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Abstract. Published exactly seventy years ago, Jeffreys’s Theory of Prob-
ability (1939) has had a unique impact on the Bayesian community and is
now considered to be one of the main classics in Bayesian Statistics as well
as the initiator of the objective Bayes school. In particular, its advances on
the derivation of noninformative priors as well as on the scaling of Bayes
factors have had a lasting impact on the field. However, the book reflects
the characteristics of the time, especially in terms of mathematical rigor. In
this paper we point out the fundamental aspects of this reference work, es-
pecially the thorough coverage of testing problems and the construction of
both estimation and testing noninformative priors based on functional di-
vergences. Our major aim here is to help modern readers in navigating in
this difficult text and in concentrating on passages that are still relevant to-
day.
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1. INTRODUCTION

The theory of probability makes it possible to respect
the great men on whose shoulders we stand.

H. JEFFREYS, Theory of Probability, Section 1.6.

Few Bayesian books other than Theory of Proba-
bility are so often cited as a foundational text.1 This
book is rightly considered as the principal reference
in modern Bayesian statistics. Among other innova-
tions, Theory of Probability states the general principle
for deriving noninformative priors from the sampling
distribution, using Fisher information. It also proposes
a clear processing of Bayesian testing, including the
dimension-free scaling of Bayes factors. This compre-
hensive treatment of Bayesian inference from an ob-
jective Bayes perspective is a major innovation for the
time, and it has certainly contributed to the advance of

1Among the “Bayesian classics,” only Savage (1954), DeGroot
(1970) and Berger (1985) seem to get more citations than Jeffreys
(1939, 1948, 1961), the more recent book by Bernardo and Smith
(1994) coming fairly close. The homonymous Theory of Probabil-
ity by de Finetti (1974, 1975) gets quoted a third as much (Source:
Google Scholar).
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a field that was then submitted to severe criticisms by
R. A. Fisher (Aldrich, 2008) and others, and was in
danger of becoming a feature of the past. As pointed
out by Zellner (1980) in his introduction to a volume
of essays in honor of Harold Jeffreys, a fundamental
strength of Theory of Probability is its affirmation of
a unitarian principle in the statistical processing of all
fields of science.

For a 21st century reader, Jeffreys’s Theory of Proba-
bility is nonetheless puzzling for its lack of formalism,
including its difficulties in handling improper priors, its
reliance on intuition, its long debate about the nature
of probability, and its repeated attempts at philosoph-
ical justifications. The title itself is misleading in that
there is absolutely no exposition of the mathematical
bases of probability theory in the sense of Billingsley
(1986) or Feller (1970): “Theory of Inverse Probabil-
ity” would have been more accurate. In other words,
the style of the book appears to be both verbose and
often vague in its mathematical foundations for a mod-
ern reader.2 (Good, 1980, also acknowledges that many
passages of the book are “obscure.”) It is thus diffi-
cult to extract from this dense text the principles that
made Theory of Probability the reference it is nowa-
days. In this paper we endeavor to revisit the book from
a Bayesian perspective, in order to separate founda-
tional principles from less relevant parts.

This review is neither a historical nor a critical
exercise: while conscious that Theory of Probabil-
ity reflects the idiosyncrasies both of the scientific
achievements of the 1930’s—with, in particular, the
emerging formalization of Probability as a branch of
Mathematics against the ongoing debate on the nature
of probabilities—and of Jeffreys’s background—as a
geophysicist—, we aim rather at providing the modern
reader with a reading guide, focusing on the pioneer-
ing advances made by this book. Parts that correspond
to the lack (at the time) of analytical (like matrix alge-
bra) or numerical (like simulation) tools and their sub-
stitution by approximation devices (that are not used
any longer, even though they may be surprisingly accu-
rate), and parts that are linked with Bayesian perspec-
tives will be covered fleetingly. Thus, when pointing
out notions that may seem outdated or even mathemat-
ically unsound by modern standards, our only aim is to
help the modern reader stroll past them, and we apol-
ogize in advance if, despite our intent, our tone seems

2In order to keep readability as high as possible, we shall use
modern notation whenever the original notation is either unclear or
inconsistent, for example, Greek letters for parameters and roman
letters for observations.

overly presumptuous: it is rather a reflection of our ig-
norance of the current conditions at the time since (to
borrow from the above quote which may sound itself
somehow presumptuous) we stand respectfully at the
feet of this giant of Bayesian Statistics.

The plan of the paper follows Theory of Probabil-
ity linearly by allocating a section to each chapter of
the book (Appendices are only mentioned throughout
the paper). Section 10 contains a brief conclusion. Note
that, in the following, words, sentences or passages
quoted from Theory of Probability are written in italics
with no precise indication of their location, in order to
keep the style as light as possible. We also stress that
our review is based on the third edition of Theory of
Probability (Jeffreys, 1961), since this is both the most
matured and the most available version (through the
last reprint by Oxford University Press in 1998). Con-
temporary reviews of Theory of Probability are found
in Good (1962) and Lindley (1962).

2. CHAPTER I: FUNDAMENTAL NOTIONS

The posterior probabilities of the hypotheses are
proportional to the products of the prior

probabilities and the likelihoods.
H. JEFFREYS, Theory of Probability, Section 1.2.

The first chapter of Theory of Probability sets gen-
eral goals for a coherent theory of induction. More im-
portantly, it proposes an axiomatic (if slightly tautolog-
ical) derivation of prior distributions, while justifying
this approach as coherent, compatible with the ordi-
nary process of learning and allowing for the incor-
poration of imprecise information. It also recognizes
the fundamental property of coherence when updat-
ing posterior distributions, since they can be used as
the prior probability in taking into account of a fur-
ther set of data. Despite a style that is often difficult
to penetrate, this is thus a major chapter of Theory of
Probability. It will also become clearer at a later stage
that the principles exposed in this chapter correspond
to the (modern) notion of objective Bayes inference:
despite mentions of prior probabilities as reflections of
prior belief or existing pieces of information, Theory
of Probability remains strictly “objective” in that prior
distributions are always derived analytically from sam-
pling distributions and that all examples are treated in a
noninformative manner. One may find it surprising that
a physicist like Jeffreys does not emphasise the appeal
of subjective Bayes, that is, the ability to take into ac-
count genuine prior information in a principled way.
But this is in line with both his predecessors, including
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Laplace and Bayes, and their use of uniform priors and
his main field of study that he perceived as objective
(Lindley, 2008, private communication), while one of
the main appeals of Theory of Probability is to provide
a general and coherent framework to derive objective
priors.

2.1 A Philosophical Exercise

The chapter starts in Section 1.0 with an epistemo-
logical discussion of the nature of (statistical) infer-
ence. Some sections are quite puzzling. For instance,
the example that the kinematic equation for an object
in free-fall,

s = a + ut + 1
2gt2,

cannot be deduced from observations is used as an ar-
gument against deduction under the reasoning that an
infinite number of functions,

s = a + ut + 1
2gt2 + f (t)(t − t1) · · · (t − tn),

also apply to describe a free fall observed at times
t1, . . . , tn. The limits of the epistemological discussion
in those early pages are illustrated by the introduction
of Ockham’s razor (the choice of the simplest law that
fits the fact), as the meaning of what a simplest law can
be remains unclear, and the section lacks a clear (objec-
tive) argument in motivating this choice, besides com-
mon sense, while the discussion ends up with a some-
how paradoxical statement that, since deductive logic
provides no explanation of the choice of the simplest
law, this is proof that deductive logic is grossly inad-
equate to cover scientific and practical requirements.
On the other hand, and from a statistician’s narrower
perspective, one can re-interpret this gravity example
as possibly the earliest discussion of the conceptual dif-
ficulties associated with model choice, which are still
not entirely resolved today. In that respect, it is quite
fascinating to see this discussion appear so early in the
book (third page), as if Jeffreys had perceived how im-
portant this debate would become later.

Note that, maybe due to this very call to Ockham,
the later Bayesian literature abounds in references to
Ockham’s razor with little formalization of this prin-
ciple, even though Berger and Jefferys (1992), Bala-
subramanian (1997) and MacKay (2002) develop elab-
orate approaches. In particular, the definition of the
Bayes factor in Section 1.6 can be seen as a partial
implementation of Ockham’s razor when setting the
probabilities of both models equal to 1/2. In the be-
ginning of his Chapter 28, entitled Model Choice and
Occam’s Razor, MacKay (2002) argues that Bayesian

inference embodies Ockham’s razor because “simple”
models tend to produce more precise predictions and,
thus, when the data is equally compatible with several
models, the simplest one will end up as the most prob-
able. This is generally true, even though there are some
counterexamples in Bayesian nonparametrics.

Overall, we nonetheless feel that this part of The-
ory of Probability could be skipped at first reading as
less relevant for Bayesian studies. In particular, the op-
position between mathematical deduction and statisti-
cal induction does not appear to carry a strong argu-
ment, even though the distinction needs (needed?) to
be made for mathematically oriented readers unfamil-
iar with statistics. However, from a historical point of
view, this opposition must be considered against the
then-ongoing debate about the nature of induction, as
illustrated, for instance, by Karl Popper’s articles of
this period about the logical impossibility of induction
(Popper, 1934).

2.2 Foundational Principles

The text becomes more focused when dealing with
the construction of a theory of inference: while some
notions are yet to be defined, including the pervasive
evidence, sentences like inference involves in its very
nature the possibility that the alternative chosen as the
most likely may in fact be wrong are in line with our
current interpretation of modeling and obviously with
the Bayesian paradigm. In Section 1.1 Jeffreys sets up
a collection of postulates or rules that act like axioms
for his theory of inference, some of which require later
explanations to be fully understood:

1. All hypotheses must be explicitly stated and the
conclusions must follow from the hypotheses: what
may first sound like an obvious scientific principle
is in fact a leading characteristic of Bayesian statis-
tics. While it seems to open a whole range of new
questions—“To what extent must we define our belief
in the statistical models used to build our inference?
How can a unique conclusion stem from a given model
and a given set of observations?”—and while it may
sound far too generic to be useful, we may interpret this
statement as setting the working principle of Bayesian
decision theory: given a prior, a sampling distribution,
an observation and a loss function, there exists a single
decision procedure. In contrast, the frequentist theories
of Neyman or of Fisher require the choice of ad hoc
procedures, whose (good or bad) properties they later
analyze. But this may be a far-fetched interpretation of
this rule at this stage even though the comment will
appear more clearly later.
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2. The theory must be self-consistent. The statement
is somehow a repetition of the previous rule and it is
only later (in Section 3.10) that its meaning becomes
clearer, in connection with the introduction of Jef-
freys’s noninformative priors as a self-contained prin-
ciple. Consistency is nonetheless a dominant feature of
the book, as illustrated in Section 3.1 with the rejection
of Haldane’s prior.3

3. Any rule must be applicable in practice. This
“rule” does not seem to carry any weight in practice.
In addition, the explicit prohibition of estimates based
on impossible experiments sounds implementable only
through deductive arguments. But this leads to the ex-
clusion of rules based on frequency arguments and, as
such, is fundamental in setting a Bayesian framework.
Alternatively (and this is another interpretation), this
constraint should be worded in more formal terms of
the measurability of procedures.

4. The theory must provide explicitly for the possi-
bility that inferences made by it may turn out to be
wrong. This is both a fundamental aspect of statistical
inference and an indication of a surprising view of in-
ference. Indeed, even when conditioning on the model,
inference is never right in the sense that a point esti-
mate rarely gives the true answer. It may be that Jef-
freys is solely thinking of statistical testing, in which
case the rightfulness of a decision is necessarily condi-
tional on the truthfulness of the corresponding model
and thus dubious. A more relative (or more precise)
statement would have been more adequate. But, from
reading further (as in Section 1.2), it appears that this
rule is to be understood as the foundational principle
(the chief constructive rule) for defining prior distrib-
utions. While this is certainly not clear at this stage,
Bayesian inference does indeed provide for the possi-
bility that the model under study is not correct and for
the unreliability of the resulting inference via a poste-
rior probability.

5. The theory must not deny any empirical proposi-
tion a priori. This principle remains unclear when put
into practice. If it is to be understood in the sense of a
physical theory, there is no reason why some empirical
proposition could not be excluded from the start. If it
is the sense of an inferential theory, then the statement
would require a better definition of empirical propo-
sition. But Jeffreys using the epithet a priori seems to

3Consistency is then to be understood in the weak sense of in-
variant under reparameterization, which is a usual argument for
Jeffreys’s principle, not in terms of asymptotic convergence prop-
erties.

imply that the prior distribution corresponding to the
theory must be as inclusive as possible. This certainly
makes sense as long as prior information does not ex-
clude parts of the parameter space as, for instance, in
Physics.

6. The number of postulates should be reduced to
a minimum. This rule sounds like an embedded Ock-
ham’s razor, but, more positively, it can also be inter-
preted as a call for noninformative priors. Once again,
the vagueness of the wording opens a wide range of
interpretations.

7. The theory need not represent thought-processes
in details, but should agree with them in outline. This
vague principle could be an attempt at reconciliating
statistical theories, but it does not give clear directions
on how to proceed. In the light of Jeffreys’s arguments,
it could rather signify that the construction of prior dis-
tributions cannot exactly reflect an actual construction
in real life. Since a noninformative (or “objective”) per-
spective is adopted for most of the book, this is more
likely to be a preliminary argument in favor of this line
of thought. In Section 1.2 this rule is invoked to derive
the (prior) ordering of events.

8. An objection carries no weight if [it] would in-
validate part of pure mathematics. This rule grounds
Theory of Probability within mathematics, which may
be a necessary reminder in the spirit of the time (where
some were attempting to dissociate statistics from
mathematics).

The next paragraph discusses the notion of probabil-
ity. Its interest is mostly historical: in the early 1930’s,
the axiomatic definition of probability based on Kol-
mogorov’s axioms was not yet universally accepted,
and there were still attempts to base this definition on
limiting properties. In particular, Lebesgue integration
was not part of the undergraduate curriculum till the
late 1950’s at either Cambridge or Oxford (Lindley,
2008, private communication). This debate is no longer
relevant, and the current theory of probability, as de-
rived from measure theory, does not bear further dis-
cussion. This also removes the ambiguity of construct-
ing objective probabilities as derived from actual or
possible observations. A probability model is to be un-
derstood as a mathematical (and thus unobjectionable)
construct, in agreement with Rule 8 above.

Then follows (still in Section 1.1) a rather long
debate on causality versus determinism. While the
principles stated in those pages are quite acceptable,
the discussion only uses the most basic concept of de-
terminism, namely, that identical causes give identical
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effects, in the sense of Laplace. We thus agree with
Jeffreys that, at this level, the principle is useless, but
the same paragraph actually leaves us quite confused
as to its real purpose. A likely explanation (Lindley,
2008, personal communication) is that Jeffreys stresses
the inevitability of probability statements in Science:
(measurement) errors are not mistakes but part of the
picture.

2.3 Prior Distributions

In Section 1.2 Jeffreys introduces the notion of prior
in an indirect way, by considering that the probability
of a proposition is always conditional on some data and
that the occurrence of new items of information (new
evidence) on this proposition simply updates the avail-
able data. This is slightly contrary to our current way
of defining a prior distribution π on a parameter θ as
the information available on θ prior to the observation
of the data, but it simply conveys the fact that the prior
distribution must be derived from some prior items of
information about θ . As pointed out by Jeffreys, this
also allows for the coexistence of prior distributions for
different experts within the same probabilistic frame-
work.4 In the sequel all statements will, however, con-
dition on the same data.

The following paragraphs derive standard mathemat-
ical logic axioms that directly follow from a formal
(modern) definition of a probability distribution, with
the provision that this probability is always conditional
on the same data. This is also reminiscent of the deriva-
tion of the existence of a prior distribution from an
ordering of prior probabilities in DeGroot (1970), but
the discussion about the arbitrary ranking of probabili-
ties between 0 and 1 may sound anecdotal today. Note
also that, from a mathematical point of view, defin-
ing only conditional probabilities like P(p|q) is some-
how superfluous in that, if the conditioning q is to
remain fixed, P(·|q) is a regular probability distribu-
tion, while, if q is to be updated into qr , P(·|qr) can
be derived from P(·|q) by Bayes’ theorem (which is
to be introduced later). Therefore, in all cases, P(·|q)

appears like the reference probability. At some stage,
while stating that the probability of the sure event is
equal to one is merely a convention, Jeffreys indicates
that, when expressing ignorance over an infinite range
of values of a quantity, it may be convenient to use ∞
instead. Clearly, this paves the way for the introduction

4Jeffreys seems to further note that the same conditioning applies
for the model of reference.

of improper priors.5 Unfortunately, the convention and
the motivation (to keep ratios for finite ranges deter-
minate) do not seem correct, if in tune with the per-
spective of the time (see, e.g., Lhoste, 1923; Broemel-
ing and Broemeling, 2003). Notably, setting all events
involving an infinite range with a probability equal
to ∞ seems to restrict the abilities of the theory to a
far extent.6 Similar to Laplace, Jeffreys is more used
to handling equal probability finite sets than contin-
uous sets and the extension to continuous settings is
unorthodox, using, for instance, Dedekind’s sections
and putting several meanings under the notation dx.
Given the convoluted derivation of conditional proba-
bilities in this context, the book states the product rule
P(qr|p) = P(q|p)P (r|qp) as an axiom, rather than as
a consequence of the basic probability axioms. It leads
(in Section 1.22) to Bayes’ theorem, namely, that, for
all events qr ,

P(qr |pH) ∝ P(qr |H)P (p|qrH),

where H denotes the information available and p a set
of observations. In this (modern) format P(p|qrH) is
identified as Fisher likelihood and P(qr |H) as the prior
probability. Bayes’ theorem is defined as the princi-
ple of inverse probability and only for finite sets, rather
than for measures.7 Obviously, the general version of
Bayes’ theorem is used in the sequel for continuous pa-
rameter spaces.

Section 1.3 represents one of the few forays of the
book into the realm of decision theory,8 in connection

5Jeffreys’s Theory of Probability strongly differs from the earlier
Scientific Inference (1931) in this respect, the latter being rather dis-
missive of the mathematical difficulty: To make this integral equal
to 1 we should therefore have to include a zero factor unless very
small and very large values are excluded. This does appear to be
the case (Section 5.43, page 67).

6This difficulty with handling σ -finite measures and continuous
variables will be recurrent throughout the book: Jeffreys does not
seem to be adverse to normalizing an improper distribution by ∞,
even though the corresponding derivations are not meaningful.

7As noted by Fienberg (2006), the adjective term “Bayesian” had
not yet appeared in the statistical literature by the time Theory of
Probability was published, and Jeffreys sticks to the 19th century
denomination of “inverse probability.” The adjective can be traced
back to either Ronald Fisher, who used it in a rather derogatory
meaning, or to Abraham Wald, who gave it a more complimentary
meaning in Wald (1950).

8The reference point estimator advocated by Jeffreys (if any)
seems to be the maximum a posteriori (MAP) estimator, even
though he stated in his discussion of Lindley (1953) that he dep-
recated the whole idea of picking out a unique estimate.
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with Laplace’s notions of mathematical and moral ex-
pectations, and with Bernoulli’s Saint Petersburg para-
dox, but there is no recognition of the central role of the
loss function in defining an optimal Bayes rule as for-
malized later by Wald (1950) and Raiffa and Schlaifer
(1961). The attribution of a decision-theoretic back-
ground to T. Bayes himself is surprising, since there
is not anything close to the notion of loss or of ben-
efit in Bayes’ (1763) original paper. We nonetheless
find there the seed of an idea later developed in Ru-
bin (1987), among others, that prior and loss function
are indistinguishable. [Section 1.8 briefly re-enters this
perspective to point out that (posterior) expectations
are often nowhere near the actual value of the random
quantity.] The next section (Section 1.4) is important in
that it tackles for the first time the issue of noninforma-
tive priors. When the number of alternatives is finite,
Jeffreys picks the uniform prior as his noninformative
prior, following Laplace’s Principle of Insufficient Rea-
son. The difficulties associated with this choice in con-
tinuous settings are not mentioned at this stage.

2.4 More Axiomatics and Some Asymptotics

Section 1.5 attempts an axiomatic derivation that the
Bayesian principles just stated follow the rules im-
posed earlier. This part does not bring much novelty,
once the fundamental properties of a probability dis-
tribution are stated. This is basically the purpose of
this section, where earlier “Axioms” are checked in
terms of the posterior probability P(·|pH). A reassur-
ing consequence of this derivation is that the use of
a posterior probability as the basis for inference can-
not lead to inconsistency. The use of the posterior as a
new prior for future observations and the correspond-
ing learning principle are developed at this stage. The
debate about the choice of the prior distribution is post-
poned till later, while the issue of the influence of this
prior distribution is dismissed as having very little dif-
ference [on] the results, which needs to be quantified,
as in the quote below at the beginning of Section 5.

Given the informal approach to (or rather without)
measure theory adopted in Theory of Probability, the
study of the limiting behavior of posterior distributions
in Section 1.6 does not provide much insight. For in-
stance, the fact that

P(q|p1 · · ·pnH)

= P(q|H)

P (p1|H)P (p2|p1H) · · ·P(pn|p1 · · ·pn−1H)

is shown to induce that P(pn|p1 · · ·pn−1H) converges
to 1 is not particularly surprising, although it relates

to Laplace’s principle that repeated verifications of
consequences of a hypothesis will make it practically
certain that the next consequence will be verified. It
would have been equally interesting to focus on cases
in which P(q|p1 · · ·pnH) goes to 1.

The end of Section 1.62 introduces some quanti-
ties of interest, such as the distinction between esti-
mation problems and significance tests, but with no
clear guideline: when comparing models of complex-
ity m (this quantity being only defined for differ-
ential equations), Jeffreys suggests using prior prob-
abilities that are penalized by m, such as 2−m or
6/π2m2, the motivation for those specific values be-
ing that the corresponding series converge. Penaliza-
tion by the model complexity is quite an interesting
idea, to be formalized later by, for example, Rissanen
(1983, 1990), but Jeffreys somehow kills this idea be-
fore it is hatched by pointing out the difficulties with
the definition of m.

Instead, Jeffreys switches to a completely different
(if paramount) topic by defining in a few lines the
Bayes factor for testing a point null hypothesis,

K = P(q|θH)

P (q ′|θH)

/ P(q|H)

P (q ′|H)
,

where θ denotes the data. He suggests using P(q|H) =
1/2 as a default value, except for sequences of embed-
ded hypotheses for which he suggests

P(q|H)

P (q ′|H)
= 2,

presumably because the series with leading term 2−n

is converging.
Once again, the rather quick coverage of this ma-

terial is somehow frustrating, as further justifications
would have been necessary for the choice of the con-
stant and so on.9 Instead, the chapter concludes with
a discussion of the distinction between “idealism” and
“realism” that can be skipped for most purposes.

3. CHAPTER II: DIRECT PROBABILITIES

The whole of the information contained in the
observations that is relevant to the posterior

probabilities of different hypotheses is summed

9Similarly, the argument against philosophers that maintain that
no method based on the theory of probability can give a (...) non-
zero probability to a precise value against a continuous background
is not convincing as stated. The distinction between zero measure
events and mixture priors including a Dirac mass should have been
better explained, since this is the basis for Bayesian point-null test-
ing.
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up in the values that they give to the likelihood.
H. JEFFREYS, Theory of Probability, Section 2.0.

This chapter is certainly the least “Bayesian” chapter
of the book, since it covers both the standard sampling
distributions and some equally standard probability re-
sults. It starts with a reminder that the principle of in-
verse probability can be stated in the form

Posterior Probability ∝ Prior Probability

· Likelihood,

thus rephrasing Bayes’ theorem in terms of the likeli-
hood and with the proper indication that the relevant
information contained in the observations is summa-
rized by the likelihood (sufficiency will be mentioned
later in Section 3.7). Then follows (still in Section 2.0)
a long paragraph about the tentative nature of mod-
els, concluding that a statistical model must be made
part of the prior information H before it can be tested
against the observations, which (presumably) relates to
the fact that Bayesian model assessment must involve
a description of the alternative(s) to be validated.

The main bulk of the chapter is about sampling dis-
tributions. Section 2.1 introduces binomial and hyper-
geometric distributions at length, including the inter-
esting problem of deciding between binomial versus
negative binomial experiments when faced with the
outcome of a survey, used later in the defence of the
Likelihood Principle (Berger and Wolpert, 1988). The
description of the binomial contains the equally in-
teresting remark that a given coin repeatedly thrown
will show a bias toward head or tail due to the wear,
a remark later exploited in Diaconis and Ylvisaker
(1985) to justify the use of mixtures of conjugate pri-
ors. Bernoulli’s version of the Central Limit theorem is
also recalled in this section, with no particular appeal
if one considers that a modern Statistics course (see,
e.g., Casella and Berger, 2001) would first start with
the probabilistic background.10

The Poisson distribution is first introduced as a lim-
iting distribution for the binomial distribution B(n,p)

when n is large and np is bounded. (Connections with
radioactive disintegration are mentioned afterward.)
The normal distribution is proposed as a large sample
approximation to a sum of Bernoulli random variables.

10In fact, some of the statements in Theory of Probability that sur-
round the statement of the Central Limit theorem are not in agree-
ment with measure theory, as, for instance, the confusion between
pointwise and uniform convergence, and convergence in probabil-
ity and convergence in distribution.

As for the other distributions, there is some attempt at
justifying the use of the normal distribution, as well
as [what we find to be] a confusing paragraph about
the “true” and “actual observed” values of the para-
meters. A long section (Section 2.3) expands about the
properties of Pearson’s distributions, then allowing Jef-
freys to introduce the negative binomial as a mixture of
Poisson distributions. The introduction of the bivariate
normal distribution is similarly convoluted, using first
binomial variates and second a limiting argument, and
without resorting to matrix formalism.

Section 2.6 attempts to introduce cumulative distrib-
ution functions in a more formal manner, using the cur-
rent three-step definition, but again dealing with limits
in an informal way. Rather coherently from a geophysi-
cist’s point of view, characteristic functions are also
covered in great detail, including connections with mo-
ments and the Cauchy distribution, as well as Lévy’s
inversion theorem. The main goal of using characteris-
tic functions seems nonetheless to be able to establish
the Central Limit theorem in its full generality (Sec-
tion 2.664).

Rather surprisingly for a Bayesian reference book
and mostly in complete disconnection with the test-
ing chapters, the χ2 test of goodness of fit is given
a large and uncritical place within this book, includ-
ing an adjustment for the degrees of freedom.11 Exam-
ples include the obvious independence of a rectangular
contingency table. The only criticism (Section 2.76) is
fairly obscure in that it blames poor performances of
the χ2 test on the fact that all divergences in the χ2

sum are equally weighted. The test is nonetheless im-
plemented in the most classical manner, namely, that
the hypothesis is rejected if the χ2 statistic is outside
the standard interval. It is unclear from the text in Sec-
tion 2.76 that rejection would occur were the χ2 sta-
tistic too small, even though Jeffreys rightly addresses
the issue at the end of Chapter 5 (Section 5.63). He
also mentions the need to coalesce small groups into
groups of size at least 5 with no further justification.
The chapter concludes with similar uses of Student’s t

and Fisher’s z tests.

11Interestingly enough, the parameters are estimated by mini-

mum χ2 rather than either maximum likelihood or Bayesian point
estimates. This is, again, a reflection of the practice of the time,
coupled with the fact that most approaches are asymptotically in-
distinguishable. Posterior expectations are not at all advocated as
Bayes (point) estimators in Theory of Probability.
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4. CHAPTER III: ESTIMATION PROBLEMS

If we have no information relevant to the actual value
of the parameter, the probability must be chosen

so as to express the fact that we have none.
H. JEFFREYS, Theory of Probability, Section 3.1.

This is a major chapter of Theory of Probability as
it introduces both exponential families and the princi-
ple of Jeffreys noninformative priors. The main con-
cepts are already present in the early sections, includ-
ing some invariance principles. The purpose of the
chapter is stated as a point estimation problem, where
obtaining the probability distribution of [the] parame-
ters, given the observations is the goal. Note that esti-
mation is not to be understood in the (modern?) sense
of point estimation, that is, as a way to produce numer-
ical substitutes for the true parameters that are based
on the data, since the decision-theoretic perspective for
building (point) estimators is mostly missing from the
book (see Section 1.8 for a very brief remark on expec-
tations). Both Good (1980) and Lindley (1980) stress
this absence.

4.1 Noninformative Priors of Former Days

Section 3.1 sets the principles for selecting nonin-
formative priors. Jeffreys recalls Laplace’s rule that, if
a parameter is real-valued, its prior probability should
be taken as uniformly distributed, while, if this para-
meter is positive, the prior probability of its logarithm
should be taken as uniformly distributed. The motiva-
tion advanced for using both priors is the invariance
principle, namely, the invariance of the prior selection
under several different sets of parameters. At this stage,
there is no recognition of a potential problem with us-
ing a σ -finite measure and, in particular, with the fact
that these priors are not probability distributions, but
rather a simple warning that these are formal rules ex-
pressing ignorance. We face the difficulty mentioned
earlier when considering σ -finite measures since they
are not properly handled at this stage: when stating that
one starts with any distribution of prior probability, it is
not possible to include σ -finite measures this way, ex-
cept via the [incorrect] argument that a probability is
merely a number and, thus, that the total weight can be
∞ as well as 1: use ∞ instead of 1 to indicate certainty
on data H . The wrong interpretation of a σ -finite mea-
sure as a probability distribution (and of ∞ as a “num-
ber”) then leads to immediate paradoxes, such as the
prior probability of any finite range being null, which
sounds inconsistent with the statement that we know

nothing about the parameter, but this results from an
over-interpretation of the measure as a probability dis-
tribution already pointed out by Lindley (1971, 1980)
and Kass and Wasserman (1996).

The argument for using a flat (Lebesgue) prior is
based (a) on its use by both Bayes and Laplace in finite
or compact settings, and (b) on the argument that it cor-
rectly reflects the absence of prior knowledge about the
value of the parameter. At this stage, no point is made
against it for reasons related with the invariance princi-
ple—there is only one parameterization that coincides
with a uniform prior—but Jeffreys already argues that
flat priors cannot be used for significance tests, be-
cause they would always reject the point null hypothe-
sis. Even though Bayesian significance tests, including
Bayes factors, have not yet been properly introduced,
the notion of an infinite mass canceling a point null hy-
pothesis is sufficiently intuitive to be used at this point.

While, indeed, using an improper prior is a major
difficulty when testing point null hypotheses because
it gives an infinite mass to the alternative (DeGroot,
1970), Jeffreys fails to identify the problem as such
but rather blames the flat prior applied to a parameter
with a semi-infinite range of possible values. He then
goes on justifying the use of π(σ) = 1/σ for positive
parameters (replicating the argument of Lhoste, 1923)
on the basis that it is invariant for the change of para-
meters � = 1/σ , as well as any other power, failing to
recognize that other transforms that preserve positivity
do not exhibit such an invariance. One has to admit,
however, that, from a physicist’s perspective, power
transforms are more important than other mathemati-
cal transforms, such as arctan, because they can be as-
signed meaningful units of measurement, while other
functions cannot. At least this seems to be the spirit
of the examples considered in Theory of Probability:
Some methods of measuring the charge of an electron
give e, others e2.

There is a vague indication that Jeffreys may also
recognize π(σ) = 1/σ as the scale group invariant
measure, but this is unclear. An indefensible argument
follows, namely, that∫ a

0
vn dv

/∫ ∞
a

vn dv

is only indeterminate when n = −1, which allows us
to avoid contradictions about the lack of prior infor-
mation. Jeffreys acknowledges that this does not solve
the problem since this choice implies that the prior
“probability” of a finite interval (a, b) is then always
null, but he avoids the difficulty by admitting that the
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probability that σ falls in a particular range is zero,
because zero probability does not imply impossibil-
ity. He also acknowledges that the invariance princi-
ple cannot encompass the whole range of transforms
without being inconsistent, but he nonetheless sticks to
the π(σ) = 1/σ prior as it is better than the Bayes–
Laplace rule.12 Once again, the argument sustaining
the whole of Section 3.1 is incomplete since missing
the fundamental issue of distinguishing proper from
improper priors.

While Haldane’s (1932) prior on probabilities (or
rather on chances as defined in Section 1.7),

π(p) ∝ 1

p(1 − p)
,

is dismissed as too extreme (and inconsistent), there is
no discussion of the main difficulty with this prior (or
with any other improper prior associated with a finite-
support sampling distribution), which is that the cor-
responding posterior distribution is not defined when
x ∼ B(n,p) is either equal to 0 or to n (although Jef-
freys concludes that x = 0 leads to a point mass at
p = 0, due to the infinite mass normalization).13 In-
stead, the corresponding Jeffreys’s prior

π(p) ∝ 1√
p(1 − p)

is suggested with little justification against the (truly)
uniform prior: we may as well use the uniform distrib-
ution.

4.2 Laplace’s Succession Rule

Section 3.2 contains a Bayesian processing of
Laplace’s succession rule, which is an easy introduc-
tion given that the parameter of the sampling distri-
bution, a hypergeometric H(N, r), is an integer. The
choice of a uniform prior on r , π(r) = 1/(N +1), does
not require much of a discussion and the posterior dis-
tribution

π(r|l,m,N,H) =
(

r

l

)(
N − r

m

)/(
N + 1

l + m + 1

)

12In both the 19th and early 20th centuries, there is a tradition
within the not-yet-Bayesian literature to go to extreme lengths in
the justification of a particular prior distribution, as if there existed
one golden prior. See, for example, Broemeling and Broemeling
(2003) in this respect.

13Jeffreys (1931, 1937) does address the problem in a clearer
manner, stating that this is not serious, for so long as the sample
is homogeneous (meaning x = 0, n) the extreme values (meaning
p = 0,1) are still admissible, and we do attach a high probability
to the proposition is of one type; while as soon as any exceptions
are known the extreme values are completely excluded and no in-
finity arises (Section 10.1, page 195).

is available in closed form, including the normaliz-
ing constant. The posterior predictive probability that
the next specimen will be of the same type is then
(l + 1)/(l +m+ 1) and more complex predictive prob-
abilities can be computed as well. As in earlier books
involving Laplace’s succession rule, the section argues
about its truthfulness from a metaphysical point of
view (using classical arguments about the probabili-
ties that the sun rising tomorrow and that all swans
are white that always seem to be associates themselves
with this topic) but, more interestingly, it then moves to
introducing a point mass on specific values of the pa-
rameter in preparation for hypothesis testing. Namely,
following a renewed criticism of the uniform assess-
ment via the fact that

P(r = N |l,m = 0,N,H)

P (r �= N |l = n,N,H)
= l + 1

N + 1

is too small, Jeffreys suggests setting aside a portion
2k of the prior mass for both extreme values r = 0
and r = N . This is indeed equivalent to using a point
mass on the null hypothesis of homogeneity of the pop-
ulation. While mixed samples are independent of the
choice of k (since they exclude those extreme values),
a sample of the first type with l = n leads to a posterior
probability ratio of

P(r = N |l = n,N,H)

P (r �= N |l = n,N,H)
= n + 1

N − n

k

1 − 2k

N − 1

1
,

which leads to the crucial question of the choice14 of
k. The ensuing discussion is not entirely convincing: 1

2
is too large, 1

4 is not unreasonable [but] too low in this
case. The alternative

k = 1

4
+ 1

N + 1

argues that the classification of possibilities [is] as fol-
lows: (1) Population homogeneous on account of some
general rule. (2) No general rule but extreme values
to be treated on a level with others. This proposal is
mostly interesting for its bearing on the continuous
case, for, in the finite case, it does not sound logi-
cal to put weight on the null hypothesis (r = 0 and
r = N ) within the alternative, since this confuses the
issue. (See Berger, Bernardo and Sun, 2009, for a re-
cent reappraisal of this approach from the point of view
of reference priors.)

Section 3.3 seems to extend Laplace’s succession
rule to the case in which the class sampled consists

14A prior weight of 2k = 1/2 is reasonable since it gives equal
probability to both hypotheses.
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of several types, but it actually deals with the (much
more interesting) case of Bayesian inference for the
multinomial M(n;p1, . . . , pr) distribution, when us-
ing the Dirichlet D(1, . . . ,1) distribution as a prior.
Jeffreys recovers the Dirichlet D(x1 + 1, . . . , xr + 1)

distribution as the posterior distribution and he derives
the predictive probability that the next member will be
of the first type as

(x1 + 1)
/∑

i

xi + r.

There could be some connections there with the ir-
relevance of alternative hypotheses later (in time) dis-
cussed in polytomous regression models (Gouriéroux
and Monfort, 1996), but they are well hidden. In any
case, the Dirichlet distribution is not invariant to the
introduction of new types.

4.3 Poisson Distribution

The processing of the estimation of the parameter α

of the Poisson distribution P(α) is based on the [im-
proper] prior π(α) ∝ 1/α, deemed to be the correct
prior probability distribution for scale invariance rea-
sons. Given n observations from P(α) with sum Sn,
Jeffreys reproduces Haldane’s (1932) derivation of the
Gamma posterior Ga(Sn, n) and he notes that Sn is a
sufficient statistic, but does not make a general prop-
erty of it at this stage. (This is done in Section 3.7.)

The alternative choice π(α) ∝ 1/
√

α will be later
justified in Section 3.10 not as Jeffreys’s (invariant)
prior but as leading to a posterior defined for all ob-
servations, which is not the case of π(α) ∝ 1/α when
x = 0, a fact overlooked by Jeffreys. Note that π(α) ∝
1/α can nonetheless be advocated by Jeffreys on the
ground that the Poisson process derives from the ex-
ponential distribution, for which α is a scale parame-
ter: e−αt represents the fraction of the atoms originally
present that survive after time t .

4.4 Normal Distribution

When the sampling variance σ 2 of a normal model
N (μ,σ 2) is known, the posterior distribution associ-
ated with a flat prior is correctly derived as μ|x1, . . . ,

xn ∼ N (x̄, σ 2/n) (with the repeated difficulty about
the use of a σ -finite measure as a probability). Under
the joint improper prior

π(μ,σ) ∝ 1/σ,

the (marginal) posterior on μ is obtained as a Stu-
dent’s t

T
(
n − 1, x̄, s2/n(n − 1)

)

distribution, while the marginal posterior on σ 2 is an
inverse gamma I G((n − 1)/2, s2/2).15

Jeffreys notices that, when n = 1, the above prior
does not lead to a proper posterior since π(μ|x1) ∝
1/|μ − x1| is not integrable, but he concludes that the
solution degenerates in the right way, which, we sup-
pose, is meant to say that there is not enough informa-
tion in the data. But, without further formalization, it is
a delicate conclusion to make.

Under the same noninformative prior, the predic-
tive density of a second sample with sufficient statistic
(x̄2, s2) is found16 to be proportional to{

n1s
2
1 + n2s

2
2 + n1n2

n1 + n2
(x̄2 − x̄1)

2
}−(n1+n2−1)/2

.

A direct conclusion is that this implies that x̄2 and s2
are dependent for the predictive, if independent given
μ and σ , while the marginal predictives on x̄2 and s2

2
are Student’s t and Fisher’s z, respectively. Extensions
to the prediction of multiple future samples with the
same (Section 3.43) or with different (Section 3.44)
means follow without surprise. In the latter case, given
m samples of nr (1 ≤ r ≤ m) normal N (μi, σ

2) mea-
surements, the posterior on σ 2 under the noninforma-
tive prior

π(μ1, . . . ,μr, σ ) ∝ 1/σ

is again an inverse gamma I G(ν/2, s2/2) distribu-
tion,17 with s2 = ∑

r

∑
i (xri − x̄r )

2 and ν = ∑
r nr ,

while the posterior on t = √
ni(μi − x̄i)/s is a Stu-

dent’s t with ν degrees of freedom for all i’s (no mat-
ter what the number of observations within this group

15Section 3.41 also contains the interesting remark that, condi-
tional on two observations, x1 and x2, the posterior probability that
μ is between both observations is exactly 1/2. Jeffreys attributes
this property to the fact that the scale σ is directly estimated from
those two observations under a noninformative prior. Section 3.8
generalizes the observation to all location-scale families with me-
dian equal to the location. Otherwise, the posterior probability is
less than 1/2. Similarly, the probability that a third observation x3
will be between x1 and x2 is equal to 1/3 under the predictive.
While Jeffreys gives a proof by complete integration, this is a di-
rect consequence of the exchangeability of x1, x2 and x3. Note also
that this is one of the rare occurrences of a credible interval in the
book.

16In the current 1961 edition, n2s2
2 is mistakenly typed as n2

2s2
2 in

equation (6) of Section 3.42.
17Jeffreys does not use the term “inverse gamma distribution” but

simply notes that this is a distribution with a scale parameter that
is given by a single set of tables (for a given ν). He also notices
that the distribution of the transform log(σ/s) is closer to a normal
distribution than the original.
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FIG. 1. Seven posterior distributions on the values of accelera-
tion due to gravity (in cm/sec2) at locations in East Africa when
using a noninformative prior.

is). Figure 1 represents the posteriors on the means μi

for the data set analyzed in this section on seven sets
of measurements of the gravity. A paragraph in Sec-
tion 3.44 contains hints about hierarchical Bayes mod-
eling as a way of strengthening estimation, which is
a perspective later advanced in favor of this approach
(Lindley and Smith, 1972; Berger and Robert, 1990).

The extension in Section 3.5 to the setting of the nor-
mal linear regression model should be simple (see, e.g.,
Marin and Robert, 2007, Chapter 3), except that the
use of tensorial conventions—like when a suffix i is re-
peated it is to be given all values from 1 to m—and
the absence of matrix notation makes the reading quite
arduous for today’s readers.18 Because of this lack of
matrix tools, Jeffreys uses an implicit diagonalization
of the regressor matrix XTX (with modern notation)
and thus expresses the posterior in terms of the trans-
forms ξi of the regression coefficients βi . This section
is worth reading if only to realize the immense advan-
tage of using matrix notation. The case of regression
equations

yi = Xiβ + εi, εi ∼ N (0, σ 2
i ),

with different unknown variances leads to a poly-t
output (Bauwens, 1984) under a noninformative prior,
which is deemed to be a complication, and Jeffreys
prefers to revert to the case when σ 2

i = ωiσ
2 with

known ωi ’s.19 The final part of this section mentions

18Using the notation ci for yi , xi for βi , yi for β̂i and air for xir

certainly makes reading this part more arduous.
19Sections 3.53 and 3.54 detail the numerical resolution of the

normal equations by iterative methods and have no real bearing on
modern Bayesian analysis.

the interesting subcase of estimating a normal mean α

when truncated at α = 0: negative observations do not
need to be rejected since only the posterior distribution
has to be truncated in 0. [In a similar spirit, Section 3.6
shows how to process a uniform U (α−σ,α+σ) distri-
bution under the noninformative π(α,σ ) = 1/σ prior.]

Section 3.9 examines the estimation of a two-dimen-
sional covariance matrix


 =
(

σ 2 �στ

�στ τ 2

)

under centred normal observations. The prior advo-
cated by Jeffreys is π(τ, σ,�) ∝ 1/τσ , leading to the
(marginal) posterior

π(�|�̂, n)

∝
∫ ∞

0

(1 − �2)n/2

(coshβ − ��̂)n
dβ

= (1 − �2)n/2

(1 − ��̂)n−1/2

·
∫ 1

0

(1 − u)n−1
√

2u
{1 − (1 + ��̂)u/2}−1/2 du

that only depends on �̂. (Jeffreys notes that, when σ

and τ are known, the posterior of � also depends on the
empirical variances for both components. This para-
doxical increase in the dimension of the sufficient sta-
tistics when the number of parameters is decreasing is
another illustration of the limited meaning of marginal
sufficient statistics pointed out by Basu, 1988.) While
this integral can be computed via confluent hypergeo-
metric functions (Gradshteyn and Ryzhik, 1980),

∫ 1

0

(1 − x)n−1
√

u(1 − au)
du

= B(1/2, n)2F1{1/2,1/2;n + 1/2; (1 + ��̂)/2},
the corresponding posterior is certainly less manage-
able than the inverse Wishart that would result from
a power prior |
|γ on the matrix 
 itself. The exten-
sion to noncentred observations with flat priors on the
means induces a small change in the outcome in that

π(�|�̂, n) ∝ (1 − �2)(n−1)/2

(1 − ��̂)n−3/2

·
∫ 1

0

(1 − u)n−2
√

2u

· {1 − (1 + ��̂)u/2}−1/2 du,
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which is also the posterior obtained directly from the
distribution of �̂. Indeed, the sampling distribution is
given by

f (�̂|�) = n − 2√
2π

(1 − �̂2)(n−4)/2

· (1 − �2)(n−1)/2 �(n − 1)

�(n − 1/2)

· (1 − ��̂)−(n−3/2)

· 2F1{1/2,1/2;n − 1/2; (1 + ��̂)/2}.
There is thus no marginalization paradox (Dawid,
Stone and Zidek, 1973) for this prior selection, while
one occurs for the alternative choice π(τ, σ,�) ∝
1/τ 2σ 2.

4.5 Sufficiency and Exponential Families

Section 3.7 generalizes20 observations made previ-
ously about sufficient statistics for particular distribu-
tions (Poisson, multinomial, normal, uniform). If there
exists a sufficient statistic T (x) when x ∼ f (x|α), the
posterior distribution on α only depends on T (x) and
on the number n of observations.21 The generic form
of densities from exponential families

logf (x|α) = (x − α)μ′(α) + μ(α) + ψ(x)

is obtained by a convoluted argument of imposing x̄ as
the MLE of α, which is not equivalent to requiring x̄ to
be sufficient. The more general formula

f (x|α1, . . . , αm)

= φ(α1, . . . , αm)ψ(x) exp
m∑

s=1

us(α)vs(x)

is provided as a consequence of the (then very recent)
Pitman–Koopman[–Darmois] theorem22 on the neces-
sary and sufficient connection between the existence
of fixed dimensional sufficient statistics and exponen-
tial families. The theorem as stated does not impose a
fixed support on the densities f (x|α) and this invali-
dates the necessary part, as shown in Section 3.6 with
the uniform distribution. It is only later in Section 3.6

20Jeffreys’s derivation remains restricted to the unidimensional
case.

21Stating that n is an ancillary statistic is both formally correct
in Fisher’s sense (n does not depend on α) and ambiguous from a
Bayesian perspective since the posterior on α depends on n.

22Darmois (1935) published a version (in French) of this theo-
rem in 1935, about a year before both Pitman (1936) and Koopman
(1936).

that parameter-dependent supports are mentioned, with
an unclear conclusion. Surprisingly, this section does
not contain any indication that the specific structure of
exponential families could be used to construct conju-
gate23 priors (Raiffa, 1968). This lack of connection
with regular priors highlights the fully noninformative
perspective advocated in Theory of Probability, despite
comments (within the book) that priors should reflect
prior beliefs and/or information.

4.6 Predictive Densities

Section 3.8 contains the rather amusing and not well-
known result that, for any location-scale parametric
family such that the location parameter is the median,
the posterior probability that the third observation lies
between the first two observations is 1/2. This may be
the first use of Bayesian predictive distributions, that
is, p(x3|x1, x2) in this case, where parameters are in-
tegrated out. Such predictive distributions cannot be
properly defined in frequentist terms; at best, one may
take p(x3|θ = θ̂ ) where θ̂ is a plug-in estimator. Build-
ing more sensible predictives seems to be one major
appeal of the Bayesian approach for modern practition-
ers, in particular, econometricians.

4.7 Jeffreys’s Priors

Section 3.10 introduces Fisher information as a
quadratic approximation to distributional distances.
Given the Hellinger distance and the Kullback–Leibler
divergence,

d1(P,P ′) =
∫

|(dP )1/2 − (dP ′)1/2|2

and

d2(P,P ′) =
∫

log
dP

dP ′ d(P − P ′),

we have the second-order approximations

d1(Pα,Pα′) ≈ 1

4
(α − α′)TI (α)(α − α′)

and

d2(Pα,Pα′) ≈ (α − α′)TI (α)(α − α′),

where

I (α) = Eα

[
∂f (x|α)

∂α

∂f (x|α)T

∂α

]

23As pointed to us by Dennis Lindley, Section 1.7 comes close to
the concept of exchangeability when introducing chances.
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is Fisher information.24 A first comment of impor-
tance is that I (α) is equivariant under reparameteri-
zation, because both distances are functional distances
and thus invariant for all nonsingular transformations
of the parameters. Therefore, if α′ is a (differentiable)
transform of α,

I (α′) = dα

dα′ I (α)
dαT

dα′ ,

and this is the spot where Jeffreys states his general
principle for deriving noninformative priors (Jeffreys’s
priors):25

π(α) ∝ |I (α)|1/2

is thus an ideal prior in that it is invariant under any
(differentiable) transformation.

Quite curiously, there is no motivation for this choice
of priors other than invariance (at least at this stage)
and consistency (at the end of the chapter). Fisher in-
formation is only perceived as a second order approxi-
mation to two functional distances, with no connection
with either the curvature of the likelihood or the vari-
ance of the score function, and no mention of the infor-
mation content at the current value of the parameter or
of the local discriminating power of the data. Finally,
no connection is made at this stage with Laplace’s ap-
proximation (see Section 4.0). The motivation for cen-
tering the choice of the prior at I (α) is thus uncertain.
No mention is made either of the potential use of those
functional distances as intrinsic loss functions for the
[point] estimation of the parameters (Le Cam, 1986;
Robert, 1996). However, the use of these intrinsic di-
vergences (measures of discrepancy) to introduce I (α)

as a key quantity seems to indicate that Jeffreys un-
derstood I (α) as a local discriminating power of the
model and to some extent as the intrinsic factor used to
compensate for the lack of invariance of |α − α′|2. It
corroborates the fact that Jeffreys’s priors are known to
behave particularly well in one-dimensional cases.

Immediately, a problem associated with this generic
principle is spotted by Jeffreys for the normal distri-
bution N (μ,σ 2). While, when considering μ and σ

separately, one recovers the invariance priors π(μ) ∝ 1
and π(σ) ∝ 1/σ , Jeffreys’s prior on the pair (μ,σ )

24Jeffreys uses an infinitesimal approximation to derive I (α) in
Theory of Probability, which is thus not defined this way, nor con-
nected with Fisher.

25Obviously, those priors are not called Jeffreys’s priors in the
book but, as a counter-example to Steve Stigler’s law of eponimy
(Stigler, 1999), the name is now correctly associated with the author
of this new concept.

is π(μ,σ) ∝ 1/σ 2. If, instead, m normal observations
with the same variance σ 2 were proposed, they would
lead to π(μ1, . . . ,μm,σ ) ∝ 1/σm+1, which is unac-
ceptable (because it induces a growing departure from
the true value as m increases). Indeed, if one considers
the likelihood

L(μ1, . . . ,μm,σ )

∝ σ−mn exp− n

2σ 2

m∑
i=1

{(x̄i − μi)
2 + s2

i },

the marginal posterior on σ is

σ−mn−1 exp− n

2σ 2

m∑
i=1

s2
i ,

that is,

σ−2 ∼ Ga

{
(mn − 1)/2, n

∑
i

s2
i /2

}

and

E[σ 2] = n
∑m

i=1 s2
i

mn − 1

whose own expectation is

mn − m

mn − 1
σ 2

0 ,

if σ0 denotes the “true” standard deviation. If n is small
against m, the bias resulting from this choice will be
important.26 Therefore, in this special case, Jeffreys
proposes a departure from the general rule by using
π(μ,σ) ∝ 1/σ . (There is a further mention of diffi-
culties with a large number of parameters when using
one single scale parameter, with the same solution pro-
posed. There may even be an indication about refer-
ence priors at this stage, when stating that some trans-
forms do not need to be considered.)

The arc-sine law on probabilities,

π(p) = 1

π

1√
p(1 − p)

,

is found to be the corresponding reference distribu-
tion, with a more severe criticism of the other dis-
tributions (see Section 4.1): both the usual rule and

26As pointed out to us by Lindley (2008, private communication),
Jeffreys expresses more clearly the difficulty that the corresponding
t distribution would always be [of index] (n+ 1)/2, no matter how
many true values were estimated, that is, that the natural reduction
of the degrees of freedom with the number of nuisance parameters
does not occur with this prior.
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Haldane’s rule are rather unsatisfactory. The corre-
sponding Dirichlet D(1/2, . . . ,1/2) prior is obtained
on the probabilities of a multinomial distribution. In-
terestingly too, Jeffreys derives most of his priors by
recomputing the L2 or Kullback distance and by using
a second-order approximation, rather than by following
the genuine definition of the Fisher information matrix.
Because Jeffreys’s prior on the Poisson P(λ) parameter
is π(λ) ∝ 1/

√
λ, there is some attempt at justification,

with the mention that general rules for the prior prob-
ability give a starting point, that is, act like reference
priors (Berger and Bernardo, 1992).

In the case of the (normal) correlation coefficient, the
posterior corresponding to Jeffreys’s prior π(�, τ, σ ) ∝
1/τσ(1−�2)3/2 is not properly defined for a single ob-
servation, but Jeffreys does not expand on the generic
improper nature of those prior distributions. In an at-
tempt close to defining a reference prior, he notices
that, with both τ and σ fixed, the (conditional) prior
is

π(�) ∝
√

1 + �2

1 − �2 ,

which, while improper, can also be compared to the
arc-sine prior

π(�) = 1

π

1√
1 − �2

,

which is integrable as is. Note that Jeffreys does not
conclude in favor of one of those priors: We cannot re-
ally say that any of these rules is better than the uni-
form distribution.

In the case of exponential families with natural para-
meter β ,

f (x|β) = ψ(x)φ(β) expβv(x),

Jeffreys does not take advantage of the fact that Fisher
information is available as a transform of φ, indeed,

I (β) = ∂2 logφ(β)/∂β2,

but rather insists on the invariance of the distribution
under location-scale transforms, β = kβ ′ + l, which
does not correctly account for potential boundaries
on β .

Somehow, surprisingly, rather than resorting to the
natural “Jeffreys’s prior,” π(β) ∝ |∂2 logφ(β)/∂β2|1/2,
Jeffreys prefers to use the “standard” flat, log-flat and
symmetric priors depending on the range of β . He then

goes on to study the alternative of defining the non-
informative prior via the mean parameterization sug-
gested by Huzurbazar (see Huzurbazar, 1976),

μ(β) =
∫

v(x)f (x|β)dx.

Given the overall invariance of Jeffreys’s priors, this
should not make any difference, but Jeffreys chooses
to pick priors depending on the range of μ(β). For
instance, this leads him once again to promote the
Dirichlet D(1/2,1/2) prior on the probability p of a
binomial model if considering that logp/(1 − p) is
unbounded,27 and the uniform prior if considering that
μ(p) = np varies on (0,∞). It is interesting to see that,
rather than sticking to a generic principle inspired by
the Fisher information that Jeffreys himself recognizes
as consistent and that offers an almost universal range
of applications, he resorts to group invariant (Haar)
measures when the rule, though consistent, leads to re-
sults that appear to differ too much from current prac-
tice.

We conclude with a delicate example that is found
within Section 3.10. Our interpretation of a set of quan-
titative laws φr with chances αr [such that] if φr is
true, the chance of a variable x being in a range dx is
fr(x,αr1, . . . , αrn) dx is that of a mixture of distribu-
tions,

x ∼
m∑

r=1

αrfr(x,αr1, . . . , αrn).

Because of the complex shape (convex combination) of
the distribution, the Fisher information is not readily
available and Jeffreys suggests assigning a reference
prior to the weights (α1, . . . , αm), that is, a Dirichlet
D(1/2, . . . ,1/2), along with separate reference priors
on the αrs . Unfortunately, this leads to an improper
posterior density (which integrates to infinity). In fact,
mixture models do not allow for independent improper
priors on their components (Marin, Mengersen and
Robert, 2005).

5. CHAPTER IV: APPROXIMATE METHODS AND
SIMPLIFICATIONS

The difference made by any ordinary change of the
prior probability is comparable with the effect

of one extra observation.
H. JEFFREYS, Theory of Probability, Section 4.0.

27There is another typo when stating that logp/(1 − p) ranges
over (0,∞).
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As in Chapter II, many points of this chapter are
outdated by modern Bayesian practice. The main bulk
of the discussion is about various approximations to
(then) intractable quantities or posteriors, approxima-
tions that have limited appeal nowadays when com-
pared with state-of-the-art computational tools. For in-
stance, Sections 4.43 and 4.44 focus on the issue of
grouping observations for a linear regression prob-
lem: if data is gathered modulo a rounding process [or
if a polyprobit model is to be estimated (Marin and
Robert, 2007)], data augmentation (Tanner and Wong,
1987; Robert and Casella, 2004) can recover the orig-
inal values by simulation, rather than resorting to ap-
proximations. Mentions are made of point estimators,
but there is unfortunately no connection with deci-
sion theory and loss functions in the classical sense
(DeGroot, 1970; Berger, 1985). A long section (Sec-
tion 4.7) deals with rank statistics, containing appar-
ently no connection with Bayesian Statistics, while
the final section (Section 4.9) on randomized designs
also does not cover the special issue of randomization
within Bayesian Statistics (Berger and Wolpert, 1988).

The major components of this chapter in terms of
Bayesian theory are an introduction to Laplace’s ap-
proximation, although not so-called (with an interest-
ing side argument in favor of Jeffreys’s priors), some
comments on orthogonal parameterisation [understood
from an information point of view] and the well-known
tramcar example.

5.1 Laplace’s Approximation

When the number of observations n is large, the pos-
terior distribution can be approximated by a Gaussian
centered at the maximum likelihood estimate with a
range of order n−1/2. There are numerous instances of
the use of Laplace’s approximation in Bayesian litera-
ture (see, e.g., Berger, 1985; MacKay, 2002), but only
with specific purposes oriented toward model choice,
not as a generic substitute. Jeffreys derives from this
approximation an incentive to treat the prior probabil-
ity as uniform since this is of no practical importance
if the number of observations is large. His argument is
made more precise through the normal approximation,

L(θ |x1, . . . , xn)

≈ L̃(θ |x) ∝ exp{−n(θ − θ̂ )TI (θ̂)(θ − θ̂ )/2},
to the likelihood. [Jeffreys notes that it is of trivial im-
portance whether I (θ) is evaluated for the actual val-
ues or for the MLE θ̂ .] Since the normalization factor
is

(n/2π)m/2|I (θ)|1/2,

using Jeffreys’s prior π(θ) ∝ |I (θ)|1/2 means that the
posterior distribution is properly normalized and that
the posterior distribution of θi − θ̂i is nearly the same
(. . .) whether it is taken on data θ̂i or on θi . This sounds
more like a pivotal argument in Fisher’s fiducial sense
than genuine Bayesian reasoning, but it nonetheless
brings an additional argument for using Jeffreys’s prior,
in the sense that the prior provides the proper normal-
izing factor. Actually, this argument is much stronger
than it first looks in that it is at the very basis of the con-
struction of matching priors (Welch and Peers, 1963).
Indeed, when considering the proper normalizing con-
stant (π(θ) ∝ |I (θ)|1/2), the agreement between the
frequentist distribution of the maximum likelihood es-
timator and the posterior distribution of θ gets closer
by an order of 1.

5.2 Outside Exponential Families

When considering distributions that are not from ex-
ponential families, sufficient statistics of fixed dimen-
sion do not exist, and the MLE is much harder to com-
pute. Jeffreys suggests in Section 4.1 using a minimum
χ2 approximation to overcome this difficulty, an ap-
proach which is rarely used nowadays.

A particular example is the poly-t (Bauwens, 1984)
distribution

π(μ|x1, . . . , xs) ∝
s∏

r=1

{
1 + (μ − xr)

2

νrs2
r

}−(νr+1)/2

that happens when several series of observations yield
independent estimates [xr] of the same true value [μ].
The difficulty with this posterior can now be easily
solved via a Gibbs sampler that demarginalizes each
t density.

Section 4.3 is not directly related to Bayesian Sta-
tistics in that it is considering (best) unbiased estima-
tors, even though the Rao–Blackwell theorem is some-
how alluded to. The closest connection with Bayesian
Statistics could be that, once summary statistics have
been chosen for their availability, a corresponding pos-
terior can be constructed conditional on those statis-
tics.28 The present equivalent of this proposal would
then be to use variational methods (Jaakkola and Jor-
dan, 2000) or ABC techniques (Beaumont, Zhang and
Balding, 2002).

28A side comment on the first-order symmetry between the prob-
ability of a set of statistics given the parameters and that of the
parameters given the statistics seems to precede the first-order
symmetry of the (posterior and frequentist) confidence intervals es-
tablished in Welch and Peers (1963).
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An interesting insight is given by the notion of or-
thogonal parameters in Section 4.31, to be understood
as the choice of a parameterization such that I (θ) is
diagonal. This orthogonalization is central in the con-
struction of reference priors (Kass, 1989; Tibshirani,
1989; Berger and Bernardo, 1992; Berger, Philippe and
Robert, 1998) that are identical to Jeffreys’s priors. Jef-
freys indicates, in particular, that full orthogonalization
is impossible for m = 4 and more dimensions.

In Section 4.42 the errors-in-variables model is han-
dled rather poorly, presumably because of computa-
tional difficulties: when considering (1 ≤ r ≤ n)

yr = αξ + β + εr, xr = ξ + ε′
r ,

the posterior on (α,β) under standard normal errors is

π(α,β|(x1, y1), . . . , (xn, yx))

∝
n∏

r=1

(t2
r + α2s2

r )−1/2

· exp

{
−

n∑
r=1

(yr − αxr − β)2

2(t2
r + α2s2

r )

}
,

which induces a normal conditional distribution on β

and a more complex t-like marginal posterior distrib-
ution on α that can still be processed by present-day
standards.

Section 4.45 also contains an interesting example of
a normal N (μ,σ 2) sample when there is a known con-
tribution to the standard error, that is, when σ 2 > σ ′2
with σ ′ known. In that case, using a flat prior on
log(σ 2 − σ ′2) leads to the posterior

π(μ,σ |x̄, s2, n)

∝ 1

σ 2 − σ ′2
1

σn−1 exp
[
− n

2σ 2 {(μ − x̄)2 + s2}
]
,

which integrates out over μ to

π(σ |s2, n) ∝ 1

σ 2 − σ ′2
1

σn−2 exp
[
− ns2

2σ 2

]
.

The marginal obviously has an infinite mode (or pole)
at σ = σ ′, but there can be a second (and meaningful)
mode if s2 is large enough, as illustrated on Figure 2
(brown curve). The outcome is indeed different from
using the truncated prior π(μ,σ) ∝ 1/σ (blue curve),
but to conclude that the inference using this assessment
of the prior probability would be that σ = σ ′ is based
once again on the false premise that infinite mass pos-
teriors act like Dirac priors, which is not correct: since

FIG. 2. Posterior distribution π(σ |s2, n) for σ ′ = √
2, n = 15

and ns2 = 100, when using the prior π(μ,σ ) ∝ 1/σ (blue curve)
and the prior π(μ,σ ) ∝ 1/σ 2 − σ ′2 (brown curve).

π(σ |s2, n) does not integrate over σ = σ ′, the poste-
rior is simply not defined.29 In that sense, Jeffreys is
thus right in rejecting this prior choice as absurd.

5.3 The Tramcar Problem

This chapter contains (in Section 4.8) the now classi-
cal “tramway problem” of Newman, about a man trav-
eling in a foreign country [who] has to change trains
at a junction, and goes into the town, the existence of
which he has only just heard. He has no idea of its size.
The first thing that he sees is a tramcar numbered 100.
What can he infer about the number of tramcars in the
town? It may be assumed that they are numbered con-
secutively from 1 upwards.

This is another illustration of the standard noninfor-
mative prior for a scale, that is, π(n) ∝ 1/n, where
n is the number of tramcars; the posterior satisfies
π(n|m = 100) ∝ 1/n2

I(n ≥ 100) and

P(n > n0|m) =
∞∑

r=n0+1

r−2
/ ∞∑

r=m

r−2 ≈ m

n0
.

Therefore, the posterior median (the justification of
which as a Bayes estimator is not included) is approxi-
mately 2m. Although this point is not discussed by Jef-
freys, this example is often mentioned in support of the
Bayesian approach against the MLE, since the corre-
sponding maximum estimator of n is m, always below
the true value of n, while the Bayes estimator takes a
more reasonable value.

29For an example of a constant MAP estimator, see Robert (2001,
Example 4.2).
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6. CHAPTER V: SIGNIFICANCE TESTS: ONE NEW
PARAMETER

The essential feature is that we express ignorance of
whether the new parameter is needed by taking half

the prior probability for it as concentrated in the
value indicated by the null hypothesis and distrib-

uting the other half over the range possible.
H. JEFFREYS, Theory of Probability, Section 5.0.

This chapter (as well as the following one) is con-
cerned with the central issue of testing hypotheses, the
title expressing a focus on the specific case of point
null hypotheses: Is the new parameter supported by
the observations, or is any variation expressible by it
better interpreted as random?30 The construction of
Bayes factors as natural tools for answering such ques-
tions does require more mathematical rigor when deal-
ing with improper priors than what is found in The-
ory of Probability. Even though it can be argued that
Jeffreys’s solution (using only improper priors on nui-
sance parameters) is acceptable via a limiting argument
(see also Berger, Pericchi and Varshavsky, 1998, for ar-
guments based on group invariance), the specific and
delicate feature of using infinite mass measures would
deserve more validation than what is found there. The
discussion on the choice of priors to use for the pa-
rameters of interest is, however, more rewarding since
Jeffreys realizes that (point estimation) Jeffreys’s pri-
ors cannot be used in this setting (because of their im-
properness) and that an alternative class of (testing)
Jeffreys’s priors needs to be introduced. It seems to
us that this second type of Jeffreys’s priors has been
overlooked in the subsequent literature, even though
the specific case of the Cauchy prior is often pointed
out as a reference prior for testing point null hypothe-
ses involving location parameters.

6.1 Model Choice Formalism

Jeffreys starts by analyzing the question,

In what circumstances do observations sup-
port a change of the form of the law itself?,

from a model-choice perspective, by assigning prior
probabilities to the models Mi that are in competition,
π(Mi ) (i = 1,2, . . .). He further constrains those prob-
abilities to be terms of a convergent series.31 When

30The formulation of the question restricts the test to embedded
hypotheses, even though Section 5.7 deals with normality tests.

31The perspective of an infinite sequence of models under com-
parison is not pursued further in this chapter.

checking back in Chapter I (Section 1.62), it appears
that this condition is due to the constraint that the prob-
abilities can be normalized to 1, which sounds like an
unnecessary condition if dealing with improper priors
at the same time.32 The consequence of this constraint
is that π(Mi ) must decrease like 2−i or i−2 and it thus
(a) prevents the use of equal probabilities advocated
before and (b) imposes an ordering of models.

Obviously, the use of the Bayes factor eliminates
the impact of this choice of prior probabilities, as it
does for the decomposition of an alternative hypothe-
sis H1 into a series of mutually irrelevant alternative
hypotheses. The fact that m alternatives are tested at
once induces a Bonferroni effect, though, that is not
(correctly) taken into account at the beginning of Sec-
tion 5.04 (even if Jeffreys notes that the Bayes factor
is then multiplied by 0.7m). The following discussion
borders more on “ranking and selection” than on test-
ing per se, although the use of Bayes factors with cor-
rection factor m or m2 is the proposed solution. It is
only at the end of Section 5.04 that the Bonferroni ef-
fect of repeated testing is properly recognized, if not
correctly solved from a Bayesian point of view.

If the hypothesis to be tested is H0 : θ = 0, against
the alternative H1 that is the aggregate of other possi-
ble values [of θ], Jeffreys initiates one of the major ad-
vances of Theory of Probability by rewriting the prior
distribution as a mixture of a point mass in θ = 0 and
of a generic density π on the range of θ ,

π(θ) = 1
2I0(θ) + 1

2π(θ).

This is indeed a stepping stone for Bayesian Statis-
tics in that it explicitly recognizes the need to sepa-
rate the null hypothesis from the alternative hypothesis
within the prior, lest the null hypothesis is not prop-
erly weighted once it is accepted. The overall principle
is illustrated for a normal setting, x ∼ N (θ, σ 2) (with
known σ 2), so that the Bayes factor is

K = π(H0|x)

π(H1|x)

/π(H0)

π(H1)

= exp{−x2/2σ 2}∫
f (θ) exp{−(x − θ)2/2σ 2}dθ

.

The numerical calibration of the Bayes factor is not di-
rectly addressed in the main text, except via a qualita-
tive divergence from the neutral K = 1. Appendix B
provides a grading of the Bayes factor, as follows:

32In Jeffreys (1931), Jeffreys puts forward a similar argument that
it is impossible to construct a theory of quantitative inference on the
hypothesis that all general laws have the same prior probability
(Section 4.3, page 43). See Earman (1992) for a deeper discussion
of this point.
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• Grade 0. K > 1. Null hypothesis supported.
• Grade 1. 1 > K > 10−1/2. Evidence against H0, but

not worth more than a bare mention.
• Grade 2. 10−1/2 > K > 10−1. Evidence against H0

substantial.
• Grade 3. 10−1 > K > 10−3/2. Evidence against H0

strong.
• Grade 4. 10−3/2 > K > 10−2. Evidence against H0

very strong.
• Grade 5. 10−2 > K >. Evidence against H0 deci-

sive.

The comparison with the χ2 and t statistics in this ap-
pendix shows that a given value of K leads to an in-
creasing (in n) value of those statistics, in agreement
with Lindley’s paradox (see Section 6.3 below).

If there are nuisance parameters ξ in the model (Sec-
tion 5.01), Jeffreys suggests using the same prior on ξ

under both alternatives, π0(ξ), resulting in the general
Bayes factor

K =
∫

π0(ξ)f (x|ξ,0) dξ

/∫
π0(ξ)π1(θ |ξ)f (x|ξ, θ) dξ dθ,

where π1(θ |ξ) is a conditional density. Note that Jef-
freys uses a normal model with Laplace’s approxima-
tion to end up with the approximation

K ≈ 1

π1(θ̂ |ξ̂ )

√
ngθθ

2π
exp

{
−1

2
ngθθ θ̂

2
}
,

where θ̂ and ξ̂ are the MLEs of θ and ξ , and where
gθθ is the component of the information matrix corre-
sponding to θ (under the assumption of strong orthog-
onality between θ and ξ , which means that the MLE
of ξ is identical in both situations). The low impact
of the choice of π0 on the Bayes factor may be in-
terpreted as a licence to use improper priors on the
nuisance parameters despite difficulties with this ap-
proach (DeGroot, 1973). An interesting feature of this
proposal is that the nuisance parameters are processed
independently under both alternatives/models but with
the same prior, with the consequence that it makes little
difference to K whether we have much or little infor-
mation about θ .33 When the nuisance parameters and

33The requirement that ξ ′ = ξ when θ = 0 (where ξ ′ denotes the
nuisance parameter under H1) seems at first meaningless, since
each model is processed independently, but it could signify that
the parameterization of both models must be the same when θ = 0.
Otherwise, assuming that some parameters are the same under both
models is a source of contention within the Bayesian literature.

the parameter of interest are not orthogonal, the MLEs
ξ̂0 and ξ̂1 differ and the approximation of the Bayes
factor is now

K ≈ π0(ξ̂0)

π0(ξ̂1)

1

π1(θ̂ |ξ̂1)

√
ngθθ

2π
exp

{
−1

2
ngθθ θ̂

2
}
,

which shows that the choice of π0 may have an influ-
ence too.

6.2 Prior Modeling

In Section 5.02 Jeffreys perceives the difficulty in us-
ing an improper prior on the parameter of interest θ as
a normalization problem. If one picks π(θ) or π1(θ |ξ)

as a σ -finite measure, the Bayes factor K is undefined
(rather than always infinite, as put forward by Jeffreys
when normalizing by ∞). He thus imposes π(θ) to be
of any form whose integral converges (to 1, presum-
ably), ending up in the location case34 suggesting a
Cauchy C(0, σ 2) prior as π(θ).

The first example fully processed in this chapter is
the innocuous B(n,p) model with H0 :p = p0, which
leads to the Bayes factor

K = (n + 1)!
x!(n − x)!p

x
0 (1 − p0)

n−x(1)

under the uniform prior. While K = 1 is recognized
as a neutral value, no scaling or calibration of K is
mentioned at this stage for reaching a decision about
H0 when looking at K . The only comment worth not-
ing there is that K is not very decisive for small val-
ues of n: we cannot get decisive results one way or the
other from a small sample (without adopting a decision
framework). The next example still sticks to a compact
parameter space, since it deals with the 2 × 2 contin-
gency table. The null hypothesis H0 is that of inde-
pendence between both factors, H0 :p11p22 = p12p21.
The reparameterization in terms of the margins is

1 2
1 αβ + γ α(1 − β) − γ

2 (1 − α)β − γ (1 − α)(1 − β) + γ

but, in order to simplify the constraint

−min{αβ, (1 − α)(1 − β)}
≤ γ ≤ min{α(1 − β), (1 − α)β},

Jeffreys then assumes that α ≤ β ≤ 1/2 via a mere re-
arrangement of the table. In this case, π(γ |α,β) = 1/α

34Note that the section seems to consider only location parame-
ters.
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over (−αβ,α(1 − β)). Unfortunately, this assumption
(of being able to rearrange) is not realistic when α

and β are unknown and, while the author notes that in
ranges where α is not the smallest, it must be replaced
in the denominator [of π(γ |α,β)] by the smallest,
the subsequent derivation keeps using the constraint
α ≤ β ≤ 1/2 and the denominator α in the conditional
distribution of γ , acknowledging later that an approx-
imation has been made in allowing α to range from 0
to 1 since α < β < 1/2. Obviously, the motivation be-
hind this crude approximation is to facilitate the com-
putation of the Bayes factor,35 as

K ≈ (n1· + 1)!n2·!n·1!n·2!
n11!n22!n12!n21!(n + 1)!(n + 1)

if the data is

1 2
1 n11 n12 n1·
2 n21 n22 n2·

n·1 n·2 n

The computation of the (true) marginal associated
with this prior (under H1) is indeed involved and re-
quires either formal or numerical machine-based inte-
gration. For instance, massively simulating from the
prior is sufficient to provide this approximation. As
shown by Figure 3, the difference between the Monte
Carlo approximation and Jeffreys’s approximation is
not spectacular, even though Jeffreys’s approximation

FIG. 3. Comparison of a Monte Carlo approximation to the
Bayes factor for the 2 × 2 contingency table with Jeffreys’s approx-
imation, based on 103 randomly generated 2 × 2 tables and 104

generations from the prior.

35Notice the asymmetry in n1· resulting from the approximation.

appears to be always biased toward larger values, that
is, toward the null hypothesis, especially for the val-
ues of K larger than 1. In some occurrences, the bias
is such that it means acceptance versus rejection, de-
pending on which version of K is used.

However, if one uses instead a Dirichlet D(1,1,1,1)

prior on the original parameterization (p11, . . . , p22),
the marginal is (up to the multinomial coefficient) the
Dirichlet normalizing constant36

m1(n) ∝ D(n11 + 1, . . . , n22 + 1)

D(1,1,1,1)

= 3! (n + 3)!
n11!n22!n12!n21! ,

so the (true) Bayes factor in this case is

K = n1·!n2·!n·1!n·2!
((n + 1)!)2

3!(n + 3)!
n11!n22!n12!n21!

= n1·!n2·!n·1!n·2!
n11!n22!n12!n21!

3!(n + 3)(n + 2)

(n + 1)! ,

which is larger than Jeffreys’s approximation. A ver-
sion much closer to Jeffreys’s modeling is based on the
parameterization

1 2
1 αβ γ (1 − β)

2 (1 − α)β (1 − γ )(1 − β)

in which case α, β and γ are not constrained by one
another and a uniform prior on the three parameters
can be proposed. After straightforward calculations,
the Bayes factor is given by

K = (n + 1)
n·1!n·2!(n1· + 1)!(n2· + 1)!
(n + 1)!n11!n12!n21!n22! ,

which is very similar to Jeffreys’s approximation since
the ratio is (n2· + 1)/(n + 1). Note that the alternative
parameterization based on using

1 2
1 αβ αγ

2 (1 − α)(1 − β) (1 − α)(1 − γ )

with a uniform prior provides a different answer (with
ni·’s and n·i’s being inverted in K). Section 5.12 re-
processes the contingency table with one fixed margin,
obtaining very similar outcomes.37

36Note that using a Haldane (improper) prior is impossible in this
case, since the normalizing constant cannot be eliminated.

37An interesting example of statistical linguistics is processed
in Section 5.14, with the comparison of genders in Welsh, Latin
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In the case of the comparison of two Poisson samples
(Section 5.15), P(λ) and P(λ′), the null hypothesis is
H0 :λ/λ′ = a/(1 − a), with a fixed. This suggests the
reparameterization

λ = αβ, λ′ = (1 − α)β ′,

with H0 : α = a. This reparameterization appears to be
strongly orthogonal in that

K =
∫

π(β)ax(1 − a)x
′
βx+x′

e−β dβ∫
π(β)αx(1 − α)x

′
βx+x′

e−β dβ dα

= ax(1 − a)x
′ ∫

π(β)βx+x′
e−β dβ∫

αx(1 − α)x
′
dα

∫
π(β)βx+x′

e−β dβ

= ax(1 − a)x
′∫

αx(1 − α)x
′
dα

= (x + x′ + 1)!
x!x′! ax(1 − a)x

′
,

for every prior π(β), a rather unusual invariance prop-
erty! Note that, as shown by (1), it also corresponds to
the Bayes factor for the distribution of x conditional
on x + x′ since this is a binomial B(x + x′, α) distribu-
tion. The generalization to the Poisson case is therefore
marginal since it still focuses on a compact parameter
space.

6.3 Improper Priors Enter

The bulk of this chapter is dedicated to testing prob-
lems connected with the normal distribution. It offers
an interesting insight into Jeffreys’s processing of im-
proper priors, in that both the infinite mass and the lack
of normalizing constant are not clearly signaled as po-
tential problems in the book.

In the original problem of testing the nullity of a nor-
mal mean, when x1, . . . , xn ∼ N (μ,σ 2), Jeffreys uses
a reference prior π0(σ ) ∝ σ−1 under the null hypothe-
sis and the same reference prior augmented by a proper
prior on μ under the alternative,

π1(μ,σ ) ∝ 1

σ
π11(μ/σ)

1

σ
,

where σ is used as a scale for μ. The Bayes factor is
then defined as

K =
∫ ∞

0
σ−n−1 exp

{
− n

2σ 2 (x̄2 + s2)

}
dσ

/∫ ∞
0

∫ +∞
−∞

π11(μ/σ)σ−n−2

and German, with Freund’s psychoanalytic symbols, whatever that
means!, but the fact that both Latin and German have neuters com-
plicated the analysis so much for Jeffreys that he did without the
neuters, apparently unable to deal with 3 × 2 tables.

· exp
{
− n

2σ 2

· [(x̄ − μ)2 + s2]
}

dσ dμ

without any remark on the use of an improper prior
in both the numerator and the denominator.38 There is
therefore no discussion about the point of using an im-
proper prior on the nuisance parameters present in both
models, that has been defended later in, for example,
Berger, Pericchi and Varshavsky (1998) with deeper ar-
guments. The focus is rather on a reference choice for
the proper prior π11. Jeffreys notes that, if π11 is even,
K = 1 when n = 1, and he forces the Bayes factor to
be zero when s2 = 0 and x̄ �= 0, by a limiting argument
that a null empirical variance implies that σ = 0 and
thus that μ = x̄ �= 0. This constraint is equivalent to
the denominator of K diverging, that is,∫

f (v)vn−1 dv = ∞.

A solution39 that works for all n ≥ 2 is the Cauchy den-
sity, f (v) = 1/π(1 + v2), advocated as such40 a refer-
ence prior by Jeffreys (while he criticizes the potential
use of this distribution for actual data). While the nu-
merator of K is available in closed form,∫ ∞

0
σ−n−1 exp

{
− n

2σ 2 (x̄2 + s2)

}
dσ

=
{
n

2
(x̄2 + s2)

}−n/2

�(n/2),

this is not the case for the denominator and Jeffreys
studies in Section 5.2 some approximations to the
Bayes factor, the simplest41 being

K ≈
√

πν/2(1 + t2/ν)−(ν+1)/2,

where ν = n − 1 and t = √
νx̄/s (which is the stan-

dard t statistic with a constant distribution over ν un-
der the null hypothesis). Although Jeffreys does not

38If we extrapolate from earlier remarks by Jeffreys, his justifica-
tion may be that the same normalizing constant (whether or not it
is finite) is used in both the numerator and the denominator.

39There are obviously many other distributions that also satisfy
this constraint. The main drawback of the Cauchy proposal is
nonetheless that the scale of 1 is arbitrary, while it clearly has an
impact on posterior results.

40Cauchy random variables occur in practice as ratios of normal
random variables, so they are not completely implausible.

41The closest to an explicit formula is obtained just before Sec-
tion 5.21 as a representation of K through a single integral involv-
ing a confluent hypergeometric function.
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explicitly delve into this direction, this approximation
of the Bayes factor is sufficient to expose Lindley’s
paradox (Lindley, 1957), namely, that the Bayes fac-
tor K , being equivalent to

√
πν/2 exp{−t2/2}, goes to

∞ with ν for a fixed value of t , thus highlighting the
increasing discrepancy between the frequentist and the
Bayesian analyses of this testing problem (Berger and
Sellke, 1987). As pointed out to us by Lindley (private
communication), the paradox is sometimes called the
Lindley–Jeffreys paradox, because this section clearly
indicates that t increases like (logν)1/2 to keep K con-
stant.

The correct Bayes factor can of course be approx-
imated by a Monte Carlo experiment, using, for in-
stance, samples generated as

σ−2 ∼ Ga

{
n + 1

2
,
ns2

2

}
and μ|σ ∼ N (x̄, σ 2/n).

The difference between the t approximation and the
true value of the Bayes factor can be fairly important,
as shown on Figure 4 for n = 10. As in Figure 3, the
bias is always in the same direction, the approximation
penalizing H0 this time. Obviously, as n increases, the
discrepancy decreases. (The upper truncation on the
cloud is a consequence of Jeffreys’s approximation be-
ing bounded by

√
πν/2.)

The Cauchy prior on the mean is also a computa-
tional hindrance when σ is known: the Bayes factor is
then

K = exp{−nx̄2/2σ 2}/(
1

πσ

∫ ∞
−∞

exp
{
− n

2σ 2 (x̄ − μ)2
}

dμ

1 + μ2/σ 2

)
.

FIG. 4. Comparison of a Monte Carlo approximation to the
Bayes factor for the normal mean problem with Jeffreys’s approx-
imation, based on 5 × 103 randomly generated normal sufficient
statistics with n = 10 and 104 Monte Carlo simulations of (μ,σ ).

FIG. 5. Monte Carlo approximation to the Bayes factor for the
normal mean problem with known variance, compared with Jef-
freys’s approximation, based on 106 Monte Carlo simulations of
μ, when n = 5.

In this case, Jeffreys proposes the approximation

K ≈
√

2/πn
1

1 + x̄2/σ 2 ,

which is then much more accurate, as shown by Fig-
ure 5: the maximum ratio between the approximated
K and the value obtained by simulation is 1.15 for
n = 5 and the difference furthermore decreases as n

increases.

6.4 A Second Type of Jeffreys Priors

In Section 5.3 Jeffreys makes another general pro-
posal for the selection of proper priors under the al-
ternative hypothesis: Noticing that the Kullback diver-
gence is J (μ|σ) = μ2/σ 2 in the normal case above,
he deduces that the Cauchy prior he proposed on μ is
equivalent to a flat prior on arctanJ 1/2:

dμ

πσ(1 + μ2/σ 2)
= 1

π

dJ 1/2

1 + J
= 1

π
d{tan−1 J 1/2(μ)},

and turns this coincidence into a general rule.42 In par-
ticular, the change of variable from μ to J is not one-
to-one, so there is some technical difficulty linked with
this proposal: Jeffreys argues that J 1/2 should be taken
to have the same sign as μ but this is not satisfactory
nor applicable in general settings. Obviously, the sym-
metrization will not always be possible and correcting
when the inverse tangents do not range from −π/2 to

42We were not aware of this rule prior to reading the book and this
second type of Jeffreys’s priors, judging from the Bayesian litera-
ture, does not seem to have inspired many followers.
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FIG. 6. Jeffreys’s reference density on log(σ/σ0) for the test of
H0 : σ = σ0.

π/2 can be done in many ways, thus making the idea
not fully compatible with the general invariance prin-
ciple at the core of Theory of Probability. Note, how-
ever, that Jeffreys’s idea of using a functional of the
Kullback–Leibler divergence (or of other divergences)
as a reference parameterisation for the new parame-
ter has many interesting applications. For instance, it
is central to the locally conic parameterization used
by Dacunha-Castelle and Gassiat (1999) for testing the
number of components in mixture models.

In the first case he examines, namely, the case of the
contingency table, Jeffreys finds that the correspond-
ing Kullback divergence depends on which margins are
fixed (as is well known, the Fisher information matrix
is not fully compatible with the Likelihood Principle,
see Berger and Wolpert, 1988). Nonetheless, this is an
interesting insight that precedes the reference priors of
Bernardo (1979): given nuisance parameters, it derives
the (conditional) prior on the parameter of interest as
the Jeffreys prior for the conditional information. See
Bayarri and Garcia-Donato (2007) for a modern exten-
sion of this perspective to general testing problems.

In the case (Section 5.43) of testing whether a [nor-
mal] standard error has a suggested value σ0 when ob-
serving ns2 ∼ Ga(n/2, σ 2/2), the parameterization

σ = σ0e
ζ

leads to (modulo the improper change of variables)

J (ζ ) = 2 sinh2(ζ ) and

1

π

d tan−1 J 1/2(ζ )

dζ
=

√
2 cosh(ζ )

π cosh(2ζ )

FIG. 7. Ratio of a Monte Carlo approximation to the Bayes factor
for the normal variance problem and of Jeffreys’s approximation,
when n = 10 (based on 104 simulations).

as a potential (and overlooked) prior on ζ = log(σ/

σ0).43 The corresponding Bayes factor is not available
in closed form since∫ ∞

−∞
cosh(ζ )

cosh(2ζ )
e−nζ exp{−ns2/2σ 2

0 e2ζ }dζ

=
∫ ∞

0

1 + u2

1 + u4 un exp
{
−ns2

2
u2

}
du

cannot be analytically integrated, even though a Monte
Carlo approximation is readily computed. Figure 7
shows that Jeffreys’s approximation,

K ≈
√

πn/2
cosh(2 log s/σ0)

cosh(log s/σ0)
(s/σ0)

n

· exp
{
n
(
1 − (s/σ0)

2)
/2

}
,

is again fairly accurate since the ratio is at worst 0.9 for
n = 10 and the difference decreases as n increases.

The special case of testing a normal correlation co-
efficient H0 :ρ = ρ0 is not processed (in Section 5.5)
via this general approach but, based on arguments
connected with (a) the earlier difficulties in the con-
struction of an appropriate noninformative prior (Sec-
tion 4.7) and (b) the fact that J diverges for the null hy-
pothesis44 ρ = ±1, Jeffreys falls back on the uniform

43Note that this is indeed a probability density, whose shape is
given in Figure 6, despite the loose change of variables, because a
missing 2 cancels with a missing 1/2!

44This choice of the null hypothesis is somehow unusual, since,
on the one hand, it is more standard to test for no correlation, that
is, ρ = 0, and, on the other hand, having ρ = ±1 is akin to a unit-
root test that, as we know today, requires firmer theoretical back-
ground.
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FIG. 8. Ratio of a Monte Carlo approximation to the Bayes factor
for the normal variance problem and of Jeffreys’s approximation,
when n = 10 and ρ0 = 0 (based on 104 simulations).

U (−1,1) solution, which is even more convincing in
that it leads to an almost closed-form solution

K = 2(1 − ρ2
0)n/2/(1 − ρρ̂)n−1/2∫ 1

−1(1 − ρ2)n/2/(1 − ρρ̂)n−1/2 dρ
.

Note that Jeffreys’s approximation,

K ≈
(

2n − 1

π

)1/2 (1 − ρ2
0)n/2(1 − ρ̂2)(n−3)/2

(1 − ρρ̂)n−1/2 ,

is quite reasonable in this setting, as shown by Fig-
ure 8, and also that the value of ρ0 has no influence on
the ratios of the approximations. The extension to two
samples in Section 5.51 (for testing whether or not the
correlation is the same) is not processed in a symmet-
ric way, with some uncertainty about the validity of the
expression for the Bayes factor: a pseudo-common cor-
relation is defined under the alternative in accordance
with the rule that the parameter ρ must appear in the
statement of H1, but normalizing constraints on ρ are
not properly assessed.45

A similar approach is adopted for the compari-
son of two correlation coefficients, with some quasi-
hierarchical arguments (see Section 6.5) for the defin-
ition of the prior under the alternative. Section 5.6 is
devoted to a very specific case of correlation analy-
sis that corresponds to our modern random effect
model. A major part of this section argues in favor
of the model based on observations in various fields,
but the connection with the chapter is the devising

45To be more specific, a normalizing constant c on the distribution
of ρ2 that depends on ρ appears in the closed-form expression of
K , as, for instance, in equation (14).

of a test for the presence of those random effects.
The model is then formalized as normal observations
xr ∼ N (μ, τ 2 +σ 2/kr) (1 ≤ r ≤ m), where kr denotes
the number of observations within class r and τ is the
variance of the random effect. The null hypothesis is
therefore H0 : τ = 0. Even at this stage, the develop-
ment is not directly relevant, except for approxima-
tion purposes, and the few lines of discussion about the
Bayes factor indicate that the (testing) Jeffreys prior
on τ should be in 1/τ 2 for small τ 2, without further
specification. The (numerical) complexity of the prob-
lem may explain why Jeffreys differs from his usual
processing, although current computational tools ob-
viously allow for a complete processing (modulo the
proper choice of a prior on τ ) (see, e.g., Ghosh and
Meeden, 1984).

Jeffreys also advocates using this principle for test-
ing a normal distribution against alternatives from the
Pearson family of distributions in Section 5.7, but no
detail is given as to how J is computed and how the
Bayes factor is derived. Similarly, for the comparison
of the Poisson distribution with the negative binomial
distribution in Section 5.8, the form of J is provided for
the distance between the two distributions, but the cor-
responding Bayes factor is only given via a very crude
approximation with no mention of the corresponding
priors.

In Section 5.9 the extension of the (regular) model
to the case of (linear) regression and of variable selec-
tion is briefly considered, noticing that (a) for a single
regressor (Section 5.91), the problem is exactly equiva-
lent to testing whether or not a normal mean μ is equal
to 0 and (b) for more than one regressor (Section 5.92),
the test of nullity of one coefficient can be done con-
ditionally on the others, that is, they can be treated as
nuisance parameters under both hypotheses. (The case
of linear calibration in Section 5.93 is also processed
as a by-product.)

6.5 A Foray into Hierarchical Bayes

Section 5.4 explores further tests related to the nor-
mal distribution, but Section 5.41 starts with a highly
unusual perspective. When testing whether or not
the means of two normal samples—with likelihood
L(μ1,μ2, σ ) proportional to

σ−n1−n2 exp
{
− n1

2σ 2 (x̄1 − μ1)
2

− n2

2σ 2 (x̄2 − μ2)
2 − n1s

2
1 + n2s

2
2

2σ 2

}
,
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—are equal, that is, H0 :μ1 = μ2, Jeffreys also intro-
duces the value of the common mean, μ, into the al-
ternative. A possible, albeit slightly apocryphal, inter-
pretation is to consider μ as an hyperparameter that
appears both under the null and under the alternative,
which is then an incentive to use a single improper
prior under both hypotheses (once again because of
the lack of relevance of the corresponding pseudo-
normalizing constant). But there is still a difficulty with
the introduction of three different alternatives with a
hyperparameter μ:

μ1 = μ and μ2 �= μ, μ1 �= μ and μ2 = μ,

μ1 �= μ and μ2 �= μ.

Given that μ has no intrinsic meaning under the alter-
native, the most logical46 translation of this multiplica-
tion of alternatives is that the three formulations lead
to three different priors,

π11(μ,μ1,μ2, σ ) ∝ 1

π

1

σ 2 + (μ2 − μ)2 Iμ1=μ,

π12(μ,μ1,μ2, σ ) ∝ 1

π

1

σ 2 + (μ1 − μ)2 Iμ2=μ,

π13(μ,μ1,μ2, σ )

∝ 1

π2

σ

{σ 2 + (μ1 − μ)2}{σ 2 + (μ2 − μ)2} .

When π11 and π12 are written in terms of a Dirac mass,
they are clearly identical,

π11(μ1,μ2, σ ) = π12(μ1,μ2, σ )

∝ 1

π

1

σ 2 + (μ1 − μ2)2 .

If we integrate out μ in π13, the resulting posterior is

π13(μ1,μ2, σ ) ∝ 2

π

1

4σ 2 + (μ1 − μ2)2 ,

whose only difference from π11 is that the scale in the
Cauchy is twice as large. As noticed later by Jeffreys,
there is little to choose between the alternatives, even
though the third modeling makes more sense from a
modern, hierarchical point of view: μ and σ denote the
location and scale of the problem, no matter which hy-

46This does not seem to be Jeffreys’s perspective, since he later
(in Sections 5.46 and 5.47) adds up the posterior probabilities of
those three alternatives, effectively dividing the Bayes factor by 3
or such.

pothesis holds, with an additional parameter (μ1,μ2)

in the case of the alternative hypothesis. Using a com-
mon improper prior under both hypotheses can then
be justified via a limiting argument, as in Marin and
Robert (2007), because those parameters are common
to both models. Seen as such, the Bayes factor∫

σ−n−1 exp
{
− n1

2σ 2 (x̄1 − μ)2

− n2

2σ 2 (x̄2 − μ)2 − n1s
2
1 + n2s

2
2

2σ 2

}
dσ dμ

/∫
σ−n+1

π2 exp
{
− n1

2σ 2 (x̄1 − μ1)
2

− n2

2σ 2 (x̄2 − μ2)
2 − n1s

2
1 + n2s

2
2

2σ 2

}
/({σ 2 + (μ1 − μ)2}

· {σ 2 + (μ2 − μ)2})dσ dμdμ1 dμ2

makes more sense because of the presence of σ and μ

on both the numerator and the denominator. While the
numerator can be fully integrated into√

π/2n�{(n − 1)/2}(ns2
0/2)−(n−1)/2,

where ns2
0 denotes the usual sum of squares, the de-

nominator∫
σ−n

π/2
exp

{
− n1

2σ 2 (x̄1 − μ1)
2

− n2

2σ 2 (x̄2 − μ2)
2 − n1s

2
1 + n2s

2
2

2σ 2

}
/(

4σ 2 + (μ1 − μ2)
2)

dσ dμ1 dμ2

does require numerical or Monte Carlo integration. It
can actually be written as an expectation under the
standard noninformative posteriors,

σ 2 ∼ I G
(
(n − 3)/2, (n1s

2
1 + n2s

2
2)/2

)
,

μ1 ∼ N (x̄1, σ
2/n1), μ2 ∼ N (x̄2, σ

2/n2),

of the quantity

h(μ1,μ2, σ
2)

= 2√
n1n2

�((n − 3)/2){(n1s
2
1 + n2s

2
2)/2}−(n−3)/2

4σ 2 + (μ1 − μ2)2 .

When simulating a range of values of the sufficient
statistics (ni, x̄i , si)i=1,2, the difference between the
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FIG. 9. Comparison of a Monte Carlo approximation to
the Bayes factor for the normal mean comparison problem
and of Jeffreys’s approximation, corresponding to 103 statistics
(ni , x̄i , si )i=1,2 and 104 generations from the noninformative pos-
terior.

Bayes factor and Jeffreys’s approximation,

K ≈ 2
(

π

2

n1n2

n1 + n2

)1/2

·
{

1 + n1n2n1 + n2
(x̄1 − x̄2)

2

n1s
2
1 + n2s2

}−(n1+n2−1)/2

,

is spectacular, as shown in Figure 9. The larger dis-
crepancy (when compared to earlier figures) can be at-
tributed in part to the larger number of sufficient statis-
tics involved in this setting.

A similar split of the alternative is studied in Sec-
tion 5.42 when the standard deviations are different
under both models, with further simplifications in Jef-
freys’s approximations to the posteriors (since the μi’s
are integrated out). It almost seems as if x̄1 − x̄2 acts as
a pseudo-sufficient statistic. If we start from a generic
representation with L(μ1,μ2, σ1, σ2) proportional to

σ
−n1
1 σ

−n2
2 exp

{
− n1

2σ 2
1

(x̄1 − μ1)
2

− n2

2σ 2
2

(x̄2 − μ2)
2 − n1s

2
1

2σ 2
1

− n2s
2
2

2σ 2
2

}
,

and if we use again π(μ,σ1, σ2) ∝ 1/σ1σ2 under the
null hypothesis and

π11(μ1,μ2, σ1, σ2) ∝ 1

σ1σ2

1

π

σ1

σ 2
1 + (μ2 − μ1)2

,

π12(μ1,μ2, σ1, σ2) ∝ 1

σ1σ2

1

π

σ2

σ 2
2 + (μ2 − μ1)2

,

π13(μ,μ1,μ2, σ1, σ2)

∝ 1

σ1σ2

1

π2

σ1σ2

{σ 2
1 + (μ1 − μ)2}{σ 2

2 + (μ2 − μ)2}
under the alternative, then, as stated in Theory of Prob-
ability,∫

σ
−n1−1
1 σ

−n2−1
2 exp

{
− n1

2σ 2
1

(x̄1 − μ)2

− n2

2σ 2
2

(x̄2 − μ)2

− n1s
2
1

2σ 2
1

− n2s
2
2

2σ 2
2

}
dμ

=
√

2π/(n2σ
2
1 + n1σ

2
2 )σ

−n1
1 σ

−n2
2

· exp
{
− (x̄1 − x̄2)

2

2(σ 2
1 /n1 + σ 2

2 /n2)
− n1s

2
1

2σ 2
1

− n2s
2
2

2σ 2
2

}
,

but the computation of∫
exp

{
− n1

2σ 2
1

(x̄1 − μ1)
2 − n2

2σ 2
2

(x̄2 − μ)2
}

· 2

2πσ2

dμdμ1

σ 2
1 + (μ − μ1)2

[and the alternative versions] is not possible in closed
form. We note that π13 corresponds to a distribution on
the difference μ1 − μ2 with density equal to

π13(μ1,μ2|σ1, σ2)

= 1

π

(
(σ1 + σ2)(μ1 − μ2)

2

+ σ 3
1 − σ 2

1 σ2 − σ1σ
2
2 + σ 3

2
)

/([(μ1 − μ2)
2 + σ 2

1 + σ 2
2 ]2 − 4σ 2

1 σ 2
2
)

= 1

π

(σ1 + σ2)(y
2 + σ 2

1 − 2σ1σ2 + σ 2
2 )

(y2 + (σ1 + σ2)2)(y2 + (σ1 − σ2)2)

= 1

π

σ1 + σ2

y2 + (σ1 + σ2)2 ,

thus equal to a Cauchy distribution with scale (σ1 +
σ2).47 Jeffreys uses instead a Laplace approximation,

2σ1

n1n2

1

σ 2
1 + (x̄1 − x̄2)2

,

47While this result follows from the derivation of the density by
integration, a direct proof follows from considering the characteris-
tic function of the Cauchy distribution C(0, σ ), equal to exp−σ |ξ |
(see Feller, 1971).



166 C. P. ROBERT, N. CHOPIN AND J. ROUSSEAU

to the above integral, with no further justification.
Given the differences between the three formula-
tions of the alternative hypothesis, it makes sense to
try to compare further those three priors (in our re-
interpretation as hierarchical priors). As noted by Jef-
freys, there may be considerable grounds for deci-
sion between the alternative hypotheses. It seems to us
(based on the Laplace approximations) that the most
sensible prior is the hierarchical one, π13, in that the
scale depends on both variances rather than only one.

An extension of the test on a (normal) standard de-
viation is considered in Section 5.44 for the agreement
of two estimated standard errors. Once again, the most
straightforward interpretation of Jeffreys’s derivation
is to see it as a hierarchical modeling, with a refer-
ence prior π(σ) = 1/σ on a global scale, σ1 say, and
the corresponding (testing) Jeffreys prior on the ratio
σ1/σ2 = exp ζ . The Bayes factor (in favor of the null
hypothesis) is then given by

K =
√

2

π/∫ ∞
−∞

cosh(ζ )

cosh(2ζ )
e−n1ζ

(
n1e

2(z−ζ ) + n2

n2e2z + n2

)−n/2

dζ,

if z denotes log s1/s2 = log σ̂1/σ̂2.

6.6 P -what?!

Section 5.6 embarks upon a historically interesting
discussion on the warnings given by too good a p-
value: if, for instance, a χ2 test leads to a value of
the χ2 statistic that is very small, this means (almost
certain) incompatibility with the χ2 assumption just as
well as too large a value. (Jeffreys recalls the example
of the data set of Mendel that was modified by hand to
agree with the Mendelian law of inheritance, leading
to too small a χ2 value.) This can be seen as an indi-
rect criticism of the standard tests (see also Section 8
below).

7. CHAPTER VI: SIGNIFICANCE TESTS: VARIOUS
COMPLICATIONS

The best way of testing differences from a systematic
rule is always to arrange our work so as to ask and

answer one question at a time.
H. JEFFREYS, Theory of Probability, Section 6.1.

This chapter appears as a marginalia of the previous
one in that it contains no major advance but rather a
sequence of remarks, such as, for instance, an entry on
time-series models (see Section 7.2 below). The very

first paragraph of this chapter produces a remarkably
simple and intuitive justification of the incompatibil-
ity between improper priors and significance tests: the
mere fact that we are seriously considering the possi-
bility that it is zero may be associated with a presump-
tion that if it is not zero it is probably small.

Then, Section 6.0 discusses the difficulty of settling
for an informative prior distribution that takes into ac-
count the actual state of knowledge. By subdividing
the sample into groups, different conclusions can ob-
viously be reached, but this contradicts the Likelihood
Principle that the whole data set must be used simul-
taneously. Of course, this could also be interpreted as
a precursor attempt at defining pseudo-Bayes factors
(Berger and Pericchi, 1996). Otherwise, as correctly
pointed out by Jeffreys, the prior probability when
each subsample is considered is not the original prior
probability but the posterior probability left by the pre-
vious one, which is the basic implementation of the
Bayesian learning principle. However, even with this
correction, the final outcome of a sequential approach
is not the proper Bayesian solution, unless posteriors
are also used within the integrals of the Bayes factor.

Section 6.5 also recapitulates both Chapters V and
VI with general comments. It reiterates the warning,
already made earlier, that the Bayes factors obtained
via this noninformative approach are usually rarely im-
mensely in favor of H0. This somehow contradicts later
studies, like those of Berger and Sellke (1987) and
Berger, Boukai and Wang (1997), that the Bayes fac-
tor is generally less prone to reject the null hypothe-
sis. Jeffreys argues that, when an alternative is actually
used (. . .), the probability that it is false is always of or-
der n−1/2, without further justification. Note that this
last section also includes the seeds of model averag-
ing: when a set of alternative hypotheses (models Mr )
is considered, the predictive should be

p(x′|x) = ∑
r

pr(x
′|x)π(Mr |x),

rather than conditional on the accepted hypothesis. Ob-
viously, when K is large, [this] will give almost the
same inference as the selected model/hypothesis.

7.1 Multiple Parameters

Although it should proceed from first principles, the
extension of Jeffreys’s (second) rule for selection pri-
ors (see Section 6.4) to several parameters is discussed
in Sections 6.1 and 6.2 in a spirit similar to the refer-
ence priors of Berger and Bernardo (1992), by point-
ing out that, if two parameters α and β are introduced
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sequentially against the null hypothesis H0 :α = β =
0, testing first that α �= 0 then β �= 0 conditional on α

does not lead to the same joint prior as the symmetric
steps of testing first β �= 0 then α �= 0 conditional on β .
In fact,

d arctanJ 1/2
α d arctanJ

1/2
β|α

�= d arctanJ
1/2
β d arctanJ

1/2
α|β .

Jeffreys then suggests using instead the marginalized
version

π(α,β) = 1

π2

dJ
1/2
α

dα

1 + Jα

dJ
1/2
β

dβ

1 + Jβ

,

although he acknowledges that there are cases where
the symmetry does not make sense (as, for instance,
when parameters are not defined under the null, as, e.g.,
in a mixture setting). He then resorts to Ockham’s ra-
zor (Section 6.12) to rank those unidimensional tests
by stating that there is a best order of procedures, al-
though there are cases where such an ordering is arbi-
trary or not even possible. Section 6.2 considers a two-
dimensional parameter (λ,μ) and, switching to polar
coordinates, uses a (half-)Cauchy prior on the radius

ρ =
√

λ2 + μ2 (and a uniform prior on the angle). The
Bayes factor for testing the nullity of the parameter
(λ,μ) is then

K =
∫

σ−2n−1 exp
{
−2ns2 + n(x̄2 + ȳ2)

2σ 2

}
dσ

/∫ 1

π2σ 2n

· exp
{−(

2ns2

+ n([x̄ − λ]2

+ [ȳ − μ]2)
)
/2σ 2} dλdμdσ

ρ(σ 2 + ρ2)

= 2n(n − 1)!{2ns2 + n(x̄2 + ȳ2)}−n

/∫ 1

π2σ 2n

· exp
{
− n

2σ 2

· [2s2 + ρ̂2

− 2ρρ̂ cosφ + ρ2]
}

dφ dρ dσ

ρ(σ 2 + ρ2)
,

where ρ̂2 = x̄2 + ȳ2 and which can only be integrated
up to

1

K
= 2

π

∫ ∞
0

exp
(
− ns2v2

2s2 + ρ̂2

)

· 1F1

{
1 − n,1,− nρ̂2v2

2(2s2 + ρ̂2)

}
dv

1 + v2 ,

1F1 denoting a confluent hypergeometric function.
A similar analysis is conducted in Section 6.21 for a
linear regression model associated with a pair of har-
monics (xt = α cos t +β sin t + εt ), the only difference
being the inclusion of the covariate scales A and B

within the prior,

π(α,β|σ)

=
√

A2 + B2

π2
√

2

· σ√
α2 + β2{σ 2 + (A2 + B2)(α2 + β2)/2}

.

7.2 Markovian Models

While the title of Section 6.3 (Partial and serial cor-
relation) is slightly misleading, this section deals with
an AR(1) model,

xt+1 = ρxt + τεt .

It is not conclusive with respect to the selection of the
prior on ρ given that Jeffreys does not consider the null
value ρ = 0 but rather ρ = ±1 which leads to difficul-
ties, if only because there is no stationary distribution
in that case. Since the Kullback divergence is given by

J (ρ,ρ′) = 1 + ρρ′

(1 − ρ2)(1 − ρ′2)
(ρ′ − ρ)2,

Jeffreys’s (testing) prior (against H0 :ρ = 0) should be

1

π

J 1/2(ρ,0)′

1 + J (ρ,0)
= 1

π

1√
1 − ρ2

,

which is also Jeffreys’s regular (estimation) prior in
that case.

The (other) correlation problem of Section 6.4 also
deals with a Markov structure, namely, that

P(xt+1 = s|xt = r) =
{

α + (1 − α)pr, if s = r ,
(1 − α)ps, otherwise,

the null (independence) hypothesis corresponding to
H0 :α = 0. Note that this parameterization of the
Markov model means that the pr ’s are the stationary
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FIG. 10. Jeffreys’s prior of the coefficient α for the Markov model
of Section 6.4.

probabilities. The Kullback divergence being particu-
larly intractable,

J = α

m∑
r=1

pr log
{

1 + α

pr(1 − α)

}
,

Jeffreys first produces the approximation

J ≈ (m − 1)α2

1 − α

that would lead to the (testing) prior

2

π

1 − α/2√
1 − α(1 − α + α2)

[since the primitive of the above is − arctan(
√

1 − α/

α)], but the possibility of negative48 α leads him to use
instead a flat prior on the possible range of α’s. Note
from Figure 10 that the above prior is quite peaked in
α = 1.

8. CHAPTER VII: FREQUENCY DEFINITIONS AND
DIRECT METHODS

An hypothesis that may be true may be rejected
because it has not predicted observable

results that have not occurred.
H. JEFFREYS, Theory of Probability, Section 7.2.

This short chapter opposes the classical approaches
of the time (Fisher’s fiducial and likelihood method-
ologies, Pearson’s and Neyman’s p-values) to the
Bayesian principles developed in the earlier chapters.

48Because of the very specific (unidimensional) parameterization
of the Markov chain, using a negative α indeed makes sense.

(The very first part of the chapter is a digression on
the “frequentist” theories of probability that is not par-
ticularly relevant from a mathematical perspective and
that we have already addressed earlier. See, however,
Dawid, 2004, for a general synthesis on this point.) The
fact that Student’s and Fisher’s analyses of the t statis-
tic coincide with Jeffreys’s is seen as an argument in
favor both of the Bayesian approach and of the choice
of the reference prior π(μ,σ) ∝ 1/σ .

The most famous part of the chapter (Section 7.2)
contains the often-quoted sentence above, which ap-
plies to the criticism of p-values, since a decision to
reject the null hypothesis is based on the observed p-
value being in the upper tail of its distribution under the
null, even though nothing but the observed value is rel-
evant. Given that the p-value is a one-to-one transform
of the original test statistics, the criticism is maybe less
virulent than it appears: Jeffreys still refers to twice the
standard error as a criterion for possible genuineness
and three times the standard error for definite accep-
tance. The major criticism that this quantity does not
account for the alternative hypothesis (as argued, for
instance, in Berger and Wolpert, 1988) does not ap-
pear at this stage, but only later in Section 7.22. As
perceived in Theory of Probability, the problem with
Pearson’s and Fisher’s approaches is therefore rather
the use of a convenient bound on the test statistic as
two standard deviations (or on the p-value as 0.05).
There is, however, an interesting remark that the choice
of the hypothesis should eventually be aimed at select-
ing the best inference, even though Jeffreys concludes
that there is no way of stating this sufficiently precisely
to be of any use. Again, expressing this objective in
decision-theoretic terms seems the most natural solu-
tion today. Interestingly, the following sentence in Sec-
tion 7.51 could be interpreted, once again in an apoc-
ryphal way, as a precursor to decision theory: There
are cases where there is no positive new parameter, but
important consequences might follow if it was not zero,
leading to loss functions mixing estimation and testing
as in Robert and Casella (1994).

In Section 7.5 we find a similarly interesting reinter-
pretation of the classical first and second type errors,
computing an integrated error based on the 0–1 loss
(even though it is not defined this way) as∫ ac

0
f1(x) dx +

∫ ∞
ac

f0(x) dx,

where x is the test statistic, f0 and f1 are the mar-
ginals under the null and under the alternative, respec-
tively, and ac is the bound for accepting H0. The opti-
mal value of ac is therefore given by f0(ac) = f1(ac),



THEORY OF PROBABILITY REVISITED 169

which amounts to

π(H0|x = ac) = π(Hc
0 |x = ac),

that is, K = 1 if both hypotheses are equally weighted
a priori. This is a completely rigorous derivation of the
optimal Bayesian decision for testing, even though Jef-
freys does not approach it this way, in particular, be-
cause the prior probabilities are not necessarily equal
(a point discussed earlier in Section 6.0 for instance). It
is nonetheless a fairly convincing argument against p-
values in terms of smallest number of mistakes. More
prosaically, Jeffreys briefly discusses in this section the
disturbing asymmetry of frequentist tests, when both
hypotheses are of the same type: if we must choose be-
tween two definitely stated alternatives, we should nat-
urally take the one that gives the larger likelihood, even
though each may be within the range of acceptance of
the other.

9. CHAPTER VIII: GENERAL QUESTIONS

A prior probability used to express ignorance is
merely the formal statement of that ignorance.

H. JEFFREYS, Theory of Probability, Section 8.1.

This concluding chapter summarizes the main rea-
sons for using the Bayesian perspective:

1. Prior and sampling probabilities are representa-
tions of degrees of belief rather than frequencies (Sec-
tion 8.0). Once again, we believe that this debate49 is
settled today, by considering that probability distribu-
tions and improper priors are defined according to the
rules of measure theory; see, however, Dawid (2004)
for another perspective oriented toward calibration.

2. While prior probabilities are subjective and can-
not be uniquely assessed, Theory of Probability sets a
general (objective) principle for the derivation of prior
distributions (Section 8.1). It is quite interesting to read
Jeffreys’s defence of this point when taking into ac-
count the fact that this book was setting the point of ref-
erence for constructing noninformative priors. Theory
of Probability does little, however, toward the construc-
tion of informative priors by integrating existing prior
information (except in the sequential case discussed
earlier), recognizing nonetheless the natural discrep-
ancy between two probability distributions conditional

49Jeffreys argues that the limit definition was not stated till eighty
years later than Bayes, which sounds incorrect when considering
that the Law of Large Numbers was produced by Bernoulli in Ars
Conjectandi.

on two different data sets. More fundamentally, this
stresses that Theory of Probability focuses on prior
probabilities used to express ignorance more than any-
thing else.

3. Bayesian statistics naturally allow for model
specification and, as such, do not suffer (as much) from
the neglect of an unforeseen alternative (Section 8.2).
This is obviously true only to some extent: if, in the
process of comparing models Mi based on an experi-
ment, one very likely model is omitted from the list, the
consequences may be severe. On the other hand, and in
relation to the previous discussion on the p-values, the
Bayesian approach allows for alternative models and
is thus naturally embedding model specification within
its paradigm.50 The fact that it requires an alternative
hypothesis to operate a test is an illustration of this fea-
ture.

4. Different theories leading to the same posteriors
cannot be distinguished since questions that cannot be
decided by means of observations are best left alone
(Section 8.3). The physicists’51 concept of rejection of
unobservables is to be understood as the elimination of
parameters in a law that make no contribution to the
results of any observation or as a version of Ockham’s
principle, introducing new parameters only when ob-
servations showed them to be necessary (Section 8.4).
See Dawid (1984, 2004) for a discussion of this princi-
ple he calls Jeffreys’s Law.

5. The theory of Bayesian statistics as presented in
Theory of Probability is consistent in that it provides
general rules to construct noninformative priors and to
conduct tests of hypotheses (Section 8.6). It is in agree-
ment with the Likelihood Principle and with condition-
ing on sufficient statistics.52 It also avoids the use of
p-values for testing hypotheses by requiring no empir-
ical hypothesis to be true or false a priori. However,
special cases and multidimensional settings show that
this theory cannot claim to be completely universal.

6. The final paragraph of Theory of Probability
states that the present theory does not justify induc-
tion; what it does is to provide rules for consistency.

50The point about being prepared for occasional wrong decisions
could possibly be related to Popper’s notion of falsifiability: by
picking a specific prior, it is always possible to modify inference
toward one’s goal. Of course, the divergences between Jeffreys’s
and Popper’s approaches to induction make them quite irreconcil-
able. See Dawid (2004) for a Bayes–de Finetti–Popper synthesis.

51Both paragraphs Sections 8.3 and 8.4 seem only concerned with
a physicists’ debate, particularly about the relevance of quantum
theory.

52We recall that Fisher information is not fully compatible with
the Likelihood Principle (Berger and Wolpert, 1988).
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This is absolutely coherent with the above: although
the book considers many special cases and exceptions,
it does provide a general rule for conducting point in-
ference (estimation) and testing of hypotheses by de-
riving generic rules for the construction of noninfor-
mative priors. Many other solutions are available, but
the consistency cannot be denied, while a ranking of
those solutions is unthinkable. In essence, Theory of
Probability has thus mostly achieved its goal of pre-
senting a self-contained theory of inference based on a
minimum of assumptions and covering the whole field
of inferential purposes.

10. CONCLUSION

It is essential to the possibility of induction that we
shall be prepared for occasional wrong decisions.
H. JEFFREYS, Theory of Probability, Section 8.2.

Despite a tone that some may consider as overly crit-
ical, and therefore unfair to such a pioneer in our field,
this perusal of Theory of Probability leaves us with the
feeling of a considerable achievement toward the for-
malization of Bayesian theory and the construction of
an objective and consistent framework. Besides setting
the Bayesian principle in full generality,

Posterior Probability ∝ PriorProbability · Likelihood,

including using improper priors indistinctly from prop-
er priors, the book sets a generic theory for selecting
reference priors in general inferential settings,

π(θ) ∝ |I (θ)|1/2,

as well as when testing point null hypotheses,

1

π

dJ 1/2

1 + J
= 1

π
d{tan−1 J 1/2(θ)},

when J (θ) = div{f (·|θ0), f (·|θ)} is a divergence mea-
sure between the sampling distribution under the null
and under the alternative. The lack of a decision-
theoretic formalism for point estimation notwithstand-
ing, Jeffreys sets up a completely operational technol-
ogy for hypothesis testing and model choice that is
centered on the Bayes factor. Premises of hierarchi-
cal Bayesian analysis, reference priors, matching priors
and mixture analysis can be found at various places in
the book. That it sometimes lacks mathematical rigor
and often indulges in debates that may look superficial
today is once again a reflection of the idiosyncrasies of
the time: even the ultimate revolutions cannot be built
on void and they do need the shoulders of earlier gi-
ants to step further. We thus absolutely acknowledge

the depth and worth of Theory of Probability as a foun-
dational text for Bayesian Statistics and hope that the
current review may help in its reassessment.
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