t

0
I{U(n)(s)=0} ds.(4.73)
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PROOF. For t ≥ 0, let Ũ (n)(t) be equal to the right-hand side of (4.70). By
(4.41) of Lemma 4.7, we have U(n)(0) = 0 = Ũ (n)(0). Moreover, for every k ≥ 1,
by Lemma 4.7 and the definition of σ

(n)
k , it follows that U(n)(t−) = U(n)(t) = 0

and �V (n)(A(n)(t)) = 0 for t ∈ (τ
(n)
k−1, σ

(n)
k ), U(n)(σ

(n)
k −) = 0 and �U(n)(σ

(n)
k ) =

�V (n)(A(n)(σ n
k )). When compared with the right-hand side of (4.70), this shows

that U(n) and Ũ (n) are both flat on (τ
(n)
k−1, σ

(n)
k ), with an upward jump at σ

(n)
k of

size �V (n)(A(n)(σ
(n)
k )). Thus, to prove the corollary, it suffices to show that the

increments of Ũ (n) and U(n) on the intervals (σ
(n)
k , τ

(n)
k ], k ≥ 1, coincide.

Fix k ≥ 1. We first show that


Ũ(n)(τ (n)
k

)= 
U(n)(τ (n)
k

)
.(4.74)

Equality (4.30) shows that there cannot be an arrival at time τ
(n)
k , for such an arrival

would have a positive lead time and hence increase W
(n)
S without increasing K(n)

(see Proposition 4.3). In other words, 
A(n)(τ
(n)
k ) = 0. Because there is no arrival

at τ
(n)
k , the measure-valued process W (n)

S is continuous at τ
(n)
k . Taking the limit in

(4.5) as t ↑ τ
(n)
k , we obtain

U (n)(τ (n)
k −)(−∞,0] = [W (n)

S

(
τ

(n)
k

)
(−∞,0] − K(n)(τ (n)

k −)]+ = 
K(n)(τ (n)
k

)
,

where the last equality is a consequence of (4.36). However, (4.10) implies
that U (n)(τ

(n)
k −)(−∞,0) ≤ lim

t↑τ
(n)
k

U (n)(t)(−∞,0) = 0, so 
Ũ(n)(τ
(n)
k ) =

−U (n)(τ
(n)
k −){0} = −
K(n)(τ

(n)
k ). From (4.6) and the continuity of W

(n)
S at τ

(n)
k ,

we see that −
K(n)(τ
(n)
k ) is also equal to 
U(n)(τ

(n)
k ), and (4.74) is proved.

We next show that 
Ũ(n)(t) = 
U(n)(t) for t ∈ (σ
(n)
k , τ

(n)
k ). If E(n)(t−) > 0,

then the definitions of E(n) and Ũ (n), and statements (i), (iii) and (iv) of Proposi-
tion 4.8 show that

�U(n)(t) = �Ũ (n)(t) = �V (n)(A(n)(t)
)
.

On the other hand, if E(n)(t−) = 0, then properties (ii) and (v) of Proposition 4.8
and the definition of Ũ (n) show that

�U(n)(t) = �Ũ (n)(t) = �A(n)(t)v
(n)

A(n)(t)
− U (n)(t−){0}.

Now, let S(n) be the (random) set of times s ≥ 0 for which U(n)(s) > 0 and at
least one of the following three properties holds:

�A(n)(s) > 0,

E(n)(s−) = 0

or

U (n)(s−)
{
E(n)(s−)

}= 0.
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Suppose U(n)(s) > 0. If E(n)(s−) = 0, then the fact that E(n)(s) > 0 by (4.10)
implies �E(n)(s) > 0, while if U (n)(s−){E(n)(s−)} = 0, the definition of E(n)(s)

implies that �(U (n)(s){E(n)(s)}) > 0. Thus, the set S(n) is countable, and on the
set {s ∈ (σ

(n)
k , t) :U(n)(s) > 0} \ S(n), the process U(n) decreases with unit rate

by Proposition 4.8(i). Therefore, the total amount of this decrease on any time
interval of the form (σ

(n)
k , t) equals

∫ t

σ
(n)
k

I{U(n)(s)>0} ds, which coincides with the

absolutely continuous part of Ũ (n)(t) − Ũ (n)(σ
(n)
k −) on the same interval. This

concludes the proof of (4.70).
Adding and subtracting t to (4.70), by the definition (2.6) of the netput process

N(n) and the nonnegativity of U(n), we obtain

U(n)(t) = N(n)(t) +
∫ t

0
I{U(n)(s)=0} ds − R

(n)
U (t),(4.75)

while substituting (4.15) and (2.8) into (4.6), we have

U(n)(t) = N(n)(t) + I
(n)
S (t) + K

(n)
− (t) − K

(n)
+ (t)

for t ≥ 0. On the other hand, we know that∫
[0,∞)

I{U(n)(s)>0} dI
(n)
S (s) = 0 and

∫
[0,∞)

I{U(n)(s)>0} dK
(n)
− (s) = 0,

where the former equality holds because W
(n)
S ≥ U(n) by (4.8), and I

(n)
S increases

only at times when W
(n)
S is zero, while the latter holds by (4.16). From the last

three displays, we conclude that∫
[0,∞)

I{U(n)(s)>0} dR
(n)
U (s) =

∫
[0,∞)

I{U(n)(s)>0} dK
(n)
+ (s).(4.76)

On the other hand, since U(n)(s) = 0 implies 
A(n)(s) = 0, from properties (i) and
(ii) of Proposition 4.8 and the fact that R

(n)
U is a pure jump process with 
R

(n)
U (t) =

U (n)(t−){0}, it follows that∫
[0,∞)

I{U(n)(s)=0} dR
(n)
U (s) =

∫
[0,∞)

I{U(n)(s)=0} dK
(n)
+ (s).

Together, the last two equalities imply R
(n)
U = K

(n)
+ , which, when substituted into

(4.70), yields (4.72). �

5. The reneging system. In this section we bound the difference in work-
load between the pre-limit reference and reneging systems—Lemma 5.2 provides
a lower bound, while Lemma 5.6 provides an upper bound. The proof of the upper
bound uses an optimality property of EDF that may be of independent interest.
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THEOREM 5.1. Let π be a service policy for a single-station, single-
customer-class queueing system with reneging such that the customer arrival times
to this system do not have a finite accumulation point. Let Rπ(t) be the amount
of work removed from this system up to time t due to lateness. Let RW(t) be the
amount of work removed due to lateness up to time t from the EDF system with
reneging and the same interarrival times, service times and lead times as in the
former system. Then for every t ≥ 0, we have

RW(t) ≤ Rπ(t).(5.1)

The proof of Theorem 5.1 is deferred to the Appendix. The related fact that the
EDF protocol minimizes the number of late customers in the G/M/c queue was
proved in [29], and the main idea of our proof is similar to that of [29]. However,
our argument is pathwise and the only assumption on the distribution of the sys-
tem stochastic primitives that we impose is that customer arrivals do not have a
finite accumulation point. This assumption is clearly satisfied almost surely by a
GI/G/1 queue.

5.1. Comparison results. In this section, we establish bounds on the difference
between the processes U(n) and W(n). In Section 6.1, this difference will be shown
to be negligible in the heavy traffic limit. We start with Lemma 5.2 showing that
W(n) ≤ U(n), which implies that R

(n)
U ≤ R

(n)
W (see Corollary 5.3).

In the proofs of these results, we will make frequent use of the observation that,
by (4.69) and (4.70),

W(n)(t) − U(n)(t) =
∫ t

0
I{U(n)(s)>0} ds −

∫ t

0
I{W(n)(s)>0} ds

(5.2)
+ R

(n)
U (t) − R

(n)
W (t)

for t ∈ [0,∞).

LEMMA 5.2. For every t ≥ 0, we have

W(n)(t) ≤ U(n)(t).(5.3)

PROOF. Let

τ

= min

{
t ≥ 0 :W(n)(t) > U(n)(t)

}
.(5.4)

If τ = +∞, then (5.3) holds. Assume τ < +∞. In this case, we claim that the
minimum on the right-hand side of (5.4) is attained. Indeed, (5.2) and the fact
that R

(n)
U and R

(n)
W are pure jump processes show that the only way that W(n) −

U(n) can become strictly positive is via a jump. Thus W(n)(τ ) > U(n)(τ ). Since
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W(τ )(−∞,0] = U (τ )(−∞,0] = 0 (in fact, this equality holds for any time t),
this means there must exist a y > 0 such that

W (n)(τ )(y,∞) > U (n)(τ )(y,∞).(5.5)

Let

τ0

= inf

{
t ∈ [0, τ ] : W (n)(t)(y + τ − t,∞) > U (n)(t)(y + τ − t,∞)

}
.(5.6)

By (5.5), the above infimum is over a nonempty set. Lemma 4.7 and Proposi-
tion 4.8 imply that the only difference in the dynamics of W (n) and U (n) is that
the arriving mass v

(n)
k is concentrated at L

(n)
k in the case of the EDF system with

reneging and distributed in [L(n)
k ,∞) in the reference system. On the other hand,

in both systems at time t ∈ [0, τ ], no mass leaves the interval (y + τ − t,∞) due
to lateness. This implies that W (n)(t)(y + τ − t,∞) − U (n)(t)(y + τ − t,∞),
t ∈ [0, τ ], has no positive jumps and therefore

W (n)(t)(y + τ − τ0,∞) = U (n)(t)(y + τ − τ0,∞).(5.7)

By (5.5) and (5.7), τ0 < τ . Thus, there exists t ∈ (τ0, τ ), where t − τ0 is arbitrarily
small and

W (n)(t)(y + τ − t,∞) > U (n)(t)(y + τ − t,∞).(5.8)

However, we claim that (5.7) and (5.8) imply that for all t ∈ (τ0, τ ), where t − τ0

is small enough, it must be that

W (n)(t)(0, y + τ − t] > 0,(5.9)

U (n)(t)(0, y + τ − t] = 0.(5.10)

Indeed, if (5.9) is false, then the left-hand side of (5.8) is equal to W(n)(t), and
consequently decreases with unit speed as long as it is nonzero in some time in-
terval beginning with τ0. Similarly, if (5.10) is false, the right-hand side of (5.8)
is constant on some interval beginning with τ0. In both cases, due to (5.7), (5.8)
cannot hold for t ∈ (τ0, τ ) with t − τ0 arbitrarily small. But (5.8)–(5.10) yield
W(n)(t) > U(n)(t) for some t < τ , which contradicts (5.4). �

COROLLARY 5.3. For every t ≥ 0,

R
(n)
U (t) ≤ R

(n)
W (t).(5.11)

Moreover, for k ≥ 1 and t ≥ σ
(n)
k ,

R
(n)
U (t) − R

(n)
U

(
σ

(n)
k −)≤ R

(n)
W (t) − R

(n)
W

(
σ

(n)
k −).(5.12)
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PROOF. Lemma 5.2 and (5.2) imply that for 0 ≤ s ≤ t ,(
R

(n)
U (t) − R

(n)
U (s)

)− (R(n)
W (t) − R

(n)
W (s)

)≤ U(n)(s) − W(n)(s).(5.13)

Substituting s = 0 into (5.13) and using the fact that R
(n)
U (0) = R

(n)
W (0) =

U(n)(0) = W(n)(0) = 0, we obtain (5.11). Likewise, for 0 ≤ s ≤ σ
(n)
k ≤ t , tak-

ing limits as s tends to σ
(n)
k in (5.13), and using the fact that U(n)(σ

(n)
k −) =

W(n)(σ
(n)
k −) = 0, which follows from (4.41), Lemma 5.2 and the nonnegativity

of W(n), we obtain (5.12). �

The proofs of Lemma 5.2 and Corollary 5.3 show the following more general
(and intuitively obvious) fact: if all customers in the EDF system with reneging
get larger deadlines, this results in a larger workload at every time t and a smaller
total amount of mass removed from the system due to lateness in the time interval
[0, t].

We now establish an inequality between the frontiers in both systems.

LEMMA 5.4. For every t ≥ 0 such that U(n)(t) > 0, we have

E(n)(t) ≤ F (n)(t).(5.14)

PROOF. Subtracting (4.5) from (4.6), we see that for any y ∈ R,

U (n)(t)(y,∞) = W
(n)
S (t) − K(n)(t) − [W (n)

S (t)(−∞, y] − K(n)(t)
]+

(5.15)
≤ W (n)

S (t)(y,∞).

Now, assume that for some t we have F (n)(t) < E(n)(t). In this case,

W(n)(t) ≥ W (n)(t)
{
C(n)(t)

}+ W (n)(t)
(
F (n)(t),∞)

= W (n)(t)
{
C(n)(t)

}+ V (n)(t)
(
F (n)(t),∞)

≥ W (n)(t)
{
C(n)(t)

}+ V (n)(t)
[
E(n)(t),∞)

(5.16)
≥ W (n)(t)

{
C(n)(t)

}+ W (n)
S (t)

[
E(n)(t),∞)

≥ W (n)(t)
{
C(n)(t)

}+ U (n)(t)
[
E(n)(t),∞)

≥ U(n)(t),

where the second line follows from the fact that none of the customers in the
EDF system with reneging that have lead times at time t greater than F (n)(t) has
received any service up to time t , the second-last inequality follows from (5.15)
and the last line holds due to the equality U(n)(t) = U (n)(t)[E(n)(t),∞). When
combined with the assumption that U(n)(t) > 0, this implies that W(n)(t) > 0.
This, in turn, implies that W (n)(t){C(n)(t)} > 0 because the residual service time
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of the currently served customer is strictly positive. Thus, the last inequality in
(5.16) is strict, which contradicts (5.3). �

Let D(n)(t) be the amount of work deleted by the EDF system with reneging
in the time interval [0, t] that is associated with customers whose lead times upon
arrival were smaller than the value of the frontier at the time of their arrival. In
the proof of the next lemma, we will make use of the elementary fact that by the
definition of F (n) we have

F (n)(t1) − (t2 − t1) ≤ F (n)(t2), S
(n)
1 ≤ t1 ≤ t2.(5.17)

LEMMA 5.5. For every t ≥ 0,

U(n)(t) − W(n)(t) ≤ D(n)(t).(5.18)

PROOF. If t ∈ [τ (n)
k−1, σ

(n)
k ) for some k ≥ 1, then U(n)(t) = 0 by (4.41). Thus,

by (4.19), it suffices to prove (5.18) on [σ (n)
k , τ

(n)
k ) for every k ≥ 1. Let k ≥ 1.

Suppose that (5.18) is false for some t ∈ [σ (n)
k , τ

(n)
k ). Let

τ

= min

{
t ∈ [σ (n)

k , τ
(n)
k

)|U(n)(t) − W(n)(t) > D(n)(t)
}
.(5.19)

We first argue that the minimum on the right-hand side of (5.19) is attained. Indeed,
by (5.2) and Lemma 5.2, it is clear that U(n) − W(n) cannot increase except by
a jump that is due to lateness in the EDF system with reneging. Thus, we have
W (n)(τ−){0} > 0 and

U(n)(τ ) − W(n)(τ ) > D(n)(τ ).(5.20)

Also, (4.41), (4.42) and Lemma 5.2 imply that U(n)(σ
(n)
k ) = �U(n)(σ

(n)
k ) =

�W(n)(σ
(n)
k ) = W(n)(σ

(n)
k ), so σ

(n)
k < τ . In particular, (5.19) implies

U(n)(τ−) − W(n)(τ−) ≤ D(n)(τ−).(5.21)

Let k0 be the index of the customer arriving at time σ
(n)
k , that is, S

(n)
k0

= σ
(n)
k .

Let k1 ≥ k0 be the index of a customer who reneges in the reneging system at
time τ . There must be such a customer, and there may in fact be more than one
such customer. The amount of work associated with all such customers at time τ is
W (n)(τ−){0}, and we seek to show that this work is bounded above by �D(n)(τ ).
We have S

(n)
k1

∈ [σ (n)
k , τ ) and L

(n)
k1

− (τ − S
(n)
k1

) = 0. The subsequent analysis is
divided into two cases.

Case I. For every customer k1 chosen as just described, assume there is a cus-
tomer � arriving in the time interval [σ (n)

k , S
(n)
k1

] who is at least as urgent as cus-
tomer k1 when customer k1 arrives but whose associated mass in the reference
system is at least partly assigned so that upon the arrival of customer k1, this mass
is to the right of L

(n)
k1

. In other words, � ∈ [k0, k1], L
(n)
� − (S

(n)
k1

− S
(n)
� ) ≤ L

(n)
k1
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and �W (n)(S
(n)
� ){L(n)

� } > �U (n)(S
(n)
� )[L(n)

l ,L
(n)
k1

+ S
(n)
k1

− S
(n)
� ]. In this case,

�U (n)(S
(n)
� )(L

(n)
k1

+ S
(n)
k1

− S
(n)
� ,∞) > 0. Indeed, by Lemma 4.7 and Proposi-

tion 4.8(iv) (describing the only case in which part of the mass of a new cus-
tomer is distributed by the reference workload to a point other than its lead
time) �U(S

(n)
� ) = v

(n)
� and �U (n)(S

(n)
� )(−∞,L

(n)
� ) = 0 [see (4.42), (4.43), (4.49),

(4.50) and (4.4)]. Let s > L
(n)
k1

+ S
(n)
k1

− S
(n)
� satisfy �U (n)(S

(n)
� ){s} > 0. Such a

point s exists since the measure U (n)(S
(n)
� ) is discrete.

If � > k0 (e.g., � = k1), then, by (4.51) in Proposition 4.8(iv) and Lemma 5.4,
we have s ≤ E(n)(S

(n)
� −) ≤ F (n)(S

(n)
� −) ≤ F (n)(S

(n)
� ). Thus, by (5.17), L

(n)
k1

<

s − (S
(n)
k1

− S
(n)
� ) ≤ F (n)(S

(n)
� ) − (S

(n)
k1

− S
(n)
� ) ≤ F (n)(S

(n)
k1

).

If � = k0, then, because U (n)(S
(n)
k0

){s} > 0, we have W (n)
S (S

(n)
k0

){s} > 0 by

the definition of U (n). In this case W (n)(S
(n)
k0

){s} = 0, because W(n) ≡ 0 on

[τ (n)
k−1, σ

(n)
k ) by (4.41) and Lemma 5.2, so W (n)(S

(n)
k0

) = W (n)(σ
(n)
k ) = v

(n)
k0

δ
L

(n)
k0

and s > L
(n)
k1

+ S
(n)
k1

− S
(n)
k0

≥ L
(n)
k0

by the definitions of � and s. Thus, a customer

with lead time equal to s at time S
(n)
k0

has already been in service in the EDF system

with reneging, so L
(n)
k1

+S
(n)
k1

−S
(n)
k0

< s ≤ F (n)(S
(n)
k0

) and consequently, by (5.17),

L
(n)
k1

< F(n)(S
(n)
k0

) − (S
(n)
k1

− S
(n)
k0

) ≤ F (n)(S
(n)
k1

).

Thus, regardless of the value of �, L
(n)
k1

< F(n)(S
(n)
k1

). In other words, under
the Case I assumption, every customer k1 who becomes late at time τ in the EDF
system with reneging arrived with initial lead time smaller than the value of F (n) at
the time of its arrival. The work associated with these customers deleted at time τ

is �D(n)(τ ). We conclude that W (n)(τ−){0} = �D(n)(τ ). However, by (5.2), we
have �(U(n) −W(n))(τ ) ≤ W (n)(τ−){0}, and so �(U(n) −W(n))(τ ) ≤ �D(n)(τ ).
This, together with (5.21), contradicts (5.20).

Case II. For a customer k1 chosen as described above, assume that every cus-
tomer � arriving in the time interval [σ (n)

k , S
(n)
k1

] who is as least as urgent as
customer k1 when customer k1 arrives has all its associated mass initially as-
signed in the reference system to the interval (0,L

(n)
k1

+ S
(n)
k1

− S
(n)
� ] upon ar-

rival. Customers � who are less urgent then k1 must have lead times satisfying
L

(n)
� > L

(n)
k1

+ S
(n)
k1

− S
(n)
� , and hence the mass brought by such customers must be

initially assigned to the half-line (L
(n)
k1

+S
(n)
k1

−S
(n)
� ,∞) in both systems. Then for

every t ∈ [σ (n)
k , S

(n)
k1

], we have

W (n)(t)
(
0,L

(n)
k1

− (t − S
(n)
k1

)]≤ U (n)(t)
(
0,L

(n)
k1

− (t − S
(n)
k1

)]
,(5.22)

as we now explain. Under the Case II assumption the arrival of new mass is the
same on both sides of (5.22). Furthermore, disregarding lateness and new arrivals,
both sides of (5.22) decrease at unit rate so long as they are nonzero. Finally, by
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(5.12) the amount of late work removed from the EDF system with reneging in the
time interval [σ (n)

k , t] is greater than or equal to the amount of late work removed

from U (n) in this time interval. Therefore, (5.22) holds for every t ∈ [σ (n)
k , S

(n)
k1

].
We claim that (5.22) in fact holds for all t ∈ [σ (n)

k , τ ). Suppose this is not the
case. Let

η

= inf

{
t ∈ [S(n)

k1
, τ
)|W (n)(t)

(
0,L

(n)
k1

− (t − S
(n)
k1

)]
(5.23)

> U (n)(t)
(
0,L

(n)
k1

− (t − S
(n)
k1

)]}
.

The strict inequality in (5.23) can occur only because of an arrival at time t which
brings mass to the interval (0,L

(n)
k1

− (t − S
(n)
k1

)] under the W (n) measure but not

under the U (n) measure. The arrival at time k1 does not have this property because
the Case II assumption applies to � = k1. Therefore, η > S

(n)
k1

.

Also, for t ∈ [S(n)
k1

, τ ),

W (n)(t)
{
L

(n)
k1

− (t − S
(n)
k1

)}
> 0,(5.24)

because the customer k1 is present in the EDF system with reneging at time t .
By (4.4), (5.24) and the definition of η, we have E(n)(t) ≤ L

(n)
k1

− (t − S
(n)
k1

) for

t ∈ [S(n)
k1

, η). Thus, E(n)(t−) ≤ L
(n)
k1

−(t −S
(n)
k1

) for t ∈ (S
(n)
k1

, η]. We argue that this
implies that the amounts of mass arriving in both the EDF system with reneging
and the reference workload at any time t ∈ (S

(n)
k1

, η] with lead times upon arrival
less than or equal to L

(n)
k1

− (t − S
(n)
k1

) are the same. Indeed, Proposition 4.8, es-
pecially (4.51), implies that no mass arriving at time t with lead time smaller than
E(n)(t−) in the EDF system with reneging is distributed to lead times greater than
E(n)(t−) by the reference workload. Also, Proposition 4.8(iii) and (v) imply that
the mass arriving at time t with lead time greater than or equal to E(n)(t−) is
distributed in the same way by the EDF system with reneging and the reference
system. By the same argument as in the case of t ∈ [σ (n)

k , S
(n)
k1

], we conclude that

(5.22) holds for t ∈ [S(n)
k1

, η], which contradicts the definition of η. We have shown

that (5.22) holds for t ∈ [σ (n)
k , τ ).

Letting t ↑ τ in (5.22) and using the fact that L
(n)
k1

− (τ − S
(n)
k1

) = 0,

we get W (n)(τ−){0} ≤ U (n)(τ−){0}. Thus, by (5.2), �(U(n) − W(n))(τ ) =
W (n)(τ−){0} − U (n)(τ−){0} ≤ 0 which, together with (5.21) and the fact that
D(n) is nondecreasing, contradicts (5.20). �

For the sake of the next proof, we define a sequence of auxiliary hybrid systems
(with the same stochastic primitives as in the case of the EDF systems described
in Section 2.2) as follows. The hybrid system gives priority to the jobs whose lead
times upon arrival are smaller than the current frontier F (n) in the corresponding



522 KRUK, LEHOCZKY, RAMANAN AND SHREVE

EDF system with reneging. In other words, for each k, the kth customer arriving
at the hybrid system joins the high-priority class if and only if

L
(n)
k < F (n)(S(n)

k

)
.(5.25)

The system processes high-priority customers according to the FIFO service dis-
cipline. When the priority class empties, the system goes idle until either another
high-priority customer arrives and the system resumes service in the manner de-
scribed above, or the corresponding EDF system with reneging finishes serving
the customers who have received priority in the hybrid system. Here, we are using
the fact that the high-priority customers leave the hybrid system before they leave
the EDF system with reneging, which is a consequence of the optimality of the
EDF discipline established in Theorem 5.1. (We have slightly abused the terminol-
ogy here, identifying the kth customer in the hybrid system with the corresponding
customer from the EDF system with reneging, while, formally, only the random
variables u

(n)
k , v

(n)
k and L

(n)
k associated with these customers are the same.) When-

ever the EDF system with reneging finishes serving a batch of customers who
have received high priority in the hybrid system, both systems then serve the low-
priority class using the EDF discipline until the next high-priority customer arrives.
In both systems, if a customer is present when his deadline passes, he leaves the
queue immediately, regardless of his class. The measure-valued workload process
associated with the hybrid system will be denoted by W (n)

H .

LEMMA 5.6. For every t ≥ 0, we have

U(n)(t) − W(n)(t)

≤
A(n)(t)∑
k=1

v
(n)
k ∧ (W (n)(S(n)

k −)(0,F (n)(S(n)
k

))+ v
(n)
k − L

(n)
k

)+(5.26)

× I{L(n)
k <F (n)(S

(n)
k )}.

PROOF. By Lemma 5.5, it suffices to show that D(n)(t) is not greater than the
right-hand side of (5.26). By Theorem 5.1, D(n)(t), the amount of unfinished work
associated with customers who arrived with lead times smaller than F (n) and were
deleted in the time interval [0, t] by the EDF system with reneging, is not greater
than the unfinished work associated with these customers and deleted by the corre-
sponding hybrid system. Note that the customers with lead times satisfying (5.25)
form a priority class in both the EDF system with reneging and the hybrid system,
and so their service is not affected by the presence of other customers. Further-
more, unfinished work associated with deleted customers who arrived with lead
times greater than or equal to F (n) is the same in both systems.

For each k, if (5.25) holds, then the kth customer of the hybrid system belongs
to the high-priority class. Moreover, if, for some l < k, L

(n)
l < F (n)(S

(n)
l ), then,
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by (5.17), L
(n)
l − (S

(n)
k − S

(n)
l ), the lead time of the lth customer at time S

(n)
k ,

is smaller than F (n)(S
(n)
k ). Thus, if (5.25) holds, the kth customer waits at most

W (n)
H (S

(n)
k −)(0,F (n)(S

(n)
k )) time units before he starts receiving service. (His wait-

ing time may actually be smaller because some of the high-priority customers in
queue who have arrived before him may renege before they are served to comple-
tion.) We have

W (n)
H

(
S

(n)
k −)(0,F (n)(S(n)

k

))≤ W (n)(S(n)
k −)(0,F (n)(S(n)

k

))
,(5.27)

because, in both systems under consideration, the arrivals with lead times smaller
than F (n) and the corresponding work associated with them are the same, the server
serves these customers with rate 1 as long as they are present in the system, but, by
Theorem 5.1, the amount of unfinished work associated with these customers and
deleted by the EDF system with reneging is not greater than the work deleted by
the hybrid system. Thus, if (5.25) holds, the time required for the hybrid system to
fully serve the kth customer is at most W (n)(S

(n)
k −)(0,F (n)(S

(n)
k )) + v

(n)
k . There-

fore, under assumption (5.25), the unfinished work deleted by the hybrid system
due to lateness of the kth customer is at most v

(n)
k ∧ (W (n)(S

(n)
k −)(0,F (n)(S

(n)
k ))+

v
(n)
k − L

(n)
k )+. Thus, the amount of work associated with high-priority customers

deleted by the hybrid system up to time t is bounded above by the right-hand side
of (5.26). �

6. Heavy traffic analysis. In Sections 6.1 and 6.2, respectively, we identify
the heavy traffic limit of the scaled workload and the scaled reneged work in the
reneging system. In both cases, this is done by first considering the reference sys-
tem, which is easier to analyze, and then using the bounds derived in Section 5.1 to
show that the limits in both systems coincide. For the heavy traffic analysis of the
reference system, we will find it useful to introduce the following scaled quantities:

Û (n)(t)

= 1√

n
U(n)(nt), R̂

(n)
U (t)


= 1√
n
R

(n)
U (nt),

(6.1)

K̂
(n)
+ (t)


= 1√
n
K

(n)
+ (nt),

and, for every Borel set B ⊂ R,

Û (n)(t)(B)

= 1√

n
U (n)(nt)

(√
nB
)
.(6.2)

Also, define

U ∗ 
= �(W ∗
S) and U∗(·) 
= U ∗(·)(R) = �(W ∗

S)(R).(6.3)

6.1. Proofs of main results concerning the workload.

6.1.1. Proof of Theorem 3.4. In Lemma 6.1, we use the continuity property of
the mapping � established in Lemma 4.1, along with the characterization of the
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heavy traffic limit of the workload measure-valued process in the standard system,
to identify the heavy traffic limit of the workload in the reference system. Let
�H(0) :D[0,∞) → D[0,∞) be the mapping defined, for every φ ∈ D[0,∞) and
t ≥ 0, by

�H(0)(φ)(t)

= φ(t) − sup

s∈[0,t]

[(
φ(s) − H(0)

)+ ∧ inf
u∈[s,t]φ(u)

]
.(6.4)

If φ is nonnegative, then by Theorem 1.4 from [25], �H(0)(φ) is the function
in D[0,∞) obtained by double reflection of φ at 0 and H(0). In other words,
�H(0)(φ) takes values in [0,H(0)] and has the unique decomposition

�H(0)(φ) = φ − κ+ + κ−,(6.5)

where κ± are nondecreasing RCLL functions satisfying κ±(0−) = 0 and∫
[0,∞)

I{�H(0)(φ)(s)<H(0)} dκ+(s) = 0,

(6.6) ∫
[0,∞)

I{�H(0)(φ)(s)>0} dκ−(s) = 0.

LEMMA 6.1. The process U∗ satisfies

U∗ = �H(0)(W
∗
S )(6.7)

and has the same distribution as W ∗. Moreover, Û (n) ⇒ U ∗ = �(W ∗
S) and Û (n) ⇒

W ∗ as n → ∞.

PROOF. By the definition of U∗ and � given in (6.3) and (4.2), respectively,

U∗(t) = �(W ∗
S)(R)(t) = W ∗

S (t)− sup
s∈[0,t]

[
W ∗

S(−∞,0]∧ inf
u∈[s,t]W

∗
S (u)
]
, t ≥ 0.

Since (3.1)–(3.3) imply W ∗
S(t)(−∞,0] = (W ∗

S (t) − H(0))+ for every t ≥ 0, this
shows that U∗ = �H(0)(W

∗
S ). By the characterization of W ∗

S given at the end of
Section 2.4, �H(0)(W

∗
S ) is a Brownian motion with variance (α2 + β2)λ per unit

time and drift −γ , reflected at 0 and H(0). This proves the first claim.
Next, using the definition U (n) = �(W (n)

S ) and the scaling properties of �,

it is easy to see that Û (n) = �(Ŵ (n)
S ). Since, by Theorem 3.2, we know that

Ŵ (n)
S ⇒ W ∗

S , where W ∗
S is continuous and W ∗

S(t) has a continuous distribution
for every t , an application of the continuous mapping theorem, along with the con-
tinuity property of � stated in Lemma 4.1, shows that Û (n) ⇒ �(W ∗

S). This, in
particular, implies that Û (n) = Û (n)(R) ⇒ U∗. Since U∗ has the same distribution
as W ∗, this proves the lemma. �

We identify the heavy traffic limit of the workload in the reneging system. We
start with Proposition 6.2, which states that the number of customers in the EDF
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system with reneging having lead times not greater than the current frontier and
the work associated with these customers are negligible under heavy traffic scaling.
Then, in Corollary 6.3, we use the comparison results established in Section 5.1 to
show that the workloads in the reference and reneging systems are equal with high
probability and so their heavy traffic limits coincide.

PROPOSITION 6.2. The processes Ŵ (n)(0, F̂ (n)] and Q̂(n)(0, F̂ (n)] converge
in distribution to zero as n → ∞.

This result holds for the same reason that state-space collapse occurs for priority
queues, an idea that can be traced back to [35]. Specifically, in our model, due to
the nature of the EDF service discipline, the entire capacity of the server is always
devoted to work that lies to the left or at the frontier, as long as the system is
nonempty. Thus the process W (n)(0,F (n)] is equal to the workload in a single-
server GI/G/1 queue that has netput process V (n)(t)(−∞,F (n)(t)]− t , t ≥ 0. By
showing that F (n)(t) <

√
ny∗, one shows that this (high-priority) queue is in light

traffic as n → ∞, and so its diffusion scaling vanishes in the limit. Since a rigorous
proof that Ŵ (n)[Ĉ(n), F̂ (n)] ⇒ 0 and Q̂(n)[Ĉ(n), F̂ (n)] ⇒ 0 would be very similar
to the proofs of Proposition 3.6 and Corollary 3.8 in [7], we omit the details. We
note that Ŵ (n)(0, Ĉ(n)) = Q̂(n)(0, Ĉ(n)) = 0 by definition.

COROLLARY 6.3. Let T > 0. As n → ∞,

P
[
U(n)(t) = W(n)(t),0 ≤ t ≤ nT

]→ 1.(6.8)

PROOF. Because customers with strictly positive lead times do not renege, we
have W (n)(S

(n)
k −)(0,F (n)(S

(n)
k )) ≤ W (n)(S

(n)
k )(0,F (n)(S

(n)
k )) for k ≥ 1. Thus, by

Lemmas 5.2 and 5.6, to prove (6.8), it suffices to show that as n → ∞,

P
[

W (n)(S(n)
k

)(
0,F (n)(S(n)

k

))+ v
(n)
k ≤ L

(n)
k ,1 ≤ k ≤ A(n)(nT )

]→ 1.

However, this follows from the fact that, by (2.15),

max
1≤k≤A(n)(nT )

v
(n)
k = √

n max
0≤t≤T

�N̂
(n)
S (t) = o

(√
n
)
,

the inequalities L
(n)
k ≥ √

ny∗, y∗ > 0, and Proposition 6.2. �

Theorem 3.4 now follows immediately from Lemma 6.1 and Corollary 6.3.

6.1.2. Proofs of Proposition 3.5 and Theorem 3.6. We present the proofs of the
remaining two limit theorems concerning the measure-valued workload processes.
For this, we need two preliminary results. The first, Lemma 6.4, is that the frontier
in the reneging system is strictly positive with high probability. The second result,
Proposition 6.5, is a recap of a result established in [7].
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LEMMA 6.4. Let T > 0. As n → ∞,

P
[
F (n)(t) > 0,0 ≤ t ≤ nT

]→ 1.(6.9)

PROOF. Let 0 ≤ t ≤ nT . If W(n)(t) > 0, then F (n)(t) is not smaller than the
lead time of the currently served customer, so F (n)(t) > 0. If W(n)(t) = 0, then the
customer indexed by A(n)(t) has already been in service, so

F (n)(t) ≥ L
(n)

A(n)(t)
− (t − S

(n)

A(n)(t)

)
≥ √

ny∗ − u
(n)

A(n)(t)+1
(6.10)

≥ √
ny∗ − max

1≤k≤A(n)(nT )+1
u

(n)
k .

However, max1≤k≤A(n)(nT )+1 u
(n)
k = o(

√
n) by (2.13) (in particular, by the fact that

S∗ has continuous sample paths), so (6.10) implies (6.9). �

PROPOSITION 6.5 (Proposition 3.4 [7]). Let −∞ < y0 < y∗ and T > 0 be
given. As n → ∞,

sup
y0≤y≤y∗

sup
0≤t≤T

∣∣V̂ (n)(t)(y,∞) + H
(
y + √

nt
)− H(y)

∣∣ P−→ 0,

sup
y0≤y≤y∗

sup
0≤t≤T

∣∣Â(n)(t)(y,∞) + λH
(
y + √

nt
)− λH(y)

∣∣ P−→ 0.

PROOF OF PROPOSITION 3.5. Let T > 0. We will show that F̂ (n) ⇒ F ∗ in
DR[0, T ]. By definition, y∗ − √

nt ≤ F̂ (n)(t) ≤ y∗. Thus, by Proposition 6.5 and
the fact that H(y) = 0 for y ≥ y∗,

sup
0≤y≤y∗

sup
0≤t≤T

∣∣V̂ (n)(t)
(
F̂ (n)(t) ∨ y,∞)− H

(
F̂ (n)(t) ∨ y

)∣∣ P−→ 0.(6.11)

Putting y = 0 in (6.11) and using Lemma 6.4, we obtain

sup
0≤t≤T

∣∣V̂ (n)(t)
(
F̂ (n)(t),∞)− H

(
F̂ (n)(t)

)∣∣ P−→ 0.(6.12)

For any t ≥ 0,

Ŵ (n)(t) = Ŵ (n)(t)
(
0, F̂ (n)(t)

]+ Ŵ (n)(t)
(
F̂ (n)(t),∞)

(6.13)
= Ŵ (n)(t)

(
0, F̂ (n)(t)

]+ V̂ (n)(t)
(
F̂ (n)(t),∞),

where the second line follows from the fact that none of the customers in the
EDF system with reneging with lead times at time t greater than F (n)(t) has re-
ceived any service up to time t . This, together with Proposition 6.2 and Theo-
rem 3.4, yields V̂ (n)(F̂ (n),∞) ⇒ W ∗. Thus, by (6.12), we have H(F̂ (n)) ⇒ W ∗ in
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DR[0, T ]. Applying the continuous function H−1 to both sides of this relation and
using (3.4), we obtain F̂ (n) ⇒ F ∗ in DR[0, T ]. �

PROOF OF THEOREM 3.6. Define a mapping ψ : R → M by the formula

ψ(x)(B)

= ∫B∩[x,∞)(1 − G(η)) dη for x ∈ R and B ∈ B(R). It is easy to see that

ψ is continuous. Hence, by Proposition 3.5,(
ψ
(
F̂ (n)), λψ

(
F̂ (n)))⇒ (ψ(F ∗), λψ(F ∗)) = (W ∗, Q∗).(6.14)

Let T > 0. We claim that

sup
0≤y≤y∗

sup
0≤t≤T

∣∣Ŵ (n)(t)(y,∞) − ψ
(
F̂ (n)(t)

)
(y,∞)

∣∣ P−→ 0,(6.15)

sup
0≤y≤y∗

sup
0≤t≤T

∣∣Q̂(n)(t)(y,∞) − λψ
(
F̂ (n)(t)

)
(y,∞)

∣∣ P−→ 0.(6.16)

Indeed, reasoning as in (6.13), we see that, for 0 ≤ y ≤ y∗ and 0 ≤ t ≤ T ,∣∣Ŵ (n)(t)(y,∞) − H
(
F̂ (n)(t) ∨ y

)∣∣
≤ ∣∣Ŵ (n)(t)

(
F̂ (n)(t) ∨ y,∞)− H

(
F̂ (n)(t) ∨ y

)∣∣+ Ŵ (n)(t)
(
0, F̂ (n)(t)

]
= ∣∣V̂ (n)(t)

(
F̂ (n)(t) ∨ y,∞)− ψ

(
F (n)(t)

)
(y,∞)

∣∣+ Ŵ (n)(t)
(
0, F̂ (n)(t)

]
.

Therefore, (6.15) follows from (6.11) and Proposition 6.2. A similar argument
gives (6.16). We have Ŵ (n)(t)(−∞,0] = Ŵ (n)(t)(y∗,∞) = Q̂(n)(t)(−∞,0] =

Q̂(n)(t)(y∗,∞) = 0 and, by Lemma 6.4, P[ψ(F̂ (n)(t))(−∞,0] = 0,0 ≤ t ≤ T ] →
1 as n → ∞. Also, ψ(x)(y∗,∞) = 0 for every x ∈ R. Thus, (6.14)–(6.16) imply
that (Ŵ (n), Q̂(n)) ⇒ (W ∗, Q∗) in DM[0, T ]. �

6.2. The heavy traffic limit of the reneged work process. In this section, we
identify the limit of the sequence {R̂(n)

W ,n ∈ N}, thereby proving Theorem 3.8. To
do this, it is convenient to show that many of the processes under consideration
can be put on a common probability space so that certain weak limits established
earlier can be replaced by almost sure limits.

LEMMA 6.6. The processes Ŵ (n)
S , Û (n), Ŵ (n), n ∈ N, W ∗

S , U ∗ and W ∗ can
be defined on a common probability space (�, F ,P) such that P almost surely, as
n → ∞,

Ŵ (n)
S → W ∗

S ,(6.17)

Ŵ
(n)
S → W ∗

S ,(6.18)

Ŵ (n)
S (·)(−∞,0] → W ∗

S(·)(−∞,0] = (W ∗
S (·) − H(0)

)+
,(6.19)

Û (n) → U∗(6.20)
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and

Ŵ (n) → W ∗ 
= U∗,(6.21)

where Ŵ
(n)
S = Ŵ (n)

S (R), W ∗
S = W ∗

S(R), Û (n) = Û (n)(R) and U∗ = U ∗(R). Fur-
thermore, W ∗

S is a Brownian motion with variance (α2 + β2)λ per unit time
and drift −γ , reflected at 0, while U∗ is a doubly reflected Brownian motion on
[0,H(0)], also with variance (α2 +β2)λ per unit time and drift −γ . In particular,

U∗ = �H(0)(W
∗
S ) = W ∗

S − K∗+ + K∗−,(6.22)

where K∗± are the unique RCLL nondecreasing functions satisfying K∗±(0) = 0 and∫
[0,∞)

I{U∗(s)<H(0)} dK∗+(s) = 0,

∫
[0,∞)

I{U∗(s)>0} dK∗−(s) = 0.(6.23)

The almost sure limits in (6.17)–(6.21) hold uniformly on compact intervals.

PROOF. Recall from Theorem 3.2 that Ŵ (n)
S ⇒ W ∗

S . Using the Skorokhod

representation theorem, we construct the model primitives u
(n)
j , v

(n)
j and L

(n)
j for

j ∈ N and n ∈ N on a common probability space (�, F ,P) such that the sequence
of processes Ŵ (n)

S , n ∈ N, and the limiting process W ∗
S are defined on this space

and (6.17) holds. Here and below the almost sure convergences are in the J1 topol-
ogy on DM[0,∞) or DR[0,∞), and since the limits are continuous in every case,
this is equivalent to uniform convergence on compact intervals. Since the map-
ping f :DM[0,∞) �→ DR[0,∞) given by f (μ)(·) = μ(·)(R) is continuous, we
have (6.18). Under P the measure-valued process W ∗

S constructed on � has the
same distribution as the process W ∗

S appearing in Theorem 3.2, and thus W ∗
S takes

values in the set of measure-valued process of the form
∫
B∩[Fo

S (t),∞)(1 − G(y)) dy

for some RCLL process Fo
S (t). However, W ∗

S (t) = ∫
R∩[Fo

S (t),∞)(1 − G(y)) du =
H(Fo

S (t)); hence Fo
S (t) = F ∗

S (t) is given by (3.2). In other words, with F ∗
S defined

by (3.2), the first equation in (3.3) holds. Due to Proposition 3.1, the above argu-
ment also shows that under P, W ∗

S is a Brownian motion with variance (α2 +β2)λ

per unit time and drift −γ . In addition, since for each t , the measure W ∗
S(t) is

nonatomic, we have (6.19).
Now, following (4.1) and (6.3), we set U (n) = �(W (n)

S ) and U ∗ = �(W ∗
S). Also,

as defined in (6.2), let Û (n) be the scaled version of U (n), and let Û (n) and Û∗ be
as defined in the statement of the lemma. Then Û (n), Û (n), n ∈ N, U ∗ and U∗ are
also defined on (�, F ,P) and (6.20) follows from Lemma 4.1. This implies (6.21).
Since U∗ = �(W ∗

S)(R) = �H(0)(W
∗
S ), the characterization of U∗ as a doubly re-

flected Brownian motion that satisfies relations (6.22) and (6.23) is a consequence
of the statements following (6.4), in particular, (6.5) and (6.6).

Since the model primitives u
(n)
j , v

(n)
j and L

(n)
j for j ∈ N and n ∈ N are all de-

fined on (�, F ,P), so are the workload process W(n) and its scaled version Ŵ (n).
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Corollary 6.3 implies that Û (n) and Ŵ (n) have the same limit, and hence (6.21),
the almost sure counterpart to Theorem 3.4, holds. �

The assertion of Theorem 3.8 is that

R̂
(n)
W ⇒ K∗+,(6.24)

where K∗+ is the local time for U∗ at H(0) from (6.22). For T < ∞, define

Zn(T )

= {R̂(n)

U (t) = R̂
(n)
W (t),0 ≤ t ≤ T

}
.(6.25)

From the workload evolution equations (4.69) and (4.70), it follows that if
Û (n)(t) = Ŵ (n)(t) for t ∈ [0, T ], then R̂

(n)
U (t) = R̂

(n)
W (t) for t ∈ [0, T ]. Hence, by

Corollary 6.3, we know that for every T < ∞, P(Zn(T )) → 1 as n → ∞, which
shows that the limits in distribution of R̂

(n)
U and R̂

(n)
W , n ∈ N, must coincide (if

they exist). Further, since K̂
(n)
+ = R̂

(n)
U by Corollary 4.9, these must be equal to the

limit in distribution of K̂
(n)
+ , n ∈ N. Hence, to complete the proof of Theorem 3.8,

it suffices to show that

K̂
(n)
+ ⇒ K∗+.(6.26)

For n ∈ N and k ≥ 1, recall the definitions of τ
(n)
k−1 and σ

(n)
k given in (4.11)

and (4.12), respectively, and define τ̂
(n)
k−1


= 1
n
τ

(n)
k−1 and σ̂

(n)
k


= 1
n
σ

(n)
k . Applying the

heavy traffic scaling to (4.13), it is easy to see that for t ≥ 0,

K̂
(n)
+ (t) =∑

k∈N

[
Ŵ

(n)
S

(
σ̂

(n)
k −)∨ max

s∈[σ̂ (n)
k ,t∧τ̂

(n)
k ]

Ŵ (n)
S (s)(−∞,0]

(6.27)
− Ŵ

(n)
S

(
σ̂

(n)
k −)].

Keeping in mind the limits in (6.17) and (6.19), we introduce the related process

Ŷ (n)(t)

=∑

k∈N

[
W ∗

S

(
σ̂

(n)
k

)∨ max
s∈[σ̂ (n)

k ,t∧τ̂
(n)
k ]
(
W ∗

S (s) − H(0)
)+ − W ∗

S

(
σ̂

(n)
k

)]
(6.28)

for t ≥ 0, and denote the difference by

ε(n)(t)

= Ŷ (n)(t) − K̂

(n)
+ (t) ∀t ≥ 0.(6.29)

Then Ŷ (n) is nondecreasing and continuous, and ε(n) is an RCLL process.
In the next two lemmas, we show that Ŷ (n) increases only when U∗ is at H(0)

and that the difference ε(n) between Ŷ (n) and K̂
(n)
+ is negligible in heavy traffic.

The main reason for introducing the sequence Ŷ (n), n ∈ N, is that it facilitates the
proof of the former property.
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LEMMA 6.7. For every n ∈ N, Ŷ (n) and K̂
(n)
+ are constant on each interval

[τ̂ (n)
k−1, σ̂

(n)
k ), k ≥ 1. Moreover,∫

[0,T ]
I{U∗(t)<H(0)} dŶ (n)(t) = 0.(6.30)

PROOF. Fix n ∈ N. The first statement follows immediately from (6.27),
(6.28), and the fact that the intervals [τ̂ (n)

k−1, σ̂
(n)
k ) and [σ̂ (n)

k , τ̂
(n)
k ), k ≥ 1, form

a disjoint covering of [0,∞). Now, fix k ≥ 1 and let J
(n)
k be the set of points

t ∈ [σ̂ (n)
k , τ̂

(n)
k ) such that

W ∗
S

(
σ̂

(n)
k

)≤ max
s∈[σ̂ (n)

k ,t]
(
W ∗

S (s) − H(0)
)+ = W ∗

S (t) − H(0).(6.31)

Since W ∗
S is continuous, J

(n)
k is closed, and so its complement in [σ (n)

k , τ
(n)
k ) is the

union of a countable number of open intervals, with possibly one half-open interval
of the form [σ̂ (n)

k , a) for some a > σ̂
(n)
k . From the explicit formula for Ŷ (n) given

in (6.28), it is easy to deduce that Ŷ (n) is also constant on each such interval. Thus,
to establish (6.30), it only remains to show that for each k ≥ 1,∫

J
(n)
k

I{U∗(t)<H(0)} dŶ (n)(t) = 0.(6.32)

Fix t ∈ J
(n)
k and note that by the equality in (6.22) and the definition (6.4) of

�H(0), we have U∗(t) = W ∗
S (t) − K∗(t), where

K∗(t) 
= sup
s∈[0,t]

[(
W ∗

S (s) − H(0)
)+ ∧ inf

u∈[s,t]W
∗
S (u)
]
.(6.33)

Also, note that

sup
s∈[0,σ̂

(n)
k )

[(
W ∗

S (s) − H(0)
)+ ∧ inf

u∈[s,t]W
∗
S (u)
]
≤ sup

s∈[0,σ̂
(n)
k )

inf
u∈[s,t]W

∗
S (u)

≤ W ∗
S

(
σ̂

(n)
k

)
,

and that the equality in (6.31) implies

sup
s∈[σ̂ (n)

k ,t]

[(
W ∗

S (s) − H(0)
)+ ∧ inf

u∈[s,t]W
∗
S (u)
]
= W ∗

S (t) − H(0).

Since K∗(t) is equal to the maximum of the quantities on the left-hand side of the
last two displays, we conclude that

K∗(t) ≤ W ∗
S

(
σ̂

(n)
k

)∨ (W ∗
S (t) − H(0)

)= W ∗
S (t) − H(0),
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where the equality follows from the inequality in (6.31). This, when combined
with the fact that U∗(t) ∈ [0,H(0)], shows that U∗(t) = W ∗

S (t) − K∗(t) = H(0)

for all t ∈ J
(n)
k , which proves (6.32). �

We recall some standard definitions that will be used in the next lemma. Given
f ∈ D[0,∞) and 0 ≤ t1 ≤ t2 < ∞, the oscillation of f over [t1, t2] is

Osc(f ; [t1, t2]) 
= sup{|f (t) − f (s)| : t1 ≤ s ≤ t ≤ t2},
and the modulus of continuity of f over [0, T ] is

wf (δ; [0, T ]) 
= sup{|f (t) − f (s)| : 0 ≤ s ≤ t ≤ T , |t − s| ≤ δ}.

LEMMA 6.8. As n → ∞, ε(n) P−→ 0.

PROOF. Fix T > 0 and let η > 0 be arbitrarily small. By the Kolmogorov–
Čentsov theorem (see, e.g., Theorem 2.8, page 53 of [17]), we can construct a
positive, increasing deterministic function θ(·) satisfying limδ↓0 θ(δ) = 0 and ma-
jorizing the modulus of continuity wW ∗(·; [0, T ]) of the reflected Brownian motion
W ∗ over [0, T ] on a set �̃ with P(�̃) ≥ 1 − η.

For each subsequence in N, there is a sub-subsequence S along which the limits
(6.17)–(6.21) hold P-almost surely. We choose �̃ so that these limits hold along S
for all ω ∈ �̃.

In what follows, for n ∈ S , we denote Zn(T ) simply by Zn, and evaluate all
processes below at a fixed ω ∈ Zn ∩ �̃. Choose 
 < y∗/3, and let n0 ∈ S be such
that for all n ∈ S , n ≥ n0,

sup
t∈[0,T ]

∣∣Ŵ (n)
S (t)(−∞,0] − (W ∗

S (t) − H(0)
)+∣∣≤ 
,(6.34)

sup
t∈[0,T ]

∣∣Ŵ (n)
S (t−) − W ∗

S (t)
∣∣≤ 
,

(6.35)
sup

t∈[0,T ]
∣∣Ŵ (n)(t−) − W ∗(t)

∣∣≤ 
,

sup
t∈[0,T ]

∣∣Û (n)(t−) − U∗(t)
∣∣≤ 
.(6.36)

From the definitions (6.27) and (6.28), respectively, of K̂
(n)
+ and Ŷ (n) it is clear

that, for every k ∈ N such that τ
(n)
k ≤ T ,

sup
t∈[σ̂ (n)

k ,τ̂
(n)
k ]

∣∣Ŷ (n)(t) − Ŷ (n)(σ̂ (n)
k −)− (K̂(n)

+ (t) − K̂
(n)
+
(
σ̂

(n)
k −))∣∣≤ 2
.
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Define

Jn

= {k ∈ N : K̂(n)

+
(
τ̂

(n)
k

)− K̂
(n)
+
(
σ̂

(n)
k −)> 0, τ̂

(n)
k ≤ T

}
,

J̃n

= {k ∈ N : Ŷ (n)(τ̂ (n)

k

)− Ŷ (n)(σ̂ (n)
k −)> 0, τ̂

(n)
k ≤ T

}
,

and let c(n) be the cardinality of J (n) ∪ J̃ (n). Since K̂
(n)
+ and Ŷ (n) are both constant

on intervals of the form [τ̂ (n)
k−1, σ̂

(n)
k ), k ≥ 1 (see Lemma 6.7), we have

ε(n)(T )

= sup

s∈[0,T ]
∣∣Ŷ (n)(s) − K̂

(n)
+ (s)

∣∣≤ 2c(n)
.(6.37)

We now claim that

k ∈ [Jn ∪ J̃n] ⇒ Osc
(
W ∗,

[
σ̂

(n)
k , τ̂

(n)
k

])≥ y∗
3

.(6.38)

We defer the proof of the claim and instead first show that the lemma follows from

this claim. Let θ−1(·) denote the inverse of θ and define M

= T/θ−1(y∗/3) < ∞.

From the claim, we conclude that if k ∈ [Jn ∪ J̃n] then τ̂
(n)
k − σ̂

(n)
k ≥ θ−1(y∗/3) >

0, which in turn implies that c(n) ≤ M . Substituting this into (6.37), we conclude
that for every 
 > 0, there exists n0(
) ∈ S such that for all n ∈ S , n ≥ n0(
),

P
(
ε(n)(T ) > 2M


)≤ P(Z c
n ∪ �̃c) ≤ P(Z c

n) + η.

Taking limits as n → ∞ through S and using the fact that P(Zn) → 1, we conclude

that ε(n)(T )
P−→ 0. We have shown that for each subsequence in N, there is a sub-

subsequence along which ε(n)(T )
P−→ 0. It follow that ε(n)(T )

P−→ 0, where the
limit is taken over all n ∈ N, and this proves the lemma.

We now turn to the proof of the claim (6.38). Note first that by the definition of
H(0) and y∗, we have H(0) ≥ y∗. If k ∈ J̃n, then Lemma 6.7 shows that U∗(t) =
H(0) for some t ∈ [σ̂ (n)

k , τ̂
(n)
k ). By the equality Û (n)(σ̂

(n)
k −) = 0 proved in Lem-

ma 4.7 and (6.36), this implies that the oscillation of U∗ on [σ̂ (n)
k , τ̂

(n)
k ) is no less

than H(0) − 
 ≥ y∗/3. Since W ∗ = U∗, the conclusion in (6.38) holds.
Finally, suppose k ∈ Jn. Since K̂

(n)
+ = R̂

(n)
U = R̂

(n)
W , we have

R̂
(n)
W

(
τ̂

(n)
k

)− R̂
(n)
W

(
σ̂

(n)
k −)> 0,

that is, the deadline of a customer in the reneging system expires during the un-
scaled time interval [σ (n)

k , τ
(n)
k ]. Since

W(n)(σ (n)
k −)= 0(6.39)

[because U(n)(σ
(n)
k −) = 0 and, by Lemma 5.2, W(n) ≤ U(n)], this customer must

arrive during the interval [σ (n)
k , τ

(n)
k ). Since his initial lead time is greater than

or equal to
√

ny∗, there is a time nt0 ∈ [σ (n)
k , τ

(n)
k ) when this customer has lead



EDF QUEUES WITH RENEGING 533

time exactly
√

ny∗. After time nt0, this customer cannot be preempted by new
arrivals, all of which have initial lead times greater than or equal to

√
ny∗. At

time nt0, the work that must be completed before this customer is served to com-
pletion is at most W (n)(nt0)(0,

√
ny∗]. Since this customer becomes late, we

must have W(nt0) ≥ W (n)(nt0)(0,
√

ny∗] >
√

ny∗, or equivalently, Ŵ (n)(t0) ≥
Ŵ (n)(t0)(0, y∗] > y∗. By right continuity, Ŵ (n)((t0 + ν)−) > y∗ for some ν > 0
so small that t0 + ν ≤ τ̂

(n)
k . From the second inequality in (6.35) and the fact that

Ŵ (n)(σ̂
(n)
k −) = 0 [the scaled version of (6.39)], we conclude that

W ∗(t0 + ν) − W ∗(σ̂ (n)
k

)≥ y∗
3

,

and this gives us the conclusion in (6.38). �

PROOF OF THEOREM 3.8. Fix T < ∞. Let δ(n) 
= U∗ − Û (n), and let δ(n) 
=
sups∈[0,T ]|U∗(s) − Û (n)(s)|. According to (4.6) and (4.15),

U(n) = W
(n)
S − K

(n)
+ + K

(n)
− .

We scale this equation to obtain

U∗ = Ŵ
(n)
S + δ(n) − K̂

(n)
+ + K̂

(n)
− = Ŵ

(n)
S + δ(n) + ε(n) − Ŷ (n) + K̂

(n)
− ,(6.40)

where [cf. (4.14)]

K̂
(n)
− (t)


= −∑
k∈N

[(
Ŵ

(n)
S

(
τ̂

(n)
k−1

)− (σ̂ (n)
k ∧ t − τ̂

(n)
k−1

))+ − Ŵ
(n)
S

(
τ̂

(n)
k−1

)]
,

K̂
(n)
+ is defined by (6.27) and ε(n) is defined by (6.29). According to (4.16),∫ T

0 I{Û (n)(t)>0} dK̂
(n)
− (t) = 0, which implies∫ T

0
I{U∗(t)>δ

(n)}dK̂
(n)
− (t) = 0.(6.41)

Since Ŵ
(n)
S + δ(n) + ε(n) ⇒ W ∗

S due to (6.18), (6.20) and Lemma 6.8, and, by
(6.22), U∗ is obtained by applying the Skorokhod map on [0,H(0)] to W ∗

S , the
convergence (6.26) is an immediate consequence of (6.40), (6.41), Lemmas 6.7,
6.8 and the invariance principle for reflected Brownian motions. However, since
we are in a particularly simple setting here, we will provide a direct proof without
invoking the general invariance principle.

We choose n0 so that δ(n0) < H(0)/3 and recursively define stopping times
ρ0 = 0, and for k ≥ 1,

νk = min
{
t ≥ ρk−1

∣∣∣U∗(t) = 2H(0)

3

}
, ρk = min

{
t ≥ νk

∣∣∣U∗(t) = H(0)

3

}
.

Then 0 = ρ0 < ν1 < ρ1 < ν2 < · · · and limk→∞ ρk = limk→∞ νk = ∞. For n ≥ n0,
K̂

(n)
− is constant on each of the intervals [νk, ρk]. Moreover, Lemma 6.7 implies
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that for each k, Ŷ (n) is constant on each of the intervals [ρk−1, νk]. For t ∈ [νk, ρk],
we have from (6.40), (6.18), (6.20) and Lemma 6.8 that

Ŷ (n)(t) − Ŷ (n)(νk) = Ŵ
(n)
S (t) − U∗(t) + δ(n)(t) + ε(n)(t)

− Ŵ
(n)
S (νk) + U∗(νk) − δ(n)(νk) − ε(n)(νk)

P−→ W ∗
S (t) − U∗(t) − (W ∗

S (νk) − U∗(νk)
)
.

It follows that, uniformly for t ∈ [0, T ], Ŷ (n)(t) converges in probability to∑
k∈N

[
W ∗

S

(
(t ∨ νk) ∧ ρk

)− U∗((t ∨ νk) ∧ ρk

)− (W ∗
S (νk) − U∗(νk)

)]
.(6.42)

However, (6.23) implies that for each k, K∗− is constant on [νk, ρk], and K∗+ is
constant on [ρk−1, νk]. Therefore, (6.22) implies that for t ∈ [νk, ρk],

K∗+(t) − K∗+(νk) = W ∗
S (t) − U∗(t) − (W ∗

S (νk) − U∗(νk)
)
.

This implies that the expression in (6.42) is K∗+(t). But Ŷ (n) and K̂
(n)
+ have the

same limit in probability because of Lemma 6.8, and we conclude that

max
t∈[0,T ]

∣∣K̂(n)
+ (t) − K∗+(t)

∣∣ P−→ 0.(6.43)

Convergence in probability implies weak convergence, and we have (6.26). �

7. Performance evaluation and simulations. We use the heavy traffic ap-
proximations of this paper to evaluate the performance of the system with reneging
and compare this to the system in which all customers are served to completion.
The predictions of the theory, derived in Section 7.1 and compared to simulations
in Section 7.2, are predicated on the assumption that one can interchange the limit
as n → ∞ and the limit as time goes to infinity of the fraction of reneged work.
A formal proof would require a coupling argument such as that found in [37].
The simulation results attest to the accuracy of the approximations derived in Sec-
tion 7.1 and also show the great difference in performance between the reneging
and nonreneging systems.

7.1. Derivation of theory predictions. We derive formulas (1.1)–(1.7). We be-
gin with one of the main results of this paper, Theorem 3.4, which states that the
limiting scaled workload in the reneging system is a reflected Brownian motion in
[0,H(0)] with drift. More specifically,

W ∗(t) = W ∗
S (t) − K∗+(t) + K∗−(t),(7.1)

where W ∗
S (t) is a reflected Brownian motion on [0,∞) with variance σ 2 =

λ(α2 + β2) per unit time and drift −γ , K∗− is the nondecreasing process start-
ing at K∗−(0) = 0 that grows only when W ∗ = 0, and K∗+ is the nondecreasing
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process starting at K∗+(0) = 0 that grows only when W ∗ = H(0). We further saw
in Theorem 3.8 that K∗+(t) is the limit of the scaled workload that reneges prior to
time t in the diffusion scaling, that is,

√
nK∗+(t) is approximately the (unscaled)

workload that reneges in the nth system prior to time nt .

LEMMA 7.1 ([15], Proposition 5, page 90). We have

lim
t→∞

1

t
K∗+(t) = lim

t→∞
1

t
EK∗+(t) =

⎧⎪⎪⎨⎪⎪⎩
γ

e2γH(0)/σ 2 − 1
, if γ �= 0,

σ 2

2H(0)
, if γ = 0.

(7.2)

PROOF. The first equality in (7.2) is a consequence of the fact that W ∗ has
a stationary distribution [see (7.5) below]. For the proof of the second equality,
recall that W ∗

S has the decomposition (2.16). Let f be a C2 function. Applying
Itô’s formula to f (W ∗(t)) and taking expectations, we obtain

f ′(0)E[I ∗
S (t) + K∗−(t)] − f ′(H(0))EK∗+(t)

= E

∫ t

0

[
γf ′(W ∗(s)) − 1

2
σ 2f ′′(W ∗(s))

]
ds(7.3)

+ Ef (W ∗(t)) − f (0).

Taking f (x) = x, we obtain E[I ∗
S (t) + K∗−(t)] − EK∗+(t) = γ t + EW ∗(t) − f (0).

If γ �= 0, we may take f (x) = σ 2

2γ
e2γ x/σ 2

in (7.3), which leads to the equation

E[I ∗
S (t) + K∗−(t)] − e2γH(0)/σ 2

EK∗+(t) = σ 2

2γ
(Ee2γW ∗(t)/σ 2 − 1). Solving these

equations for EK∗+(t), we obtain the second equality in (7.2) for γ �= 0. To ob-
tain this equality for γ = 0, we take f (x) = x2. �

According to (2.12), the work that arrives to the nth system by time nt is
V (n)(A(n)(nt)) = √

nN̂(n)(t) + nt . But, N̂ (n) is approximately N∗, and hence

lim
t→∞

√
nN̂(n)(t) + nt

nt
≈ lim

t→∞

√
nN∗(t) + nt

nt
=
(

1 − γ√
n

)
.

Therefore, if γ �= 0, the long-run fraction of reneged work is approximately

lim
t→∞

√
nK∗+(t)

V (n)(A(n)(nt))
= 1√

n
lim

t→∞
1

t
K∗+(t) · lim

t→∞

(√
nN̂(n)(t) + nt

nt

)−1

≈ γ /
√

n

(1 − γ /
√

n)(e2γH(0)/σ 2 − 1)
.

Finally, (2.4) implies that the expected lead time in the nth system is EL
(n)
j =∫∞

0 (1−G(y/
√

n)) dy = √
nH(0). Using this formula and (2.10), we conclude that
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the fraction of work that reneges in the nth system when γ �= 0 is approximately

1 − ρ(n)

ρ(n)(e
2(1−ρ(n))EL

(n)
j /σ 2 − 1)

= 1 − ρ(n)

ρ(n)(eθD − 1)
,(7.4)

where

θ = 2(1 − ρ(n))

σ 2 ≈ 2γ√
nσ 2 , D = EL

(n)
j = √

nH(0).

We have suppressed the dependence of θ and D on n, which will remain fixed. If
γ = 0, then in place of (7.4) we have σ 2

2D
. We have established (1.1) and (1.2).

REMARK 7.2. Corollary 3.7 also implies that the limiting scaled queue length
process is λW ∗, which is a doubly reflected Brownian motion in [0, λH(0)]
with drift −γ λ and variance per unit time λ2σ 2. This incorrectly suggests that
λ
√

nK∗+(t) is approximately the number of customers who renege in the nth sys-
tem prior to nt . The simulations indicate that this naive interpretation of Corol-
lary 3.7 applied to the queue length process is incorrect, as does the following
heuristic.

According to [15], Proposition 5, page 90, if γ �= 0, the stationary density for
W ∗ is

ϕ∗(x)

=
⎧⎪⎨⎪⎩

2γ e−2γ x/σ 2

σ 2(1 − e−2γH(0)/σ 2
)
, if 0 ≤ x ≤ H(0),

0, otherwise,

(7.5)

whereas the stationary density is uniform on [0,H(0)] if γ = 0. Therefore, for
γ �= 0 and t large, the density of W(n)(nt) ≈ √

nW ∗(t) is approximately

ϕ(w) = 1√
n
ϕ∗(w/

√
n
)=
⎧⎨⎩

θe−θw

1 − e−θD
, if 0 ≤ w ≤ D,

0, otherwise.

We have suppressed the dependence of ϕ on n.
Suppose now that the lead times of arriving customers are not random. Then

in the nth system, all lead times are equal to
√

nH(0) = D. In this case, the EDF
policy serves customers in order of arrival (FIFO). Suppose the workload in queue
is W at the time of arrival of a customer whose service requirement is V . Recall
that the expected service time is 1/μ(n), and because n is fixed, we suppress it and
write EV = 1/μ. The arriving customer will be served to completion if and only
if W + V ≤ D. Suppose further that the arrival process A(n) is Poisson, so that
according to the PASTA property (“Poisson arrivals see time averages”; see [1],
Theorem 6.7, page 218), an arriving customer will encounter a workload W having
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approximately the distribution ϕ. The probability the arriving customer eventually
reneges is thus

P{W > D − V } = E[P{W > D − V |V }] = E

[∫ D

(D−V )+
ϕ(w)dw

]
.

Because D is of order
√

n and V is of order 1, we have (D − V )+ = D − V with
high probability. Using this approximation, we complete the calculation for the
case γ �= 0 to obtain

P{Customer reneges} ≈ 1

eθD − 1
(EeθV − 1).(7.6)

If the customer reneges, then work V + W − D > 0 is lost. The expected lost
work is

E[V + W − D|Customer reneges] ≈ E

[∫D
(D−V )+(V + w − D)ϕ(w)dw

P{Customer reneges}
]
.

Again using the approximation (D − V )+ ≈ D − V , we obtain

E[V + W − D|Customer reneges] ≈ 1

θ
− EV

EeθV − 1

≈ 1

θ
− EV

θEV + 1/2θ2E[V 2] + O(n−3/2)

≈ E[V 2]
2EV

.

The last expression is, perhaps not surprisingly, the formula for the average resid-
ual lifetime of a renewal cycle (see [32], Example 3.6(b), pages 80 and 81). Conse-
quently, when lead times are constant and the arrival process is Poisson, we should
expect the total number of customers reneging in [0, t] times the expected amount
of work lost per reneging customer to approximately equal the total amount of
work lost by reneging in [0, t]. If we divide both by the total number of customer
arrivals in [0, t] and take limits as t → ∞, we find

Fraction of lost customers in reneging system

≈ Fraction of lost work in reneging system

E[V + W − D|Customer reneges] ∗ EV(7.7)

≈ 2(EV )2

E[V 2] × (Fraction of lost work in reneging system).

This is (1.7) with EV = 1
μ

and E[V 2] = β2 + 1
μ2 .

If V is exponentially distributed, hence E[V 2] = 2(EV )2, then (7.7) implies that
the fraction of customers who renege will be approximately the fraction of work
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FIG. 1. M/M/1 queue.

that reneges. See Figure 1 for simulations that confirm this assertion. On the other
hand, if V is nonrandom, hence equal to its mean 1/μ, then (7.7) predicts that the
fraction of customers who renege will be twice the fraction of work that reneges.
See Figure 2 for simulations that confirm this assertion. Both these conclusions
hold irrespective of the value of λ.

The last conclusion is inconsistent with a naive interpretation of Corollary 3.7,
according to which work reneges at a rate 1/λ times the rate of customer reneging.
Since work arrives at a rate EV ≈ 1/λ times the rate of customer arrivals, this
naive interpretation of Corollary 3.7 would say that the fraction of work reneging
would approximately agree with the fraction of customers reneging regardless of
the distribution of V .

We next turn our attention to the performance of the standard (nonreneging)
system. Recall from (2.15) that the scaled workload process when all customers are
served to completion converges to W ∗

S , a reflected Brownian motion with drift −γ

(we now assume γ > 0 in order to have a stationary distribution) and variance σ 2.
In particular, W

(n)
S (nt) ≈ √

nW ∗
S (t). The stationary density for W ∗

S is

ϕ∗
S(x)


=
⎧⎨⎩

2γ

σ 2 e−2γ x/σ 2
, if x ≥ 0,

0, otherwise,
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FIG. 2. M/D/1 queue.

and so for large t , the density of W(n)(nt) is approximately

ϕS(w) = 1√
n
ϕ∗

S

(
w/

√
n
)= { θe−θw, if w ≥ 0,

0, otherwise.

Consequently, the long-run fraction of time W(n) spends above level D is e−θD .
The workload level at which the limiting frontier reaches 0 is H(0), and hence
it is approximately the case that the nth system sees lateness if and only if W(n)

exceeds D = √
nH(0). In other words, the theory predicts that

Fraction of late customers in standard system

= Fraction of late work in standard system(7.8)

= e−θD.

We are using here the result for GI/G/1 queues that

lim
n→∞ lim

T →∞
1

T

∫ T

0
I{Ŵ (n)

S (t)>H(0)} dt

= lim
T →∞ lim

n→∞
1

T

∫ T

0
I{Ŵ (n)

S (t)>H(0)} dt

= lim
T →∞

1

T

∫ T

0
I{W ∗

S (t)>H(0)} dt,
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a result that grows out of the work of Kingman [19, 20] (see [10] for a general
result that specializes to the case under consideration).

It is important to compare the fraction of work that reneges in the reneging
system, given by (7.4), with the fraction of work that is late in the standard (non-
reneging) system. The ratio of these quantities of lost/late work is

Lost work in reneging system

Late work in standard system
≈ eθD

eθD − 1

(
1 − ρ(n)

ρ(n)

)
.(7.9)

The parameter θ is O(1/
√

n), θD is O(1), and 1 − ρ(n) is O(1/
√

n). Thus the
ratio in (7.9) is O(1/

√
n).

REMARK 7.3. If lead times are a nonrandom constant D, EDF reduces to first-
in-first-out, and the fraction of lost customers in an M/G/1 queue with 0 < ρ < 1
is (1 − ρ)P{W > D}/(1 − ρP{W > D}), where W is the steady-state workload in
the corresponding nonreneging M/G/1 queue (see [3]). In the heavy traffic limit of
our model, P{W > D} = e−θD [see the derivation of (7.8)]. Recalling that 1−ρ =
O(1/

√
n) in (1.1), we observe that this is consistent with (1.1).

7.2. Simulation results. We conducted a simulation study to assess the accu-
racy of these approximations and to compare the performance of the systems with
and without reneging. Two systems were considered, an M/M/1 system presented
in Figure 1 and an M/D/1 system presented in Figure 2. In both cases, λ = 0.5 and
1
μ

= 1.96, and so the traffic intensity is ρ = 0.98. These parameter values result
in θ = 0.010202 for the M/M/1 case and θ = 0.02 for the M/D/1 case. The ini-
tial deadline distribution is uniform on [5,B] with the mean deadline D = 5+B

2 ,
varying from B = 5 (constant deadlines) to B = 200. The data points are the simu-
lation results averaged over one billion customer arrivals per case. The curves that
are superimposed on the data are the theoretical values, e−θD for the case in which
customers are served to completion (the standard system), and equations (1.1) and
(1.7) for the fraction of work lost and the fraction of lost customers for the reneging
system. Equation (1.7) is derived in Remark 7.2 under the assumption of constant
deadlines. Nevertheless, we apply it for the variable deadline case in the simula-
tion study. The fraction of late work or late customers for the system in which
customers are served to completion is also presented to compare its performance
with that of the reneging system.

The M/M/1 results are presented in Figure 1 with the fraction of customers
missing their deadlines, the fraction of customers reneging, and the fraction of
work reneging plotted on a log scale on the y-axis against the mean deadline on the
x-axis. There is nearly perfect agreement between the theoretical approximation
and the simulation. In fact, one cannot see the plot of “Fraction of Customers Late
(No Reneging)” because it coincides with the “Theory” plot at the top of the figure.
Similarly, one can see only parts of the plots of “Fraction of Customers Reneging”
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and “Fraction of Work Reneging” because they coincide with the “Theory” plot
in the middle of the figure. One can see the linear form for the case of service
to completion. Furthermore, the simulation confirms the prediction of (1.1)–(1.4)
that for sufficiently large values of D, the performance of the reneging system is
parallel on a log scale to that of the standard system with the two curves separated
by approximately 0.02. This corresponds to a reduction in work that misses its
deadline by a factor of 40 to 50.

Figure 2 presents the results for the M/D/1 system. The results are qualitatively
identical to those of Figure 1, except the fits of the theoretical curves are not as
exact as the fits for the M/M/1 system; it appears that now the value θ = 0.02
is slightly too small and hence the theory slightly overestimates the fraction of
work that misses its deadline, especially when the mean deadline is large. Also,
the lost or late work and the customer loss or lateness fractions are significantly
smaller than for the M/M/1 system owing to the reduction in variability of the
customer service time distribution. The reduction in missed deadlines between the
two systems for large values of D is again a factor of 40 to 50. In both figures,
it is clear that there are one to two orders of magnitude of improvement in the
overall performance of the system resulting from stopping service on customers
when their deadlines expire.

APPENDIX: OPTIMALITY OF EDF

PROOF OF THEOREM 5.1. Let π be a service policy and let t0 be the first time
π deviates from the EDF policy, either because it idles when there is work present,
or it serves a customer other than the customer present with the smallest lead time.
Let j be the index of the customer with the smallest lead time at time t0.

We consider first the case that π idles at time t0. In this case, we define ρ(π)

to be the policy that emulates π except as noted below. From time t0, whenever
π idles, ρ(π) serves customer j , at least until time t1, when customer j leaves
the ρ(π) system because either ρ(π) serves customer j to completion or else the
deadline of customer j elapses. From time t1, ρ(π) idles if π serves customer j .
We will show that for t ≥ 0,

Rρ(π)(t) ≤ Rπ(t).(A.1)

Let vk(t) [resp., v
ρ
k (t)] be the residual service time of the kth customer at time

t under π [resp., ρ(π)]. In particular, if dk is the deadline of the kth customer,
then vk(dk−) [resp., v

ρ
k (dk−)] is the work corresponding to this customer that is

deleted by π [resp., ρ(π)] due to lateness, and

Rρ(π)(t) = ∑
k : dk≤t

v
ρ
k (dk−), Rπ(t) = ∑

k : dk≤t

vk(dk−).(A.2)

By the definition of ρ(π), for t ≥ 0 and k �= j , we have

v
ρ
k (t) = vk(t),(A.3)
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whereas

v
ρ
j (t) ≤ vj (t).(A.4)

Summing (A.3) over k �= j , invoking (A.4) and (A.2), we obtain (A.1).
We next consider the case that at time t0, π serves customer i �= j . In this case,

we define ρ(π) to be the policy that emulates π except as noted below. From
time t0, whenever π serves customer i, ρ(π) serves customer j , at least until
time t1, when ρ(π) serves customer j to completion or the deadline of customer
j elapses. From time t1, ρ(π) serves customer i if π serves customer j , provided
customer i is present in the system under ρ(π). If π serves customer j and cus-
tomer i is not present under ρ(π), then ρ(π) idles. We again have (A.2) and (A.4),
whereas (A.3) now holds only for k /∈ {i, j}. If the ith customer is served to com-
pletion under ρ(π), then v

ρ
i (di−) = 0, and (A.3) for k /∈ {i, j}, and (A.4) imply

that (A.1) holds for all t . It remains to consider the case that the ith customer be-
comes late under ρ(π). In this case (A.3) for k /∈ {i, j} and (A.4) imply that (A.1)
holds for t ∈ [0, di). Let w1 denote the work done by ρ(π) on the j th customer
when π works on the ith customer in the interval [t0, t1). Let w2 be the work done
by ρ(π) on customer i in the time interval [t1,∞) while π works on customer j in
this time interval. Finally, let w3 be the work done by π on customer j in the time
interval [t1,∞) while ρ(π) is idle. Then v

ρ
j (dj−)+w1 = vj (dj−)+w2 +w3 and

v
ρ
i (di−) + w2 = vi(di−) + w1, which implies

v
ρ
j (dj−) + v

ρ
i (di−) = vj (dj−) + vi(di−) + w3.(A.5)

We argue by contradiction that w3 cannot be positive. If w3 were positive, then
at some time t ≥ t1, π serves customer j and customer i is not in the ρ(π) sys-
tem. This implies that dj > t , and since by assumption, di > dj , the absence of
customer i in the ρ(π) system means that this system has served customer i to
completion. We conclude that v

ρ
i (di−) = 0. On the other hand, customer j is also

not in the ρ(π) system at time t ≥ t1, and so v
ρ
j (dj−) = 0 as well. The left-hand

side of (A.5) is zero, and hence w3 must be zero. We conclude that

v
ρ
j (dj−) + v

ρ
i (di−) = vj (dj−) + vi(di−).(A.6)

Since dj < di , if t ≥ di , then (A.3) for k /∈ {i, j} and (A.6) imply (A.1).
Starting from the service policy π , we have obtained a service policy ρ(π) that

either is work conserving until the departure of customer j or else gives customer j

priority over customer i until the departure of customer j . However, immediately
after time t0, the policy π may serve some customer k /∈ {i, j}, and hence ρ(π)

also serves k at this time, although customer j is more urgent. Therefore, we apply
n iterations of the mapping ρ, where n is the number of customers in the π system
at time t0, and thereby obtain a policy that is work-conserving and serves in EDF
order at least until the first time after t0 that there is a departure or an arrival. We
have Rρn(π)(t) ≤ Rπ(t) for all t ≥ 0.
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By assumption, for each t the number of system arrivals A(t) by time t is finite.
Hence the maximum number of customers in the system over the interval [0, t]
is bounded by A(t), and the number of arrivals and departures up to time t is
bounded by 2A(t), irrespective of the service policy. Thus, if we start with any
policy π , the number of iterations of the mapping ρ required to obtain a policy
that is work conserving and serves in EDF order up to time t is finite. Under this
policy the amount of work removed by lateness up to time t is the same as for the
EDF system in the theorem, and hence (5.1) holds. �

REMARK A.1. In the above proof we have implicitly assumed that π [and
thus ρ(π)] never serves more than one customer at the same time. This assump-
tion simplifies the exposition of the argument, and the generality of Theorem 5.1 is
sufficient for this paper. However, the proof can be generalized to policies permit-
ting simultaneous service of customers (e.g., processor sharing). In this case, in the
construction of ρ(π) we must additionally take the rates at which customers re-
ceive service into account. For example, the difference in the rates with which the
j th customer receives service under ρ(π) and π in the time interval [t0, t1) must
be equal to the rate of service of the ith customer under π in this time interval, the
rates of service of all other customers in this time interval under π and ρ(π) must
be the same, etc.
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