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Structures and Assumptions: Strategies
to Harness Gene x Gene and Gene x

Environment Interactions in GWAS

Charles Kooperberg, Michael LeBlanc, James Y. Dai and Indika Rajapakse

Abstract. Genome-wide association studies, in which as many as a million
single nucleotide polymorphisms (SNP) are measured on several thousand
samples, are quickly becoming a common type of study for identifying ge-
netic factors associated with many phenotypes. There is a strong assumption
that interactions between SNPs or genes and interactions between genes and
environmental factors substantially contribute to the genetic risk of a dis-
ease. Identification of such interactions could potentially lead to increased
understanding about disease mechanisms; drug x gene interactions could
have profound applications for personalized medicine; strong interaction ef-
fects could be beneficial for risk prediction models. In this paper we provide
an overview of different approaches to model interactions, emphasizing ap-
proaches that make specific use of the structure of genetic data, and those that
make specific modeling assumptions that may (or may not) be reasonable to
make. We conclude that to identify interactions it is often necessary to do
some selection of SNPs, for example, based on prior hypothesis or marginal
significance, but that to identify SNPs that are marginally associated with a
disease it may also be useful to consider larger numbers of interactions.
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1. INTRODUCTION

Genome-wide association studies (GWAYS), in which
as many as a million single nucleotide polymorphisms
(SNP) are measured on several thousand samples, are
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quickly becoming common for identifying genetic fac-
tors associated with many phenotypes. Until now most
analyses of GWAS have taken a one-SNP-at-a-time
approach, some analyses are employing haplotypes,
but this is mostly as surrogates for unmeasured SNPs.
There is, however, the strong assumption that interac-
tions between SNPs or genes (gene x gene interac-
tions) and interactions between genes and environmen-
tal factors (gene x environment interactions) substan-
tially contribute to the genetic risk of a disease (e.g.,
Frankel and Stork, 1996; Philips, 2008). Identification
of such interactions could potentially lead to increased
understanding about disease mechanisms; drug x gene
interactions could have profound applications for per-
sonalized medicine; strong interaction effects could be
beneficial for risk prediction models.

The GWAS that have been carried out to date have
not lead to the identification of many such interactions,
other than that some of the SNPs, that were found to
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be marginally associated with a disease, are sometimes
also tested for differences in subgroups (e.g., Gudb-
jartsson et al., 2007, Table 2). There are several reasons
for this lack of identification of interactions:

1. The odds ratios of SNPs that have main effects are
usually small, and there is no reason to expect that
interaction effects are any bigger. Increased degrees
of freedom for models involving both main effects
and interaction effects result in even lower power
to specifically identify the interactions than the al-
ready low power to identify main effects.

2. The potential number of gene x gene interactions is
very large, for example, ~5 x 10'! two-SNP inter-
actions for the 1 million SNP chip, making it com-
putationally impossible to do anything more than
the simplest model for all interactions, and reduc-
ing the already limited power further because of the
required multiple comparisons correction.

3. The potential number of gene x environment inter-
actions 1s smaller; however, when there are several
environmental factors of interest the number of mul-
tiple comparisons for which we have to correct is
still considerably larger than the number of SNPs
in the initial scan. In addition, some environmental
factors may have measurement error, further reduc-
ing power to identify interactions involving those
factors.

4. With single SNP models there are a variety of (ge-
netic) models to choose from: for example, addi-
tive, recessive, dominant and codominant models.
For interaction models there are many more, yield-
ing an unwieldy array of models and approaches to
choose from, some of which probably could be dis-
missed as not having the power to identify interac-
tions from the start. An example of such a model
with little power is one for kth order interactions,
with k > 2, where all 3% possible combinations of
SNPs are modeled separately.

5. Imputation methods for marginal SNP effects work
fairly well in identifying disease associated SNPs
that are unmeasured, although the power for these
unmeasured SNPs is somewhat lower than for mea-
sured SNPs; for interactions it becomes infeasible
to check all possible interactions involving unmea-
sured SNPs.

In this paper we will review a number of approaches
that can be used for finding interactions in GWAS. We
will use a few guiding principles when using these
methods:

e If a main effect fits the data well enough, don’t use
an interaction. This may seem obvious, and many
established function estimation methods adhere to
this principle. However, not all models for genetic
interactions adhere to this keep-it-simple principle.

o Think about which model to use; think how the
method scales up. This is another reason to keep-
it-simple. If the model is too computer intensive, it
may not be feasible to fit it many millions of times.

e If you need to divide the cake, give a slightly larger
crumb to the people who will enjoy it—that is, spend
your power on the most likely interactions. Good
candidates for SNPs involved in gene X gene or
gene X environment interactions are prior hypoth-
esized effects (if there are any) and SNPs that show
main effects. (Partly) ignoring other possible inter-
actions will eliminate the possibility of identifying
these ignored ones as significant; since the power is
very small to start out, we may as well use it wisely
and at least identify the more likely interactions.

e Possibly insignificant interactions may help us to
identify disease associated genes. If there is some
difference in genetic effects, looking wisely in sub-
groups may help you find groups where the effect is
strongest.

e Be willing to exploit the genetic structure [e.g., link-
age (dis)equilibrium, SNPs taking only three val-
ues], be willing to make some assumptions (e.g.,
gene environment independence), but be very aware
what you loose if these assumptions are wrong.

Obviously, many of these principles are not that dif-
ferent from studying interactions in smaller problems:
the main difference is that the size of the problem for
logistical reasons forces us to make the right choice
immediately—we may never get a second chance to
correct ourselves.

Furthermore, the nature of potential models of inter-
actions has implications both for interpretation and sta-
tistical power. One class of methods uses models lead-
ing to traditional odds ratio estimates of main effects
and interactions. These methods are based on multi-
plicative interactions in a logistic regression and can
be represented more generally as tensor product re-
gression spline models. On the other hand, another
class of strategies address the potential for strong as-
sociations within subgroups of subjects; these mod-
els include Logic Regression, tree-based regression,
haplotype analysis (we describe an adaptive regres-
sion strategy called SHARE in Section 3) or adaptively



474

weighted subgroup analysis. We note that many meth-
ods which focus on subgroup effects should not be in-
terpreted as definitively describing an interaction in the
multiplicative sense but rather as tools to increase the
potential of finding any association between gene and
outcome or as tools for better risk prediction. We make
the case, that the choices of interaction strategies which
are potentially most powerful depend on the setting,
whether it is gene X gene interaction studies, gene x
environment studies, dimensionality of the SNP or en-
vironmental data and hypothesized genetic structure.

The next section starts by giving some general back-
ground about methods for interaction modeling in data
analysis. In Section 3 we discuss some methods for in-
teractions that have been developed for genetic studies.
In Section 3.4 we see how we can do some (limited)
identification of interactions in GWAS, and in Sec-
tion 4 we see how we can use interactions in GWAS
to identify SNPs that are marginally associated with a
disease. We end with a brief discussion.

2. INTERACTIONS IN STATISTICAL MODELING

Interactions are often characterized by departures
from a simple additive combination of effects in the
context of some regression model. Such models are of
interest in a genetic association study, since one may
like to describe instances where a gene is associated
with a disease only in the presence of another gene or
in combination with an environmental factor. Alterna-
tively, modeling more complex models including in-
teractions can improve function approximations to de-
rived better risk prediction models.
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The “Simplest” Interaction Model

To start the discussion, consider a simple interaction
model involving two variables. A logit model for a bi-
nary disease phenotype Y € {0, 1} is

logit[ P (Y = 1]X)]

= Bo+ B1 X1+ B2 X2 + B3 X1 X2,

where X| and X, may code genes (SNPs or haplo-
types). The final term in the model expresses a depar-
ture from a simple additive model, at least on the logit
scale. In the setting of genomic association studies, in-
teraction models can also include two classes of vari-
ables, for instance, genetic and environmental factors.
In that case the model can be represented as

logit[P(Y = 1|X,Z)] = o + f1 Z + B2 X1 + 32X,

where Z denotes an environmental variable or some
other subject exposure variable, such as assigned treat-
ment. The classic schema of a two variable interaction
is given in Figure 1 which shows the odds of disease
as a function of two variables. It shows two cases, one
where the effect of the second variable is only evident
(or largely evident) within a subset of levels of the first
variable and a second case, where the effect is actu-
ally reversed at one level of the second variable. Some-
times this second case is called a qualitative interac-
tion, because unlike the first one, it does not depend on
the choice of the link function to the outcome. Again,
the figures would apply to both gene x gene and gene
X environment interactions. Most would expect the ef-
fects shown in the left panel to be the most plausible for
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Two different scenarios of interaction effects. In the left panel disease risk is always higher in the {aa, Aa} group; in the right panel

the disease risk actually is reversed for variable level Z1 versus Z2 and Z3.
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gene by environmental effects in GWAS; that is, effect
modification, but not effect reversal. A modest twist for
GWAS is that one could envisage 100s of thousands to
millions of such interaction plots.

However, the simple model and Figure 1 hide impor-
tant aspects to the complexity of actually constructing
statistical interaction models in several ways: (1) the
variables that are involved in the interaction may only
be observable as a derived function of several vari-
ables; that is, in the models given above, the terms
X; or Z may represent parametric or nonparametric
functions of several other variables, for instance, sev-
eral SNPs representing a gene (2) the system of pre-
dictors could be very high dimensional with respect
to variable X (for instance, the many SNPs or genes
in GWAS) and (3) even after selecting variables, there
are other problem specific issues like phasing, mea-
surement error and missingness. For point 1 and more
recently for point 2, there is extensive statistical litera-
ture addressing function approximation and prediction
modeling to draw upon and potentially use, at least in
concept, for the analysis of GWAS.

Additive Expansion Interaction Models

The simple interaction model above can be extended
to a broader class of models for nonlinear, nonadditive,
multivariate regression methods. Assume that the dis-
ease model indexed by regression function n(X) is in
some K -dimensional linear space B(X),

K
2) nX)=Y_Bigi(X)

i=1

for a given set of basis functions g;(X), ..., g,(X).
Several nonparametric multivariate regression method-
ologies use this additive expansion (often called a
basis function expansion). We review three common
function approximation methods that express the basis
functions as tensor products of individual covariates.
While these methods should probably not be directly
applied to whole genome data for both computational
and statistical reasons, they can be useful after se-
lecting smaller subsets of variables. More importantly,
they follow the common and important paradigm, use-
ful for modeling interactions from GWAS, which in-
volves searching for models sequentially by first iden-
tifying main or (locally) marginal effects before fitting
higher order terms.

(a) Logistic Regression. Presented with more than
two predictor combinations, several variables may

yield better predictions of the outcome variable. As-
suming modeling disease probability is a goal, the ex-
pansion model (2) would have component functions
gi (X) which include products of two or more predic-
tors, for example, g;(X) = X; X;. An example model
with at most 2-way interactions is

P P
nX)=Bo+ Y BiX;+ Y BixX;Xk,
J

Jj=<k

where 1(X) may represent the conditional logit of the
probability of disease. Even with this simple model
form, the number of potential interaction models is or-
der p?. If one does not limit the interactions to only
involve pairs of variables, there are order 2”7 models.
The numbers quickly rise with high order interactions
and numbers of variables. Therefore, even if we keep
the model sparse with only a few 8; and B, not equal
to zero, one would anticipate advantages both in com-
putation and variance control by constructing a reason-
able pathway though the model space. A standard ap-
proach is to use forward variable selection and consider
adding interaction terms if one or more of the variables
is already included in the model as a main effect term.
The above model is often not sufficiently flexible for
prediction modeling especially if X ; are multilevel or
continuous. We consider some alternatives below.

(b) Regression Spline Methods. One possibility is
that the g;(X) in the expansion model (2) are tensor
products of piecewise linear splines. Some examples
of methods using such an expansion are Multivariate
Adaptive Regression Splines (MARS, Friedman, 1991)
and related spline methods Hazard Regression HARE
and PolyMARS (e.g., Kooperberg et al., 1997).

Regression spline algorithms exploit lower marginal
or additive structure to guide the search for interactions
In addition, these methods use basis functions that are
tensor products of basis functions in one dimension.
For example, if g1(X) = b1(Xx) and g2(X) = ba(X))
are two basis functions that depend on a single predic-
tor, the g3(X) = b1 (X)b2(X)) is a tensor product basis
function that depends on two predictors. Truncated lin-
ear basis splines are used to deal with continuous or
ordered covariates (X; —fy,)+ = (X; — 1y, ) [{X; > 1, }.
Given that SNP data only has only 3 categories, piece-
wise linear components are probably most useful with
respect to environmental factors in gene X environ-
ment interaction models. Typically interactions of vari-
ables are included only if one or both of the vari-
ables are already identified as single variable terms
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[e.g., b1 (X)) or br(X;)] described above. This strat-
egy yields more interpretable models since the mod-
els contain main effects and it also limits the search
over the number of possible models, which better con-
trols variance compared to a search that evaluates all
tensor products. The exact restrictions on when ten-
sor product basis functions are allowed in spline mod-
els differs from one methodology to the other: for ex-
ample, MARS (Friedman, 1991) has fewer restrictions
than HARE (Kooperberg et al., 1995) and Polyclass
and PolyMARS (Kooperberg et al., 1997). All these
methods identify lower order effects first to control
the search for higher order interaction terms and hence
control the variability of the search.

When building more complex models, one may also
introduce regularization or penalization to reduce the
impact of including too many parameters or cells with
very small counts of observations. Park and Hastie
(2008) develop an algorithm that constructs penalized
regression models for detecting gene environmental in-
teraction models which only includes interactions if
one of the main effects are in the model. Three level
SNP variables are coded as dummy variables and it
uses quadratic penalization to stabilize the estimation.

(c) Tree Regression. Regression trees are flexible
methods capable of capturing interactions by recur-
sively selecting and partitioning data based on low or-
der associations. For tree based methods, the g; (X) in
the expansion model (2) are indicator functions corre-
sponding to rectangular regions, Ry, of the predictor
space, gn(X) = I{X € Rp}. The best known example
in the statistical literature is Classification and Regres-
sion Trees (CART, Breiman et al., 1984). Therefore,
tree models can be represented as a binary tree 7,
where the set of terminal nodes T corresponds to the
partition of the covariate space into disjoint subsets.
A tree model can also be expressed by a basis function
representation

nX) =Y mgnX),

heT

where g5,(X) is the region corresponding to a termi-
nal node /4. This function is a tensor product g, (X) =
I{X; € §1}---{X), € Sp}. To control the amount of
computation, and to construct a limited path through
the large class of potential tensor product interaction
models of this form, the model is grown in a forward
stepwise fashion, similar to stepwise regression. The
assumption used by tree regression is that effects can
be found by searching for a local marginal associa-
tion with outcome. The method is applied to the entire

data set and predictor space, each variable and poten-
tial split point is evaluated. Of course if the predictors
were just SNPs with coding {0, 1,2}, then only two
splits are possible: one corresponding to a recessive ef-
fect and one corresponding to a dominant effect. The
split point and variable that leads to the “best” split (as
described below) is chosen. The data and the predictor
space are partitioned into two groups. The same algo-
rithm is then recursively applied to each of the resulting
groups. Therefore, at any point on the regression tree,
a split at a node & yields two nodes which can also be
represented with the pair of basis functions

b}—;(X) = I{Xh(j) S Sh(j)} and

by, X) = I{Xn(j) & Sn(j)s }

where Sy, is a subset of the values of X ), leading to
terminal nodes basis functions g5, (X) which products
of such indicator functions built up at each step. Typ-
ically a large tree is grown to avoid missing structure
and then pruned back: model complexity is reduced by
constructing a backward sequence of models using the
cost-complexity pruning algorithm.

(d) Other Expansion Models. Of course, other inter-
action outside the tensor product form of individual
predictors can be expressed in this general form us-
ing parametric or nonparametric smooth based com-
ponent functions. For instance, multilayer neural net-
works construct the g;(X) as composite function of
functions of a linear combinations of subsets of the
predictors g; (X) = (b(Zf:l a; Xi). The regression tree
methods above can also be extended to indicator func-
tions based on linear combinations {d>_«; X; > c}. One
implementation, Flextree (Huang et al., 2004), uses this
model form.

It is clear that with more than a modest number of
predictors the potential number of interaction models
is huge and, hence, variance control is critical in the
model search.

Bias/Variance Trade-Off: Picking Model Complexity

Stepwise logistic regression, tree-based methods and
adaptive regression splines use a forward selection
strategy. A final model can be selected to minimize a
penalized measure of error,

—log=—IM,B; Y, X;,i=1,....n) + a| M],

where [(M, B;Y;,X;,i = 1,...,n) is the fitted log-
likelihood for a model (of dimension |AM]) that was
considered, and « is a penalty parameter. Small penalty
parameters would lead to large models with limited
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bias, but potentially high variance; larger penalty pa-
rameters lead to the selection of models biased toward
the null model, but with less variance. Given sufficient
computation time, a model that minimizes the nega-
tive of the cross-validated likelihood (or some resam-
pling analog) may be the preferred method to address
the bias versus variance trade-off.

The above penalty only involves the number of pa-
rameters; often other common penalties can be useful.
Additional terms that penalize either the L' norm of
the coefficients (e.g., LASSO, Tibshirani, 1996) or the
L? norm of the coefficients (Ridge Regression, Hoerl
and Kennard, 1970) or a linear combination of the two
penalty terms (e.g., Elastic Net, Zou and Hastie, 2005)
can lead to additional effective ways to control vari-
ance.

While these are flexible statistical strategies for inter-
action model building and regularization, they do not
directly incorporate any genomic structure of the pre-
dictors. As we describe in the next section, improved
inferences, including improved power for testing, can
be obtained by incorporating the special form of trinary
SNP data 0, 1, 2, the nature of dependence and/or inde-
pendence between SNPs and environmental variables,
and haplotype structures.

3. MODELS FOR INTERACTIONS IN
GENETIC STUDIES

Genetic data have a number of special features that
can be exploited in modeling interactions. In this sec-
tion we discuss some of those special features of ge-
netic data, and how they have been used in modeling
interactions. Most of these methods cannot deal with
all SNPs as are commonly measured in GWAS simul-
taneously. However, they can be directly used for tar-
geted regions based on either prior biological hypoth-
esis or top hits from an initial single-SNP filtering, as
discussed in Section 3.4. It is hard to put the size re-
strictions of the various methods on one scale. For ex-
ample, the SHARE method, discussed in Section 3.2,
is intended to find interactions within a block of SNPs
in linkage disequilibrium, and would thus be applied
to a fairly small number of SNPs, for instance, 50 tag
SNPs between recombination hotspots. Nevertheless,
for SHARE it is straightforward to apply it to a GWAS
using a “sliding window” approach, where the method
is applied to overlapping blocks of SNPs that are close
to each other in the genome.

On the other hand, methods like Multifactor Dimen-
sionality Reduction and Logic Regression, discussed

in Section 3.1, are intended to find long-range interac-
tions between a smaller number of SNPs. These meth-
ods do not scale up to complete GWAS. However, they
could be applied to subsets of SNPs, like candidate
gene studies, SNPs in a particular pathway or SNPs
that attain a certain (marginal) significance level. The
number of SNPs that these methods can deal with is
typically up to a few hundred, or maybe a thousand,
obviously depending on the sample size (so that the
methods have enough power) and the available com-
puting resources (so that sufficiently many models can
be examined in a reasonable time). These limitations
are quite understandable if we just consider the number
of SNPs measured in a GWAS. With, say, one million
SNPs, there are 5 x 10!! two-SNP combinations. So,
even examining the simplest interaction model for each
combination of SNPs is expensive.

These size restrictions are much less severe for iden-
tifying gene x environment interactions. Again, this
becomes clear from examining the scale of the prob-
lem. Typically we will only be interested in a few envi-
ronmental factors, thus, the number of potential single
SNP x environment interactions is smaller than the po-
tential number of SNP x SNP interactions. Thus, some
of the ideas on how to identify gene x environment in-
teractions discussed in Section 3.3 are directly applica-
ble to GWAS.

To find gene x gene interactions in a GWAS, we
have to take a much simpler approach, for example,
the two-stage approach discussed in Section 3.4.

3.1 Genetic Data Is “Almost Binary”

Humans carry two copies of each chromosome, and
most genetic data comes from typing of Single Nu-
cleotide Polymorphisms (SNPs). SNP data is com-
monly coded as 0/1/2, indicating the number of minor
alleles at a particular locus. If this locus has a dominant
effect on a disease phenotype, the genetic factor X can
be coded 1 if the SNP is 1 or 2, and O otherwise, and
if this locus has a recessive effect on a disease pheno-
type, the genetic factor X can be coded 1 if the SNP is
2, and 0 otherwise. Dealing with binary data is attrac-
tive, as models are often easier to interpret, and many
computations can be done more efficiently.

This binary coding of genetic data is especially ex-
ploited in Logic Regression (Ruczinski et al., 2003).
The logic regression model is

glEY|X,Z)] = pBo+ Z BiL;+ Zﬁk+mzk,
i=1 X
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where Y is the disease response, X a vector of recoded
SNPs, Z a vector of other (environmental) covariates,
g(+) is a link function, such as the logit, and the L ; are
binary combinations of the X, such as

((X; and X5) or X3).

The L can be interpreted as risk factors. In Logic Re-
gression model selection is carried out using permu-
tation tests and cross-validation. In particular, condi-
tional permutation tests are used to select simpler mod-
els when those fit the data. An alternative approach
is to sample Logic Regression models using Markov
chain Monte Carlo (Kooperberg and Ruczinski, 2005)
or bagging (Schwender and Ickstadt, 2007). The search
among candidate models is carried out using a stochas-
tic simulated annealing algorithm, though if the num-
ber of SNPs (X) is limited and the maximum number
of SNPs in each L; were limited to, say, 3, all models
could be enumerated.

Logic Regression can be used to find gene x gene in-
teractions, and gene x environment interactions for bi-
nary environmental variables. For example, in Kooper-
berg et al. (2007), for an analysis of a candidate gene
study of cardiovascular disease among hypertensive,
Logic Regression was used to identify the model

logit[ P (myocardial infarction|
AGTR2 SNPs, hypertensive drugs)]
=—0.90 — 0.72[(= 1 A allele at rs171231429)
and (no calcium channel

blockers)].

As most methods described in this section, Logic Re-
gression does not scale up well to the size of GWAS
and needs some selection of SNPs. The stochastic
search algorithm could not possibly examine a suffi-
ciently large number of models when there are hun-
dreds of thousands of SNPs. Permutation tests or cross-
validation are even more prohibitive.

While Logic Regression reduces SNPs from a 0/1/2
variable to a binary variable, multifactor dimensional-
ity reduction (MDR, Ritchie et al., 2001) makes use of
the 0/1/2 nature of the SNP data. For two specific SNPs
MDR divides the nine combinations into those that are
associated with high and low risk for a particular out-
come. Thus, an MDR model for two SNPs may be

SNP A

0 1 2
H|H|L

SNPB 1|L|H|H
2|L|H|L

where H and L refer to high and low risk, respectively.
Three-level interactions are modeled using all 27 pos-
sible combinations of three SNPs, and so on. Among
all interactions up to a certain level, MDR chooses
the best combination by cross-validation. Dividing the
SNP combinations in high-risk and low-risk clearly
has a close connection to classification trees (see Sec-
tion 2), but the nonmonotonicity for some SNP com-
binations (e.g., for SNP B = 2 in the example above)
makes the method less regularized and maybe harder
to interpret. The cross-validation for MDR does not
specifically prefer lower order models over interac-
tions. Thus, for example, a two-level MDR may be
chosen, by chance, if in fact there are two main ef-
fects. This leads to potentially increasing the type 1
error of incorrectly identifying an interaction (but not
increasing the type 1 error of incorrectly identifying a
genetic effect). Similarly, three SNP interactions may
be identified when a model with two SNP interactions
fits the model well. MDR has been applied to a sub-
stantial number of candidate gene studies.

3.2 Linkage Disequilibrium

SNPs that are close to each other on the chromo-
some are typically highly correlated, because of the
shared ancestral history. The extent of this correlation
or linkage disequilibrium (LD) is known from data-
bases such as the HapMap (HapMap Consotium, 2007)
and the 1000 genomes project (Kaiser, 2008) which is
currently underway. Known LD structure can be used
to impute SNPs that are not measured (e.g., Servin and
Stephens, 2007; Marchini et al., 2007). LD can also
be used to develop multilocus association methods, of-
ten based on haplotype reconstructions (e.g., Brown-
ing and Browning, 2007; Epstein et al., 2003; Lin and
Zeng, 2006). Statistically, the main effect of a haplo-
type can be deemed as a combination of main effects
and interactions in a locus (SNP) regression model
(Schaid, 2001). Using haplotypes can be an effective
way to model interactions between multiple mutations
within a gene. The latter perspective may receive an
increasing appreciation as genome-wide sequencing
technologies hold promise to directly capture the rare
variants in the near future. Several recent candidate
gene studies suggested that accumulation of multiple
rare alleles may contribute to the risk of some com-
mon diseases (Vermeire et al., 2002; Cohen et al., 2004;
Nejentsev et al., 2009). Theoretic population genetic
studies also support the presence of multiple deleteri-
ous susceptibility loci with low frequencies (Pritchard,
2001, Kryukov, Pennacchio and Sunyaev, 2007). To
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this end, a haplotype analysis can be useful to assem-
ble the cumulative, possibly interactive, effect of rare
variants within a gene.

Certainly locus-based models, such as the stepwise
regression method of Cordell and Clayton (2002), can
be used to model the local interactions directly without
having to deal with haplotype phase ambiguity. How-
ever, with the high density of SNP data currently being
collected, haplotype phase ambiguity is less a concern
for power. Furthermore, the main effect of a haplo-
type already contains interactions when casted in locus
(SNP)-based models, and hence tend to be more par-
simonious than locus-based models that may require
high-order interaction terms. In situations where the
LD is strong, additional power gain can be achieved by
fewer parameters used to characterize the genetic risk
profile. For instance, consider a situation with 2 SNPs
in complete LD and hence 3 haplotypes (00, 10, 11).
A logistic regression with additive main effects and in-
teractions uses 3 parameters, whereas a logistic regres-
sion with additive haplotype main effects uses one less
parameter. With more rare, recent variants (with less
opportunity of recombination) discovered through se-
quencing, it is anticipated that haplotype-based models
will be more cost-effective than locus-based models in
modeling such local interactions.

When many SNPs in a region (gene) are under inves-
tigation, the number of haplotypes constructed from all
SNPs can be excessively large. A haplotype scan using
a moving window of 5 to 10 SNPs may miss the inter-
actions between SNPs separated in the region, since the
3-D structure of a protein can bring amino acids further
apart into one functional domain. Strategies to perform
model selection seem inevitable in order to character-
ize relevant genetic variants. Dai et al. (2009) propose
the SNP-Haplotype Adaptive REgression (SHARE) al-
gorithm that seeks the most informative set of SNPs
for genetic association in a targeted region by grow-
ing and shrinking haplotypes with one more or less
SNP in a stepwise fashion. Though it is not always
“optimal,” the stepwise selection is a rational choice
given the computational demand facing a large number
of SNPs and the fact that haplotypes we observe to-
day were formed by sequential (stepwise) mutations in
history. It is hard to imagine that there is no marginal
effect for a haplotype carrying disease risk. Contrary
to the popular haplotype clustering approaches (e.g.,
Seltman et al., 2001; Durrant et al., 2004; Browning
and Browning, 2007), in the SHARE algorithm both
the trait and the genotypes guide the model selection
process, and the SNP selection is irrespective of the or-
der of the SNPs in the region (gene). Cross-validation

partitioning
sequentially of haplotypes
adding SNPs
| N
AlD 11 /I 0 00
AD,E 110 100 101 000

FI1G. 2. Tree illustration of the sequential partition of haplotypes
when 5 SNPs A-E are present. The left panel shows the growing set
of SNPs used in the analysis and the right panel shows the parti-
tions resulted from the haplotypes based on the current set of SNPs.
The minimal set of SNPs that captures the genetic association is (A,
D, E), with the disease risk concentrated on the haplotype “100”.
The path leading to discovering itis 1 — 10 — 100. The order of
SNPs in the haplotypes follows A, AD and ADE respectively.

is used to select the best set of SNPs for a haplotype
analysis, and phase ambiguity is accounted for by treat-
ing haplotype estimation as a part of the procedure.

Despite the resemblance to the stepwise logistic re-
gression of Cordell and Clayton (2002), SHARE is ac-
tually more closely related to the Classification and Re-
gression Tree (CART, Breiman et al., 1984) algorithm
(see Section 2) in that it recursively partitions the hap-
lotype sample space. Figure 2 shows a simple example
of the pathway of partition. Among 5 SNPs in a re-
gion, we first find the SNP A as the most significant
SNP by a single-locus scan, so haplotypes are parti-
tioned by “0” and “1” at the A locus. Next, haplotypes
constructed by A and D are found to be the best 2-SNP
haplotypes, and finally, the algorithm reaches the most
informative set {A, D, E} so that one 3-SNP haplotype
concentrates the disease risk. To increase the chance
of finding the most informative set, we grow longer
haplotypes and then prune back one SNP at a time.
We use cross-validation to select the partition with
the minimal prediction error. While CART is effec-
tive to dissect high-order interactions, growing haplo-
types is essentially refining high-order interactions be-
tween loci. The difference between SHARE and CART
is that the recursive partitioning of CART is binary,
while SHARE potentially creates multiple splits when
adding one SNP, if there is recombination. Moreover,
every subject has two sets of haplotypes and we need
some genetic model to describe the combined haplo-
type effect, such as additive, dominant or recessive ge-
netic models.

3.3 Independence Assumptions

When it is known that pairs of SNPs or SNPs and
environmental factors are independent of each other
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in the population, this knowledge can be effectively
used to identify interactions. Noticing that these in-
dependent quantities are not independent in a partic-
ular group of subjects (e.g., cases of a particular dis-
ease) now implies an interaction effect. This approach
has been used to develop methods for SNPs that are
(assumed to be) in linkage equilibrium, and for non-
genetic environmental factors.

In randomized clinical trials treatment assignment is
made independent of the genetic status of the partici-
pants. In some other situations it may also be reason-
able to assume gene x environment independence for
some environmental exposures. If for a case-control
study this independence holds for the controls (e.g.,
under the usual rare disease assumption), it is imme-
diate that a significant correlation between a genetic
effect and the environmental factor among cases im-
plies a gene x environment interaction on the disease
outcome. This is the basic idea behind the case-only
analysis (Albert et al., 2001; Piegorsch, Weinberg and
Taylor, 1994; Umbach and Weinberg, 1997): there is a
simple relation between the odds-ratio among the cases
and the parameter for the interaction in a linear logistic
regression model. Recently a number of methods have
been proposed to exploit this independence also for es-
timating main effects, and to avoid having to make the
rare disease assumption (Chatterjee and Carroll, 2005;
Dai et al., 2009).

It has been pointed out that violation of the gene-
environment independence assumption can seriously
increase the type 1 error (Albert et al., 2001). An
empirical Bayes approach that “averages” the analy-
sis assuming independence and a traditional case-
control analysis has been proposed as a save alterna-
tive (Mukherjee and Chatterjee, 2008) that maintains
some of the advantage of the independence assump-
tion, when that assumption cannot be fully confirmed.
In this approach the effect estimate under the (unbi-
ased) case-control design is averaged with the (more
efficient) estimate using the case only analysis, with
weights balancing the variance of the case-control es-
timator, and an empirical Bayes estimate of the uncer-
tainty of independence assumption.

Clearly, testing whether two factors are independent
(e.g., gene and environment among the controls) and
then using a test with or without assuming indepen-
dence, depending on the result of the independence
test, will seriously inflate the type 1 error. On the other
hand, if a preliminary test is independent of the fi-
nal test for interaction in the data set, such a test can
be used to prioritize potential models that are tested,

thereby alleviating the multiple comparisons problem.
This is the approach taken by Millstein et al. (2006).
In this paper the authors first test for (gene-gene) inde-
pendence in the complete data set of cases and controls.
Situations where there is substantial deviation of inde-
pendence are prioritized for testing for interaction ef-
fects. The motivation seems to be that if two genes are
dependent, this dependence may very well be different
between cases and controls, for example, but not nec-
essary, because the genes are independent among the
controls but not among the cases. As case-control sta-
tus is not used in this preliminary analysis, the eventual
analysis for interactions only needs to be corrected for
the interactions actually tested, which increases power
considerably.

Linkage equilibrium. In a homogeneous population
SNPs that are on different chromosomes or far apart
on the same chromosome are (approximately) inde-
pendent. This suggests an alternative way to identify
interactions. For “rare diseases,” this population-wise
independence implies that for controls the SNPs should
be independent. Simple properties of log-linear mod-
els show that dependence between two SNPs among
the cases now implies an interaction effect of those
SNPs on case-control status. Zhao et al. (2006) used
this property to develop a test for interactions by re-
constructing haplotypes (implicitly assuming Hardy—
Weinberg equilibrium) between two unlinked loci
(SNPs) to get a measure of LD between these SNPs.
Assuming no LD among the controls, they developed
a (asymptotically x?2) test for an interaction effect of
these two SNPs on a disease outcome.

In practice, it is unlikely that a population is com-
pletely homogeneous. Thus, it may be dangerous to
assume that SNPs are indeed in linkage equilibrium
among the controls. Given the large number of SNPs
that are typically tested, a small amount of correlation
will already inflate the type 1 error rate. It is, however,
a valid test of interaction in genetic association studies
to test whether the correlation between two SNPs is the
same among the cases and the controls. In fact, Zhao et
al. (2006) also provide a test for interaction using this
approach. However, the examples in their paper that
compare their approach to logistic regression (which
does not use an independence assumption) make this
independence assumption.

Rajapakse, Perlman and Kooperberg (2009) general-
izes the approach by Zhao et al. (2006) by construct-
ing a correlation matrix between groups of SNPs using
the generalized or composite LD of Weir (1996), sep-
arately for cases and controls. The advantage of using
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TABLE 1
Comparison of P-values for testing gene x gene interactions

No independence assumed

Independence assumed

Logistic Zhao et al. Rajapakse, Perlman Zhao et al. Rajapakse, Perlman
Method regression (2006) and Kooperberg (2009) (2006) and Kooperberg (2009)
TP53 x CD14 0.0418 0.0325 0.0364 0.1062 0.0210
TNFR1 x APOC3 0.0001 0.0005 0.0005 0.0009 0.0000
TP53 x MDM2 0.0123 0.0715 0.0767 0.8607 0.0836

the generalized LD over other measures of LD is that,
since phase information is not required, no haplotype
reconstruction is needed, and under certain conditions
the generalized LD between two SNPs reduces to the
correlation between these SNPs when coded as 0/1/2.
Using this approach, a simple test for identity between
the correlation between SNPs for the cases and controls
becomes a test of the interaction effect of these SNPs
on case-control status. There are a number of advan-
tages for this approach. (i) This test of independence
can easily be extended to blocks of SNPs. An inter-
action between two different blocks of SNPs on case-
control status might suggest that a haplotype, that may
be a surrogate for an unmeasured SNP in the first block,
and a haplotype, that may be a surrogate for an unmea-
sured SNP in the second block, have an interaction ef-
fect on case-control status. Therefore, this method is an
alternative to the method of Chatterjee et al. (2006) dis-
cussed in Section 4. (ii) A test for identity between the
complete correlation matrix for the cases and the con-
trols is a global test for interactions among the SNPs
considered on case-control status. (iii) Assumed inde-
pendence between selected SNPs among the controls
can easily be incorporated into this procedure by set-
ting elements of the correlation matrix for the controls
equal to 0. When only two SNPs are examined, and
no independence assumption is made, we would ex-
pect the methods of Zhao et al. (2006) and Rajapakse,
Perlman and Kooperberg (2009) to give similar results,
and that the results would be similar to the four degree-
of-freedom test of comparing

logit[P(Y = 1]X;, X )]
=Bo+pIXi=1)+pl(X;=2)
+B31(Xj=1)+Bal(X;=2)
+Bs1(X; =1)I(X;=1)
+ Bl (X; =2)I(X; =2)
+B71(Xi =1DI(X;=1)
+BsI(X; =2)I(X; =2)

and
logit[P(Y = 1|X;, X )]
=po+Pil(Xi=1)+pl(X;=2)
+B3I(Xj =1+ Bl (Xj=2).

In the implementation of Rajapakse, Perlman and
Kooperberg (2009) these tests use the Kullback—Leibler
distance between two matrices. In Table 1 we provide
results on a previously analyzed case-control study
consisting of 779 heart disease patients, 342 of whom
showed restenosis, and 437 who did not (Hoh et al.,
2001; Kooperberg and Ruczinski, 2005). All individu-
als were genotyped for 89 SNPs/variants in 62 genes
that were previously associated with heart disease. We
show results for three of the two-SNP interactions that
were identified in Table III of Kooperberg and Ruczin-
ski (2005) (the other four interactions in this table in-
volved a variant that had no homozygotic minor al-
lele subjects). The significance level for the methods of
Zhao et al. (2006) and Rajapakse, Perlman and Kooper-
berg (2009) are based on 10,000 permutations. We note
that, as expected, the three methods give similar results
when there is no independence assumption. When we
do make an independence assumption, the approach of
Zhao et al. (2006) appears less powerful than the one
of Rajapakse, Perlman and Kooperberg (2009), which
does not require a haplotype reconstruction. The ap-
proach of Rajapakse, Perlman and Kooperberg (2009)
offers the additional advantage of potential for exten-
sion to tests of interaction effects between blocks of
SNPs.

3.4 Using Main Effects to Find
Interactions in GWAS

The methods discussed above exploit the genetic
structure of the data to be analyzed. However, mostly
those approaches do not scale up to GWAS, both be-
cause methods become computationally too demand-
ing, and because the number of multiple comparisons
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becomes so large that the power to identify significant
interactions for anything other than the strongest ef-
fects is missing. Interestingly, testing all models that
include an interaction for the combined effect of a par-
ticular SNP on a disease outcome can increase the
power to identify an individual SNP as being associ-
ated with a disease outcome (Marchini et al., 2005;
Evans et al., 2006), but it does not increase the power
to identify an interaction. We discuss this approach fur-
ther in Section 4.

If only a few environmental factors are examined, the
problem to identify simple multiplicative gene x envi-
ronment interactions is essentially the same as studying
marginal effects. Thus, while power is limited, just like
for any GWAS study, computationally studying gene x
environment interactions is straightforward. However,
the filtering procedures that we suggest below for gene
X gene interactions can increase the power to identify
gene x environment interactions in GWAS as well.

While it is probably obvious that enumerating all
interactions in a GWAS will be computationally too
expensive, except for the simplest possible models
involving just 2-SNP interactions, adaptive search
algorithms do not circumvent these problems. Adap-
tive algorithms can be roughly divided in those us-
ing stochastic search algorithms and greedy search
algorithms. Stochastic search algorithms, like the sim-
ulated annealing algorithm used by Logic Regression,
search a stochastically selected set of models, select-
ing the best fitting model(s) among those examined.
For well structured model classes these algorithms can
avoid looking at many poorly fitting models. However,
to have a reasonable opportunity to find good fitting
models, the number of models examined needs to in-
crease considerably. In particular, since in humans the
extent of linkage disequilibrium is small compared to
the length of the genome (r? is typically much smaller
than 0.8 after less than 50 kb; Pritchard and Prze-
worski, 2001), the number of models that are exam-
ined needs to go up with close to the number of SNPs,
and likely even more if higher order interactions are
studied to find good interactions. Greedy search algo-
rithms, for example, the stepwise and tree algorithms
described in Section 2, are much more likely to end
up in local optimal models, that are globally not very
good, when the number of predictors increases.

For these reasons, the most viable solutions to ex-
tend the methods discussed above to GWAS would be
to select SNPs based on some marginal criterion, and
only search for interactions among the selected SNPs.
It is clear that this approach reduces the computational

requirements. The two main questions are, however, as
follows:

e does a filtering procedure alleviate the multiple com-
parisons problem?
e are we able to identify the “important” interactions?

As Marchini et al. (2005) point out, the multiple
comparisons correction for testing interactions after
marginal filtering needs to take the filtering into ac-
count. The “safe” approach is to correct the number
of tests, for example, using a family-wide error rate
(FWER) or a false discovery rate (FDR) approach for
the number of interactions that could have been ex-
amined. Clearly, with such an approach the power to
identify significant interactions cannot be larger than
when all possible interactions would have been exam-
ined (but at reduced computational cost). This was part
of what was found by Marchini et al. (2005) and Evans
et al. (2006). We should note here that, besides that this
is computationally infeasible, there is no simple per-
mutation test for (the strongest) interaction effect, as a
simple permutation of case-control status not only re-
moves the interaction effect, but also removes all main
effects. Such a permutation test would thus be a test of
main effect combined with interaction—a topic which
we discuss in Section 4.

Kooperberg and LeBlanc (2008) establish that if the
marginal testing of SNPs is carried out using regression
models of the form

Yo + v1Xi,

for some coding X; of a SNP i and the interaction
model examined is of the form

(3) Bo+ Bi1Xi+ X+ B3Xi X,

then the least squares estimates of y; and 83 are inde-
pendent. While the estimation in case-control studies
is typically carried out using logistic regression, this
independence result gives some justification of only
correcting for the number of tests that actually were
examined, for example, using a Bonferoni approach.
Kooperberg and LeBlanc (2008) also develop a resam-
pling procedure based on scores, extending a technique
proposed by Lin (2006), that offers an alternative to
permutation tests, and is applicable to two stage stud-
ies in which only SNPs that are marginally significant
are tested for interactions. In this approach a sample
from the efficient score for the interaction model (3) is
generated under the null hypothesis that 83 = 0.

In particular, the efficient score for the addition of
an interaction X;X;, conditional on X; and X; al-
ready being in the model, is U;; = } ; U;jx, where
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Uijr = (Yr — piji) (Xix X jk — ijik). Here Yy is case-
control status for subject k, p;ji is the fitted proba-
bility of subject k being a case in a logistic regres-
sion model using X; and X, but not X;X;, as pre-
dictor for Y, and ;i is the fitted value for subject k
in the linear regression model using X; and X ; as pre-
dictor for X; X ;. Under the null hypothesis of no as-
sociation, U;; is approximately normal with mean O
and variance V;; = ) Uizjk. In computing the sig-
nificance level, we compare T = max;; Ul-zj /Vij with
T* = max;; (3 Uiijk)z/Vij, where the Z; are in-
dependent standard normal random variables. This ap-
proach does not assume independence of the stage one
and two tests, as the Bonferoni approach does, but
rather the “permutations” are carried out conditional
on the results of the first stage.

A simple routine for computing power calcula-
tions for two stage tests of interaction is implemented
in the CRAN package powerGWASinteraction.
Kooperberg and LeBlanc (2008) contain extensive sim-
ulation studies establishing that the two-stage approach
indeed maintains the correct type 1 error rate, that the
power in most reasonable situations is vastly improved
over a one-stage analysis, and that this power is well
approximated by the routines from powerGWASin-
teraction.

Clearly, this approach can also be applied to identify
gene X environment interactions: now only one SNP
needs to be marginally significant to be tested as part
for a gene x environment interaction. In Table 2 we
present power calculations for identifying a gene x en-
vironment interaction. We assume model (3) with X; a
binary SNP with P(X; = 1) = 0.4375, which corre-
sponds to a dominant SNP effect for a SNP with mi-

nor allele frequency 0.25, a binary environmental fac-
tor X; with P(X; = 1) = 0.5, a case-control study
with 5000 cases and controls, 500,000 SNPs, 8y = —2
(not a rare disease), B; = 0 (no genetic effect when
X; =0), B2 =0.5 (a moderate environmental effect),
and an overall multiple-comparisons controlled signifi-
cance level o« = 0.05. We show results for several gene
X environment interaction effects 3, and several lev-
els for the marginal level of significance «; that a SNP
has to satisfy before it is tested for the gene x environ-
ment interaction. Besides power to identify the interac-
tion using a regular analysis, we also show power for
an analysis that assumes that the gene and the environ-
mental factor are independent.

We see from Table 2 that a two-stage procedure in-
creases the power considerably. If only the top 500
SNPs are tested for gene x environment interactions
(a1 = 0.0001), the power to identify an interaction with
odds ratio 1.4 is over 70%. If the gene and environmen-
tal factor are assumed to be independent, and we ana-
lyze the data using, for example, a case-only analysis or
the approach of Dai et al. (2009), the power increases
to about 90%.

We applied the two-stage approach to the WTCCC
Crohn’s disease data (WTCCC, 2007). We identified
211 SNPs that had minor allele frequency > 0.1, less
than 5% missing data and marginal significance level
p < 0.0001, and did not grossly violate Hardy Wein-
berg Equilibrium. Among the (2;1) = 22155 two-SNP
interactions among these SNPs, three had a g-value <
0.05 Storey and Tibshirani (FDR, 2003), and are thus
plausible. Two of these interactions involve SNPs on
different chromosomes, the third one involves two
SNPs relatively close together on the same chromo-
some. Nineteen more possible interactions have g-
values < 0.25, suggesting that more than ten of those

TABLE 2

Sample power calculations for gene x environment interactions. The numbers 0.00001, ..., 1 are the first stage significance o
B3 OR 0.00001 0.0001 0.001 0.01 0.1 1
Not assuming gene—environment independence
0.262 1.3 0.21 0.26 0.18 0.10 0.04 0.02
0.336 1.4 0.66 0.72 0.56 0.37 0.21 0.11
0.405 1.5 0.94 0.94 0.85 0.69 0.51 0.34
Assuming gene—environment independence
0.262 1.3 0.29 0.45 0.52 0.47 0.33 0.19
0.336 14 0.73 0.87 0.93 0.89 0.79 0.65
0.405 1.5 0.95 0.99 1.00 0.99 0.97 0.94
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show some reproducible association with Crohn’s dis-
ease.

If the effect of a SNP goes in the opposite direction
for two levels of another SNP or an environmental vari-
able, a two-stage analysis may have less power than a
one-stage analysis (if these opposite effects just can-
cel each other out). We believe that some of the more
unusual interaction effects considered in Evans et al.
(2006) are less likely, and we believe that using the
power for more likely scenarios is a potentially more
fruitful way of «-spending.

4. USING INTERACTIONS TO FIND MAIN
EFFECTS IN GWAS

Modeling gene x environment or gene X gene inter-
actions is useful even if the goal of the analysis is pri-
marily the identification of simple gene-disease associ-
ations. For instance, if not acknowledged in the analy-
sis method, interactions can lead to attenuation of the
marginal effect size and reduce the power to detect true
associations. Several authors have incorporated inter-
actions into their search of marginal genetic associa-
tion. A common thread of successful methods is that
they allow model flexibility, but not so much model
flexibility as to substantially increase variance.

For instance, in the simple two variable model (1)
in Section 2, one can test the overall association of
X1 with disease outcome by testing the null hypoth-
esis Hy : B1 = B3 =0 using a 2 degree of freedom test.
Exploiting potential interactions to detect genetic as-
sociation with this simple testing technique has been
explored by Kraft et al. (2007). In a less directed fash-
ion, Marchini et al. (2005) tested both the main effects
and interactions to explain the 3 x 3 table of two SNPs
to assess individual associations.

Extensions to multiple predictors can substantially
increase the potential number of parameters. For in-
stance, consider two sets of variables Xy; and X;,
which could represent two sets of SNPs or SNPs and
environmental variables. For assessing the association
of a given X1; with outcome, one can simultaneously
test the 1 + g terms By; and B;; (if there are multiple
X1i,i=1,..., p,testing involves p 4+ pqg terms) in the
model

p q
n(X) = /30+Z/31iX1i+Z,32jX2j+Zﬂin1iX2j,
i=1 j=1 ij

where the components X»; could represent other SNPs
or environmental factors. The difficulty is that as ¢

increases, the potential power of the test may signifi-
cantly decrease due to the increased number of parame-
ters. One way to limit model complexity is to specify a
restricted form for the interaction model such as

P q
n(X)=Bo+ Y BuXu+ Y BrjXaj

i=1 j=1

+92/31i/32jxlix2j-
ij

This class of models is used by Chatterjee et al. (2006),
and relates to the idea of a one-degree of freedom in-
teraction test, dating back to Tukey (1949). Suppose
a gene is identified by p SNPs Xy;, then a hypoth-
esis of no association with outcome for this set Xy;
could be phrased as Hy:B1; =0,i=1,..., p, where
this indicates no association through main effects or
interactions since the fi; also appear in the interac-
tion term. The strategy assesses overall variable impor-
tance of a gene (potentially represented by several X ;)
in the context of a more general model which could
include interactions. For instance, one could use any
regularized and or stepwise model building strategy
(e.g., regression trees or regression splines described
in Section 2, or ensembles of such models) and eval-
uate the impact of removing the gene of interest from
the model. One technique to measure the importance
of the variable is to evaluate the difference in the fit
or log-likelihood compared to the fit with the gene per-
muted with respect to all other variables (e.g., Breiman,
2001). However, this last strategy is likely not compu-
tationally feasible in the context of GWAS.

An alternative idea is to modify simple gene associ-
ation test statistics by weighting them to take advan-
tage of an interaction and increase power of the test
statistic. For instance, one could focus on subgroups of
subjects to test for genetic association. In addition, if
the procedure was computational efficient, it could be
an alternative to fitting full interactions with maximum
likelihood methods.

Since many useful association tests are score type
statistics, one can outline the method in terms of
weighted score test statistics. Let Z denote an envi-
ronment or treatment variable and X ; a genetic factor.
For example, in the case of binary outcome data, let
X i be the gene j value and Z;; environmental fac-
tor k for individual i, the score component would be
Uji = Xi(Yi —exp(a + BZyi)) /(1 + (o + BZyi)). If
the association is thought to be stronger in a subgroup
of subjects (e.g., heavier smokers) based on some envi-
ronmental factors, then a subgroup weighted marginal
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test statistic

n
Uw(Z.Xj:60) =) h(Z;,0)Uji,
i=1
where h(Z;0) = I{Z > 6} and Z is an ordered envi-
ronmental variable, may have more power. The gener-
alization to multiple or alternative basis functions

noq
Uw(Z,Xj;0) =2 > axh(Zik, 0)Uji
i=1k=1

allows more flexibility. The basis functions, h(Z;x, 6k),
could be simple subset functions, h(Zi; 0) = I{Zi; >
ck}, or piecewise linear functions, h(Z;x; 0) = {Zix —
ck)T, similar to those used in tree-based models and
regression spline models described in Section 2. As
the direction of association is usually unknown, the
weights a; can be derived from the data. LeBlanc and
Kooperberg (2009) obtain weights using stage-wise re-
gression based on the Least Angle Regression algo-
rithm (LARS, Efron et al., 2004), where the score com-
ponents are the outcome variable. The intent is to fo-
cus the test statistic on the environmental combination
which leads to maximal genetic association. They show
that weighting the association test statistics can sig-
nificantly increase power in many simulated situations
where gene x environment interactions exist. As an ex-
ample, Figure 3 shows simulations for 2000 cases and
2000 controls generated from the logistic interaction
regression model

n(Z, X) = o+ B1X + B2h(Z) + B3Xh(Z),

where we assume a binary SNP, X with frequency
equal to 0.2, and h(Z) a function of several environ-
mental variables. There were five environmental vari-
ables corresponding to the basis functions (1,{Z; <
co254,{Zj < coso}, {Zj <corsP)j=1,...,5, avail-
able for modeling and k(Z) depended on the linear
combination of two of those variables: h(Z) = {Z; <
c0.50} — {Z2 < cos50} + 0.25. We evaluated a marginal
test of the 1 + k, kK = 3 x 5 parameters (including
main gene effect and the modifying variables), and a
regularized stage-wise test. The type I error was con-
trolled to approximately 0.00001. The results are pre-
sented in Figure 3. The parameter values main effects
are B; = 0.05 and B, = 0 so that the small genetic ef-
fect increases as i#(Z) and B3 increase. This would be
a plausible scenario for effects in a GWAS, a genetic
effect that is more apparent within a subgroup of sub-
jects exposed to a set of environmental conditions. This
model is similar to the hypothetical effects shown in
the left panel of Figure 1.
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F1G. 3. Using interactions in tests of association: Power for mar-
ginal test, full 1 + k parameter association test, and stage-wise
weighted test with 2000 cases and 2000 controls and o = 0.00001.
The full 1 + k parameter test is based on testing the main ef-
fect and all interaction terms in a logistic regression model and
the stage-wise test is based on using weighted score test statis-
tics where the weights are derived from the Least Angle Regression
(LARS) algorithm. The main effect parameters in the data generat-
ing model are B1 =0.05 and B, =0.

As the magnitude of the interaction effect increases,
using the more complex model and joint association
testing substantially increases power over marginal
testing. The full model weighting, depending on 16 ba-
sis functions and parameters, suffers somewhat from
increased variance. However, the stage-wise test statis-
tic performs the best of the three methods by control-
ling the overall variance. The tuning parameter for the
stage-wise method was set to correspond to approxi-
mately 2.5 degrees of freedom.

Therefore, if there are one or a small number of well
characterized environmental factors that are substan-
tially modifying the association of a gene with dis-
ease, statistical strategies which incorporate interac-
tions, and jointly test the main effect and the interac-
tion, are useful for improving power over marginal as-
sociation tests.

While the adaptive weighting strategy is more com-
putationally demanding than calculating traditional
score test statistics, it is feasible to conduct the analy-
sis on the GWAS because each SNP calculation is in-
dependent and the Least Angle Regression algorithm
using a small number of environmental variables is
very efficient, if the tuning parameter is set a priori
as we suggest. However, the impact on variance is po-
tentially a greater concern, there is still likely be some
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power advantage of filtering on main effects to, say, a
small number of 100—1000s, before applying the adap-
tive method analogous strategy described in Section 3.

5. DISCUSSION

Identifying interactions is typically not the main goal
of a GWAS analysis. Interaction effects may teach us
things about the biology behind a disease, or they may
be beneficial in constructing predication models. How-
ever, at least as important, interaction effects or differ-
ences in the gene (SNP) effect between different sub-
groups may actually help us in identifying the signifi-
cant SNPs. Therefore, we believe that it is important to
pay some attention to the identification of interactions.

Because of the number of SNPs under consideration
in a typical GWAS, it is virtually impossible to iden-
tify gene x gene interaction effects, unless additional
assumptions are being made. We believe that the most
fruitful approach is to first identify SNPs that are (mar-
ginally) associated with a disease, and then examine
interactions involving those SNPs. Not only does this
seem reasonable because SNPs that have an interac-
tion effect typically will also show some modest main
effect, it also adheres to a basic premise in statistical
modeling which reduces the variance in model build-
ing: don’t model interactions without main effects.

After such initial filtering, there is a substantial num-
ber of approaches that can be used to identify interac-
tions that make use of the specific form of genetic data.
This is a reasonable two-stage approach if the methods
to identify interactions are used to independent data
than what was used to identify the marginal significant
SNPs. If the same data is used, however, care has to
be taken that the initial selection of SNPs does not bias
the inference about the interactions. We have shown
that for a simple model this is possible—but this is cer-
tainly not generally true.

The story for gene x environment interactions is
similar. The problem of identifying such interactions
is “smaller,” but it is still so large that some filtering
will often increase the power.

Exploiting the genetic structures and making addi-
tional assumptions, like gene x gene independence
among genes on different chromosomes, among con-
trols, or gene x environment independence, can sub-
stantially increase the power to identify interactions.
Clearly, however, if the assumptions are not true, mak-
ing those assumptions can substantially increase the
type 1 error. Thus, if those assumptions are uncertain,
an empirical Bayes approach like the one by Mukher-
jee and Chatterjee (2008) (see Section 3) may be safer.
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