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Abstract: This paper gives an overview of statistical inference for dis-
ordered sphere packing processes. These processes are used extensively in
physics and engineering in order to represent the internal structure of com-
posite materials, packed bed reactors, and powders at rest, and are used as
initial arrangements of grains in the study of avalanches and other problems
involving powders in motion. Packing processes are spatial processes which
are neither stationary nor ergodic. Classical spatial statistical models and
procedures cannot be applied to these processes, but alternative models
and procedures can be developed based on ideas from statistical physics.

Most of the development of models and statistics for sphere packings
has been undertaken by scientists and engineers. This review summarizes
their results from an inferential perspective.
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1. Introduction

Disordered sphere packing processes are a widely-used class of spatial stochastic
processes for which few effective inferential methods are available. Realizations
of these processes are used to model many composite and granular materials in
physics and engineering, but rarely is any assessment of model fit undertaken.
Standard methods from spatial statistical inference are of no use in these assess-
ments, but strategies for model assessment can be constructed from statistical
tools developed in the fields of application.

Almost all models and descriptive statistics for packings have arisen from
applications of packings to problems in science and engineering. This review
gathers these achievements and organizes them into a coherent inferential pro-
gram. It begins with a presentation of the major uses of sphere packings in
science and engineering. Next, the difficulties associated with defining and for-
mally representing a packing process are discussed. The physical models and
computer programs used to simulate packings are outlined, and the importance
of experimental work is emphasized. Many types of descriptive statistics are then
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Fig 1. Digital image of plastic discs in a Couette shear apparatus. The discs in the upper
half of the image are packed. Image provided by B. Utter, James Madison University.

presented and compared. The review ends with a discussion of how model as-
sessment can be undertaken, given the nature of the models and the descriptive
statistics available.

1.1. Terminology

Objects of many different shapes can be packed, but this review will focus
on packings of spheres. In packings of objects, the spherical objects are never
exactly spherical. When necessary, distinctions will be made between spherical
objects and the ideal spheres which summarize their shape. Packings of spherical
objects will be referred to as physical packings, to distinguish them from their
idealizations. A physical packing process will be an established procedure for
forming a packing using a particular set of physical objects. Physical packing
processes will be assumed to generate packings by halting the flow of spherical
objects with some form of confining surface. Physical packings produced by
fixing each sphere into place, one at a time, will not be considered.

It will generally be assumed that the spheres in packings are of equal diameter
(monodisperse) rather than being of many different sizes (polydisperse). Spheres
in R

2 will be termed discs, spheres in R
3 will be termed spheres, and in higher

dimensions they will be termed hyperspheres. In the applied literature, planar
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Fig 2. Three dimensional packing of spheres within a hard-sided cube. The Voronoi tessella-
tion of the packing and the number of faces for each cell are also shown. Image provided by
C.H. Rycroft by means of Voro++ imaging software [1].

packings of discs are sometimes referred to as packings of rods. This is mislead-
ing, since it assumes absolute rigidity for any physical rods being modelled.

A point lattice is a regular structure of points. Examples include the cubic
point lattices in space and in the plane, and the face-centered cubic packing
and hexagonal close packing in space. Packings will be ordered if their sphere
centres form a subset of a point lattice. The study of ordered packings in high
dimensional spaces yields interesting abstract mathematical results [2–4] which
can be used in the development of efficient codes [5]. Specialized packings can
also be used in the study of discrete analytical functions [6]. Few of these results
have any application to the study of disordered packings in space or in the plane.
Packings will be assumed to be disordered and not based on a point lattice unless
otherwise stated.

1.2. Examples of use

Sphere packings were first used in attempts to explain the patterns seen in X-ray
diffraction studies of liquids and non-crystalline solids [7, 8]. Bernal [9] and Scott
[10] attempted to model macroscopically what an amorphous mass of densely ar-
ranged atoms might look like, using physical packings of monosized steel spheres
as their model. More recent work [11] has suggested that this approach to mod-
elling may not be feasible, since packings of steel spheres are formed by the
action of a different set of forces from those found at the atomic scale.

Sphere packings are used extensively in the modelling of granular materials.
A granular material consists of a collection of solid particles surrounded by a
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gas or a liquid. Granular materials can be made to flow when acted upon by
a force. Examples of granular flow include the flow of particles from hoppers,
avalanches and mudslides, soil liquification, and soil erosion by wind and water.
The complex interaction between grains during flow makes it impossible to
model granular flow by means of conventional methods from statistical physics
[12–14]. Spheres are often used to represent grains, and sphere packings are used
as models for powders at rest. Simulations of powder flow often require a sphere
packing as an initial state.

Sphere packings can be used in the study of composite materials. In the
study of metal sintering [15], a packing can represent the initial state of a metal
powder before it is compressed and heated to form a solid metal part. Packings
can be used as models for some colloids and for concrete. A colloid is a mixture
of two immiscible liquids, in which the dispersed liquid may form spherical
inclusions within the other. For some colloids, the arrangement of inclusions
may be modelled by a sphere packing [16]. Concrete is a composite of rocks
of many different shapes and sizes held together by a matrix of cement [17].
Sphere-packing-based models for concrete are highly idealized, but may be the
only feasible way to abstractly model such a complex material [18].

Packings can be used as models for porous structures. A packed bed reactor
is a large steel vessel filled with solid catalyst-impregnated particles. Liquid
reactants flow in at one end of the vessel, and the product emerges from the
opposite end. Design of these reactors requires being able to model both the
reaction in the pore spaces around the particles and the transfer of heat through
the particles. Sphere packings are the simplest form of particle packing that can
be used to model the internal structure of these reactors [19].

When a packing is used in modelling a porous structure, a granular flow,
or a composite material, it is being used as part of a model for phenomena
that take place on a larger scale. If a powder at rest is poured, the absence of
any continuum model for the flow makes it necessary to simulate the flow by
modelling the motion of individual spheres. The physical models for motion of
individual spheres and their interactions are simpler than the continuum models,
and so the right choice of model for individual sphere motion will result in the
right behaviour for the flow as a whole.

2. Defining a packing process

To define a sphere packing process, it is necessary to define what is meant by a
configuration of packed spheres. This requires first being able to define a packing
of physical objects, and then finding an abstract definition that can be used as
the basis for a formal probability model.

2.1. Physical packings of spherical objects

A physical packing of spheres is a collection of spherical objects which are acted
upon by a collection of forces which are in balance. No spheres are in motion
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with respect to each other, nor are they in motion with respect to the contain-
ing surface. No motion can take place unless additional unbalanced forces are
applied. Each sphere is in contact with containing surfaces and other spheres.
These contacts deform the objects and the container, and forces associated with
these deformations are in equilibrium with the force of gravity and other forces.
Composite materials with spherical inclusions are formed by a set of forces act-
ing on spheres surrounded by the matrix phase in liquid form.

Physical packings are generally constructed by directing a granular flow into
a container or onto a surface. The granular flow is highly dependent on the
exact arrangement of the spheres within it and on the interactions between
spheres as the packing forms. Because the exact arrangement of spheres can
never be known and the results of interaction cannot be predicted or observed,
the process of forming a packing can be viewed as sampling a single packing
at random from the collection of all packings that could be generated by the
physical packing process.

While entire packings occur randomly with each repetition of the construction
process, the internal structure of each packing is not random. It is not possible
to change the position of any one sphere without exerting an unbalanced force
on the packing. If a single sphere from the interior of a packing were omitted
from the list of all sphere locations in a packing, its location could be easily
determined. The difficulties in describing any one packing arise from there being
no obvious way to summarize important aspects of its disordered structure.

2.2. Mathematical representation of a sphere packing

In order to carry out traditional probabilistic modelling, it is necessary to con-
struct a probability measure over a sample space of packings. It is not possible
to usefully define either a sample space or a measure for packing processes, on
account of the limitations of existing mathematical models.

A packing process is a random set process [20, 21], since each realization of
the packing can be considered to be a random closed subset of Rd for some
d ∈ {2, 3, . . .}. The random set process sample space Ω0 contains all closed
subsets of Rd and so is too large and lacking in structure to be useful. Since
each packing can be represented as a union of closed sets of simple structure, it
is possible to construct a much simpler sample space than Ω0.

The spherical objects that comprise a physical packing are not ideal spheres
before they are packed, and their deformed aspherical shapes cannot be observed
once they are packed. If the spherical objects are very close to being spherical
and deform very little, then it is reasonable to summarize the structure using
only the sphere centroid coordinates.

To construct a sample space for the packing process based on sphere cen-
troids, it is necessary to isolate the essential shape of the packing. The shape
consists of every aspect of the arrangement of the spheres that is invariant under
rotations, reflections, and translations of the spheres, their container, and the
balanced forces. Once these are accounted for, each packing can define a point
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in R
dn by using the first d coordinates to represent the coordinates of the first

sphere location in R
d, the next d coordinates to represent the location of the

second sphere, and so on. The sample space Ω1 is defined by the collection of
all such points. Since the labelling of the spheres is arbitrary, each shape will
be represented by n! distinct points in R

dn.
The structure of Ω1 is complex, since it is a subset of a very high dimensional

space. The complexity can be reduced by identifying packing shapes that have
topologically similar contact networks. The contact network of n packed spheres
is defined to be the graph whose edges consist of all line segments connecting
centroids of spheres in contact, together with the line segments connecting each
sphere centroid to points where the sphere is in contact with a boundary. In the
case of physical spheres the contact will be a region, but the centroid of that
region can be used to define the edge.

Graph isomorphisms can be used to establish equivalence classes among the
contact networks. Two contact networks are graph isomorphic iff there is a bijec-
tive map from the vertices of one contact network onto the other that preserves
edges. Small perturbations in sphere shape, orientation, and sphere distortion
under load can yield many different packings with graph isomorphic contact
networks. The sample space Ω1 will consist of many small clumps, each consist-
ing of packings with isomorphic contact networks. If the equivalence classes are
defined by graphs which share a common subgraph, then some clumps associ-
ated with these classes will overlap. If one particular labelling of spheres were
chosen, the lack of any natural labelling system for the spheres would result in
many of these intersections being lost.

The sample space Ω1 is still too complex to be of practical use. The extent
of the clumps associated with each equivalence class of contact networks cannot
be determined, on account of the inability to observe very small distortions and
irregularities of physical sphere shape within the packed structure. Since the
number of equivalence classes must be finite, it is possible to define a discrete
sample space Ω2 consisting of the graphs that define the equivalence classes. If
every element of Ω2 could be identified, then it may be possible to estimate or
derive a discrete probability measure for the packing process.

It is not possible to explore and analyze Ω2 by means of theoretical arguments
if the number of spheres exceeds 10. For smaller numbers of spheres, it is pos-
sible to use theory to isolate the arrangement of spheres which most efficiently
covers a unit square [22]. For more than 10 spheres, the densest packing in Ω2

can only be found by experimentation on physical or simulated packings [23–
25]. Experiments of either type could never be guaranteed to include elements
of every equivalence class, particularly when a very large number of distinct
equivalence classes exist. Identification of distinct networks is also complicated
by the need to determine if near-neighbouring discs are in physical contact. Ex-
perimental studies have shown that spheres can be very close without being in
contact [9, 26].

Experiments involving simulation models require that the model sample from
the same sample space as does the physical process. If the models are based on
ideal spheres, this may not happen if some contact networks found in physi-



80 J.D. Picka

cal systems cannot be constructed from ideal spheres. This problem might be
avoided by incorporating much more complex models of the initial shapes of
spheres, but modelling their shapes after distortion under load would be im-
possible using current continuum models [27, 28]. These difficulties can also be
avoided by assuming that each sphere of radius r has the shape of an ideal
sphere but is composed of a hard centre of radius r − δ and soft deformable
outer shell of thickness δ.

The probability measure on Ω2 is determined by the dynamics of the phys-
ical process which produces the packing. Since it is not possible to represent
this process formally, it is not possible to derive this distribution. It is also not
feasible to estimate the probabilities of individual equivalence classes, since the
number of possible classes increases rapidly with the number of spheres. Fami-
lies of distribution functions are of no use, since there is no obvious simple and
low-dimensional method of coordinatizing the equivalence classes. The tradition
in physics is to assume that there is a uniform distribution over Ω2. This as-
sumption greatly simplifies the mathematical analysis of the packing process,
and it serves as the basis of the hard-core Gibbs model [29, 30]. Experimental
investigation of packings of 7 discs suggests that the assumption of uniform
probability on Ω2 is not valid for packing processes [31].

The lack of formal probability models for packing processes presents several
major challenges to using them as part of scientific or engineering applications.
First, the absence of a simple, natural, formal model such as the Gibbs process
in statistical physics rules out any purely formal asymptotic analyses of packing
processes. Second, likelihood-based inference and Bayesian inference for packing
processes is impossible. Third, any model for a packing can only be evaluated
by comparing an independent random sample of realizations of the model with
a sample of observations of the physical packing process of interest.

3. Stochastic models for packings

There are two possible alternatives to formal models for packing processes. Ei-
ther the model can be another physical process for packing different spherical
objects, or it can be a computer program that assembles ideal or soft-shelled
spheres into packed arrangements.

3.1. Physical models for packings

A physical model for a packing of objects is a different physical system which is
easier to replicate and study than the original physical packing process. Phys-
ical models are useful for investigating packings of soft objects and objects of
irregular shape [32] when these objects are too difficult to simulate.

An early use of physical models involved attempts to model the molecular
structure of liquids [7]. Scott [10] and Bernal [8, 9] both used packings of mono-
sized steel spheres as models for atomic structure. Monosized steel spheres were
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placed into rubber balloons and bound with rubber bands to maximize pack-
ing density and minimize the effects of gravity on packing structure. In later
experiments, paint was added to the balloon and allowed to set. The agglom-
erated mass was dissected carefully in order to identify which spheres were in
contact, and physical models of the contact network were constructed out of
wire. More elaborate measurement methods were developed [33], but interest in
this approach soon waned on account of the amount of time and effort required
to obtain results.

Physical packings are also distinguished by the material that fills the voids
around the spheres. A physical process that packs spheres in room temperature
air is distinct from one that packs spheres surrounded by warm liquid wax or
paint. To make low-density packings, spheres have been packed in a fluid of
equivalent density [16]. It is also possible to make a colloid which is very much
like a packing by combining two immiscible fluids, one of which forms near-
spherical inclusions in the other [34].

Physical packing processes for discs can also be developed. These could be as
simple as swirling a tea tray full of thick coins and then inclining the tray until
the coins come to rest. Processes of this kind using monosized discs produce
realizations which are very close to hexagonal lattice packings, and so more
complicated methods are needed to obtain more disordered realizations. Non-
overlapping discs can be placed at random locations on a slightly stretched sheet
of rubber. The tension in the sheet is released, forcing the discs together into a
smaller area. The positions of the discs are recorded, the sheet is retensioned,
the discs are placed back on the sheet, and the tension is released again. By
cycling through this procedure, a disordered disc packing can be generated [35].

Interest in physical packings has been revived as new remote sensing methods
for 3-dimensional packings have been developed. X-ray tomography [36–39] and
magnetic resonance imaging [40] can be used to map the interiors of very large
packings. Confocal microscopy has been used to study both sphere packings
[41, 42] and colloidal packings [34].

3.1.1. What can be learned from physical packings

Physical packing processes can demonstrate properties which frustrate intuition-
based analyses of their structure. Experimental examination of physical packings
is necessary to fully appreciate the complexities of their structure that may need
to be captured by simulation models.

First, there is no single well-defined packed state for spheres. Different pack-
ing processes can have very different sample spaces, and that sample space
can change greatly over the duration of the packing process. Experiments with
monosized spheres poured into containers showed that the density of the ini-
tial configuration of the spheres could be increased by rodding the packing or
by shaking it vertically [10]. There appeared to be a well-defined limit to the
density achievable by these methods, which resulted in the proposal that there
was a well-defined and stable physical state termed a random close packing of
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spheres. This definition has been challenged [43], especially after experiments
demonstrated that random close packings could be made to evolve into denser
packings with near-ordered structure [44, 45].

Experimental investigation of monodisperse packings suggested that disor-
dered packings were not the densest possible arrangements of spheres in space.
For dimensions 2 ≤ d ≤ 8, the densest lattice packings can be identified [5].
In the plane, it can be analytically proven that the hexagonal close packing is
denser than any other packing [46]. In three dimensions, a computer-based proof
has established that the body-centred and face-centred packings are denser than
all other three-dimensional packings [47].

Polydisperse packings are far more disordered than monodisperse packings.
One way of disrupting the near-order of physical packings of monosized discs
is to randomly introduce a small amount of size variation into the discs. This
strategy was used to prevent crystallization in the packing shown in Figure 1.
Physical packings with a fixed sphere size distribution can be very difficult to
assemble, since the smaller spheres often segregate and accumulate at the base
of the packing. These difficulties also occur in simulated polydisperse sphere
packings [48, 49].

3.2. General comments on simulation models

Simulation models are large and complex computer programs. To save comput-
ing time, assumptions are often made which can limit the ability of these models
to represent physical packing processes.

3.2.1. Randomness

Most algorithms for packing generation are used to produce a single large pack-
ing for use in the study of a scientific or engineering problem. Although repeated
experiments show an inherent variability in experimental outcomes, it is very
unusual to see any attempt to capture this variability in a simulation model.

Uncertainty about model outcomes arises from the sensitivity of the dynamics
of physical packing processes to initial and boundary conditions. The sensitivity
can be modelled by choosing initial particle positions from a realization of a
Poisson process, a hard-core Markov spatial process, or from a packing process.
Initial and boundary conditions are seldom discussed in detail in the applied
literature, and models for the initial arrangements of spheres are not generally
fit to data in any formal way.

3.2.2. Boundaries

Most physical packings are formed by a confining surface. The surface may be
completely closed and hold every sphere into a rigid position, it may be open
and allow the packing to have a free boundary, or it may be a plane orthogonal
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Fig 3. When periodic boundary conditions are imposed, spheres at the edges of the packing
appear at several distant locations within the window. A disc near a corner could appear in
four separate locations, while a sphere could appear in as many as eight.

to the action of the unbalanced force. Simulations omit confining surfaces in
order to avoid difficulties in coding or to simulate packing structures far from
any confining surfaces.

It is possible to avoid using any boundaries. Spheres can be packed on the
surface of a hypersphere of one dimension higher [50], but this can introduce un-
wanted effects from hypersphere surface curvature unless many relatively small
spheres are used. Packings can also be assembled by simulating a force acting
towards a central point. It is not clear that a packing simulated by a central
force would represent any packing found in nature.

Confining surfaces can be avoided by imposing periodic boundary conditions.
Consider a disc packing in the plane and a rectangle W . If the discs are mono-
sized with diameter δ, then any disc whose centre lies within δ/2 of a side of
W has the part of the disc outside of W appear on the opposite side of W (see
Figure 3). Since this can occur on any edge, the window W is toroidal and the
plane is tiled by copies of W containing a disc packing. If any effects of the
boundary on packing structure vanish after some distance kδ from the bound-
ary, then the interior of a realization may be indistinguishable from that of a
stationary packing. Efforts have been made to determine a value for k [51, 52],
but these efforts are often based on a single statistic and may not reflect every
effect of periodic boundaries on the structure of a realization.

Periodic boundary conditions may be used within confining boundaries in
order to save computational effort. Within cylindrical confining boundaries, it
is possible to pack four periodic cells [53]. This symmetrical structure may have
a strong effect on the distribution of statistics calculated from the packing.
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3.2.3. Packings of non-spherical objects

Most simulation models pack monodisperse spheres, since the code for these pro-
grams is relatively easy to write. It is dangerous to assume that these models
can represent packings of more complicated physical objects, unless experimen-
tal evidence can confirm that they do.

Modelling packings of non-spherical objects can be very difficult. While a
sphere can be fully specified by its centre and radius, a reasonable simulation
of a small rock will require a long list of numbers to specify the polynomial sur-
faces that are spliced together to produce a crude representation of its shape.
Determining contacts between asymmetrical objects is also very difficult, al-
though it can be simplified by modelling the object as a collection of adhering
spheres [54]. The shapes of ceramic rings have been approximated by assemblies
of triangles [55] as part of a simulation of packed beds. Elliptical objects can
be easily simulated, and can be shown to pack more densely than spheres in
simulations [56–58] and in physical experiments [59].

3.3. Ballistic algorithms

Ballistic algorithms are the simplest algorithms which can be used to produce
configurations of packed spheres or discs. They were the first developed and
are relatively simple to code, but they are not based on the physics of packing
formation. Packings generated by these algorithms are less dense than those
generated by physical packing processes [60]. Ballistic models must be used
with caution, as there is no reason to believe that they have the same sample
spaces as do physical processes.

The first ballistic algorithms were developed by Vold [61, 62] to model the
formation of flocs. Spheres are dropped at random locations onto a surface.
They stop falling either when they hit that surface or another sphere. If they
hit another sphere, then they either are locked in place with probability p, or are
rolled down the packed spheres until they reach a stable position. With p = 0,
the algorithm can produce realizations of loose packings. The path chosen for
each sphere superficially mimics the path of a falling physical sphere, but the
path is inconsistent with the dynamics of a physical sphere impacting onto an
existing packing.

Vold also developed a packing algorithm for rods composed of a set of k
spheres in contact with their centres arranged along a line [64], and developed
a central version of her algorithm [63]. In central ballistic packing algorithms,
spheres are packed as if gravity were acting towards a single point rather than
towards a flat surface. This results in packings which are isotropic, but which
cannot be produced by any physical packing process. Later high-density central
packing simulators [65, 66] produce packings with estimated volume fractions
between 0.61 and 0.62, slightly below those seen in random close packings. In
central disc-packing algorithms, near-ordered packings are avoided by seeding
the realization with a non-triangular configuration of discs [67].
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Fig 4. In a ballistic packing algorithm, the blue sphere starts at a random location (1) above
the already-dropped gray spheres. It drops to position (2), and then rolls down the side of
sphere A until it comes to rest against sphere B. If this is not a stable position, it rolls
along sphere B until it is stabilized by resting against sphere C. The rolling process is purely
geometric, and does not represent any physical process.

Visscher and Bolsterli [68] developed a non-central algorithm which fills a
box with an impenetrable base but periodic boundary conditions on its sides.
A sphere is dropped at a random location, and falls vertically until it con-
tacts another sphere. Then, it follows the shortest path along the surface of the
already-placed spheres until it comes to rest in a gravitationally stable position
(Fig. 4). Each sphere drop is repeated k times, and the final position chosen is
the position that is closest to the base. The algorithm produces realizations with
estimated volume fraction of 0.582 in R

3, which is less dense than a shaken phys-
ical packing. In the planar version of this algorithm, the initial spheres dropped
have a slightly different size in order to prevent the formation of near-ordered
realizations.

The Visscher-Bolsterli algorithm has been improved in various ways. A cen-
tral version has been developed [69], with the intention of producing packings
that contain arching structures. Arching structures arise when several adjacent
spheres form a vault-like structure around a void of unusally large size. Non-
periodic boundaries have been added to the algorithm, so that the spheres fill a
box in space [70] or in the plane [71], or fill a cylinder [72–74]. Irregular shapes
can be packed within periodic boundaries [55, 75].

The Visscher-Bolsterli algorithm can be modified to pack spheres of differ-
ent sizes. When the largest and smallest spheres are greatly different in size,
the smaller spheres tend to accumulate at the base of the packing unless they
are allowed to randomly stick at mechanically unstable positions [48]. More
complicated deposition rules have been devised to avoid size segregation in the
plane [76, 77].

The density of physical packings can be increased by shaking them. The
density of ballistic packings can be increased by subjecting the initial packing
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to rearrangements which superficially imitate shaking. A simple rearrangement
algorithm orders the initially packed spheres by height, then redeposits them
at the same planar location using the Visscher-Bolsterli placement rules [78,
79]. This algorithm was used to study segregation by size after shaking. In a
shaking algorithm for monosized spheres, each sphere in the packing is displaced
upwards by a small Normally distributed perturbation, and is then subjected
to many small three-dimensional Normal perturbations which are allowed if
no collisions occur. Once the number of collisions reaches a set threshold, the
packing is collapsed from the bottom using Visscher-Bolsterli placement rules.
This algorithm can increase the estimated mean volume fraction from 0.581 to
0.590, but still yields a loose packing [80]. If the initial vertical displacements
are too large, then the rearrangement can simplify the contact network and
decrease the volume fraction. Rearrangement methods can also be applied to
packings of irregularly shaped objects in a container with hard boundaries [81].

3.4. Rearrangement algorithms

Algorithms which rearrange the points in point patterns were the first to achieve
volume fractions similar to those seen in random close packings. These programs
begin with a realization of a Poisson or a regular lattice point pattern. The
points in the pattern are subjected to deterministic or random translations
which eventually produce a sphere configuration close to that of a packing.
These methods do not attempt to replicate the dynamic interactions between
spheres which occur during the formation of a physical packing.

The Jodrey-Tory algorithm [82–84] was the first simulation algorithm to pro-
duce realizations with estimated volume fractions similar to those for dense
physical packings. It is initialized by a configuration of n points in the inte-
rior of a rectangular prism with periodic boundaries. A sphere of unit radius
is attached to each point. In the first stage of the process, the radius of each
sphere shrinks by 0.0001 units. The distance between each sphere and its nearest
neighbour is found, and the closest pair defining overlapping spheres is identi-
fied. This pair are moved apart along a line joining the points until the spheres
no longer overlap. When the distance between the closest two spheres drops be-
low a threshold, all spheres have their diameter increased by 0.0002 units, and
the process repeats. After 2000 cycles, a second routine of shrinking and trans-
lation removes all remaining overlaps. Once the initial configuration of points
has been chosen, the algorithm is entirely deterministic. There are also versions
of the algorithm which pack ellipsoids [85] and discs of two different radii [86].

The Jodrey-Tory algorithm can be initialized with one of its own previous
outcomes. If this is done many times, then the configuration becomes denser and
less disordered [87]. In experiments, packings subjected to shearing forces can
also become much denser and less disordered [45], but this occurs by physical
mechanisms that are not represented within the Jodrey-Tory algorithm.

Other deterministic rearrangement procedures use more complicated rear-
rangement rules which may depend on all neighbours [88] or on fixing the con-
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tact network early in the rearrangement [89]. The latter strategy can be used
to maximize disorder in planar disc packings [90].

Rearrangement algorithms can also be inspired by statistical physics models
for the motion of ideal gas molecules. These models do not represent the physics
of the condensation of a gas. Lubachevsky and Stillinger [91, 92] begin with
points uniformly distributed within a region. Random velocities are assigned
to each point, and each point begins to grow a disc at a constant rate. When
discs collide, the collision is elastic and momentum and energy are conserved.
After a few thousand iterations of disc expansion, the discs form a nearly packed
arrangement. There is a three-dimensional version of this algorithm [93] and a
version which can pack ellipsoids [94].

Rearrangement algorithms can also be written with non-periodic boundaries.
They can pack spheres on the surface of a large sphere in R

4, avoiding any
boundary effects [50]. They can be used as the basis of programs to estimate
the most efficient packing of a small hard-boundaried region by a fixed number
of spheres [24]. When combined with elements of ballistic algorithms, they can
be used to pack cylinders [95].

3.5. Dynamic algorithms

Neither ballistic nor rearrangement algorithms are based on the physics of pack-
ing formation. Dynamic algorithms seek to model the trajectories and changes
in momentum of individual grains as they form a packing.

To form a packing, flowing grains must expend their kinetic energy. This
happens through the deformation of the packed grains and their container, but
also through frictional contacts, through damage due to erosion and fracturing,
through drag forces on the surrounding fluid, and through the actions of other
forces. Few of these processes can be directly observed.

The classical hard-sphere simulation models used in molecular dynamics sim-
ulations [96] are unsatisfactory for granular flow. Inelastic hard-sphere colli-
sions in classical models cause un-physical clumping [97]. The discrete element
method (DEM) model of Cundall and Strack [98] avoids this problem by re-
placing the hard-sphere inelastic collision with an idealized inelastic collision
between spheres with soft shells. Normal and tangential frictional forces during
collision are modelled by the actions of a spring and a dashpot, which represent
the deformation upon contact and the force of restitution which opposes the
deformation (see Figure 5). The first DEM models for granular flow also in-
cluded the effects of gravity and of van Der Waal’s forces [99], but were unable
to generate packings as dense as physical packings unless the frictional effects
were eliminated.

Hundreds of DEM models for various aspects of granular flow have been
constructed [100]. These models are based on a balance between a set of forces
which depend on the material involved, the size of the particles, and the fluid
through which they are flowing. Some forces, such as the electrostatic force and
gravity, can be modelled in a single straightforward way. For frictional and drag
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Fig 5. Inelastic collisions between spheres in a DEM model are represented by a spring and a
dashpot. The dashpot imposes the deceleration associated with the initial collision and defor-
mation, while the spring represents the force of restitution that restores the original shape.

forces, many different empirical and theoretically-based force models may be
available [101]. Since the particle-fluid and interparticle interactions cannot be
observed during granular flow, these DEM models are speculative. Without a
thorough and objective way of assessing these models, there is no way to tell of
if they properly represent the physics of granular flow.

4. Descriptive statistics

Sample spaces for packing processes are subsets of very high dimensional spaces.
To be able to recognize common aspects of realizations from the same process,
it is necessary to find statistics which can summarize these aspects within indi-
vidual realizations.

Most classical spatial statistics are designed for use on realizations of spatial
processes which are both stationary and ergodic (SE). Packing processes can-
not be assumed to be SE, but statistics intended for use on realizations of SE
processes can be used to summarize some aspects of packings.

4.1. Random set statistics

Sphere packing processes are examples of random closed sets. A random set Φ
can be formally represented by a collection of random indicator functions

IΦ(x) = 1 if x ∈ Φ

= 0 if x 6∈ Φ

for all x ∈ R
d. For the remainder of this section, Φ will be assumed to be a

packing process.
There is no formal expression for how the IΦ(x) are related to each other, but

aspects of this dependence can be summarized by statistics intended to estimate
the moments of SE random sets. The pth moment Mp of Φ is defined over the
collection of p points {x1, . . . , xp} ∈ R

d as

Mp(x1, . . . , xp) = E[IΦ(x1) . . . IΦ(xp)]

= Pr[x1 ∈ Φ and x2 ∈ Φ and . . . xp ∈ Φ].
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These probabilities are defined as the limiting values of the relative frequency
of their defining events over a large random sample of independent realizations
of the packing process. In the physics literature, they are known as k−point
correlation functions or as the k−point probability functions.

The expected value of the volume of fraction of spheres in a realization is a
function of M1(x). To define a volume fraction for a realization, it is necessary
to define a region A in which the packing lies. If the packing is rigidly enclosed
by a boundary, then A would be the interior of the bounded region. If the
boundary took the form of a cup or a surface, it would be necessary to create
a realization-specific region based on the convex hull of the realization or some
similar structure. For the packing process Φ, the volume fraction for a realization
is

φ̂1 =
|Φ ∩A|

|A|

where | · | indicates volume. If a random set is SE and A is non-random, E[φ̂1] =
m1, where m1 is the common value of M1(x) at all x ∈ R

d. If Φ is not SE and

A is not random, then φ̂1 estimates

1

|A|

∫

A

M1(t)dt,

where t ∈ R
d.

In the physics literature on packings, it is often assumed that the packing is
large, that boundary effects are insignificant, and that the packing process is
SE. There is no distinction made between a parameter of the packing process,
the expected value of the parameter estimate, and the observed value of the
parameter estimate from a single large sample. For the volume fraction, the

implicit assumption is that φ̂ = E[φ̂1] = m1. Assumptions of this kind are also
made for other descriptive statistics for realizations.

Estimators for higher moments of SE random sets can be used as descriptive
statistics for random sets. If a random set is SE, its reduced second moment for
a vector x ∈ R

d is

m2(x) = M2(0, x) = E[IΦ(0)IΦ(x)] = Pr[0 ∈ Φ and x ∈ Φ]

which can estimated by

φ̂2(x) =
|Φ̂ ∩ A ∩ Φ̂x ∩ Ax|

|A ∩ Ax|

where At = { x ∈ R
d : x + t ∈ A }. Third- and fourth-moment-based

estimators can also be defined.
The most commonly used descriptive statistic for packings is φ̂1. It showed

that the earliest simulation algorithms were simulating looser packings than ran-
dom close packings. Later simulation algorithms were judged by their ability to
attain estimated volume fractions close to those of a random close packing [83].
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The volume fraction cannot be used alone for characterizing packing processes,
since it reveals nothing about interactions between spheres. Local estimates of

φ̂1 can be used to describe differences in structure within non-stationary sphere
packings [55, 102].

The statistic φ̂2(x) is rarely used. Instead, point process statistics are used
to describe sphere interactions. For monodisperse sphere packings, there is a
close relationship between φ̂2(x) and the pair correlation function for the sphere
centres [103].

Moment statistics can be calculated for transformed random sets. If the
spheres grow at a constant rate until they fill space, φ̂1 and the Euler-Poincarè
coefficient can be plotted as a function of the degree of expansion [104, 105].

The complement of the packing is its void structure. In an SE random set,
this structure can be described by estimates of the spherical contact distribution
function S(r), which is also known as the pore size distribution function [80, 89].
Given an arbitrary point x in the complement of an SE random set, S(r) is
the probability that the nearest point in the random set to x lies within a
distance r of x. It can be estimated by finding the distance to the nearest point
in the random set from many locations in the void and using these distances
to construct an empirical cumulative distribution function. It has been used
to compare physical packings with simulated packings and to investigate the
applicability to packings of theoretical approximations for S(r) which arise in
statistical mechanics [106].

4.2. Point process statistics

When the packed objects are spherical, the centres of the spheres form a re-
alization of a point process which summarizes many important aspects of the
structure of the packing. As in the case of random set statistics, many point
process statistics were originally defined for use with SE point processes.

The basic point process statistics are estimators of functions of the Palm
measure and of the first and second moment measures of SE point processes
[107]. It is difficult to estimate statistics based on the third moment measure,
but statistics based on the number of r−close triples in a realization have been
constructed [108].

The intensity λ, defined for a SE process to be the mean number of points per
unit volume, is seldom estimated since λ is a constant multiple of φ̂1 for mono-
sized sphere packings. Local estimates of intensity have been used to investigate
the internal structure of large physical packings [36].

The K−function K(r) is the second reduced moment function of a SE point
process. The quantity λK(r) is the expected number of points in a disc of radius
r about a point in a realization. The central point of the disc is excluded from
the count. The pair correlation function g(r) is defined by

g(r) =
1

dbdrd−1

∂K(r)

∂r
,
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where bd is the dimension of the unit ball in R
d. The pair correlation function

may be also be referred to as the radial distribution function, although that
name is also applied to the quantity RDF (r) = λdbdr

d−1g(r). Statistics based
on g(r) are often used in the physics literature to describe point interactions
within realizations.

Estimates of g(r) for isotropic SE point processes are constructed as follows.
A sequence of concentric spherical shells differing in radius by δ > 0 are con-
structed around each observed point. At distances kδ, the total number of points
between the shells of radius (k−1)δ and kδ are averaged over all observed points
and then divided by the volume of the shell at distance kδ. These values are
then presented as a histogram, which is an estimate of g(r). For isotropic SE
point patterns it is necessary to make edge corrections to estimates of g(r) [109],
since the shells centered at points near the edge of the observation window will
extend beyond the window edge. These corrections could be omitted, provided
that every window has exactly the same size, shape, and position when applied
to the realizations. If corrections are not applied, the best choice is to only use
shells which lie entirely within the window.

An estimate of g(r) for a large simulated sphere packing is shown in Figure 6.
This type of plot has been used to show the effects on packing structure of
increasing the relative size of the Van Der Waals force in a DEM model [110].

Other statistics can be used to describe point interactions in realizations. If
x is any observed point in a realization of an isotropic SE process, then the
nearest-neighbour function D(r) at r is the probability that the nearest point
in the realization to x is within a distance r of x. If x is taken to be an arbitrary
point in space instead of an observed point, then the empty space function Hs(r)
at r is the probability that the nearest point in the realization to x is within a
distance r of x. For the Poisson process, these two probabilities are identical. For
monosized sphere packings, D(r) is certain to be a delta function located at the
diameter of a sphere. More informative are estimated distributions for distances
to the k-nearest neighbour [90], where k is larger than the minimum number of
spheres required to lock a particular sphere into a mechanically stable position.

4.3. Statistics based on triangulations and tessellations

Statistics based on triangulations and tessellations of sphere centres were ini-
tially applied to packings by physicists who were using physical packings as
models for the molecular structure of liquids and amorphous solids [9, 26]. Near
neighbours can be clearly defined as spheres whose centres are connected by a
triangulation edge, and the contact network of the packing is a subgraph of the
triangulation. The tessellation is the dual graph of the triangulation and is a
simplified description of the void structure of the packing.

The Delaunay triangulation and the Voronoi tessellation are generally used
as bases for statistics. The tessellation is constructed by finding all points in
R

d which are equidistant between sphere centres. Euclidean distance is used in
the construction, but other distance measures can be used to generate different
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Fig 6. Plot of the estimated pair correlation function g(r) for the centres of spheres in a sim-
ulated packing of 3456 monosized spheres of diameter 0.02 [111]. The curve has a singularity
at one sphere diameter, and has local maxima at

√

3 and 2 sphere diameters. The function
is asymptotic to 1 at large distances.

tessellation structures [112]. The triangulation is the dual of the tessellation,
generated by joining pairs of sphere centres which define a tessellation edge.
Figure 8 shows both the triangulation and tessellation generated by the centres
of the spheres in Figure 7. Figure 2 shows a tessellation skeletonizing the void
space around packed spheres.

The simplest statistics that can be extracted from triangulations and tessel-
lations are lists of characteristics for each cell. For both types of cells, the area,
the perimeter, the largest and smallest angles, and the longest and shortest
sides can be found. The coordination number of each sphere is defined to be the
number of its triangulation edges that belong to the contact network.

Statistics are calculated for each cell and then summarized either by a list
of summary statistics (mean, standard deviation, minimum, and maximum) or
by a histogram. In the physics literature, the histograms are often referred to
as plots of the distribution of the statistic. This statement is misleading, since
the histogram is summarizing a list of local features of a single observation un-
less the process is SE. Figure 9 shows the histogram for the cell volumes of
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Fig 7. A representation of the arrangement of packed discs in a subset of the packing seen
in Fig. 1. Measurement error associated with the image capture process makes it impossible
to determine which pairs of spheres are in contact.

the triangulation shown in Figure 8. Gamma density functions have been used
to summarize the shape of histograms for standardized [113] and unstandard-
ized [90] Voronoi cell volumes. Voronoi cell volumes have been proven to be
Gamma distributed for tessellations generated by homogeneous Poisson point
processes [114].

Tessellation statistics have been used to investigate the differences between
realizations of physical and simulated packings. Plots can be made of mean co-

ordination number versus φ̂1 [36, 115], or of the standard deviations of Voronoi

cell face area and volume against φ̂1 [116]. Comparisons of histograms of co-
ordination numbers are not powerful enough to clearly distinguish realizations
from different simulation algorithms [60].

Measurement errors in position observations and disc size observations can
prevent clear identification of pairs of contacting discs. When these errors occur,
the contact network cannot be accurately constructed. Figure 7 shows part of
the packing from Figure 1 after reconstruction from a digital image. While the
topological structure of its associated triangulation (Fig. 8) can be captured,
accurate extraction of the contact network is impossible.

There are often a small number of spheres within the interior of a physical
packing which are not rigidly held in place by other spheres. Triangulation-



94 J.D. Picka

Fig 8. Voronoi tessellation (red) and Delaunay triangulation (black) for the centres of the
spheres in Fig. 7. The triangulation connects each sphere centre with its near neighbours and
the tessellation summarizes the void structure around the discs.

based statistics can also be used to identify these spheres, which are known
as rattlers. The fraction of rattlers in a packing can be used as a measure of
packing efficiency [88]. Identification of rattlers is complicated by uncertainty
as to whether or not neighbouring spheres are in contact.

More elaborate statistics can be developed from the tessellation and the trian-
gulation. The local density of a packing can be defined as the ratio of the sphere
volume to the volume of its Voronoi cell [36]. The escape fraction statistic is the
empirical cumulative distribution function of the diameter of the largest sphere
that could escape from each tessellation cell through the gaps between neigh-
bouring spheres. It has been shown to distinguish between physical packings of
different volume fraction [36]. A topological density has been defined which is
based on a notion of topological distance [117, 118]. This distance is defined by
choosing a sphere, and then identifying a sequence of shells radiating out from
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Fig 9. Histogram of cell volumes from the triangulation in Figure 8. The shape of the cell
volume histogram can be summarized by a translated Gamma density with α = 3.95 and
a scale parameter of 13.92. This gamma density does not represent the distribution of any
clearly defined random variable, but instead summarizes information contained in a long list
of highly dependent local measurements taken on a single observed packing.

it. The first shell contains only those spheres which touch the central sphere,
the second contains all spheres in contact with the first shell but not contained
within the first shell, and so on. The density is defined as the leading coefficient
of the quadratic fit of the number of spheres in each shell to the shell number.
The smallest values of the topological density are those of point lattices.

4.4. Statistics based on local order

When physical packings were first proposed as models for the molecular struc-
ture of liquids, researchers sought to determine whether or not packings pos-
sessed some form of local order [7]. This local order would take the form of small
subunits with near-lattice structure, combined in a complicated way to produce
the general disorder of the packing.

The presence of locally-ordered structures within point patterns may not
be obvious to the eye. Materials have been found in nature which are quasi-
crystalline [119, 120]. The arrangement of atoms in these materials would appear
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disordered to the eye, but x-ray diffraction reveals that their structure can be
modelled by a projection into R

3 of a higher dimensional point lattice.

It is necessary to distinguish between topological and geometric concepts of
order. A packing is topologically ordered if the sphere centres can be continu-
ously translated so as to transform its Delaunay triangulation into a point lattice
without breaking any bonds [121]. In a planar packing, topological defects of
the lattice structure can be easily identified and counted [122].

A packing is geometrically disordered if its Delaunay triangulation differs
topologically from that of a point lattice. Statistics which quantify local order
within geometric disorder are based on local measurements which identify the
presence of point lattice structure. Statistics can be derived from the locations
of contact points on individual spheres, expressed in spherical coordinates. The
fourth- and sixth-order spherical harmonic functions can be evaluated for the
contact points on each sphere, and then averaged either over the individual
spheres or over many spheres. The fourth-order harmonics have non-zero aver-
ages in the presence of local cubic lattice structure, while the sixth-order har-
monics have non-zero averages in the presence of local hexagonal close-packed
lattice structure. Averages over single spheres have been used to study the struc-
ture of very large physical packings [36]. Averages over many spheres were orig-
inally developed to study the emergence of crystallization in simulated liquids
[123, 124], and improved averages have been used to compare realizations of
simulated sphere packings [43]. Averages over many spheres based on the sixth
harmonic were used to describe the reduction in disorder observed in simulated
sphere packings seen in long runs of the Jodrey-Tory packing simulation al-
gorithm [125]. Two different many-sphere averages of the sixth harmonic have
been used to compare realizations from three different rearrangement models
[126]. Neither average was powerful enough to distinguish between realizations
from different models.

Statistics based on spherical harmonics cannot identify ordered structure
that is found within small clusters of neighbouring spheres. Statistics which
reveal this type of ordered structure can be constructed using the side lengths
of Delaunay simplices, which are tetrahedra formed by four Delaunay triangles
which share common edges [127]. In studies of the crystallization of packings
over long runs of the Jodrey-Tory algorithm, measures of tetrahedracity and
quadroctahredracity were found to be more powerful at tracking changes than
were the averages of spherical harmonics [87].

4.5. Statistics based on models for physical properties

Mathematical models for physical phenomena can be applied out of physical
context to yield new statistics. Suppose that a specimen of composite material
has the structure of a sphere packing. The inclusion phase is represented by the
spheres, while the matrix phase is represented by the void around the spheres. If
the two phases have different physical properties, then the bulk physical proper-
ties of the composite are found by solving a set of differential equations that use
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the packing structure as a boundary condition. These bulk properties describe
the structure of the packing in a very different way from moment-based and
traditional tessellation-based statistics.

4.5.1. Statistics based on frictionless flow

In frictionless flow, a fluid experiences no internal resistance due to shear. Heat
flow by means of conduction and the flow of electricity are examples. Models
for frictionless flow are relatively simple to construct.

For electrical flow, the packing and its complement can be considered to be
two materials with differing electrical resistivity. On the surface of the packing,
two disjoint sets of spheres can be considered to be connected to electrodes of
infinite conductance. When a unit DC potential is placed between these elec-
trodes, the potential can be calculated at all points within the packing and
its complement. From this, a bulk resistance for the composite can be calcu-
lated. This resistance defines a mean distance across the packing [128], whose
form is determined both by the relative resistivity of the two phases and by the
disordered structure of the packing.

For a composite modelled by a disordered packing, the bulk resistance is dif-
ficult to calculate. There are no exact methods, and numerical methods require
that the packing be discretized very crudely. If equal resistance is assigned to
all of the edges of the contact network, then the potential at all vertices of the
circuit can be found easily be means of the properties of random walks through
the network [129]. The bulk resistance is a weighted average of potentials at the
electrode regions. If the network lies in the plane, the potentials can be plotted
and used as a diagnostic tool. A plot of the current along each edge, as cal-
culated from potential differences between the defining vertices, is more useful
than the potential as a descriptor of structure. Bulk resistance has been used to
develop a test for the presence of anisotropy in sphere packings [130].

Models for heat conduction can also be used. The spheres in a packing can be
expanded in order to generate contact surfaces between neighbouring spheres.
A plot of the bulk heat conductance of a packing as a function of the degree
of spherical expansion has been used to distinguish between packings generated
by different models [131].

4.5.2. Statistics based on shearing flows

If a fluid flows through a fixed packing, it develops internal frictional losses
which depend on the void structure of the packing. If the packing itself is made
to flow as a powder, then its flow is strongly affected by frictional losses arising
from collisions between spheres. These losses greatly complicate the modeling
of the flows.

If the packing is considered to be fixed, the flow of a fluid through its com-
plement can be modeled. All fluid flow is assumed to be laminar, since modeling
turbulent flow through a complex structure is impractical. Major simplifications
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are required in order to be able to calculate bulk flow properties. The comple-
ment of the packing can be represented by a piping network whose structure
is determined from the Voronoi tessellation, and pipe resistances can be as-
signed on the basis of local void geometry [19]. The velocity profile and pressure
gradient of the simulated flow can be used as statistics. If the diffusion of con-
taminants through the flow is modeled [132], many different statistics related to
contaminant flux and concentration can be calculated.

If the packing itself flows, this flow can take place in a vacuum, in air, in a
liquid, or in both air and liquid. These flows can be modeled using DEM models
which represent compaction processes that do not induce particle fracture [133,
134], flow in mixers and drums [135–137], and flow during avalanches [138,
139]. Flow in mutiaxial [53, 140, 141], and shear test apparatus [142, 143] can
also be simulated. The most useful statistics would emerge from models for
flows in which the spheres are nearly packed and the triangulation changes
gradually over time. Flows of fluidized packings would be less useful, since the
triangulation would be rearranged by the fluidization process. A plot of the
number of sliding contacts between spheres as a function of the total number of
contacts during simulated flow can distinguish between realizations of different
packing models [144].

4.5.3. Thermodynamic statistics

Given a packing of spheres in a region with periodic boundaries, each sphere can
be very slightly shrunken in place. The shrunken spheres can be acted upon by a
pre-specified potential, and the motion of the particles under that potential can
be tracked. Algorithms for simulating these motions have been developed as part
of thermodynamic models for hard-sphere atoms [145–147], and also for non-
spherical shapes [58]. Once these algorithms have been run through many time
steps, statistics representing pressure, temperature, and other thermodynamic
quantities can be calculated.

4.6. Graphical methods

Graphs and images can be used to reveal internal structure that can be used as
the basis of new statistics.

A simple plot of the discs in a realization can reveal the near-ordered arrange-
ments of planar packings of monosized discs. The Delaunay triangulation can
be plotted on top of the discs, and triangles can be coloured to identify triples
of discs in mutual contact [93]. Edges of the triangulation which are associated
with defects can be coloured to illustrate the overall structure of those defects
in large packings [71].

To produce images of the arrangements of spheres, it is necessary to use
ray tracing to induce shadows on sphere surfaces. Colours can also be used to
identify spheres with unusual local properties (see Fig. 2). Specialized software
such as the Voro++ package is needed to produce these plots [1].
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4.7. Other statistics

Descriptive statistics for packings of n spheres must summarize features of a
subset of a very high dimensional space. There is no theory that establishes that
the statistics listed in the previous sections are sufficient to accomplish this. To
find additional statistics, it is possible to examine unusual experimental results,
model possible mechanisms to explain these results, and then develop statistics
based on these models.

Agitation of granular materials can cause size segregation [148, 149]. While
intuition suggests that large dense objects should settle while small light objects
would rise, the opposite can happen in mixtures of nuts containing large and
dense Brazil nuts [49]. Simulated sphere packings have been used to investigate
the paradox [150, 151]. These simulation experiments could be used as sources
of new statistics for polydisperse packings.

4.8. Smoothly defined and structurally defined statistics

Many descriptive statistics for disordered packings are lacking in power and are
difficult to interpret on account of how they are defined. Suppose that a statistic
is based on measurements taken at many different locations within a single
packing. This statistic will be smoothly defined if it assigns equal importance to
each of the measurements on which the statistic is based.

To estimate the 2-point correlation function φ̂2(r) for a disc packing, a fine
regular lattice of N observation points can be imposed over the packing. At
each observation point, a value of 1 is assigned if the point and its translate
by a vector of length r are both in a disc. Otherwise, the value 0 is assigned.
This procedure would be repeated for k different equally-spaced orientations of
a vector of length r at each observation point. The estimate is constructed by
taking the average of the Nk values. While the statistic does contain information
about the internal dependence structure of the packing, its construction mixes
local measurements of dependence with no regard for the overall disordered
arrangement of the spheres.

Other smoothly defined statistics can be constructed from the Delaunay tri-
angulation or the Voronoi tessellation. When a histogram is made of all triangle
areas from a triangulation, all information about how the triangles fit together
is lost. The same is true for averages of triangle areas, their standard deviations,
and their extreme values.

Statistics based on physical properties differ from smoothly averaging statis-
tics in that their construction depends on the disordered arrangement of the
spheres alone. Bulk electrical resistance can be thought of as a distance across
a network through which current flows. This distance is based on a weighted
average of all the possible paths that could be taken across the network, with
the weights being chosen to be consistent with the laws of electricity and the
paths being defined by the disordered structure of the network. Any statistic
based on path properties of a random walk or on the properties associated with
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mechanical deformation of the packing would also be dependent on the entire
packing structure. The form of these statistics are structurally determined by
the disordered arrangement of the spheres.

Statistics which are smoothly defined are ideal for use with the Poisson pro-
cess, where there is no interaction between the points in a realization. For a point
process defined by the centres of packed spheres, smoothly defined statistics are
often estimated on a length scale which is much smaller than that of the indi-
vidual sphere diameters. Information about sphere shape becomes confounded
with interaction effects. This confounding makes the value of the statistic diffi-
cult to interpret in terms of features of the realization which can be seen. When
physics-based statistics are used on packings, all of the information is captured
on the same length scale as the spheres. There is a vast literature associated with
electrical, granular-flow, and fluid-flow properties which relates those properties
to easily-visualized physical phenomena.

4.9. Asymptotics

Finding the exact distribution of point process statistics is very difficult or im-
possible, except in the case of the Poisson process. Conventional asymptotic
methods can be used to find between-realization distributions for some statis-
tics when a large number of packings are observed. It is also possible to take
thermodynamic limits by increasing the number of spheres in the packing on
which the statistic is calculated.

Laws of large numbers based on thermodynamic limits are of great impor-
tance in materials science and physics. If a composite can be modeled by a
packing with the spheres and the void having different electrical resistances,
then sufficiently large specimens will have the same bulk resistance regardless
of the structure of the packing. In the case of ideal gases, equilibrium statis-
tical thermodynamics [152–154] derives limit laws from probabilistic models of
atomic behaviour. The limiting quantities, experienced as pressure, tempera-
ture, volume, and entropy, show no signs of variability arising from the dynamic
chaos present at the atomic level.

The proofs of central limit theorems and laws of large numbers in thermo-
dynamic limits require that the dependence of one sphere’s location on that of
another declines sufficiently fast as the distance between the spheres increases.
For a ballistic deposition model, limit theorems have been proven for statis-
tics describing the time evolution of the packing height as the area over which
spheres are deposited increases [155]. Attempts have been made to construct
traditional statistical physics models for packings [156, 157]. These attempts
are based on the assumption that all packed configurations are equally likely to
occur, which is contradicted by experimental evidence [31].

Thermodynamic limits are not necessarily useful in all applications. If a tube
has a diameter of 15 cm, packing it with 1 cm diameter plastic spheres is much
different from packing it with plastic spheres having a diameter of 10 µm. In-
teratomic and electrostatic forces will cause packings of very small spheres to
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have a much different structure than packings whose formation is governed by
frictional forces alone.

The mathematical intractability of probabilistic limit laws for disordered spa-
tial patterns has resulted in the development of alternative approaches to finding
thermodynamic limits for statistics. If a composite is modeled by a lattice pack-
ing of spheres, then methods from potential theory can be used to get very good
approximations for the bulk electrical conductance [158, 159] based on the con-
ductance of individual spheres. When the packing is disordered, these methods
cannot be used on account of lack of symmetry. Homogenization [160, 161] can
be used to find the limiting behaviour of statistics defined by differential equa-
tions which have spatially varying boundary conditions. Often, these results are
presented as bounds between which the limiting value of the statistic must fall.
While the mathematical arguments behind homogenization represent an elegant
use of the calculus of variations, it is unclear that the underlying assumptions
for these arguments can satisfied by any real material. In one case, a mathemat-
ical argument has been constructed to establish that a structure exists which
has a particular homogenization limit for bulk electrical resistance [162].

5. Inference

The central unsolved problem in statistical inference for packing processes is
how to assess the adequacy of a fitted model. If this assessment is undertaken
carelessly or not at all, there is no basis for assuming that the realizations of
the model represent any aspect of reality.

Packing process models can be fit by means of the method of minimum
contrast [163]. Parameter estimates are chosen by minimizing the difference
between a statistic calculated from the model and a statistic calculated from the
data. Often, the statistic chosen is the K−function. This method ensures that
there is some resemblance between the model output and the data, but it says
nothing about how far that resemblance can be extended. Since the K−function
lacks the power to distinguish point patterns which can be distinguished by eye
[164], there is no reason to believe that a fit based on it will result in a good fit
for other statistics calculated from the packing.

It is not possible to avoid assessing a model for a packing process by claiming
that the model is derived from physical first principles. Physical models may
form packings by a different mechanism than does the physical packing process
that the model is supposed to represent. Ballistic and re-arrangement models
construct packings by methods which have no connection to physical processes.
DEM models depend on assumed models for unobserved interactions between
spheres that drive packing formation.

The type of model assessment required depends on the purpose of the model.
The physical property of interest for the packing must be summarized by a
response statistic, ideally one which is univariate. If the model is needed solely to
make predictions and the fitted model reliably gives highly accurate predictions
in all of the circumstances where it is needed, then no further model assessment
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may be necessary. If the model is needed to explain how the response emerges
from the detailed structure of the packing, if the fitted model predictions are not
accurate, or if a highly robust prediction model is needed, then it is necessary
to engage in an extensive assessment of the fitted model.

Assessment of fitted models is only possible if a significant amount of the vari-
ability in the response statistic can be explained by a small number of descriptive
statistics. If response variability is explained by many different mechanisms that
require dozens of statistics to describe, then it is unlikely that any assessment
will be possible, or that any useful model will be constructible. The extremely
high dimension and complexity of the sample space implies that there is no
guarantee that a low-dimensional collection of explanatory descriptive statistics
will exist.

Finding the explanatory statistics which explain response variability is the
single most difficult problem in assessing the models. It is analogous to establish-
ing that the properties of an ideal gas at equilibrium can be described primarily
by its temperature, its volume, its pressure, and the number of atoms. No theory
has been developed to establish how many explanatory statistics are needed to
explain a response, nor is there any clear way to find these statistics. They need
to be discovered, as the ideal gas law was discovered, by doing many experiments
and devising new summarizations of the important aspects of the experimental
results. Instrumentation must be available to ensure that the statistics can be
accurately measured, especially in the case of three-dimensional packings.

Since the model will not be able to exactly reproduce packings observed
in experiments, values of the explanatory statistics from one observed packing
cannot be compared with statistics from a single simulated packing. Instead,
model evaluation must be based on comparing the joint distributions of the
explanatory statistics arising from the model and arising from the data. If a
comprehensive collection of explanatory variables has been found and there is
no strong evidence that the two joint distributions differ, then the model can
be considered to represent the observed physical packing process.

Some progress has been made towards the development of methods for model
assessment in packings. Various methods have been developed for describing de-
viations from complete spatial randomness in stationary point patterns [165],
but it is not clear if these methods will be useful for distinguishing between
different types of non-Poisson disorder. Residuals for point processes have been
developed [166] which can be used to detect spatial trend and interpoint inter-
action effects. Physicists have used descriptive statistics to quantify differences
between simulation models for packings [167–169] and between different types
of physical packings [36]. Descriptive statistics have also been used to quantify
the effects of changing parameters in DEM models [170].

6. Conclusions

Sphere packing processes challenge basic working assumptions used in both
spatial statistical inference and in the fields of application.
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There are no formal models for packing processes, and so Bayesian and
likelihood-based inference are impossible. Physical models and simulation algo-
rithms are the only models available, and they cannot be analyzed using formal
mathematical arguments. All forms of inference must be based on comparing
a random sample from the model with a random sample from an experiment.
No useful information can be found from a single large realization, since the
processes being studied are neither stationary nor ergodic nor isotropic. In any
comparison of a single large observation with a single packing from a model,
there will be no way of knowing which attributes of the packings are typical and
which arise from between-realization variability.

The internal disorder within a realization cannot be represented by a random
model, as is the case with Markov spatial processes. Instead, the between-sample
variance in response statistics must be explained by descriptive statistics which
summarize aspects of the disorder within each realization. Existing descriptive
statistics are mostly constructed for stationary and isotropic processes, and so
are unlikely to be able to fully capture the effects of within-realization inhomo-
geneity. New statistics will be required to for particular responses, and general
theories for the physical properties of packings will only emerge if common sets
of descriptive statistics can be used to explain many different responses in many
different physical systems.
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[25] Markót, M.C. Optimal packing of 28 equal circles in a unit square - the
first reliable solution. Numer. Algorithms, 37:253–261, 2004. MR2109911

[26] Finney, J.L. Random packings and the structure of simple liquids I. The
geometry of random close packing. Proc. R. Soc. A, 319:479–473, 1970.

[27] Zavaliangos, A. A numerical study of the development of tensile princi-
pal stresses during die compaction. Part. Sci. Tech., 21(2):105–115, 2003.

[28] Procopio, A.T. and Zavaliangos, A. Simulation of multi-axial com-
paction of granular media from loose to high relative densities. J. Mech.

Phys. Solids, 53:1523–1551, 2005.
[29] Ruelle, D. Statistical Mechanics: Rigorous Results. Benjamin, 1974.

MR0289084
[30] Møller, J. and Waagepetersen, R.P. Statistical Inference and Sim-

ulation for Spatial Point Processes. Chapman and Hall, 2004. MR2004226

http://www.ams.org/mathscinet-getitem?mr=1786410
http://www.ams.org/mathscinet-getitem?mr=0385969
http://www.ams.org/mathscinet-getitem?mr=2132405
http://www.ams.org/mathscinet-getitem?mr=0200798
http://www.ams.org/mathscinet-getitem?mr=1907828
http://www.ams.org/mathscinet-getitem?mr=1309122
http://www.ams.org/mathscinet-getitem?mr=2109911
http://www.ams.org/mathscinet-getitem?mr=0289084
http://www.ams.org/mathscinet-getitem?mr=2004226


Statistical inference for disordered sphere packings 105

[31] Gao, G.-J., Blawzdziewicz, J., O’Hern, C.S., and Shattuck,

M. Experimental demonstration of nonuniform frequency distributions
of granular packings. Phys. Rev. E, 80:061304, 2009.

[32] Ikegami, T. Contacts and coordination numbers in a compact of poly-
hedral particles. Journal of the American Ceramic Society, 79:148–152,
1996.

[33] Bernal, J.D., Cherry, I.A., Finney, J.L., and Knight, K.R. An
optical machine for measuring sphere coordinates in random packings. J.
Phys. E, 3(5):388–390, 1970.
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