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Abstract: This paper presents a non–technical account of the develop-
ments in tree–based methods for the analysis of survival data with cen-
soring. This review describes the initial developments, which mainly ex-
tended the existing basic tree methodologies to censored data as well as to
more recent work. We also cover more complex models, more specialized
methods, and more specific problems such as multivariate data, the use of
time–varying covariates, discrete–scale survival data, and ensemble meth-
ods applied to survival trees. A data example is used to illustrate some
methods that are implemented in R.

Keywords and phrases: Survival trees, CART, time–varying covariate,
right–censored data, discrete–time, ensemble methods, time–varying effect,
bagging, survival forest.

Received June 2009.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.1 Basic tree building method . . . . . . . . . . . . . . . . . . . . . 46
1.2 Survival data description . . . . . . . . . . . . . . . . . . . . . . . 47

2 Survival tree building methods . . . . . . . . . . . . . . . . . . . . . . 47
2.1 Splitting criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Selection of a single tree . . . . . . . . . . . . . . . . . . . . . . . 49
2.3 Some variants and related methods . . . . . . . . . . . . . . . . . 49
2.4 Comparison of methods . . . . . . . . . . . . . . . . . . . . . . . 50

3 Ensemble methods with survival trees . . . . . . . . . . . . . . . . . . 51
4 Extensions of the basic methods . . . . . . . . . . . . . . . . . . . . . 52

4.1 Multivariate and correlated data . . . . . . . . . . . . . . . . . . 52
4.2 Specific topics: Time–varying effects and covariates, discrete–time

survival outcome and other types of censoring . . . . . . . . . . . 53

∗This paper was accepted by Dorota Dabrowska, Associate Editor for the IMS.
†Corresponding author.

44

http://projecteuclid.org/ssu
http://dx.doi.org/10.1214/09-SS047
mailto:denis.larocque@hec.ca


A review of survival trees 45

4.3 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 A data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 A single tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Bagging, forests and comparison of methods . . . . . . . . . . . . 57

5.3 Variable importance and visualization of a covariate effect . . . . 60

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Appendix: Selection of a single tree . . . . . . . . . . . . . . . . . . . . . . 64

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1. Introduction

Studies involving time–to–event data are numerous and arise in all areas of re-
search. The Cox proportional hazard regression model and its extensions are
very often used to study survival variables with censoring. These parametric
(and semi–parametric) models are quite useful, for they allow simple interpre-
tations of the covariate effects and can readily be used for inference (hypothesis
testing and so on). However, such models force a specific link between the co-
variates and the response. Even though interactions between covariates can be
incorporated, they must be specified by the analyst. Moreover, in practice, infer-
ence is often made after many models have been tried and the statistical prop-
erties of such inference after model selection are still largely unknown. When
the analyst does not wish to impose a link function right from the start, more
flexible approaches are available. Survival trees and forests are popular non-
parametric alternatives to (semi) parametric models. They offer great flexibility
and can automatically detect certain types of interactions without the need to
specify them beforehand. Moreover, a single tree can naturally group subjects
according to their survival behavior based on their covariates. Prognostic groups
can therefore be derived easily from survival trees. Moreover, survival trees are
ideal candidates for combination by means of an ensemble method and can thus
be transformed into very powerful predictive tools, such as survival forests.

The development of survival trees grew from the mid–1980s up to the mid–
1990s, where the goal was mainly to extend existing tree methods to the case
of survival data with censoring. A review of survival trees up to 1995 ap-
pears in Leblanc and Crowley (1995). Once the basic survival tree methods
were established, research moved in many different directions. One direction
was to treat more complex situations such as those involving multivariate and
correlated survival data (Su and Fan, 2004; Gao, Manatunga and Chen, 2004;
Fan et al., 2006; Gao, Manatunga and Chen, 2006; Fan, Nunn and Su, 2009).
Another direction was to study the use of ensemble methods with survival
trees (Ishwaran et al., 2004; Hothorn et al., 2004, 2006; Krȩtowska, 2006, 2010;
Ishwaran et al., 2008). Yet another dealt with specific topics related to survival
studies, such as time–varying covariates and time–to–event variables measured
on a discrete scale (Bacchetti and Segal, 1995; Huang, Chen and Soong, 1998;
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Xu and Adak, 2001, 2002; Yin and Anderson, 2002; Bou-Hamad et al., 2009;
Bou-Hamad, Larocque and Ben-Ameur, 2011).

The rest of this section describes the basic tree methodology and the survival
data setup. Section 2 focuses on the basic survival–tree methodologies. Ensemble
of survival trees are discussed in Section 3. In Section 4, more recent extensions
of survival trees are presented. A data example illustrates some of the methods
in Section 5. Finally, some concluding remarks along with possibilities for future
research are given in Section 6. A more complete discussion about pruning and
the selection of a final tree is deferred to the Appendix.

1.1. Basic tree building method

Initially, tree–based methods were developed to model a categorical or a con-
tinuous outcome using a set of covariates from a sample of complete data. They
were introduced by Morgan and Sonquist (1963) but really became popular in
the 1980s due in great part to the development of the CART (Classification
and Regression Tree) paradigm described in the monograph by Breiman et al.
(1984). Assuming that the reader is familiar with the basic ideas and termi-
nology of tree–based methods, only a brief description is provided here. The
basic idea of a tree is to partition the covariate space recursively to form groups
(nodes in the tree) of subjects which are similar according to the outcome of
interest. This is often achieved by minimizing a measure of node impurity. For a
categorical response, the Gini and the entropy measures of impurity are popu-
lar, while the sum of squared deviations from the mean is most often used with
a continuous outcome.

The basic approach focuses on binary splits using a single covariate. For a
continuous or an ordinal covariate X , a potential split has the form X ≤ c
where c is a constant. For a categorical covariate X , a potential split has the
form X ∈ {c1, . . . , ck} where c1, . . . , ck are possible values of X . The typical
algorithm starts at the root node with all observations; performs an exhaustive
search through all potential binary splits with the covariates; and selects the
best one according to a splitting criterion such as an impurity measure. In the
CART approach, the process is repeated recursively on the children nodes until
a stopping criterion is met (often until a minimum node size is attained). This
produces a large tree that usually overfits the data. A pruning and selection
method is then applied to find an appropriate subtree. Alternatively, an ensem-
ble of trees can be used which avoids the problem of selecting a single tree of
appropriate size. Appropriate node summaries are usually computed at the ter-
minal nodes to interpret the tree or obtain predicted values. The node average
is typically used for a continuous outcome, whereas, for a categorical outcome,
the node proportions of each value are reported. The most frequent value at a
node can be used if a single prediction is needed. For a survival outcome, the
Kaplan–Meier estimate of the survival function in the node can be reported.



A review of survival trees 47

1.2. Survival data description

We begin by describing the basic setup which leads to the development of sur-
vival trees. We denote by U the true survival time and by C the true censoring
time. The observed data is then composed of τ = min(U,C), the time until
either the event occurs or the subject is censored; δ = I(U ≤ C), an indicator
that takes a value of 1 if the true time–to–event is observed and 0 if the subject
is censored; and X = (X1, . . . , Xp), a vector of p covariates. Data is available
for N independent subjects (τi, δi,Xi), i = 1, . . . , N . The basic setup assumes
that the covariate values are available at time 0 for each subject. Thus, only the
baseline values of a time–varying covariate are typically used. The inclusion of
the multiple values of time–varying covariates will be discussed in Section 4.2.
Multivariate and correlated survival data will be the topic of Section 4.1.

2. Survival tree building methods

The early idea of using tree–structured data analysis for censored data can
be traced back to Ciampi et al. (1981) and Marubini, Morabito and Valsecchi
(1983). However, the first paper containing all the elements of what would be-
come survival trees was written by Gordon and Olshen (1985).

In this section, we present the splitting criteria proposed over the years and
discuss briefly the choice of a final tree. We also present some variants and
related methods as well as the few studies that have compared some of the
tree–building procedures.

2.1. Splitting criteria

The idea behind the splitting criterion proposed by Gordon and Olshen (1985)
was to force each node to be more homogeneous as measured by a Wasserstein
metric between the survival function obtained from the Kaplan–Meier estimator
at the node and a survival function that has mass on at most one finite point.
Although this particular splitting criterion did not gain much popularity, it laid
ground for the work that followed. Indeed, Gordon and Olshen (1985) mention
the possibility of using the logrank statistic or a parametric likelihood ratio
statistic to measure the “distance” between the two children nodes and these
ideas have been used widely in subsequent work.

Ciampi et al. (1986) then suggested using the logrank statistic to compare
the two groups formed by the children nodes. The retained split is the one with
the largest significant test statistic value. The use of the logrank test leads to a
split which assures the best separation of the median survival times in the two
children nodes. Ciampi et al. (1987) subsequently proposed a general formula-
tion based on using the likelihood ratio statistic (LRS) under an assumed model
to measure the dissimilarity between the two children nodes. As for the logrank
statistic above, it is clear that the larger the statistic, the more dissimilar the
two nodes. They discuss more specifically two possibilities: an exponential model
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and a Cox proportional hazard model. Hence, this approach relies on the as-
sumptions related to the chosen model. For instance, with the Cox model, the
proportional hazard assumption implies that the hazard function in the right
node is proportional to the one in the left node. Davis and Anderson (1989) use
a splitting criterion based on an exponential model log–likelihood which is equiv-
alent to the LRS dissimilarity measure under the exponential model. Continuing
in the same direction, Ciampi et al. (1988) and Ciampi, Thiffault and Sagman
(1989) mention the possibility of using the logrank and Wilcoxon–Gehan statis-
tics as dissimilarity measures and the Kolmogorov–Smirnov statistic to compare
the survival curves of the two nodes. Segal (1988) also adopts a between–node
separation (dissimilarity measure) approach based on the Tarone–Ware class of
two–sample statistics for censored data. With appropriate choices of weights,
this class encompasses many well–known test statistics, such as the logrank and
Wilcoxon–Gehan statistics. Leblanc and Crowley (1993) also use the logrank
statistic as a splitting criterion, but they introduce a new method for prun-
ing and selecting a final tree built around a measure of split–complexity (see
Appendix).

In their discussion, Therneau, Grambsch and Fleming (1990) mention that
martingale residuals from a null Cox model could be used as the outcome
for a regression tree algorithm. The advantage of this approach is that exist-
ing regression tree software could be used directly with the modified outcome.
Keles and Segal (2002) provide an analytic relationship between the logrank and
martingale residuals sum–of–squares split functions. However, their approach is
based on the idea that the residuals are recomputed at each node, thus ruling
out the direct use of regression tree software. They show that the two splitting
criteria are approximately equivalent when the survival time is independent of
the covariate, but not in the general case. Loh (1991) and Ahn and Loh (1994)
propose two splitting criteria based on residuals obtained from fitting a Cox
model with one covariate at a time. The basic idea consists in studying the
patterns of the Cox model residuals along each covariate axis and then select-
ing the splitting covariate whose axis patterns appear the least random. The
degree of randomness of the residuals is quantified by dividing the observations
in the parent node into two classes along each covariate and is measured by the
two–sample t–test.

By exploiting an equivalence between the proportional hazard, full likelihood
model and a Poisson likelihood model, Leblanc and Crowley (1992) come up
with a splitting criterion based on a node deviance measure between a saturated
model log–likelihood and a maximized log–likelihood. With this method, the
unknown full likelihood is approximated by replacing the baseline cumulative
hazard function by the Nelson–Aalen estimator. The advantage of this method
is that it can be implemented easily in any recursive partitioning software for
Poisson trees such as the rpart package in R (Therneau and Atkinson, 2010).

Zhang (1995) proposes an impurity criterion which combines two separate
impurity measures, one for the observed times and one for the proportion of cen-
sored observations. Molinaro, Dudoit and van der Laan (2004) propose a unified
strategy for building trees with censored data. Their approach is based on defin-
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ing an observed data–world (with censoring) loss function by weighting a full
data–world (without censoring) loss function. Each non–censored observation
is weighted by the inverse probability of censoring (IPC) given the covariates.
Since the usual regression tree methods use the node variance as the impu-
rity measure, Jin et al. (2004) propose a splitting rule based on the variance of
survival times. But since mean and variance survival times are affected by the
censored observations, they propose using a restricted time limit to compute the
variance. Finally, Cho and Hong (2008) propose using the L1 loss function to
build a median survival tree. To compute the loss function, the censored obser-
vations are replaced by their expected values, conditional on the fact that the
time is greater than the censored time.

2.2. Selection of a single tree

One important aspect when building a single tree is deciding when to stop split-
ting and hence select a specific tree as the final model. If too large, trees will tend
to overfit the data and thus fail to generalize well to the population of interest.
If too small, they might miss important characteristics of the relationship be-
tween the covariates and the outcome. There are basically two approaches to the
selection of a final tree. The first one is a backward method which builds a large
tree and then selects an appropriate subtree by pruning some of its branches.
The second one is a forward method which uses a built–in stopping rule to de-
cide when to stop splitting a node further. However, the use of a single tree has
been largely replaced by ensemble of trees which often produce more powerful
predictive models and which also avoid the problem of selecting a single tree.
But a single tree can still be of interest to gain insight about the data since
it can be easily interpreted. Consequently, the discussion about the selecting a
single tree is deferred to the Appendix.

2.3. Some variants and related methods

The RECPAM (Recursive Partition and Amalgamation) method introduced
in Ciampi et al. (1988) allows a new feature to appear in the classical tree;
see Ciampi, Negassa and Lou (1995) for a complete description. Their method
shares the basic characteristics of regular trees in the sense that it builds a
large tree, prunes it, and then selects one member in the sequence as the final
tree. However, it allows a further step, the amalgamation step, where similar
terminal nodes are grouped together. The amalgamation algorithm proceeds
like a pruning and selection algorithm inasmuch as it recursively amalgamates
the two terminal nodes which are the most similar to create a sequence of
nested partitions from which one final partition will be selected. In the end,
the partition of the covariate space may not necessarily be that of a tree, since
widely separated terminal nodes may end up being grouped together. But it
may bring the number of groups down to a more easily interpretable size. In
their data example, Fan et al. (2006) use an amalgamation algorithm to bring
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the 12 terminal nodes of their final tree down to five interpretable prognosis
groups.

A similar idea of building a tree and then grouping together terminal nodes
which are similar with respect to the survival profiles is proposed in Tsai et al.
(2007). The grouping of the terminal nodes of the final tree is achieved with
an agglomerative hierarchical clustering method. The method developed by
Leblanc and Crowley (1995) also breaks away from the tree structure and can
build proportional hazard models with piecewise constant relative risk functions.
Adapting the ideas of Logical Analysis of Data or LAD (Hammer and Bonates,
2006; Kronek and Reddy, 2008) propose the LASD (Logical Analysis of Sur-
vival Data) method that automatically detects good patterns of covariates to
predict the survival function. Su and Tsai (2005) propose a hybrid approach
using a tree structure to expand the Cox proportional hazard model. Finally,
Krȩtowska (2004) uses the concept of dipolar trees to build survival trees. At
a given node, the basic idea is to compare all pairs of observations and de-
cide, based on a criterion, which pairs should be together and which should be
separated after the split. Then the linear combination of the covariates (a hyper-
plane) that preserves this “ideal” split is found according to a dipolar criterion
function. As such, the splits in the trees are formed by linear combinations of
the covariates.

2.4. Comparison of methods

A large scale simulation study comparing the numerous pruning and selection
methods has yet to appear but some limited empirical work is available. To in-
vestigate the performance of some tree–size selection methods within the REC-
PAM framework, Negassa et al. (2000, 2005) have studied the performance of
four model selection approaches: cross–validation, cross–validation with the 1 SE
rule (Breiman et al., 1984), automatic elbow rule, and minimum AIC. They con-
clude that none of these approaches exhibits a uniformly superior performance
over all scenarios. They also propose a two–stage method where cross–validation
is used in the first stage and the elbow approach in the second. This method
performed well in their simulation.

A large scale comparison of the numerous splitting criteria has also yet to
appear. Some limited results do appear in Radespiel-Tröger et al. (2003) and
Radespiel-Tröger et al. (2006). The first paper uses a real data set as well as a
single tree–structured data generating process with five terminal nodes and sam-
ple sizes of 250 but with many variations of censoring distributions and terminal
node hazards. Having compared many splitting methods, the authors conclude
that adjusted and unadjusted logrank statistic splitting with pruning, exponen-
tial loss splitting with pruning, and adjusted logrank statistic splitting with-
out pruning perform best. Radespiel-Tröger et al. (2003) use bootstrap samples
from a real data set to perform their simulation study. Their results show that
adjusted logrank statistic splitting without pruning gives the best results.
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3. Ensemble methods with survival trees

Trees are known for their instability, in the sense that small perturbations in the
learning sample can induce a large change in their predictive function. Bagging
and random forests, proposed by Breiman (1996, 2001), are simple but ingenious
solutions to this problem that basically reduce the variance of a single tree and
enlarge the class of models. In fact, bagging is one particular case of random
forests. The basic algorithm works by drawing B bootstrap samples from the
original data and growing a tree for each of them without pruning. A final predic-
tion is then obtained by averaging the predictions from each individual tree. The
general random forest algorithm grows each tree by selecting a random subset of
covariates at each node. Bagging is then just the special case where all covariates
are retained at each node. Siroky (2009) and Verikas, Gelzinis and Bacauskiene
(2011) provide recent discussions on random forests. Moreover, random forests
are part of the family of ensemble methods for which a survey appears in Rokach
(2008).

Dannegger (2000) and Benner (2002) describe applications of bagging with
survival trees. Ishwaran et al. (2004) propose a forest of relative risk trees using
the tree–building method introduced in Leblanc and Crowley (1992), a model
which assumes proportional hazards. For any given covariate x, each tree (for
b = 1, . . . , B) produces a relative risk value R(b)(x) compared to the mean
unit in the study. They define the ensemble relative risk for x to be Re(x) =

1/B
∑B

b=1 R
(b)(x).

Hothorn et al. (2004) propose a general bagging method for an arbitrary tree
growing algorithm but use the Leblanc and Crowley (1992) method for their
practical implementation. However, their method differs in the way they aggre-
gate the individual trees. To obtain an estimate of the survival function at a
covariate x, they form a new set of observations by collecting from each tree
and from the bootstrap sample used to build the tree all the observations that
fall into the same terminal node as x. They then compute the Kaplan–Meier
estimate using this set of observations. Thus, they end up with a conditional
survival function which is more informative than a single prediction like a me-
dian survival time or a relative risk compared to a mean unit. Their method is
implemented in the R package ipred (Peters and Hothorn, 2009).

Hothorn et al. (2006) propose a random forest method to build a survival
ensemble for the log–survival time. Their approach is based on the general
Molinaro, Dudoit and van der Laan (2004) framework. The estimated inverse
probability of censoring (IPC) weights are used as sampling weights to draw
each bootstrap sample and a tree is built for each of them. With the quadratic
loss, a prediction of the mean log–survival time at a covariate x is given by the
average survival time of the terminal node corresponding to x. The ensemble
prediction of the mean log–survival time is then obtained as a weighted aver-
age, over all trees, of these predictions. Their method is implemented in the R
package party. They also investigate a gradient boosting algorithm where a tree
can act as the base learner, but they look instead at the use of component–wise
least squares. Hence, this particular boosting method is not really an extension
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of survival trees. Along the same lines, Ridgeway (1999) and Benner (2002) also
propose a boosting algorithm with different base learners.

Ishwaran et al. (2008) introduce a general random forest method, called ran-
dom survival forest (RSF), coupled with a new algorithm for imputing missing
values. They investigate four different criteria based on versions of the logrank–
statistics and conservation–of–events principle. To obtain a prediction at a given
x, the Nelson–Aalen estimates of the cumulative hazard function at each node
are averaged. Uniform consistency of RSF, under the assumption of a discrete
feature space, is established in Ishwaran and Kogalur (2010a). Since a forest is
mainly a black box, quantifying a covariate importance in a forest is a difficult
but important problem. In the original random forests paper, Breiman (2001)
propose a variable importance measure (VIMP) which works by examining the
prediction error increase when noise is added to a covariate. Ishwaran et al.
(2010) propose a variable selection method for survival data and studied it
through RSF. This method is based on the concept of minimal depth of a max-
imal subtree which basically assesses the importance of a covariate by mea-
suring how deep in a tree the first split based on it occurs. The idea being
that covariates splitting higher in a tree are more important. All these methods
are implemented in the R package randomSurvivalForest (Ishwaran and Kogalur,
2010b).

Krȩtowska (2006, 2010) studied forests of dipolar survival trees. As in Hothorn
et al. (2004), the final Kaplan–Meier estimate is computed by using the set of
aggregated observations from all individual trees.

Eckel et al. (2008) compare proportionnal hazard models, survival forests,
and a bundling method with a data set of melanoma patients. The bundling
method combines the Cox model with a tree including the linear predictor of
a Cox model as an additional predictor, thus expanding the candidate splits.
The final predictions are obtained from aggregated trees. They conclude that
the three methods are on par for that data set.

4. Extensions of the basic methods

The last sections presented the developments in survival trees and related meth-
ods for the basic setup involving a univariate survival outcome with indepen-
dent data and without time–varying covariates. Extensions to more complex
situations began to appear in the mid–1990s. This section will present these
developments in a thematic fashion. Extensions to multivariate and correlated
data will be presented first, followed by specialized topics such as time–varying
covariates, time–to–event variables measured on a discrete scale, other forms of
censoring and the treatment of missing values.

4.1. Multivariate and correlated data

A natural extension of univariate survival–tree methods is to consider multi-
variate or correlated survival outcomes. Suppose that there are N clusters in
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the data. Using the same notation as in Section 1.2, the available data are
(τij , δij ,Xij), where the (ij) subscript indicates the observations for the unit j
in cluster i, j = 1, . . . ni, i = 1, . . . , N . Independence is assumed across clusters
but the observations within a cluster are possibly correlated. The goal is to
build a survival tree by taking into account the intra–cluster correlation. The
marginal and random effect (frailty) models are the two main approaches taken
in handling correlated survival outcomes and both have been adapted to the
construction of survival trees.

Su and Fan (2004); Gao, Manatunga and Chen (2004); Fan, Nunn and Su
(2009) use the frailty approach where the intra–cluster dependence is modeled by
a multiplicative random–effect term. More specifically, the following formulation
of the hazard function is the starting point of their method:

hij(t|Xij , wi) = h0(t) exp(Xijβ)wi

where h0 is an unspecified baseline hazard function and wi is a frailty term
for cluster i that follows some specified distribution. The gamma distribution
is assumed in these papers. To define a splitting criterion, Su and Fan (2004)
use the deviation of an integrated log–likelihood, Fan, Nunn and Su (2009) use a
score test on the splitting variable derived from the integrated log–likelihood and
Gao, Manatunga and Chen (2004) use a standardized estimate of the splitting
variable parameter obtained from a profile log–likelihood.

Fan et al. (2006) use the marginal approach where the dependence structure
is left unspecified. More precisely, they consider the following Cox model to
evaluate a single binary splitting variable C ∈ {0, 1} defined through one of the
covariate:

hij(t|Cij) = h0(t) exp(βCij)

where h0 is an unspecified baseline hazard function. By using a consistent es-
timate of the variance structure of the score function, they obtain a score test
of the null hypothesis H0 : β = 0 which acts as their splitting criterion. This
test is a robust two–sample logrank statistic and their whole methodology is
a generalization of the Leblanc and Crowley (1993) method. One advantage
of this approach over the frailty approach is that it does not require itera-
tive procedures, since the robust logrank statistic has a closed–form expression.
Gao, Manatunga and Chen (2006) use a similar approach based on the marginal
distribution of survival time but assume a global proportional hazard structure
for the whole tree. Contrary to the usual approaches, the whole data set is used
at each split.

4.2. Specific topics: Time–varying effects and covariates,

discrete–time survival outcome and other types of censoring

Almost all survival tree methods have been developed under the basic setup
described in section 1.2 and so they include neither time–varying effects nor
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time–varying covariates. Moreover, no method specifically adapted to discrete–
time survival data has been proposed until very recently (Bou-Hamad et al.,
2009).

Given that time–varying covariates are common in practice, only the difficul-
ties associated with their use can explain the sparsity of literature on tree–based
methods which treat this topic. In the context of regression trees for longitudi-
nal data, Segal (1992) discusses issues about time–varying covariates and points
out that no convincing technique for defining splits on them has been devel-
oped. One possibility is to replace each time–varying covariate by estimated
parameters that summarize its relation to time. For instance, if the values of a
time–varying covariate of an individual are regressed over time, then the slope
and intercept could be used in the tree–growing process instead of the orig-
inal values. But this is not really satisfactory for two reasons. First, there is
no guarantee that the covariate is linearly related to time. Second, the number
of repeated measures on an individual is generally too small to allow precise
regression estimates.

The first studies dealing with time–varying covariates with survival trees are
the ones by Bacchetti and Segal (1995) and Huang, Chen and Soong (1998) The
solution proposed by Bacchetti and Segal (1995) is to allow the decomposition
of each subject into pseudo–subjects defined by the tree’s splitting rules. Assume
that x(t) is a time–varying covariate. If the splitting rule at a node is x(t) ≤ c,
then the time window where this condition is true would go to one node and
the time window where it is false would go to the other node. Hence, a subject
could be split into two pseudo–subjects that could be split further at lower
nodes. In the end, a subject could end up in many different terminal nodes.
However, at any given time, each subject can be classified into one and only
one terminal node. In order to achieve this, Bacchetti and Segal (1995) use
modified two–sample test statistics that can accommodate left–truncated data.
Huang, Chen and Soong (1998) use a similar approach in which subjects can
be split across many nodes as a function of time but with a more structured
model. Their splitting criterion is built around the log–likelihood of a model
which assumes that the distribution of the survival time for a subject is given
by a piecewise exponential distribution.

Xu and Adak (2001, 2002) use only time independent covariates, but these
are allowed to have time–varying effects. With their methods, the tree is used
only to find splits for the time variable in order to locate those time values where
effect changes occur. The resulting tree partitions the time into time intervals
and a Cox proportional hazard model is used to model the covariates. Hence,
this model fits an adaptive piecewise Cox model by letting the tree algorithm
find the intervals.

Bou-Hamad et al. (2009) propose a method specifically adapted to discrete–
time survival outcomes. Their splitting criterion is based on the log–likelihood
of a very flexible discrete–time model which reduces to the entropy criterion
for a categorical response when no censored observations are present. Moreover,
this method directly allows time–varying effects for the covariates. Bou-Hamad,
Larocque and Ben-Ameur (2011) generalize this approach so as to incorporate
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time–varying covariates. This is achieved by allowing subjects to be split across
different nodes depending on the time period, as in Bacchetti and Segal (1995).
Hence, this method allows, simultaneously, both time–varying effects and time–
varying covariates. These two papers also investigate the use of bagging and
random forests to produce aggregate estimations of the discrete conditional risk
and survival functions.

By allowing left–truncation, Bacchetti and Segal (1995) is a rare example of
a method that goes beyond right–censoring. Another one is Yin and Anderson
(2002) which extends the exponential tree method of Davis and Anderson (1989)
to interval–censored data.

4.3. Missing values

Missing data is an important problem in practice. Several approaches have been
investigated in the context of classification or regression trees. These include the
use of surrogate splits, using imputation methods and treating missing values
as a “new” value. In principle, these methods can also be used with survival
trees. A recent point of entry in the literature about missing values and trees
is Ding and Simonoff (2010). However, there are very few specific investigations
on the treatment of missing values with survival trees.

Ishwaran et al. (2008) argue that the traditional surrogate split approach is
possibly not well–adapted to the forest paradigm because finding a surrogate
split is computationally intensive and because a forest typically selects a small
subset of covariates at each node of a tree to find the best split. Hence, finding
a good surrogate split with only a few candidate covariates may be problem-
atic. This is why they introduced a new missing data algorithm built in their
RSF method. The basic idea is to impute the missing values at the parent node
prior to splitting using only the in–bag data. Thus, the out–of–bag (OOB) data
are left untouched and the prediction error estimates based on them are not
optimistically biased. Once, the missing values are imputed, the splitting pro-
ceeds as usual. They also propose to iterate the whole process. Their method is
implemented in the R package randomSurvivalForest.

For a single survival tree, Wallace, Anderson and Mazumdar (2010) propose
a multiple imputation technique. The basic idea is to impute the missing val-
ues of a covariate by building a tree using the other covariates as predictors.
By adding noise, multiple imputed values can be obtained. To select the best
split at a given node, the splitting statistic is computed as usual for covariates
without missing values. For a covariate which required imputation, the split-
ting statistic is computed for each set of imputed values. The median of these
splitting statistics is then used as the final splitting statistic for this covariate.
Tree–building can then proceed as usual. They performed a simulation study
where they compared different versions of their method to a benchmark strategy
that uses only the complete data to grow the tree and to the use of surrogate
splits. The results suggest that their proposed method is better than the oth-
ers for identifying the correct tree structure while remaining competitive with
respect to prediction accuracy.
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5. A data example

In this section, we illustrate some aspects of survival trees and forests with the
well–known PBC data set. A description an analysis of the data set is presented
in the monograph by Fleming and Harrington (1991). The data are from the
Mayo Clinic randomized placebo controlled trial of the drug D–penicillamine, for
the treatment of primary biliary cirrhosis (PBC) of the liver, conducted between
1974 and 1984. The 312 patients that participated in the randomized trial are
used in this example. Subject survival (in days) since registration in the trial
is the outcome of interest and censoring is due to either liver transplantation
or study analysis time (in July 1986). Seventeen covariates are available but
only the twelve “inexpensive, non–invasive and readily available” covariates are
retained for this example as it was done in the analysis presented in Section 4.4
of Fleming and Harrington (1991). These are:

1. Drug: 1=D–penicillamine, 0=placebo.
2. Age: age in years.
3. Sex: 0=male, 1-female.
4. Ascites: presence of ascites (0=no, 1=yes).
5. Hepatom: presence of hepatomegaly (0=no, 1=yes).
6. Spiders: presence of spiders (0=no, 1=yes).
7. Edema: presence of edema (0=no edema and no diuretic therapy for

edema; 0.5=edema present for which no diuretic therapy was given, or
edema resolved with diuretic therapy; 1=edema despite diuretic therapy.

8. Bili: Serum bilirubin, in mg/dl.
9. Albumin: in gm/dl.
10. Alkphos: alkaline phosphatase, in U/liter.
11. Platelet: platelet count, in number of platelets per–cubic–milliliter of blood

divided by 1000.
12. Protime: prothrombin time, in seconds.

As in Fleming and Harrington (1991), we replace the four missing platelet
counts by the 257, the median of the other observations, and, as such, we
are using the same data set as them. All computations are performed with R
(R Development Core Team, 2010).

5.1. A single tree

First, a single tree is built using the default settings in the rpart package. With a
survival outcome, the splitting criterion used by rpart is equivalent to the one of
Leblanc and Crowley (1992). The final pruned tree selected by cross–validation
has 12 terminal nodes and is shown in Figure 1. The first split is based on the
variable Bili. Subjects with a value less than 2.25 go to the left node and those
with a value greater or equal to 2.25 go to the right node. Each terminal node
contains the following information: a letter from A through L used to match
the node with the survival curves of Figure 2, the node sample size and the
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Fig 1. Single tree for the PBC data example.

estimated survival median in the node. For instance, Node E has 72 subjects
and a median survival time of 4191 days. The Kaplan–Meier estimates of the
survival function of the terminal nodes are presented in Figure 2. The letters
placed at the median survival time (except for nodes A, B and D for which the
median is not defined), refer to the terminal nodes. The overall Kaplan–Meier
curve of the 312 subjects is under the letter “O”. After the first split, we can
see that the subjects with a value of Bili greater or equal to 2.25 (especially
those in nodes I, J, K and L) tend to have lower survival time. On the other
hand, the terminal nodes A B, D and E seem to have the most favorable survival
patterns. For instance, the largest node (node E) is formed by subjects with Bili
∈ [0.75, 2.25), Ascites=0, Protime≥9.85 and Age<60.85. However, we will see
that in this example, a single tree is not such a good predictor of the survival
function compared to aggregation methods.

5.2. Bagging, forests and comparison of methods

Four other methods are used to obtain prediction of the survival curves. The first
one is not using any covariate information and is simply the Kaplan–Meier esti-
mate of the sample. The second method is a basic Cox model including the main
effects of all covariates. No transformations are performed. These two methods
serve as benchmarks. The first aggregation method is the bagging method of
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Fig 2. Kaplan–Meier survival estimate in each node of the single tree of Figure 1 for the

PBC data example. The letters A through L correspond to the terminal nodes of the tree as

given in Figure 1. The line “O” is the Kaplan-Meier curve of the whole sample.

Hothorn et al. (2004) as implemented in the package ipred. Basically, it aggre-
gates many trees built with rpart. Here, we use 1000 trees. The second aggre-
gation method is the random survival forest (RSF) approach of Ishwaran et al.
(2008) as implemented in the package randomSurvivalForest. The logrank split-
ting rule is used and once again, 1000 trees are built for each forest.

Our goal is to compare the performance of the five methods to estimate the
survival function of a new subject. However, there is no universal and widely
accepted performance measure to assess the accuracies of estimated survival
functions. The integrated Brier score (Graf et al., 1999) is a popular measure of
performance and we use it in our calculations. Using the notation of Section 1.2,
let Ŝ(t|X) denote the estimated survival function at time t of a subject with
covariate vector X. This estimate may come from any models. Let Ĝ(t) denote
the Kaplan-Meier estimate of the censoring survival function. This is simply the
Kaplan-Meier estimate based on (τi, 1 − δi), i = 1, . . . , N . The Brier score at
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Fig 3. Integrated Brier Score across the 20 runs of 10–fold cross–validation for the PBC data

example.

time t is given by

BS(t) =
1

N

N
∑

i=1

(

(Ŝ(t|Xi))
2I(τi ≤ t and δi = 1)Ĝ−1(τi)+

(1 − Ŝ(t|Xi))
2I(τi > t)Ĝ−1(t)

)

.

The integrated Brier score is then given by

IBS =
1

max (τi)

∫ max (τi)

0

BS(t)dt,

and lower values indicate better predictive performances.
We perform 10–fold cross–validation (cv) 20 times. For instance, 200 RSF

(each one with 1000 trees) are built during the process. We then obtain 20
estimates of the IBS for each methods. The box–plots of the 20 values of IBS for
each methods are presented in Figure 3. We see that the best result is obtained
for RSF and that bagging and the Cox model give a similar performance. It is
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also clear that a single tree does not perform well in this example and that its
performance varies a lot more than the other methods across the 20 cv runs. This
illustrates the potential instability of single trees and the fact that aggregating
many trees can solve this problem.

5.3. Variable importance and visualization of a covariate effect

We pursue the analysis by studying the importance of the covariates. Our ap-
proach is computer–intensive but our results will be compared to some readily
available importance measures arising from RSF. Each covariate is removed one
at a time. We then estimate, again by repeating 10–fold cv 20 times, the IBS of
each method without the covariate. Thus, the whole process is repeated twelve
times (one time for each covariate). The average of the 20 estimated IBS then
serves as the final performance measure. Figure 4 presents the percent increase
(or decrease if negative) in IBS when a single covariate is removed compared to
the model with all covariates. Obviously, the Kaplan-Meier method is not there

1

1

1

1

1

1

1

1

1

1

1

1

−5 0 5 10 15

percent increase in IBS when we omit a single covariate

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

1=Cox

2=Tree

3=RSF

4=Bagging

drug

spiders

sex

protime

platelet

hepato

edema

bili

ascites

alkphos

albumin

age

Fig 4. Variable importance for the four models when omitting a single covariate for the PBC

data example.



A review of survival trees 61

since it is not using any covariates in the first place. We clearly see that, for
all methods, the covariate Bili seems to be the most important. Not using this
covariate increases the IBS by 17.2% and 15.2% for bagging and RSF respec-
tively. The increase is less pronounced but still noticeable (more than 11%) for
the single tree and the Cox models. Except for the single tree model, Age and
Albumin seem to be the following covariates in terms of importance but their
increase in IBS is less than 5% (except for Albumin with the Cox model where
it reaches 6.5%). It is interesting to note that, with this measure, the treatment
effect (covariate Drug) is not important for all four models.

Less computer–intensive variable importance measures are available in ran-

domSurvivalForest. The first two depend on a performance measure (Ishwaran
et al., 2008) while the third one, the minimal depth of a maximal subtree, does
not (Ishwaran et al., 2010). Using only, the RSF model, we compare the omit
one covariate importance measure presented above with these three. In random-

SurvivalForest, Harrell’s concordance index, the C–index, is used to estimate the
performance (Harrell et al., 1982). It is basically an estimate of the probability
that, for two subjects chosen at random, the one that fails first has a worst pre-
dicted outcome. The first two VIMP measures in randomSurvivalForest estimate,
using the out–of-bag (OOB) observations, how much the C–index is decreased
when a covariate is perturbed. With the “random split” method, the pertur-
bation works by randomly sending the observation to a daughter node when-
ever a split involving the covariate under investigation is encountered. With the
“permute” method, the perturbation works by permutating the values of the
covariate under investigation before sending the observations down the trees.
Note that these two measures should not be interpreted as what happens if the
covariate is omitted because the individual trees are still built with the covari-
ate present. The perturbation of the covariate occurs only at prediction time.
The third variable importance measure in randomSurvivalForest is based on the
idea that a covariate which splits higher (closer to the top) in a tree is more
important. The minimal depth used here is the average depth over the forest (0
being the smallest value and meaning a split occurring at the root node) of the
highest split based on a given covariate.

Table 1 on page 62 presents a summary of the results. The “omit one co-
variate” measure values were already given in Figure 4 (RSF curve). We can
see that the four variable importance measures tend to agree. By looking at
the average rank in the last column of Table 1, we see that Bili is by far the
most important covariate followed by Age and Albumin. In fact Bili is ranked in
first place according to all four measures of importance. Omitting this covariate
increases the IBS by 15.21%, decreases Harrell’s concordance index by 0.0494
and 0.0465 for the “random split” and “permute” perturbations respectively,
and the first split based on Bili occurs at depth 1.7 on average. One noticeable
difference among the importance measures is that Protime ends up with more
importance (2.5) according to the minimal depth measure compared to the other
three.

To conclude this analysis, we provide the partial dependence plots of the
two most important variables, Bili and Age. Figure 5 was produced using the
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Table 1

Results for the four variables importance measures for the RSF model. The first one is the

computer–intensive method where the models are refitted by omitting a single covariate at a

time. The other three are taken from randomSurvivalForest. Higher values indicate more

importance for the first three measures and lower values indicate more importance for the

minimal depth measure. The covariates are ordered according to the average rank across the

four measures

omit one random split permute minimal average
covariate VIMP (× 100) VIMP (× 100) depth rank

bili 15.21 4.94 4.65 1.7 1.00
age 3.10 0.85 1.02 2.9 2.75

albumin 3.69 −0.20 0.31 2.1 4.50
ascites 0.73 −0.06 0.08 4.4 6.63
edema −0.01 −0.16 0.10 3.5 6.63

hepatom −0.26 −0.02 0.10 4.8 6.63
spiders −0.15 0.12 0.08 5.7 6.75
sex −0.63 0.12 0.14 6.5 7.13

protime −2.38 −0.08 0.00 2.5 7.75
drug −0.46 −0.04 −0.12 6.1 9.00

alkphos −2.98 −0.19 −0.02 3.5 9.50
platelet −0.98 −0.36 −0.35 3.3 9.75
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Fig 5. Partial dependence plots for Bili and Age for the RSF model.

plot.variable function in the randomSurvivalForest package. The y-axis is the par-
tial predicted survival at the median follow up time which is 3395 days in our
sample. More precisely, if Ŝ(x, xo) denote the forest predicted survival at Bili=x
and at xo for the other variables (other than Bili), the partial predicted survival
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at a specific value x for Bili is computed as

1

N

N
∑

i=1

Ŝ(x, xi,o)

where xi,o is the observed values of the other variables for observation i. Hence, it
is an average (over the sample) effect. We can see that the average probability
of surviving at least 3395 days decreases rapidly as Bili increases from 0 to
about 8 and then the effect stabilizes somewhat. As for Bili, the probability of
surviving at least 3395 days decreases with Age and the largest effect occurs
after 50 years.

It is clear that other methods (tree–based and not) are available but the
goal here is not to provide an exhaustive comparison across all methods but
to simply illustrate some key features of survival trees using readily available
implementations. The R code we used for this example is available upon request
from the second author.

6. Conclusion

This review shows that survival trees have been and are still a very active area of
research. Many methods have been proposed over the last 25 years. At first, the
research focused on the extension of classical trees to the case of censored data.
But recently, more complex models and situations have been explored and the
development of ensemble methods has renewed interest in tree based methods
in general and survival trees in particular. However, there are many topics that
still need further research. For instance, the modeling of time–varying covariates
and time–varying effects deserves much more attention.

As seen in the data example, variable importance measures and partial de-
pendence plots can be useful to relativize the importance of the covariates and
visualize their effects. However, exploring high level interactions between covari-
ates is still problematic for survival forests. But this is not a problem specific
to survival forests. It is rather a common problem to many ensemble methods
for any types of outcomes (continuous, categorical and so on). However, in the
context of survival trees, a further difficulty arises when time–varying effects
are included. Hence, we feel that the interpretation of covariate effects with tree
ensembles in general is still mainly unsolved and should attract future research.
In practice, forests should be used in conjunction with more interpretable (often
parametric) models. For instance, a forest could serve as a benchmark to judge
the performance of more interpretable models and could validate the simpler
interpretations based on them when they are judged adequate.

In principle, most existing methods to deal with missing values in trees are
also applicable with survival trees. However, there is a need for a systematic
investigation of the impact of missing values with survival trees and forests.
Moreover, it would be interesting to develop methods to handle missing time–
varying covariates.
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Finally, more work is needed to extend and investigate survival trees with
other types of censoring and truncation like interval–censoring, left–censoring
and left–truncation.

Appendix: Selection of a single tree

Pruning methods

The pruning approach has basically two variants: cost–complexity and split–
complexity. However, the basic idea is to build a large tree T0 and obtain a
sequence of nested subtrees {T0, T1, . . . , TM} where TM is the root–only tree.
For a given tree T , we will denote by L(T ) and W (T ) the set of terminal nodes
(leaves) and interior nodes of T . For a given node h of T , we will define R(h) to be
the within–node risk of h which measures the impurity of the node. The classical
measure of impurity for a regression tree is the residual sum of squares, with
the node average acting as the prediction. With survival data, many measures
of impurity can be used for R(h), but the choice will usually be in accordance
with the splitting criterion. For instance, Leblanc and Crowley (1992) use the
deviance of the node defined by R(h) = 2(LLh(saturated) − LLh(θ̃h)), where
LLh(saturated) is the log–likelihood for the saturated model with one parameter
for each observation, and LLh(θ̃h) is the maximized log–likelihood under their
adopted model. Davis and Anderson (1989) use a risk function based on the
exponential log–likelihood loss.

The cost–complexity method arises from the CART paradigm. The cost–
complexity of a tree is defined as

Rα(T ) =
∑

h∈L(T )

R(h) + α|L(T )|, (1)

where α is a nonnegative parameter which governs the tradeoff between the
complexity of the tree (the number of terminal nodes) and how well it fits
the data. Once the cost–complexity measure is specified, the classical pruning
algorithm of CART (Breiman et al., 1984) can be used to obtain the sequence of
optimally pruned subtrees. Each subtree is optimal for an interval of α values.

The other method introduced by Leblanc and Crowley (1993) defines the
split–complexity of a tree by

Gα(T ) =
∑

h∈W (T )

G(h)− α|W (T )|, (2)

where G(h) is the value of the standardized splitting statistic at node h (i.e.,
the value of the splitting criterion for the selected split at node h). Leblanc
and Crowley (1993) interpret

∑

h∈W (T ) G(h) as the total amount of prognostic

structure represented by the tree. Once again, the parameter α (≥ 0) gov-
erns the tradeoff between the size of the tree and how well it fits the data.
Leblanc and Crowley (1993) provide an algorithm to obtain the sequence of op-
timal subtrees for any value of α. The split–complexity method is also used in
Fan et al. (2006); Fan, Nunn and Su (2009); Bou-Hamad et al. (2009).
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Final selection among the nested sequence of subtrees

Once a nested sequence of subtrees {T0, T1, . . . , TM} has been obtained, we still
need to choose one single tree in it. Many methods are available. The most
popular methods are: the test set, cross–validation, bootstrap, AIC/BIC, and
graphical (“kink” in the curve or elbow).

The classical CART method uses cross–validation to estimate the parameter
α in the cost–complexity measure (1) and the final tree is the one corresponding
to this value in the sequence of trees (Breiman et al., 1984).

With the split–complexity measure (2), Leblanc and Crowley (1993) propose
two methods. The aim of both is to obtain an honest estimate of G(T ) =
∑

h∈W (T ) G(h) for each tree in the sequence of subtrees, since it is clear that

the in–sample values of G(T ) are likely to be too large. Once these are obtained,
the final tree can be selected as the one maximizing (2) by fixing a value for α.
Since the null distribution of their standardized splitting statistic is asymptot-
ically χ2

1, Leblanc and Crowley (1993) suggest using an α value in the interval
[2, 4]. Their argument is that α = 2 is in the spirit of the AIC criterion while
α = 4 corresponds roughly to using a 0.05 significance level for the χ2

1 distri-
bution. Their first method consists in applying a bootstrap bias correction to
G(T ) and is applicable with any sample size. Their second method is useful
for large samples and consists in dividing the original sample into training and
test samples. The training sample is used to build the large tree and obtain the
sequence of subtrees. The test sample is then used to recompute the value of
G(T ) =

∑

h∈W (T ) G(h) for each tree in the sequence. The optimal tree is then

chosen using the recomputed values of (2).
The AIC/BIC type methods proposed in other work are closely related to the

second method of Leblanc and Crowley (1993). The selection methods proposed
in Ciampi et al. (1987); Su and Fan (2004), and Su and Tsai (2005) all involve
selecting the final tree, among a sequence of subtrees, as the one minimizing a
criterion like

−2ll(T ) + α|L(T )|

where ll(T ) is the log–likelihood of the tree and α is either 2 (AIC) or log(n)
(BIC). The whole procedure involves building a large tree and obtaining a se-
quence of subtrees with a training sample and then recomputing ll(T ) with a
test sample.

Graphical methods that plot the value of a criterion as a function of the
tree complexity for each tree in the sequence have also been proposed. Similar
to a scree plot in a principal components analysis, such a plot usually has an
elbow shape with an abrupt change at some point. The final tree is then the one
corresponding to the “kink” in the curve. Segal (1988) proposes such a method
coupled with a specific pruning method. For this method, each internal node is
assigned the maximum split statistic in the subtree of which the node is the root.
This method is also used in Gao, Manatunga and Chen (2004). One drawback
of graphical methods is the subjectivity associated with them. Negassa et al.
(2000) propose an automatic elbow detection method and apply it with an AIC
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criterion (as above) but compute it on the same sample as the one that built
the tree.

Forward methods

When the covariates are measured on different scales, the number of candidate
splits at a given node can be very different for each covariate. For instance, if the
splitting criterion is based on a p–value, then a covariate with a higher number
of tests has a greater probability of achieving a small p–value. This is why the
use of adjusted p–values has been proposed to avoid any possible selection bias
in the choice of the covariate (Schlittgen, 1999; Lausen et al., 2004).

At the same time, adjusted p–value can be used to regulate the tree–building
procedure, acting as a criterion for when to stop splitting a node further. Using
such a rule gives rise to a forward method which avoids the use of pruning.
Using the standardized two–sample logrank statistic as the splitting criterion,
Lausen et al. (2004) propose such a method Their method not only accounts
for the fact that multiple tests are performed for each covariate but also for the
fact that many covariates are involved, and hence that the overall best value
of the test statistic is a maximum (over the covariates) of maximally selected
statistics (over all potential splits on a covariate). Splitting is stopped when the
adjusted p–value of the selected best split is greater than a pre–specified value
(for instance 0.05).
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