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Abstract. Because of the high cost of commercial genotyping chip tech-
nologies, many investigations have used a two-stage design for genome-
wide association studies, using part of the sample for an initial discovery
of “promising” SNPs at a less stringent significance level and the remain-
der in a joint analysis of just these SNPs using custom genotyping. Typical
cost savings of about 50% are possible with this design to obtain comparable
levels of overall type I error and power by using about half the sample for
stage I and carrying about 0.1% of SNPs forward to the second stage, the
optimal design depending primarily upon the ratio of costs per genotype for
stages I and II. However, with the rapidly declining costs of the commercial
panels, the generally low observed ORs of current studies, and many studies
aiming to test multiple hypotheses and multiple endpoints, many investiga-
tors are abandoning the two-stage design in favor of simply genotyping all
available subjects using a standard high-density panel. Concern is sometimes
raised about the absence of a “replication” panel in this approach, as required
by some high-profile journals, but it must be appreciated that the two-stage
design is not a discovery/replication design but simply a more efficient de-
sign for discovery using a joint analysis of the data from both stages. Once
a subset of highly-significant associations has been discovered, a truly in-
dependent “exact replication” study is needed in a similar population of the
same promising SNPs using similar methods. This can then be followed by
(1) “generalizability” studies to assess the full scope of replicated associa-
tions across different races, different endpoints, different interactions, etc.;
(2) fine-mapping or resequencing to try to identify the causal variant; and
(3) experimental studies of the biological function of these genes. Multistage
sampling designs may be more useful at this stage, say, for selecting subsets
of subjects for deep resequencing of regions identified in the GWAS.
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1. INTRODUCTION

Many of the genome-wide association studies
(GWAS) currently underway or already reported have
used some form of multistage sampling design (Sa-
tagopan et al., 2002) because of the considerable sav-
ings in genotyping costs this approach offers. In Sec-
tion 2 we provide an overview of the basic approach
to designing such studies, touching on such topics as
the trade-offs between sample size and marker den-
sity, the selection of markers to carry forward to the
second stage, methods of significance testing, the use
of DNA pooling, and multistage designs for testing
gene–environment (G × E) and gene–gene (G × G)
interactions. Section 3 considers the general question
of whether two-stage designs are still necessary in an
era of declining costs and multipurpose studies. Fi-
nally, Section 4 discusses what should be done after a
completed GWAS, including replication, fine mapping,
generalizability and functional studies, and revisits the
utility of multistage designs in this context.

2. BASIC PRINCIPLES OF TWO-STAGE STUDY
DESIGN FOR GWAS

Two-phase case-control designs were introduced to
the epidemiologic literature by White (1982) and have
been extensively developed in a series of papers by
Breslow and various colleagues (for a general overview
of this literature, see Breslow and Chatterjee, 1999).
The basic idea of these designs is to use information
available on all subjects in the main study to draw
a more informative subsample for additional, more
expensive, measurements, combining the information
from both phases in the analysis.

Two-stage sampling for GWAS, as introduced by Sa-
tagopan et al. (2002), is quite different, based on geno-
typing part of the sample using a commercial high-
density panel (typically 300,000 to a million SNPs)
and then genotyping the most promising SNPs using
a customized panel on the remainder of the sample.
A final analysis combining the information from both
samples is more powerful than treating the design as a
hypothesis generation followed by independent repli-
cation (Skol et al., 2006; Yu et al., 2007) because it
exploits the additional information about how signifi-
cant the first stage associations were, not just the fact
that they exceeded some threshold. Formally, two stage
designs can be conceptualized as a family of group se-
quential tests (one per SNP) with allowance for early
stopping for “futility” (Jennison and Turnbull, 2000).

Optimization of the design is usually framed as
choosing the significance levels and the allocation
of samples between the two stages in such a man-
ner as to minimize the total cost while attaining the
desired genome-wide significance level and power
(Kraft, 2006; Kraft and Cox, 2008; Muller, Pahl and
Schafer, 2007; Saito and Kamatani, 2002; Satagopan
and Elston, 2003; Satagopan, Venkatraman and Begg,
2004; Service, Sandkuijl and Freimer, 2003; Skol et
al., 2007; Wang et al., 2006); alternatively, one might
wish to maximize power subject to total sample size,
genotype cost and type I error, or to minimize the total
sample size subject to the other factors. These optimal
designs are insensitive to the genetic model (mode of
inheritance, relative risk and allele frequencies) and de-
termined primarily by the total number of markers to
be genotyped in stage I, the relative cost per genotype
at stages I and II, the total available sample size, and
whether (and how many) additional flanking markers
will be tested around those selected from stage I. As
an example of a cost minimization, the optimal design
for a cost ratio of about 17.5 with 500K markers being
tested in stage I and no additional SNPs being tested at
stage II turns out to involve testing 30% of the sample
in stage I at a significance level of 0.0037 (i.e., about
1850 markers tested in stage II) and a significance level
for the joint analysis of 1.6 ×10−7 (Wang et al., 2006);
in this case, about 87% of the total cost goes to stage
I genotyping, but the total cost is only 40% that of a
comparably powered one-stage design.

Several authors (Eberle et al., 2007; Gail et al., 2008;
Nannya et al., 2007) have investigated the power of
GWAS, either for a single-stage or the first-stage of a
multistage scan, and generally concluded that sample
sizes of 1000 cases and 1000 controls were sufficient to
detect associations in the range of 1.7–2.0, smaller rel-
ative risks (e.g., 1.2–1.3) requiring much larger sample
sizes. In general, minimum-cost two-stage designs can
require considerably larger sample sizes than single-
stage designs to achieve the same power. However,
large costs reductions can still be achieved with a
“nearly optimal” two-stage design using a sample size
only slightly larger than a one-stage design (Wang et
al., 2006).

2.1 Trade-off Between Sample Size and
Marker Density

A crucial decision to be made is the choice of
genotyping platform for stage I. At this writing, two
companies—Affymetrix and Illumina—offer platforms
ranging from 300K to 1M SNPs. The panels differ in
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the way SNPs were selected and, hence, their coverage
(r2) of the remaining common HapMap SNPs, as well
as in their laboratory performance (call rates, repro-
ducibility, etc.). Because coverage of SNPs is highly
variable across the genome and the relationship be-
tween power and r2 is nonlinear, the average power
to detect an association with a random SNP is smaller
than the power based on the average r2 (Jorgenson and
Witte, 2006). Instead, one must average the power for
a given noncentrality parameter λ at a putative causal
locus across the distribution of r2s. The consequence
is that one cannot simply add additional sample size
to cover regions with poor coverage! For single stage
studies, average power is maximized by choosing the
platform with the best coverage on which it is af-
fordable to genotype all available samples. Compar-
isons of recent platforms tend to show that when geno-
typing budget is limiting, sacrificing sample size for
the higher density platform is not usually appropriate
(Hao, Schadt and Storey, 2008; Lewinger et al., 2007b;
Nannya et al., 2007). A two-stage design, however, can
alter the sample-size vs. coverage trade-off in favor of
higher density platforms in the first stage by allowing
the use of all the available samples at a lower cost. Im-
putation, on the other hand, reduces the differences be-
tween SNP panels, making the lower cost, lower den-
sity platforms more attractive (Anderson et al., 2008).
See also Barrett and Cardon (2006), de Bakker et al.
(2005) and Pe’er et al. (2006) for further discussion.

2.2 Design Complications

2.2.1 Additional markers. Additional markers
flanking some or all hits might also be added to better
characterize the full range of genetic variation in the
region (Saito and Kamatani, 2002; Wang et al., 2006).
With 5 additional markers being tested for each hit, the
optimal design for the situation discussed above raises
the first stage sample size to 49% and reduces signif-
icance levels to 0.0005 and 0.5 × 10−7 respectively,
so that 95% of the total cost goes to stage I genotyp-
ing. In these calculations, it was assumed that the ad-
ditional markers would be imputed for the first-stage
sample, using methods described in Section 2.2.2 and
more comprehensively elsewhere in this issue (Su et
al., 2009), but one could instead test them directly on
the stage I samples first and then decide which ones to
carry forward to stage II. Further work on optimization
of such designs is still needed.

While it seems intuitively appealing to also use the
replication step for the purpose of fine mapping—that
is, to see whether there is another marker in the region

that shows even stronger evidence for association—
the yield from doing so may be minimal. Consider the
three possible situations: (1) an associated marker is
in perfect LD with a causal variant; (2) it is in weak
LD with a causal variant; or (3) it is nowhere near the
causal variant. Only in the second case would adding
additional markers be of any help. Suppose the first
stage sample has power 1−β1 to detect the first kind of
association and 1−β2 for the second, and let πk denote
the prior probability of type k. Then the prior probabil-
ity that the association is of type 2 given p < α1 is

(1 − β2)π2

(1 − β1)π1 + (1 − β2)π2 + α1π3
.

Considering the coverage of current platforms, π1 is
probably larger than π2 and π3 is certainly much larger,
so most detected associations are likely to be of types 1
or 3 and additional markers will not help [Peter Kraft,
personal communication].

Clarke et al. (2007) have shown theoretically and by
simulation that the increased penalty for multiple com-
parisons can defeat any possible gains in power for
replication. Nevertheless, the inclusion of additional
markers can be advantageous in regions of relatively
high LD when the original signal is weak, such as in re-
gions where the coverage by the original panel is poor,
but then any new associations discovered in the “repli-
cation” stage would require yet further confirmation.
In general, they recommend deferring fine mapping to
a separate sample from that used for replication. Thus,
fine mapping should be reserved for the regions that are
interesting in the combined stage I and stage II data,
rather than incorporated into stage II for all markers
carried over from stage I. This keeps the multiple com-
parisons problem at a minimum whether or not a new
(third) sample is used for fine mapping.

2.2.2 Haplotypes, multimarker tests and imputation
of missing markers. The commercial panels are de-
signed to allow for testing not just the hundreds of
thousands or a million SNPs on the panel, but also all
the roughly 5M common variants in the human genome
they tag, including copy number variants. This entails
using some form of multimarker or haplotype-based
approach to “impute” genotypes to all those variants
that are not directly tested. Promising associations with
imputed variants detected in the initial scan are then
tested in either the original sample or the follow-up
stage by direct genotyping. While at first blush it might
seem that the multiple comparisons penalty for testing
5M variants would offset the advantage of using a tag-
SNP approach, the correlation between tests due to LD
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means that the “effective number of independent tests”
is only about 1M in European-descent populations or
2M in African-descent populations (Pe’er et al., 2008).
Four companion papers in this issue (Chatterjee et al.,
2009; Su et al., 2009; Goddard et al., 2009; Zöllner and
Teslovich, 2009) address various aspects of this topic
in greater detail.

2.2.3 Family-based designs. One compelling ad-
vantage of a two-stage approach may be the oppor-
tunity to exploit different study designs, in particular,
family- and population-based. For example, the Cancer
Family Registries for breast and colorectal cancer are
currently undertaking GWASs aimed at exploiting their
unique resource, combining the two sampling schemes
(Zheng et al., 2010). In the first stage, a population-
based series of cases that is enriched for a positive
family history or young age at onset is compared with
unrelated population controls; hits from this stage are
then to be tested using family-based association tests
(FBAT) in the second stage using sibling or cousin con-
trols to weed out false positives due to population strat-
ification (see the contribution by Astle and Balding,
2009 in this issue), and finally, in a third stage, com-
bining the phenotypes of all relatives from extended
pedigrees with all available genotypes in a conditional
segregation analysis (Hopper et al., 1999). A different
two-stage design uses between-family comparisons to
select a subset of SNPs with high power to detect as-
sociations in an FBAT, and tests associations with this
subset using within-family comparisons in the same
data set (Van Steen et al., 2005). For further discussion
of these various options, see the companion paper in
this issue by Laird and Lange (2009).

If instead of a FBAT design, some form of ge-
nomic control is to be used with population-based case-
control studies in a two-stage design, then problems
can arise if the subjects in the two stages are derived
from different populations. One approach is to esti-
mate kinship using the available data from the dif-
ferent stages (a high-density chip for stage I, just the
selected SNPs and perhaps some additional ancestry-
informative markers in stage II).

2.2.4 More than two stages?. In principle, there is
no reason why the two-stage design described above
could not be extended to a multistage design, with suc-
cessively smaller proportions of SNPs being tested in
new samples at each subsequent stage. Indeed, some of
the earliest studies were conducted in just that manner
(Hirschhorn and Daly, 2005). Multiple stages would
have the practical effect of reducing the genotyping

cost ratio between the first stage and the combined
later stages, perhaps by a significant factor. Inclusion
of additional stages would be most cost effective when
the genotyping cost ratio is 1 between the platforms
used in the second and later stages (Kraft et al., 2008).
The additional complexities in both design optimiza-
tion and final significance testing of results have yet to
be fully explored, however.

2.3 Methods of Significance Testing for Two-Stage
Designs

Two-stage designs pose special challenges to signifi-
cance testing in the final analysis of the combined data.
The basic p-value to be computed is the probability
that a given SNP would have been deemed “promis-
ing” at the first stage and that the combined data would
show significance at a genome-wide level given that
it was selected for testing in the second stage, under
the null hypothesis that it is not associated with dis-
ease. The fact that two “hurdles” have to be crossed for
each “significant” result means that the p-value of in-
terest is actually somewhat smaller than the “nominal”
p-value based on analyzing the combined data. The
various two-stage design papers discussed earlier have
shown how to compute this probability under simplify-
ing assumptions and thereby optimize the design, but
these approximations can often be improved upon in
analyses of real data. Among other assumptions is that
of independence across SNPs, which is necessary to
derive the appropriate cutoff for genome-wide signifi-
cance. An obvious way to avoid having to make such
assumptions is some form of a permutation test. For a
single-stage design, this is straightforward: one could
simply hold the genotypes fixed (thereby maintaining
their LD structure) and randomly permute the pheno-
types in a standard case-control design (or analogous
methods for family-based studies, based on within-
family permutation). In a two-stage design, this is not
so straightforward, however, as one must permute the
entire analysis; but a random permutation of the stage-
one data would yield a different set of SNPs to be tested
in stage II and these genotypes are not available for per-
muting!

Two methods have been proposed to assess signif-
icance in two-stage studies. They both make clever
use of the fully genotyped stage I subjects to mimic
the effect of having two stages of genotyping. Both
require large numbers of subjects in stages I and II,
an assumption that would be usually met for a well-
powered GWAS. In Dudbridge’s (2006) method, a per-
mutation null distribution is computed by performing
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the full two-stage analysis on a large number of per-
muted datasets in which a subsample of the stage I
subjects plays the role of the stage I sample, and the
original stage I subjects play the role of the combined
stage I and stage II samples. The method is valid un-
der exchangeability of the stage I and stage II sam-
ples, provided the permutation distribution “stabilizes”
for large samples. The Monte Carlo method of Lin
(2006) relies on the fact that the efficient scores func-
tions have, jointly for all tests in stages I and II, a
mean-zero asymptotic multivariate normal distribution
under the complete null hypothesis, and that all score,
Wald or likelihood ratio test statistics commonly used
to test single SNPs or haplotypes are asymptotically
equivalent to simple chi-square statistics based on the
efficient score functions. Assuming that the subjects
are randomly chosen for stages I and II, the asymp-
totic variance matrix of the efficient scores can be es-
timated based on the observed efficient score functions
for stage I only. Monte Carlo replicates can then be
efficiently drawn from the estimated asymptotic multi-
variate normal distribution of the efficient scores, and
the chi-square statistics equivalent to the original tests
computed for each Monte Carlo replicate. Adjusted
p-values can be computed based on the Monte Carlo
replicates. An advantage of Lin’s method is that it does
not require recalculation for each Monte Carlo repli-
cate of the original tests statistics that can be compu-
tationally costly, but only for the simpler equivalent
chi-square tests based on the efficient scores. This can
result in significant time savings. Both Lin’s and Dud-
bridge’s method can be extended to two-stage family-
based GWAS but not to studies using case-control sam-
ples in stage I and families in stage II.

Methods based on Bonferroni correction using an
“effective number of tests” (see Section 2.2.2) for a
given platform in a single-stage design have typically
relied on permutation tests applied to data sets where
very large numbers of SNPs are genotyped in relatively
small numbers of subjects (e.g., the HapMap). Just as
for the methods described above, there is an implicit
assumption in these calculations that the null distribu-
tion of the minimum p-value for a group of tests does
not depend very strongly on the number of subjects in
the analysis but only on the LD pattern between the
tests considered.

The entire subject of adjustment for multiple com-
parisons is rapidly evolving. For a recently proposed
method and a review of other methods, see Han, Kang
and Eskin (2009).

2.4 Selection of SNPs for the Next Stage

Another decision entails the selection of SNPs to be
carried from stage I to stage II or to be reported as
“significant” at the end of the study. Of course the true
causal association may not lie anywhere near the top of
the distribution of p-values (Zaykin and Zhivotovsky,
2005). Furthermore, if the distribution includes some
false positives due to bias (e.g., differential genotyp-
ing error), then the most significant findings are more
likely to be false positives.

Most of the literature has assumed that p-values
for single SNP associations will be used for select-
ing SNPs to carry forward, although alternatives have
been suggested, including the population attributable
risk (Hunter and Kraft, 2007), the False Positive Re-
port Probability (Hunter and Kraft, 2007; Samani et
al., 2007), Bayes factors or q-values (Wakefield, 2008),
empirical Bayes estimates of effect size (Hunter and
Kraft, 2007) or multimarker methods like a local scan
statistic (Guedj et al., 2006). But such approaches make
no use of any external information that might suggest
that some associations were more credible than others
a priori. For example, one might wish to give greater
credence to associations with SNPs located in or near
genes (particularly those that may have a high prior
probability of involvement in the disease) or highly
conserved regions of the genome, coding SNPs, those
located under a linkage peak, or those with previously
reported associations. Often such information is used
informally at the conclusion of a GWAS in deciding
which associations to pursue with further fine mapping
or functional studies.

Roeder et al. (2006) and Roeder, Devlin and Wasser-
man (2007) have proposed a weighted False Discov-
ery Rate framework and Bayesian versions have been
proposed by Whittemore (2007) and Wakefield (2007).
All of these allow a specific variable to be used to up-
or down-weight the significance assigned to each asso-
ciation. They showed that well chosen prior informa-
tion can substantially improve the power for detecting
true associations, while there was relatively little loss
of power if that information is uninformative.

Each of these approaches allows only a single vari-
able to be incorporated, with weights specified in ad-
vance. Hierarchical modeling approaches (Chen and
Witte, 2007; Lewinger et al., 2007a) allow multiple
sources of information to be empirically weighted in
models for the probability that an association is null
and the expectation of the magnitude of an association
given that it is not null. Simulation studies (Lewinger
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et al., 2007a) showed that when there was little or no
useful prior knowledge, the standard p-value ranking
performed best, but when at least some of the available
covariates were strongly predictive (even if one did not
know which ones were truly predictive), the hierarchi-
cal Bayes ranking led to better power. For further dis-
cussion, see the paper by Pfeiffer, Gail and Pee (2009)
in this issue.

2.5 DNA Pooling

DNA pooling offers another approach that could
drastically reduce the cost of genotyping for a GWAS.
While the idea has been around for some time (Bansal
et al., 2002; Risch and Teng, 1998), the technical chal-
lenges in forming comparable pools and quantifying
allele frequencies are formidable (Barratt et al., 2002;
Feng, Prentice and Srivastava, 2004; Pfeiffer et al.,
2002; Sham et al., 2002; Zou and Zhao, 2004). It
is only recently that it has proved feasible to apply
this technique to high-density genotyping arrays (Craig
et al., 2005; Docherty et al., 2007; Johnson, 2007;
Meaburn et al., 2006; Sebastiani et al., 2008; Zuo, Zou
and Zhao, 2006). As currently employed, the design
generally entails forming several small pools of cases
and of controls in stage I and selecting SNPs on the ba-
sis of their differences in allele frequencies. These are
then retested by individual genotyping in stage II, pos-
sibly on both the original and a second sample. Much
remains to be done to study the best choices of de-
sign parameters (numbers of pools, sample sizes, cri-
teria for selecting SNPs to test by individual genotyp-
ing, etc.) (Macgregor, 2007) and to estimate the statis-
tical power and false discovery rate for this approach in
practice. However, empirical applications have demon-
strated that DNA pooling is capable of detecting sev-
eral associations that have previously been discovered
and confirmed by individual genotyping in a GWAS
context (Pearson et al., 2007). Furthermore, several
studies using this approach have reported novel asso-
ciations (Kirov et al., 2009; Spinola et al., 2007; Steer
et al., 2007), although it remains for these associations
to be confirmed independently.

Several recent technological advances offer the po-
tential to greatly improve the utility of DNA pooling.
The first entails molecular “bar coding” of the individ-
ual DNA molecules contributing to each pool (Craig et
al., 2008), so that the genotypes of the specific individ-
uals contributing to the subset of pools found to con-
tain rare variants in excess in case pools compared to
control pools can be readily reconstructed without the
need for further genotyping. The second development

entails the use of “pools of pools” to dramatically re-
duce the cost, so that it now becomes feasible to obtain
DNA sequence information on pools as large as 3000
(D. Duggan, TGen, personal communication). We will
revisit the use of multistage designs using pooled DNA
for deep-resequencing in the concluding section.

2.6 Multistage Designs for Testing Main Effects
and Interactions

The NIH “Genes and Environment Initiative” has
focused attention on the use of GWAS for identify-
ing genes that modify the effects of environmental
agents (Kraft et al., 2007). Such studies pose additional
methodological problems, beyond the usual challenges
in assessing the main effects of genes and environmen-
tal factors, such as low power (Gauderman, 2002) (for
further discussion, see the paper by Kooperberg et al.,
2009 in this issue). However, there is the opportunity to
improve power by using a case-only design (Piegorsch,
Weinberg and Taylor, 1994) in which G×E interaction
is tested by testing for association between a gene and
environmental factor among cases, under the assump-
tion that this association does not exist in the general
population. Such an assumption is not likely to hold
for all possible SNP × E interactions in a GWAS, but
testing this assumption first in controls and deciding
whether to perform a case-only or conventional case-
control test accordingly can lead to substantial infla-
tion of type I error rates (Albert et al., 2001). Never-
theless, more appropriate methods for combining the
inferences from case-control and case-only analyses of
the same data have been described (Chatterjee and Car-
roll, 2005; Chatterjee, Kalaylioglu and Carroll, 2005;
Cheng, 2006; Mukherjee et al., 2007; Mukherjee et
al., 2008; Mukherjee and Chatterjee, 2008). For exam-
ple, Mukherjee and Chatterjee (2008) use an empirical
Bayes compromise between the case-only and case-
control estimators, weighted by the estimated proba-
bility of the existence of a G−E association. Rather
than limiting the analysis to an all-or-nothing choice
between case-only and case-control approaches, these
methods have the advantage of letting the data and
a prior estimate the most appropriate weight between
models. In the case of SNP × SNP interactions, one
may use LD information from HapMap to generate
flexible priors that can greatly increase power (Li and
Conti, 2009). In the context of a GWAS, various mul-
tistage designs are possible, such as using a case-only
test in the combined sample of cases and controls to
screen interaction effects and then confirming that sub-
set by a standard case-control test in the same data set
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(Murcray, Lewinger and Gauderman, 2009). This de-
sign has been shown to be substantially more efficient
than a single-stage scan using a standard case-control
comparison.

3. SINGLE VS. TWO-STAGE DESIGNS

As the cost of commercial chips falls relative to cus-
tom genotyping, the merits of this approach will need
to be reconsidered (Hunter et al., 2007). As mentioned
above, faced with a choice between density of SNPs
and sample size in a single stage study, it is usually
preferable to have the largest possible sample size,
even if this means not being able to afford a higher
density chip. A two-stage design may, however, allow
a higher density chip to be used in stage I than would
be affordable in a single-stage design, and hence im-
prove power for regions of low LD and overall mean
power (Lewinger et al., 2007b). The ability to com-
bine different study designs (e.g., population-based and
family-based) may also favor a two-stage design. Other
considerations, however, may favor a one-stage design,
such as faster study completion and simplified logis-
tics and quality control due to use of a single genotyp-
ing platform. Additionally, multiple hypotheses can be
tested using these data, say, multiple phenotypes in a
cohort design or various subgroup analyses or interac-
tion tests. For example, in addition to scanning for ge-
netic main effects, the Southern California Children’s
Health Study (CHS) of the health effects of air pol-
lution aimed to identify genes that interact with two
measures of air pollution, exposure to traffic, in utero,
and second-hand tobacco smoke, and GSTM1 (previ-
ously shown to be involved in several G × E interac-
tions) or to differ between Hispanic and non-Hispanic
children, each of these for two phenotypes, asthma and
lung function development. SNPs might be selected
from the initial scan for follow-up based on any of
these criteria. In order to have reasonable power for
detecting each of these effects, a custom panel of 12K
markers or more would have been required, the cost
of which begins to approach that of simply using the
same high density panel as in the initial scan, so the
decision was made to do a one-stage scan instead. In
fact, in the NHLBI-funded STAMPEED consortium of
GWAS for cardiovascular, lung and blood disorders of
which the CHS is a part (http://public.nhlbi.nih.gov/
GeneticsGenomics/home/stampeed.aspx), most of the
13 participating centers are using a one-stage design.
In a one-stage design, replication of SNPs attaining
genome-wide levels of significance is still needed, as

discussed below. However, the combination of discov-
ery and replication phases should not be regarded as a
formal two-stage design, which we define as involving
the testing of a large number of hits in a second stage
and doing a joint analysis of both. This may involve
optimizing the choice of sample sizes and significance
levels as discussed earlier, but these two stages com-
bined have the same goal as a 1-stage design, namely,
discovery.

4. AFTER GWAS, WHAT NEXT?

Multistage sampling designs for GWAS should not
be thought of as a hypothesis generation followed by
independent replication approach but rather as simply
a more cost-efficient way of conducting the discovery
approach (Skol et al., 2006). Nevertheless, it must be
appreciated that any effect estimates (e.g., odd ratios)
surviving the entire discovery process will tend to be
biased away from the null because attention is focused
only on those that are statistically significant, a phe-
nomenon known as the “winner’s curse” (Kraft, 2008;
Yu et al., 2007; Zhong and Prentice, 2008; Zollner and
Pritchard, 2007). Thus, some form of truly independent
replication is needed, both to confirm the existence of
the reported associations and to estimate the magni-
tude of their effect. In the following sections we dis-
tinguish between what we will call “exact replication”
and “generalization,” the latter being aimed at deter-
mining the full extent of a replicated association across
populations, phenotypes, modifiers, etc. In addition,
an association initially reported may not be with the
causal variant itself, but rather with some other variant
it is in LD with, so further studies aimed at fine map-
ping or resequencing the region to identify the culprit
may be needed. Finally, once plausible candidates for
the causal variants have been identified, there is a need
for further experimental studies to understand their bi-
ological function and additional in silico and epidemi-
ologic analyses to build a comprehensive model for the
causal pathway.

4.1 Replication

Failure to replicate has been a recurring problem
with candidate gene association studies, hence a major
concern about the new generation of GWASs (Chanock
et al., 2007; Ioannidis, 2007). (The companion paper
by Kraft, Zeggini and Ioannidis, 2009 in this issue ex-
plores the replication issues in greater depth.) True sci-
entific replication must involve something more than

http://public.nhlbi.nih.gov/GeneticsGenomics/home/stampeed.aspx
http://public.nhlbi.nih.gov/GeneticsGenomics/home/stampeed.aspx
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a repetition of the study on a second random sam-
pling from the same population using the same meth-
ods (Chanock et al., 2007; Clarke et al., 2007), since
simply splitting a sample in half and requiring signif-
icance at level α in both halves is less powerful than
a single analysis of the entire sample at significance
level α2 (Skol et al., 2006; Thomas et al., 1985). Nev-
ertheless, the goal at this stage should be to avoid fail-
ure to replicate because of true differences in effect
between the original and follow-up populations, inves-
tigation of real heterogeneity being the subject of the
next stage (“generalization”). Many granting agencies
now expect investigators to discuss plans for follow-up
investigations of any associations detected and some
high profile journals are requiring replication studies as
part of a single report of a genetic association (Anony-
mous, 1999; Rebbeck et al., 2004). In many cases,
this might best be accomplished by collaborations with
other groups with data on a genetically similar set of
subjects. Failure to replicate may often be due to the
use of replication data sets that were not well designed
for this purpose because of heterogeneity between the
original and replicate data sets or problematic study de-
signs that were generated for different purposes origi-
nally. Replication and generalizability are often mud-
dled together even though they are two different ques-
tions that are best addressed with different types of
study populations—one selected to minimize hetero-
geneity and the others selected to maximize it.

One question that frequently arises is whether to re-
strict replication claims to the same marker detected
in the initial GWA scan (“exact” replication) or to test
additional markers in the region and allow association
with any of them (appropriately adjusted for multiple
comparisons) to be treated as evidence of replication
(“local” replication) (Clarke et al., 2007). In a simi-
lar vein, associations first discovered in a GWAS by
imputed SNPs should be confirmed by direct genotyp-
ing, either in the original samples, or better in indepen-
dent replication samples, before a genuine association
is claimed. In any event, a clear definition of replication
is needed: generally this is taken to be a statistically
significant association in the same direction, but now
not requiring genome-wide multiple testing correction
since only a subset of the top-ranking associations will
be subject to replication and the magnitude of the orig-
inal relative risk is likely to have been overestimated.

4.2 Generalization

Once an association has been replicated, it becomes
important to investigate the full range of its effects.

For example, one of the first questions to address is
whether the effect differs across races. If so, this could
be a sign that the association is not causal, but only
a reflection of a causal effect of some other variant
with which it is in LD, the patterns of LD differing
across races, and would suggest that further fine map-
ping of the region is warranted. Furthermore, if there
is heterogeneity by race/ethnicity, fine mapping within
a race that exhibits the association of interest but has
shorter LD blocks would help localize the signal more
efficiently than in a race with longer LD blocks. Al-
ternatively, heterogeneity by race could be a reflection
of differences across races in the prevalence of some
modifying factors—G × E or G × G interactions—
indicating that further investigation of effect modifica-
tion is warranted. Beyond the question of heterogeneity
by race/ethnicity, there are other questions of general-
izability worth considering. Does the variant have sim-
ilar effects across different subtypes of the same dis-
ease (for example, for colorectal cancer, by location in
the colon, age of onset, family history of colorectal or
other cancers, presence or absence of selected mole-
cular markers such as microsatellite instability, BRAF
mutation, MLH1 methylation)? Does the variant have
effects on other phenotypes—intermediate endpoints
like incidence or recurrence of polyps for colorectal
cancer or other cancer sites or even other diseases with
which it might share a common etiologic pathway? Af-
ter a result is confirmed in a properly designed repli-
cation study, we would advocate a strategic approach
to the question of generalizability, guided by a careful
consideration of the most important knowledge gaps
about the disease, rather than the sometimes uncriti-
cal exercise of quickly testing for the reported SNP
in whatever data sets are readily available (ignoring
whether the result would fill an important gap in our
knowledge base).

4.3 Fine-Mapping and Deep Resequencing

Unless there is compelling evidence that a newly
discovered association with a particular SNP is in-
deed causal, further fine mapping of the surrounding
region is generally appropriate, given that the SNPs
on the discovery panel represent at most 20% of all
common variants and were selected primarily for their
effectiveness at tagging other variants rather than as
biologically plausible candidates themselves. Further-
more, it is becoming increasingly evident that multi-
ple rare variants may play an important role in many
diseases (Fearnhead et al., 2004; Iyengar and Elston,
2007; Kryukov, Pennacchio and Sunyaev, 2007; Li
and Leal, 2008; Pritchard, 2001). This search for the
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true culprit(s)—which could occur before, after or
concurrent with the generalization activities described
above—might involve some combination of fine map-
ping with additional SNPs and deep resequencing and
poses interesting challenges for study design, particu-
larly in terms of the balance between additional efforts
to fine-map a signal with additional genotyping of pre-
viously known variants versus jumping directly to deep
resequencing for discovery.

Fine mapping might explore a relatively large region
surrounding the associated SNP(s) and be informed by
knowledge from HapMap of the LD structure of the re-
gion. The goal would be to genotype a denser set of tag
SNPs than was possible in the initial GWAS in order to
conduct haplotype or multi-marker association tests, as
discussed elsewhere in this issue (Su et al., 2009; God-
dard et al., 2009; Zöllner and Teslovich, 2009). (For
this purpose, one might wish to use a different pop-
ulation, such as those of African descent where LD
blocks would tend to be shorter.) Deep resequencing
would entail selection of a subset of participants from
the main study for complete sequencing of the region
to search for other relatively common variants (∼1–
5%) that may not have been characterized by HapMap.
These variants would then be genotyped in the entire
study sample to test for association. Because of the
high cost of sequencing, it might be advisable to do the
fine mapping first to narrow down the region of inter-
est, but with the advent of next generation sequencing,
DNA “bar coding” and DNA pooling methods (Craig
et al., 2008), costs are coming down so rapidly that one
might want to proceed directly to sequencing. Either
approach might benefit from a formal two-stage sam-
pling design, although the cost savings are likely to be
more substantial for deep resequencing studies.

4.3.1 Two-stage designs revisited. The basic idea
here would be to select a subset of subjects for ad-
ditional genotyping and/or sequencing who would be
most likely to carry a causal variant. This subset of
subjects serves two general goals. The first may sim-
ply be to characterize the genetic variation or to dis-
cover previously unknown variants within the region
to then genotype in the larger main study with a more
cost-effective genotyping technology. A second goal
may be to formally combine the more detailed infor-
mation for the subgroup with the data from the main
study on only the selected SNPs. As mentioned at the
outset, this idea has been extensively developed in the
literature on “two-phase sampling” in survey design
and more recently in epidemiologic applications. Un-
like the two-stage designs for GWAS described above,

these designs typically entail using information that is
readily available on the entire case-control study to se-
lect a stratified subsample. For the first goal of char-
acterization only, a sample of only cases may be most
efficient (see below). However, if one wishes to sam-
ple the subset for more detailed measurements and
then combine the two data sets in a joint analysis, one
may need to sample both cases and controls. Here, one
needs to consider both the optimization of the infor-
mativeness of the subset for discovery as well as infor-
mativeness for the ultimate case-control analysis that
takes the sampling fractions into account. In the present
context, the relevant stratifying variables might include
case/control status and the SNP genotypes (and pos-
sibly exposure variables if detected through a G × E
interaction effect). Such an approach has been ex-
plored for candidate gene association studies (Thomas,
Xie and Gebregziabher, 2004), where information on a
dense panel of SNPs in a targeted subsample is com-
bined with a sparser panel from the main study for the
purpose of localizing the signal by LD mapping or for
testing haplotype associations. Here, each region iden-
tified in a GWAS would likely target a different sub-
sample of subjects, based on the available SNPs in that
region.

A typical study might involve sequencing a sample
of about 48 or 96 individuals over perhaps a 100 Kb
region. Assuming that the region size has already been
established based on the pattern of SNP or haplotype
associations from the initial GWAS, knowledge of the
LD structure of the region and possibly additional fine-
mapping, how then should this relatively small sample
be selected to maximize the chances of discovering the
real causal variant(s)?

Suppose first that a positive association has been
found with a single SNP (Table 1, top). If not itself
causal, this could theoretically reflect either a deleteri-
ous effect of another variant in positive LD with it or
a protective effect of a variant in negative LD. Of the
two possibilities, the former is much more likely, as
negative LD with a protective minor allele is unlikely
to generate a large positive association at a marker lo-
cus (see the second block in Table 1, where a perfectly
protective allele in perfect negative LD yields a marker
RR of only 1.067). The subjects with the highest yield
of causal variants would then be cases carrying the mi-
nor allele of the associated SNP, with carrier controls
somewhat lower but still much higher than either cases
or controls carrying the major allele.

Now suppose instead that the minor allele shows a
negative association with disease. Again, if not itself
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TABLE 1
Illustrative calculation of probability of carrying a rare causal variant G among cases and controls carrying the major or minor allele at a

marker locus M in LD with it: Pr(M) = 0.2, Pr(G) = 0.05. Bolded entries indicate the highest yield strata in each situation

Marker Disease Causal allele Pr(G = 1|M,Y)

M Y G = 0 G = 1

Positive marker association
Positive LD and positive causal association
δ = 0.036,RRYG = 2,RRYM = 1.22

m Controls 0.796 0.004 0.005
Cases 0.758 0.008 0.010

M Controls 0.154 0.046 0.230
Cases 0.147 0.088 0.374

Negative LD and negative causal association
δ = −0.010,RRYG = 0,RRYM = 1.067

m Controls 0.750 0.050 0.063
Cases 0.789 0.000 0.000

M Controls 0.200 0.000 0.000
Cases 0.211 0.000 0.000

Negative marker association
Negative LD and positive causal association
δ = −0.010,RRYG = 3,RRYM = 0.889

m Controls 0.750 0.050 0.063
Cases 0.682 0.136 0.136

M Controls 0.200 0.000 0.000
Cases 0.186 0.000 0.000

Positive LD and negative causal association
δ = 0.036,RRYG = 0.5,RRYM = 0.887

m Controls 0.796 0.004 0.005
Cases 0.816 0.002 0.003

M Controls 0.200 0.046 0.230
Cases 0.211 0.024 0.130

causal, this could reflect either a protective effect of a
variant in positive LD with it or a deleterious effect of
a variant in negative LD, these two scenarios now be-
ing roughly equally plausible (see bottom two blocks
of Table 1, where both configurations yield similar
marker RRs). In this case, the most informative sub-
jects would be cases carrying the major allele or con-
trols carrying the minor allele at the associated SNP,
with the latter generally having a higher yield of causal
variants.

To summarize the situation with a single marker, if
one is purely interested in maximizing the chances of
identifying a causal variant that will then be genotyped
in the entire sample, then one could sample only car-
riers of the minor allele—cases if the marker associa-
tion is positive, controls if it is negative. No weighting
would be required for the analysis of the full study data
for the discovered genotypes. If, on the other hand, one
wishes to perform a joint analysis of the main and sub-

study data incorporating the full sequence data on sub-
study subjects, then to be able to weight the analysis
correctly, all four strata must be represented. The opti-
mal sampling fractions would depend upon knowledge
of the true LD and causal association parameters, but
one could be guided by the general calculations illus-
trated in Table 1: if the association with the minor al-
lele is positive, then sample the largest number of cases
with the minor allele, then controls with the minor al-
lele, and the smallest number of carriers of the major
allele; if the association is negative, then sample most
heavily controls with the minor allele, then equal num-
bers of cases with the minor allele and controls with
the major allele, and the smallest number of controls
with the minor allele.

Now, suppose the association is not just with a sin-
gle SNP in a region but with several. A sensible sam-
pling design might now entail first constructing a risk
index, say, by logistic regression of case-control sta-
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FIG. 1. Illustration of a hypothetical distribution of an empiri-
cal risk index (M , right axis, dotted line) and yield of causal vari-
ant carriers (D = 1, left axis, solid and dashed lines for cases and
controls respectively) as a function of M .

tus on multiple SNPs or haplotypes and then stratify-
ing jointly on this genetic risk index and case-control
status. The concept of positive or negative association
and LD is now moot and needs to be replaced by con-
sideration of the shape of the distribution of the risk
index (Figure 1). Typically, one might find a relatively
small proportion of subjects with a broad range of high
risk scores and a large proportion with generally low
risk (Thomas et al., 2008). In this situation, it would be
cases with high risk scores that are likely to be the most
informative, although controls with high risk scores
would also have an increased probability of carrying a
causal allele. In the event that the risk distribution has a
long tail of low risk, it could be worthwhile to sample
controls with low risk scores, but detecting effects of
rare beneficial alleles would require enormous sample
sizes. (Of course, a beneficial effect of a common allele
is equivalent to a deleterious effect of a rare allele.) As
in the single-marker case, if the purpose is simply to
discover potentially causal variants, then one could re-
strict the sample to high-risk cases, but if a joint analy-
sis is planned, then a well-defined sampling scheme is
required that assigns nonzero sampling probability to
every individual. This could be accomplished by strat-
ifying jointly on Y and Pr(Y = 1|M) or in proportion
to an estimated Pr(G = 1|Y,M) for some hypothesized
model.

It must be appreciated that only very strong associ-
ations would have any power for testing associations
in the subsample alone. The real purpose is simply to
identify novel variants that would then be genotyped
in the main study. Having completed the sequencing of
this stratified sample and genotyping of selected novel
variants in the main study, a joint analysis could be

performed as described by Thomas, Xie and Gebregzi-
abher (2004) to test for associations with all variants
discovered in the resequencing sample, not just those
actually genotyped in the main study. This essentially
involves imputation of the missing data on main study
subjects using the substudy data, but requires appro-
priate adjustment for the sampling fractions if they de-
pend jointly on genotypes and disease, so that all cells
of the stratification must be represented in the sample.
For substudy subjects, the standard logistic model can
be used by adding as an offset term the log of the ra-
tio of genotype-specific case/control sampling proba-
bilities. For main study subjects, the likelihood contri-
bution becomes a more complex mixture of weighted
logistic probabilities, although well approximated by a
logistic function if the disease is rare. Of course, impu-
tation of very rare variants in the main study by lever-
aging a substudy with only a few occurrences of such
variants is of dubious value, so all potentially causal
variants should be genotyped in the full sample, but
imputation could be useful for exploiting LD patterns
in the sequence data that might suggest regions worth
closer study.

These considerations are likely to be fundamentally
altered in the near future by the public availability of
resequencing data from the “1000 Genomes Project”
(http://www.1000genomes.org/), aimed at identifying
variants at a frequency of 1% across the genome in ap-
proximately 1500 subjects (500 Bantu-speaking, 500
Asian, 500 Caucasian). Data at an intermediate level of
detail (e.g., deep resequencing of 1000 genes in 1000
individuals) will be released soon. Once completed,
the 1000 Genomes Project will potentially reduce the
need for extensive deep resequencing for variants in the
1−5% range, at least for studies conducted in compa-
rable populations, but would still leave open the ques-
tion of rarer variants. Methods to leverage the 1000
Genomes data for imputation purposes or joint analysis
with a two-phase sampling design, allowing for possi-
ble misspecification of the G–M relationships for the
specific study’s target population, would be useful.

The advent of whole genome sequence using next-
generation sequencing platforms (Mardis, 2008) may
also resurrect interest in multistage designs, as ge-
nome-wide scans for rare variants are unlikely to be
feasible on the tens of thousands of subjects that will be
needed, at least until the $1000 genome becomes a re-
ality. Whether this will ever be feasible, given the much
larger multiple-testing burden, the sparseness of data
on any particular variant and the likelihood that rare
variants will be less effectively tagged than common

http://www.1000genomes.org/
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variants, remains to be seen. Nevertheless, these tech-
nologies will undoubtedly aid in following up larger
and larger regions surrounding SNPs identified in a
GWAS on larger and larger samples, requiring adjust-
ment for a much larger universe of variants, rare and
common (Hoggart et al., 2008a, 2008b).

4.4 Investigating Biological Function, eQTLs and
Pathways

Once a set of highly significant and replicated SNP
associations has been found, what then? The chal-
lenges posed by the study of the often broadly diverse
biologic functions of hits arising from GWASs should
not be underestimated. Trying to determine the func-
tionality of even a single GWAS hit can be a daunt-
ing task. While clearly in vitro and in vivo experimen-
tal studies would be appropriate to investigate func-
tion, the initial steps in characterization depend upon
whether hits are located within genes, near known
genes or in “gene deserts.” If the hit is within a gene,
various software packages and web sites could be used
to assess the potential functional role of the variant, and
such in silico findings could then be confirmed in vitro
by molecular approaches such as quantitative RT-PCR.
If the hit is near a gene, it could implicate an adjacent
gene, but it could also lie in an unannotated gene, an
miRNA, or an enhancer or repressor element for some
gene located far away (the most likely explanation if it
is in a gene desert). Unannotated genes might be iden-
tified through tiling gene expression arrays, while in
silico and ChIP-chip methods might be used to iden-
tify enhancer/repressor elements.

Other types of analyses also might be undertaken
that would involve more sophisticated analyses of the
GWAS data, either (1) in an attempt to infer causal
pathways from the pattern of associations and inter-
actions using the kinds of network analysis tools that
have been applied to gene expression and protein inter-
action data, or (2) to inform the search for effects in the
GWAS data by incorporating external knowledge from
pathway or genomic databases, literature mining or
analysis of gene expression, proteomic, metabolomic
or other—omics data, perhaps using hierarchical mod-
eling or gene set enrichment analysis methods. See
Chasman (2008), Gieger et al. (2008), Pan (2005) and
Wang, Li and Bucan (2007) for discussion of some of
these approaches.

A second phase of these studies could be to exam-
ine any known biological functionality of the gene in
question, and once again those applied approaches will
depend upon several considerations such as the likely

consequence of the SNP itself upon gene function as
well as prior knowledge of the gene and understand-
ing of its involvement, if known, in cellular pathway(s).
Gene expression data (even genome-wide data) might
be leveraged to identify candidate genes/pathways. A
SNP that lies within the coding region of a gene may
be more likely to affect the normal function of that
gene, either through enhancing its effect or reducing
its functionality. Biochemical assays may be available
that could be applied to test the effect of a coding re-
gion variant on its known gene function, such as a role
in apoptosis. Alternatively, where a hit lies adjacent to
a gene or within a gene desert and possibly in an en-
hancer element or other regulatory region, the likely
effect may be on the expression level of the gene—
whether leading to higher or lower gene expression lev-
els, mRNA stability or post-translational protein lev-
els in target tissues. The next steps of characterization
would require using knowledge of that gene and re-
lated pathways to develop assays that would test the
putative consequences of either elevated or reduced ex-
pression of the gene product in appropriate cells. For
some genes, accumulated knowledge of its role in the
cell may be extensive; however, for others that knowl-
edge may be sparse or even non-existent. Such prior
knowledge may be used to help prioritize functional
biological studies. However, they could have the effect
of steering us away from further characterization of po-
tentially interesting genes that have little prior biolog-
ical knowledge due to the greater challenges that they
pose.

Given the potential complexity and diversity of
methods that will need to be applied to follow up on
any identified hit, a prioritization scheme will need to
be developed that will likely involve many different
considerations, such as the strength of the hit itself,
whether the hit has any implications for disease sub-
sets such as more aggressive forms of cancer, whether
the hit is potentially implicated in more than one dis-
ease (such as appears to be the case for the 8q24 re-
gion, which is related to at least 4 cancers, and for
several diabetes risk alleles that are found to be pro-
tective for prostate cancer) and prior biological knowl-
edge. The hierarchical modeling approaches discussed
in Section 2.4 may be helpful for combining the evi-
dence from the data at hand and these external sources
of knowledge to prioritize hits for follow-up functional
studies. None of these kinds of studies would be likely
to involve the original epidemiological study subjects,
however, and further detailed investigations are likely
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to be gene-specific, so are beyond the scope of this ar-
ticle.

Two-phase sampling designs may be particularly
helpful for biomarker or expression measurements to
inform the analysis of pathways. Such analyses may
take the form of a network of latent variables, for which
the biomarkers are viewed as surrogate measurements
(Thomas, 2007). In such designs, one might wish to
subsample jointly on some combination of disease, ex-
posure and genotype(s) to select individuals for bio-
marker measurements. For example, in a pharmaco-
genetic study, one might subsample on the basis of
outcomes and treatment assignment to target a GWAS
or a resequencing study of a candidate region; or if
GWAS data were already available, one might stratify
by a multi-marker risk score, treatment and outcomes
for a collection of biomarkers to investigate pathways
(Thomas and Conti, 2007). Any study of biomarkers
collected after the outcome must, however, address the
problem of “reverse causation,” whereby the variable
being measured (or the accuracy of its measurement)
is affected by the disease or its treatment rather than
the other way around.

Finally, it is worth noting that an enhancement in
our knowledge of the etiology of disease may have im-
plications that transcend the merely predictive power
of a specific variant. The relatively modest relative
risks that have been discovered by GWASs for dis-
ease etiology could be due in part to selection against
high risk variants, but this is unlikely for response
to modern pharmacologic agents. For example, SNPs
in HMGCR have only a small effect on low density
lipoprotein levels, but drugs targeting the protein en-
coded by HMGCR have a much larger effect (Altshuler,
Daly and Lander, 2008). One can at least hope that
solving the mystery of how variants in a gene desert
such as 8q24 appear to influence the risk of a multitude
of cancers would lead to methods aimed at preventing
or treating the resulting diseases. Ultimately, the dis-
covery of genetic modifiers of treatment response is
central to the goal of personalized medicine.
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