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Abstract: Recently, some nonparametric regression ideas have been ex-
tended to the case of functional regression. Within that framework, the
main concern arises from the infinite dimensional nature of the explana-
tory objects. Specifically, in the classical multivariate regression context,
it is well-known that any nonparametric method is affected by the so-
called “curse of dimensionality”, caused by the sparsity of data in high-
dimensional spaces, resulting in a decrease in fastest achievable rates of
convergence of regression function estimators toward their target curve as
the dimension of the regressor vector increases. Therefore, it is not sur-
prising to find dramatically bad theoretical properties for the nonparamet-
ric functional regression estimators, leading many authors to condemn the
methodology. Nevertheless, a closer look at the meaning of the functional
data under study and on the conclusions that the statistician would like
to draw from it allows to consider the problem from another point-of-view,
and to justify the use of slightly modified estimators. In most cases, it can
be entirely legitimate to measure the proximity between two elements of
the infinite dimensional functional space via a semi-metric, which could pre-
vent those estimators suffering from what we will call the “curse of infinite
dimensionality”.
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1. Introduction

Consider the classical multivariate regression model

Y = m(X) + ε, (1.1)

where Y is a scalar response, X a p-dimensional vector of continuous covariates,
m(·) a smooth function from R

p to R, and ε a random disturbance such that
E(ε|X) = 0 almost surely. In this context, the estimation of m(·) from a sample
of observations, say {(Xk, Yk), k = 1, . . . , n}, is of great interest as this function,
easily seen to be the conditional mean of Y given the value of X , captures the
effect of the regressors on the response. Nonparametric methods have been pro-
posed for many decades in literature, as an alternative basing this estimation
on hazardous prior parametric assumptions on the shape of m, and granting the
model maximal flexibility. See [18] for a complete overview of the nonparamet-
ric regression theory. Historically, the first nonparametric univariate regression
estimator was independently proposed by [21] and [28], and is given by

m̂(·) =

∑n
k=1 K((· −Xk)/h)Yk

∑n
k=1 K((· −Xk)/h)

,

where K, called the kernel function, is usually a univariate density function,
symmetric, supported on [−1, 1] such that xK ′(x) ≤ 0, and h is a positive
number depending on n known as the bandwidth. For any x in the domain of
interest, the estimation m̂(x) therefore turns out to be the weighted average of
the observed responses {Yk}, with weights depending upon the distance between
x and Xk: the kernel K defines the way the weights decrease with the distance,
while the bandwidth h quantifies the notion of closeness between two points
of R. Thereby, only those observations such that Xk lies within ]x − h, x + h[
are used in the estimation of m at x. This estimator is readily adapted to the
multivariate setting as

m̂(·) =

∑n
k=1 K(H−1(· −Xk))Yk

∑n
k=1 K(H−1(· −Xk))

, (1.2)

where the kernel K is now a p-variate density and H a (p × p) bandwidth
matrix, with respective roles similar to previously. Very often, in order to keep
the symmetric nature of the kernel function (up to a suitable normalization of
the different components of X), H is chosen as the diagonal matrix

H = hIp (1.3)
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for some scalar bandwidth h, and K is taken as

K(u) = K(‖u‖), (1.4)

with K a univariate density supported and decreasing on [0, 1], and ‖ · ‖ the
usual Euclidean norm of Rp. Then, only those observations with Xk belong-
ing to the hypersphere of radius h centred at x are used in the computation
of m̂(x). Although many other nonparametric regression estimators have been
subsequently developed, and sometimes shown to outperform it (see [8]), the
Nadaraya-Watson (NW) estimator remains a reference in nonparametric regres-
sion theory, as well as in lots of practical studies, mainly due to its simplicity
of derivation, interpretation and implementation. Therefore, plenty of theoret-
ical results about it are available. For instance, it is well-known that, under
appropriate mild assumptions,

E(m̂(x)) −m(x) = O(h2) (1.5)

and
Var(m̂(x)) = O((nhp)−1) (1.6)

for x fixed in the interior of the domain under study, so that pointwise con-
sistency of the estimator requires the following two conditions: h → 0 and
nhp → ∞. This is understood intuitively: when estimating m at x, h must tend
to zero in order to keep only relevant information, that is observations as close
as possible to x to avoid bias, but at the same time the number of observations
used in the estimation i.e., the observations in the concerned neighborhood of x,
needs to grow to infinity so as to ensure that the variance of the estimator tends
to zero. Note that, from a basic binomial argument, this number of observations
effectively used in the estimation is asymptotically equivalent to nϕx(h), where
ϕx(h) is the small ball probability

ϕx(h) = P(‖X − x‖ ≤ h).

If X admits a density f bounded away from zero, which is usually assumed,
then it is readily seen that

ϕx(h) ∼ f(x) hp 2πp/2

Γ(p/2)

as h → 0, where hp(2πp/2)/Γ(p/2) is the volume of the hypersphere of radius h
in R

p. Therefore, nϕx(h) ∼ nhp, and this must tend to infinity. Note that the
condition can also be strengthened to (logn)−1(nhp) → ∞ to get the consistency
uniformly in x. Also, [27] showed that, if m is r times differentiable, the fastest
achievable rate of uniform convergence of m̂ to m is (logn/n)r/(2r+p), which
clearly emphasizes the role of the dimension of the regressor vector in the quality
of the estimator: increasing the number of regressors dramatically decreases
its performance. This phenomenon, essentially due to the sparsity of data in
higher dimensional spaces, is known as the curse of dimensionality and probably
represents the main drawback of nonparametric techniques.
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On the other hand, an interesting extension of the model (1.1) is to let p
become infinitely large, which introduces the functional regression problem. A
random element is said to be functional if it takes its values in an infinite di-
mensional space. To fix ideas, only random curves will be considered in the
sequel, although many other random elements enter this general definition (vec-
tors of random curves, random surfaces, random fields of any dimension,. . .).
Concretely, the regression problem is no longer about linking the response Y
to just a set of p characteristics (X(1), . . . , X(p)), but rather to a whole curve
observed on a domain T

X
.
= {X (t) : t ∈ T },

as is often the case required in various applications, from quantum mechanics to
econometrics, communications, medicine, musicology and climatology. Thereby,
the functional regression model we consider is

Y = µ(X ) + ε,

with Y ∈ R and ε a scalar random disturbance such that E(ε|X ) = 0 almost
surely. The random curve X is assumed to belong to an appropriate set of func-
tions, say the set L2(T ) of all square-integrable functions on T , so that µ(·) is
now an operator from L2(T ) to R satisfying some necessary regularity condi-
tions. For a long time, only parametric models were developed for estimating
µ in this context, see [24, 25, 26, 5, 9] or [19]. However, in the functional case
there is no visual guide available since any graphical representation is inconceiv-
able in an infinite-dimensional space. As graphical techniques like scatter-plots
and residual plots are usually the primary tools to define and validate a suit-
able parametric regression model, it is not surprising that the risk of model
misspecification is even higher in the functional regression problem than in the
vectorial case. The flexibility guaranteed by nonparametric methods therefore
led the authors in [10], following some pioneer papers, to recently propose the
generalization of the Nadaraya-Watson estimator to the case of functional re-
gression. Section 2 describes the basic extension, which we call the naive func-
tional Nadaraya-Watson estimator, and points out the main problem that arises
from this. In Section 3, some thoughts and examples motivate the use of another
concept of proximity rather than a classical norm, whilst in Section 4, this con-
cept is properly defined and adapted to the NW estimator. Section 5 illustrates
these ideas on a real data example, and Section 6 concludes.

2. The naive functional Nadaraya-Watson estimator and the curse

of infinite dimensionality

From the brief reminder of the ideas underlying the Nadaraya-Watson estimator
given in Section 1, an extension to the functional case is straightforward. The
natural distance between two elements of L2(T ), say χ1 and χ2, is measured in
term of the L2-norm of their difference, defined by

‖χ1 − χ2‖2 =

(
∫

T

(χ1(t)− χ2(t))
2dt

)1/2

,
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so that, from a sample {(Xk, Yk) ∈ L2(T )×R, k = 1, . . . , n}, the NW estimator
of the operator µ applied to some fixed element χ of L2(T ) is given by

µ̂(χ) =

∑n
k=1 K(‖χ−Xk‖2/h)Yk

∑n
k=1 K(‖χ−Xk‖2/h)

, (2.1)

similarly to (1.2), (1.3) and (1.4), with K a univariate kernel function and h a
scalar bandwidth. In the same spirit as the development which yields (1.5) and
(1.6), [12] showed that estimator (2.1) is such that, under appropriate conditions,

E(µ̂(χ))− µ(χ) = O(h)

and
Var(µ̂(χ)) = O((nϕχ(h))

−1),

where ϕχ(h) is the small ball probability associated to the random functional
X in L2(T ), that is

ϕχ(h) = P(‖X − χ‖2 ≤ h).

The rate of convergence of µ̂ toward µ ought to be directly influenced by its
variance, and therefore by this small ball probability. Although it is not really
necessary, assume there exists an operator φ from L2(T ) to R+ and an absolutely
continuous function ν from R

+ to R
+ with ν(0) = 0, such that

ϕχ(h) ∼ ν(h)φ(χ) (2.2)

as h → 0. This allows to draw clear parallels with the vectorial situation, seeing φ
as the functional probability density of X at χ, while ν, called the concentration
function, measures how densely packed are the considered elements of L2(T ) in
an infinite-dimensional ball of radius h. Furthermore, how this function precisely
behaves represents the main difference between the functional and the vectorial
cases. In the Euclidean space R

p, the concentration is only dictated by the
volume of the p-dimensional sphere of radius h, so that ν(h) ∼ hp, while in
the functional context of interest, it also depends upon the structure of the
stochastic process regulating the behavior of X and on the considered topology.
Although this can hardly be stated in general, it appears that any continuous
time random process which has been studied so far (see [11] for a comprehensive
discussion), for instance in the common classes of Gaussian processes or diffusion
processes, admits a concentration function associated with any usual norm (such
as any Lp-norm) of the form

ν(h) ∼ h−α exp(−ch−β) (2.3)

as h → 0, for some positive constants α, β and c, so that it can be conjectured
that ν(h) typically decreases to 0 exponentially quickly as h → 0 in our con-
text. In light of the usual observations related to the curse of dimensionality in
the multivariate setting, this extreme sparsity of data in the functional space of
interest is expected to yield poor theoretical properties for the estimator (2.1),
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and indeed, it can be shown that the rate of convergence of µ̂ toward µ is of
order (logn)−γ , for some γ > 0. This unacceptable logarithmic rate, conse-
quence of what we could call the curse of infinite dimensionality, has brought
many authors to forget about nonparametric estimators for functional regres-
sion. Nevertheless, results of [10] show that the use of another wisely chosen
proximity measure in place of ‖ · ‖2 in the previous development can get around
this curse. This idea is explored and justified in the next section.

3. A closer look at functional data

Clearly, the failure of the naive functional Nadaraya-Watson estimator described
in the previous section arises from the dramatically fast decrease of the concen-
tration function (2.3) when h tends to zero. Concretely, for a fixed χ, there are
too few Xk close enough to χ in the sense of ‖ · ‖2, even when the sample size
grows to infinity, and hence insufficient to make the estimation of µ(χ) reli-
able. Therefore, an interesting idea would then be to use a “looser” proximity
measure between functions, which would result in another concentration func-
tion, that hopefully decreases less rapidly. In other words, a proximity measure
which would find more curves close to each other, and therefore would allow
more observations to enter the computation of µ̂(χ).

Actually, the L2-norm is the strict generalization of the Euclidean norm to
functions. As such, it just considers functions as infinite-dimensional vectors,
only focusing on the actual values taken by the functions, and by doing so
it fails to capture many of the features proper to functions, such that their
general appearance, the way they vary over short or long range, etc. This fact
is illustrated by the following two examples.

Example 1. Consider the two functions χ1 and χ2 represented in Figure 1.
If you ask people if they are similar or not, without specifying how “similar”

is to be understood, many would answer in the affirmative. Indeed, the striking
point when looking at this graph is that their general appearance is almost
identical (actually it is identical), and that only a vertical shift makes them

χ1(t)

χ2(t)

t

χ(t)

Fig 1. Example 1.
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different. Nevertheless, the L2-norm, quantifying in a sense the area between the
curves, only focuses on that shift, and concludes that they are totally different.
This would probably be suitable if the actual values taken by the functions
were of importance in the problem under study, but if they are not, e.g. if
only the shape of the functions is related to the response Y , this may lead to
wrong conclusions. In this latter case, the proximity between χ1 and χ2, say
((χ1 − χ2)), could be based on the norm of the difference between their first
derivatives, which obviously cancels out in the case of a vertical shift:

((χ1 − χ2)) =

(
∫

T

(χ′

1(t)− χ′

2(t))
2dt

)1/2

. (3.1)

With the two curves represented in Figure 1, we would have ((χ1 − χ2)) = 0.

Example 2. Consider the oscillating functions χ1, χ2 and χ3 represented in
Figure 2, and again one can ask people if they are similar or not. Probably most
would answer would that χ1 and χ2 are similar, but both very different to χ3.
Nevertheless, ‖χ1−χ2‖2 is certainly not small, owing to the differing amplitude
and phase of the respective oscillations. What make them similar is the general
trend they seem to share, and which is totally different to the general trend of
χ3. Suppose that the oscillations are just noise, and that only the general trend
of the curves is relevant in the regression model. Then, the proximity measure
could be based for instance on the first term(s) in some suitable polynomial
expansions, in order to have ((χ1−χ2)) ≃ 0, ((χ1−χ3)) ≫ 0 and ((χ2−χ3)) ≫ 0.
On the other hand, if the response is mainly related to the oscillating behavior
of the functional predictors and not at all to their trend, it would be interesting
to work with a proximity measure such that ((χ2−χ3)) ≃ 0 and ((χ1−χ2)) ≫ 0,
for example by basing it on the Fourier transform of the considered curves.

The previous two simple examples emphasize that the natural norm ‖ · ‖2 is
probably too exacting in most situations, as it fails to leave out some irrelevant
features of the curves in the analysis, whereas other looser proximity measures

χ1(t)

χ2(t)

χ3(t)

t

χ(t)

Fig 2. Example 2.



Nonparametric functional regression 37

might do a better job. Besides, using such measures rather than ‖ · ‖2 would
kill two birds with one stone in that: (i) we have the liberty to focus on some
particular characteristics of the curves that we know to be directly related to
the response, and (ii) as some differences between curves are smoothed over, the
associated concentration function should (hopefully) decrease much slower than
the one associated to ‖ · ‖2. Proximity measures such as (3.1) are actually semi-
norms, and some results of [10] fully support assertion (ii). The next section
summarizes those results.

4. Semi-norms and related results

A measure (( · )) is a semi-norm on L2(T ) if (i) for all λ ∈ R and χ ∈ L2(T ),
((λχ)) = |λ|((χ)), and (ii) for all χ1, χ2 ∈ L2(T ), ((χ1+χ2)) ≤ ((χ1))+ ((χ2)). The
important point is that it is not required that ((χ)) = 0 if and only if χ = 0, as
it should for (( · )) to be a genuine norm. Note that this is well in accord with the
ideas put forward in the previous section: the proximity measure flattens some
differences out, as you could find distinct elements χ1 and χ2 with ((χ1−χ2)) = 0.
The general idea is therefore to work in a semi-normed functional space, that
is a functional space endowed with a semi-norm (( · )), rather than in the usual
normed spaces, such as Banach or Hilbert spaces. Obviously, the selected semi-
norm has to be able to extract the whole information needed to link the response
to the functional predictor, which can be formalized by the property

µ(χ) = E
(

µ(X )|((X − χ)) = 0
)

. (4.1)

This assertion is therefore a key for the consistency of the estimation procedure
and has consequently to be rigorously verified.

Now, once a semi-norm (( · )) has been selected, the functional Nadaraya-
Watson estimator naturally becomes

µ̂(χ) =

∑n
k=1 K(((χ−Xk))/h)Yk

∑n
k=1 K(((χ−Xk))/h)

. (4.2)

Naturally, the performance of this estimator again strongly depends on the
concentration function associated with the considered semi-norm. Although it is
not possible to give general results about concentration functions for continuous
random processes in semi-normed spaces, Lemma 13.6 of [10] provides some
interesting results. We particularize them to our case, working with the inner

product 〈χ1, χ2〉 =
(∫

T χ1(t)χ2(t)dt
)1/2

in L2(T ), via the following two lemmas.

Lemma 4.1. Suppose that {ej , j = 1, 2, · · · } forms an orthonormal basis of
L2(T ), so that any element χ of L2(T ) can be written χ =

∑

∞

j=1〈χ, ej〉ej. Then,
the function defined as

((χ))p =

√

√

√

√

p
∑

j=1

〈χ, ej〉2, (4.3)

with p a fixed positive integer, is a semi-norm on L2(T ).
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This kind of semi-norm is often called ‘projection-type’, as it essentially re-
turns the L2-norm of the projection of the element of interest on a p-dimensional
subset of L2(T ). The main asset of using such a semi-norm is highlighted by the
following result.

Lemma 4.2. Let X be a random element of L2(T ), and write X =
∑

∞

j=1 X
(j)ej

with X(j) = 〈X , ej〉. If the random vector (X(1), X(2), . . . , X(p)) admits an ab-
solutely continuous density on R

p, then the concentration function associated to
the semi-norm (4.3) is such that

ν(h) ∼ hp. (4.4)

The advantage is evident: the concentration function associated to this kind
of projection semi-norms decreases to zero at the same rate as for usual p-
dimensional random vectors (see the lines following (2.2)), which is no real
surprise as each functional object is now essentially characterized by a vector
of p components 〈χ, ej〉, j = 1 . . . , p. Obviously, (4.4) decays to 0 much slower
than what (2.3) indicates. Note that many practical procedures make use of this
result, as it applies to any semi-norm based on some expansion of the functions
of interest in some basis of L2(T ), for instance in Example 2 above: we have
expansion in a polynomial basis or expansion in a Fourier basis. One can also
think of the expansion in the orthonormal basis of eigenfunctions arising from
a functional Principal Components Analysis (see a.o. Chapter 6 in [24]). Be-
sides, the assumption made on the joint distribution of (X(1), X(2), . . . , X(p)) is
usually fulfilled in practice. For instance, the coefficients (X(1), X(2), . . . , X(p))
arising in a Karhunen-Loève expansion of a Gaussian or a Wiener process form
a multivariate gaussian vector. In consequence of (4.4), the rate of uniform
convergence of estimator (4.2) computed from this kind of semi-norm is sim-
ilar to those in the p-dimensional case, that is, under appropriate conditions,
(n−1 logn)r/(2r+p), where r quantifies the smoothness of µ with respect to (( · )).
As expected, the use of a suitable semi-norm allows to get around the curse of
infinite dimensionality. Furthermore, the problem even amounts to a univariate
regression if it makes sense, in the considered context, to measure the proximity
between two functions through their first components in a suitable expansion.
Note that this totally concurs with an idea of single-index model in a functional
framework, see [1].

Now, the problem of selecting the right semi-norm appears to be crucial.
Ideally, the choice of (( · )) should be dictated by some prior knowledge about
the underlying phenomenon. In Example 2 for instance, whether the response
is mainly influenced by the general trend of the explanatory curve or by the
oscillating behavior directly motivates the use of one or another semi-norm.
However, in practice, it is often unknown which feature of X is directly related
to Y and which other one is not, so an important open question remains as
to how to choose a suitable semi-norm when little prior information on the
phenomenon is available. A possible methodology could be based on some test
for assumption (4.1), which could be seen as a kind of goodness-of-fit test.
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5. A real data example

In this section we illustrate the above ideas within the framework of automatic
signature recognition, a problem having attracted attention for a long time.
There is a clear need for accurate and reliable recognition systems, aiming at
discriminating forgeries from genuine signatures. It seems natural to tackle this
problem from a functional perspective, modelling a signature as a random func-
tion

S : T ⊂ R
+ → P ⊂ R

2 : t → S(t) = (X (t),Y(t))

where S(t) = (X (t),Y(t)) represents the position of the pen in P , a given portion
of the two-dimensional plane, at time t ∈ T , the considered time domain. The
functional object of interest is here a vector of functions, and we assume that it
lies in an appropriate infinite-dimensional functional space, say Σ. The random
nature of the so-defined object obviously accounts for the natural variability
between successive signatures from one writer.

Suppose we observe a realization ς of the random object S, and we have to
make a decision as to whether this observed signature is a fake or not. This is
obviously nothing else but a classification problem. The decision will be based
on an estimation of the probability of ς being a fake, that is

π(ς) = P (Z = 1|S = ς),

where Z is a binary random variable, taking the value 1 if S is a forgery and
0 if it is a genuine signature. Note that, due to the binary nature of Z, this
conditional probability can also be written

π(ς) = E(Z|S = ς),

so that π(ς) can be estimated by functional regression methods. However, it is
not clear why the operator π should follow any of the usual parametric models for
binary regression, e.g. logit or probit. We therefore argue that a nonparametric
estimation is suitable here.

We propose to measure the proximity between two signatures ς1 and ς2 with
the semi-distance

((ς1 − ς2))
.
=

(
∫

(ς ′′1 (t)− ς ′′2 (t))
2 dt

)1/2

, (5.1)

where ς ′′(t) is the tangential projection of the vector of second derivatives with
respect to time of the signature-function ς , as this would account for the simi-
larity (or dissimilarity) in tangential pen acceleration between two signing pro-
cesses. It is commonly admitted that the acceleration of the pen is mainly dic-
tated by the movement of the wrist of the person signing. Besides, it is quite
clear that the “genuine” wrist movement is very hard, if not impossible, to detect
and reproduce even for a skilled faker. Unlike the drawing itself, which a usual
distance between ς1 and ς2 would focus on, this movement and the acceleration
it induces are consequently unique to every single person and should be very
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efficient discriminatory elements. Moreover, working with second derivatives ob-
viates the need for an important pre-processing of the recorded signatures, as the
second order differentiation cancels out any location or size effect. We can there-
fore assume that S belongs to Σ, the space of functions from R

+ to R
2, both of

whose components are twice differentiable, dotted with the semi-distance (5.1).
Now, assume that we have a sample {(Sk, Zk), k = 1, . . . , n} of i.i.d. replications
of (S, Z) ∈ Σ × {0, 1}. Then, observing a signature ς , a Nadaraya-Watson-like
estimator for the conditional probability π(ς) is given by the estimator (4.2)
adapted to this context, i.e.

π̂(ς) =

∑n
k=1 K(((ς − Sk))/h)Zk
∑n

k=1 K(((ς − Sk))/h)
, (5.2)

where K is a nonnegative kernel function, supported and decreasing on [0, 1],
and h is the bandwidth, as discussed in the previous section. The decision then
directly follows by comparing π̂(ς) with a given threshold, say c: if π̂(ς) > c, the
observed signature is likely to be a fake and is therefore rejected. If π̂(ς) ≤ c,
the signature is accepted. The usual Bayes rule would set c to 1/2, however,
depending on the application, this threshold value can be adjusted to match the
required standards.

We illustrate this idea with the freely available signature data set used for the
First International Signature Verification Competition (SVC2004), see [29]. This
database consists of 100 sets of signatures data, each set containing 20 genuine
signatures from one signature contributor and 20 skilled forgeries from at least
four other contributors. The validity of using the semi-distance (5.1) in this
application is illustrated in Figure 3, which shows five tangential acceleration
functions for genuine signatures and a ‘fake’ tangential acceleration function,
for the first user of the database. The consistency of the tangential acceleration
over the genuine signatures is clear, in contrast to what is shown for the forgery.

For each user, we decided to split the 40 available signatures in two: 10
genuine signatures and 10 forgeries would be utilized as the training set, with
the other 20 (again, 10 genuine signatures and 10 forgeries) being our test set.
For each signature of the test set we estimated the fake probability with (5.2),
using a Gaussian kernel and a (user-dependent) bandwidth of type k-nearest
neighbor determined by least-squares cross-validation, and computed the equal
error rate (EER), that is, the false rejection rate plus the false acceptance rate,
for each user. We observed important variations over the users, which renders
the fact that some signatures are easier to reproduce than others - even in terms
of wrist movement. For some users, the EER was 0 (perfect discrimination), but
for some others it was around 25%. On average, the EER was 9%, with a median
of 5%, which is after all quite a good result for the functional discrimination
rule we set up. More details about this study can be found in [17].

6. Concluding remarks

The aim of this note was to summarize the main ideas developed in [10] con-
cerning nonparametric functional regression, and to comment on them in order
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Fig 3. Five ‘genuine’ tangential acceleration functions (plain line) and one ‘fake’ tangential
acceleration function (dotted line).

to give another viewpoint about some features of the procedure. In particular,
the introduction of semi-norms as proximity measures is often presented as a
technical tool used for dimension reduction purposes, in order to get around the
curse of infinite dimensionality; see also the closely related work of [16]. Instead,
we would like to stress that resorting to this kind of proximity measure is, in
most of the situations, totally justified, and preferable to using the classical
L2-norm, not only theoretically but also intuitively. This allows a proper taking
into account of the functional nature of the regressor and to exploit maximally
the wealth of this kind of element, which is not possible when considering it
just as an infinite-dimensional vector. The theory of nonparametric functional
regression is only at its beginning, and the possibilities to improve on or discuss
estimator (4.2) appear numerous, see e.g. [20, 23, 2, 22, 6, 3, 4, 7, 13] or [14]
for a few paths in that direction. Note that [15] presents an up-to-date and
comprehensive review of the literature in this field.
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