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Abstract: The empirical likelihoodmethod is a versatile approach for test-
ing hypotheses and constructing confidence regions in a non-parametric
setting. For testing the value of a vector mean, the empirical likelihood
method offers the benefit of making no distributional assumptions beyond
some mild moment conditions. However, in small samples or high dimen-
sions the method is very poorly calibrated, producing tests that generally
have a much higher type I error than the nominal level, and it suffers from
a limiting convex hull constraint. Methods to address the performance of
the empirical likelihood in the vector mean setting have been proposed in
a number of papers, including a contribution that suggests supplementing
the observed dataset with an artificial data point. We examine the conse-
quences of this approach and describe a limitation of their method that we
have discovered in settings when the sample size is relatively small com-
pared with the dimension. We propose a new modification to the extra data
approach that involves adding two points and changing the location of the
extra points. We explore the benefits that this modification offers, and show
that it results in better calibration, particularly in difficult cases. This new
approach also results in a small-sample connection between the modified
empirical likelihood method and Hotelling’s T-square test. We show that
varying the location of the added data points creates a continuum of tests
that range from the unmodified empirical likelihood statistic to Hotelling’s
T-square statistic.
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1. Introduction

Empirical likelihood methods, introduced by Owen (1988), provide nonpara-
metric analogs of parametric likelihood-based tests, and have been shown to
perform remarkably well in a wide variety of settings. Empirical likelihood tests
have been proposed for many functionals of interest, including the mean of a dis-
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tribution, quantiles of a distribution, regression parameters, and linear contrasts
in multisample problems.

In this paper, we focus on the use of the empirical likelihood method for
inference about a vector mean, and investigate some of the small sample prop-
erties of the method. It has been widely noted (see, for example, Owen (2001),
Tsao (2004a), or Chen, Variyath and Abraham (2008)) that in small samples
or high dimensional problems, the asymptotic chi-square calibration of the em-
pirical likelihood ratio statistic produces a test that generally does not achieve
the nominal error rate, and can in fact be quite anti-conservative. Many authors
have proposed adjustments to the empirical likelihood statistic or to the refer-
ence distribution in an attempt to remedy some of the small sample coverage
errors. We briefly examine the ability of some these adjustments to correct the
behavior of the empirical likelihood ratio test, and focus in particular on the
method of Chen, Variyath and Abraham (2008) which involves adding an artifi-
cial data point to the observed sample. This approach offers several key benefits
in both ease of computation and accuracy. We explore the consequences of the
recommended placement of the extra point, and we demonstrate a limitation of
the method that results in confidence regions equal to R

d in some settings. We
propose a modification of the data augmentation that involves adding two bal-
anced points rather than just one and changing the location of the added points.
The balanced points preserve the sample mean of the augmented data set, which
maintains the comparison between the sample mean and the hypothesized value.
This modification addresses both the under-coverage issue of the original empir-
ical likelihood method and the limitation of the Chen, Variyath and Abraham
(2008) method. The locations of the new extra points are determined according
to a parameter s > 0 which tunes the calibration of the resulting statistic. With
an appropriate choice of s, these adjustments result in greatly improved cali-
bration for small samples in high dimensional problems. Further, as s → ∞, we
find a small sample connection to Hotelling’s T-square test. Simulation results
demonstrate the effectiveness of the modified augmented empirical likelihood
calibration.

We begin in Section 2 with a description of the basic setting and introduce
some notation. We then outline the empirical likelihood method, and discuss the
small sample issues of the method. In Section 3 we present previous proposals for
calibrating the empirical likelihood method and compare the abilities of these
proposals to address the various challenges for empirical likelihood in small
samples. Section 4 introduces a modification of the data-augmentation strategy,
and presents a result regarding the change in sample space ordering as the
location of the extra points varies, connecting the empirical likelihood method
to Hotelling’s T-square test. We illustrate the improvement in calibration for
several examples in Section 5, and conclude in Section 6 with a discussion of the
results, and some ideas for future work and extensions of the methods presented
here.
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2. Background and notation

Let X1, . . . , Xn ∈ R
d be a sample of n independent, identically distributed d-

vectors, distributed according to F0. We want to test a hypothesis regarding the
value of µ0 = EF0

(Xi), i.e., to test

H0 : µ0 = µ. (1)

Let X̄ = 1
n

∑n
i=1 Xi denote the sample mean, and let S denote the sample

covariance matrix, which we assume to be full rank:

S =
1

n − 1

n∑

i=1

(
Xi − X̄

) (
Xi − X̄

)T
.

Finally, let A ∈ R
d×d be an invertible matrix satisfying AAT = S. Define

the following standardized quantities: Zi = A−1
(
Xi − X̄

)
, Z̄ = 0, and η =

A−1
(
µ − X̄

)
. We will use the standardized quantities to simplify notation in

later sections.

2.1. Hotelling’s T-square statistic

For the setting and hypothesis test described by (1), Hotelling’s T-square statis-
tic (Hotelling, 1931) is given by

T 2(µ) = n
(
X̄ − µ

)T
S−1

(
X̄ − µ

)
.

Hotelling’s T-square statistic is invariant under the group of transformations
defined by X 7→ X̃ = CX, where C is a full-rank matrix of dimension d×d. The
hypothesis being tested is then H0 : E(X̃i) = µ̃ = Cµ. In terms of standardized
variables defined in the previous section, Hotelling’s T-square statistic simplifies
to

T 2(µ) = nηT η.

For testing the mean of a multivariate normal distribution, Hotelling’s T-square
test is uniformly most powerful invariant, and has been shown to be admissible
against broad classes of alternatives (Stein, 1956; Kiefer and Schwartz, 1965). In
the Gaussian case, the resulting statistic has a scaled Fd,n−d distribution under
the null distribution, given by:

n − d

(n − 1)d
T 2(µ0) ∼ Fd,n−d,

and therefore a hypothesis test of level α is obtained by rejecting the null hy-
pothesis when

n − d

(n − 1)d
T 2(µ) > F

(1−α)
d,n−d .

The multivariate central limit theorem, along with Slutsky’s theorem, justifies
the use of this test for non-Gaussian data in large samples, and even in relatively
small samples it is reasonably robust. Highly skewed distributions will of course
require larger sample sizes to produce accurate inference using Hotelling’s T-
square test.
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2.2. Empirical likelihood statistic

Owen (1988) and Owen (1990) proposed the ordinary empirical likelihood method,
which we will denote by EL, for testing the hypothesis (1). It proceeds as follows:
let

R(µ) = max

{
n∏

i=1

nwi

∣∣∣∣∣

n∑

i=1

wiXi = µ, wi ≥ 0,

n∑

i=1

wi = 1

}
.

The log empirical likelihood ratio statistic is then given by

W(µ) = −2 logR(µ).

When positive weights wi satisfying the condition
∑n

i=1 wiXi = µ with∑n
i=1 wi = 1 do not exist, the usual convention is to set R(µ) = −∞, and thus

W(µ) = ∞. Under some mild moment assumptions, W(µ0)
d
→ χ2

d as n → ∞
(Owen, 1990), where µ0 is the true mean of the underlying distribution. The
proof of this asymptotic behavior proceeds by showing that W(µ0) converges in
probability to Hotelling’s T-square statistic T 2(µ0) as n → ∞.

The motivation for the empirical likelihood ratio statistic is, as the name
implies, an empirical likelihood ratio. The denominator is the likelihood of the
observed mean under the empirical distribution:

∏n
i=1

(
1
n

)
. The numerator is

the maximized likelihood for a distribution F that is supported on the sample
and satisfies EF [X] = µ. It is easy to show that the empirical likelihood ratio
statistic is invariant under the same group of transformations as Hotelling’s T-
square test, and this is a property that we will seek to maintain as we address
the calibration issues of the test.

The asymptotic result above allows us to test hypotheses regarding the mean
and to construct confidence intervals using the appropriate critical values arising
from the chi-square distribution. However, the small sample behavior of this
statistic is somewhat problematic for several reasons. First, if µ is not inside
the convex hull of the sample, the statistic is undefined, or by convention taken
to be ∞. A paper by Wendel (1962) calculates the probability p(d, n) that the
mean of a d-dimensional distribution is not contained in the convex hull of
a sample of size n. The result is for distributions that are symmetric under
reflections through the origin, and is found to be p(d, n) = 2−n+1

∑d−1
k=0

(
n−1

k

)
.

That is, the probability that the convex hull of the points does not contain the
mean is equal to the probability that W ≤ d − 1 for a random variable W ∼
Bin(n−1, 1

2). (Note: an isomorphism between the binomial coin-flipping problem
and this convex hull problem has still not been identified.) In small samples this
convex hull constraint can be a significant problem, and even when the sample
does contain the mean, the null distribution will be distorted somewhat by the
convex hull effect.

A second issue that affects the small sample calibration of the empirical like-
lihood statistic is the fact that the first order term of the asymptotic expansion
for the statistic is clearly not chi-square for small n, and is in fact bounded, as



S.C. Emerson and A.B. Owen/Empirical likelihood calibration 1165

we now demonstrate. Analogous to the definition of S, define

S̃(µ) =
1

n

n∑

i=1

(Xi − µ) (Xi − µ)
T

.

In the asymptotic expansion of the statistic W(µ0), the first order term is

T̃ 2(µ0) = n(X̄ − µ0)
T S̃(µ0)

−1(X̄ − µ0),

which is related to Hotelling’s T-square statistic by

T̃ 2(µ0) =
nT 2(µ0)

T 2(µ0) + n − 1
≤ n

(Owen, 2001).
It is difficult to quantify the effect of the deviation of this term from its

chi-square limit because the higher order terms clearly have a non-ignorable
contribution in this setting since the EL statistic is unbounded. This does, how-
ever, indicate that the asymptotic approximation may be very far from accurate
for small samples.

Together, these issues result in a generally very anti-conservative test in small
samples. This is illustrated in the quantile-quantile and probability-probabilty
plots shown in Figure 1, which are generated by simulating 5000 datasets consist-
ing of 10 points from the multivariate Gaussian distribution in four dimensions,
and then calculating the value of the EL statistic for the true mean µ0 = ~0 for
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Fig 1. Quantile-quantile and probability-probability plots for the null distribution of the em-
pirical likelihood method (EL) statistic versus the reference χ2 distribution when the data
consists of 10 points sampled from a 4 dimensional multivariate Gaussian distrubution. The
x-axis corresponds to quantiles (left) or p-values (right) for the χ2 distribution and the y-axis
is quantiles (left) or p-values (right) of the EL statistic.
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each dataset. We use this extreme setting of 10 points in four dimensions to
make the calibration flaws readily apparent; these flaws persist, to a lesser de-
gree, even in more reasonable settings. From these plots we can see the extremely
anti-conservative behavior of this test: a test with nominal level α = 0.05 would
in fact result in a type I error rate of about 0.47. The example shown here is
a difficult one, but even in more reasonable problems there can be a sizeable
discrepancy between the nominal and actual type I error rates.

3. Calibration of empirical likelihood for a vector mean

There have been a number of suggestions for improving the behavior of the
empirical likelihood ratio statistic in small samples. We give a brief descrip-
tion of several such calibration methods here; more in-depth discussion may be
found in the references listed with each method. The simplest of these meth-
ods is to use an appropriately scaled F distribution (Owen, 2001) in place of
the usual χ2 reference distribution calibration. This approach is motivated by
the first order term of the empirical likelihood ratio statistic, which closely re-
sembles Hotelling’s T-square statistic. However, in many examples there is no
improvement in the resulting calibration, and the convex hull issue is clearly
not addressed.

Owen (1988) proposes using a bootstrap calibration, which involves resam-

pling from the original data set to get new data sets {X
(b)
1 , . . . , X

(b)
n } for b =

1, . . . , B. Then for each bootstrap sample, the empirical likelihood ratio statis-
tic W(b)(X̄) is computed for the sample mean of the original data set using the
resampled data. This resampling process is performed B times, and the statistic
W(µ) is then compared to the distribution of values W(b)(X̄), b = 1, . . . , B to
give a bootstrap p-value. The bootstrap calibration does not directly address
the convex hull problem, but if the empirical likelihood function is extended
beyond the hull of the data in some way, the boostrap calibration can produce
usable results even when µ is not in the convex hull of the data. The calibration
resulting from this bootstrap process is generally reasonably good, but it is quite
computationally intensive. As with most bootstrap processes, the performance
is improved with a higher number of bootstrap repetitions.

DiCiccio, Hall and Romano (1991) show that the empirical likelihood method
is Bartlett-correctable, and therefore the asymptotic coverage errors can be re-
duced from O(n−1) to O(n−2). They further demonstrate that even in small
samples an estimated Bartlett correction offers a noticeable improvement. The
Bartlett correction involves scaling the reference χ2 distribution by a factor that
can be estimated from the data or computed from a parametric model, and
therefore offers no escape from the convex hull. Since the Bartlett correction
corresponds to shifting the slope of the reference line in the quantile-quantile
plot, it is also clear that in the examples we consider here it will offer only a
marginal benefit in improving calibration.

The empirical likelihood-t method, discussed in Owen (2001) and originally
proposed by K. A. Baggerly in a 1999 technical report (source unavailable) is an
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attempt to address the convex hull constraint by allowing the weighted mean
to differ from the hypothesized mean in a constrained manner. This method
does not retain the transformation invariance of the empirical likelihood method
(Owen, 2001), and requires significantly more computation time as it introduces
another parameter to be profiled out in the search for optimal weights.

Tsao (2001) and Tsao (2004b) discuss a calibration for the empirical likeli-
hood method for a vector mean that involves simulating the exact distribution
of the empirical likelihood ratio statistic when the underlying distribution of the
data is Gaussian, and using this simulated distribution as the reference. There is
no attempt to address the convex hull issue, but the resulting coverage levels do
tend to be closer to the nominal levels when the convex hull constraint allows it.

Bartolucci (2007) suggests a penalized empirical likelihood that allows hy-
potheses outside the convex hull of the data by penalizing the distance between
the mean ν of the reweighted sample distribution and the hypothesized mean µ.
While this approach does escape the convex hull issue, the choice of the penalty
parameter is difficult to determine, and the method is very computationally in-
tensive as it requires an extra search to minimize the penalty and it also relies
on bootstrap calibration. In fact, the author recommends double bootstrap cali-
bration, which becomes prohibitively expensive as the dimension of the problem
increases. Clearly the benefit of this approach will depend on the choice of the
penalty parameter, and it is unclear how much this modification improves the
calibration of the test in the best case.

Finally, Chen, Variyath and Abraham (2008) suggest a calibration, which we
will refer to henceforth as the adjusted empirical likelihood method (AEL), that
proceeds by adding an artificial point to the data set and then computing the
empirical likelihood ratio statistic on the augmented sample. The point is added
in such a way as to guarantee that the hypothesized mean will be in the con-
vex hull of the augmented data, thereby addressing the convex hull constraint.
Chen, Variyath and Abraham discuss the asymptotic behavior of this modifica-
tion, showing that as long as the additional point is placed in a reasonable way,
the resulting statistic has the same limiting properties as the ordinary empiri-
cal likelihood ratio statistic. This approach is attractive from a computational
standpoint, and appears to have good potential to influence the appropriateness
of the calibration of the empirical likelihood method.

In summary, with the exception of the last two methods, these approaches
do not address the convex hull constraint, and have varying degrees of success
at correcting the small sample behavior of the empirical likelihood statistic.
The AEL method has most convincingly overcome the convex hull issue and
has further resulted in marked improvement in the calibration of the resulting
statistic, so we explore their approach in greater depth.

3.1. Adjusted empirical likelihood

Chen, Variyath and Abraham (2008) propose adding an additional point to the
sample and then calculating the empirical likelihood statistic based on the aug-
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Table 1

Comparisons of the small-sample properties of the calibration methods discussed in
Section 3. The first column of comparisons indicates the abilities of the methods to address
the constraint that the hypothesized mean must be contained in the convex hull of the data.

The second comparison column describes the degree to which the method improves the
agreement between the achieved and nominal level of a hypothesis test, when a test of that

level is possible given the convex hull constraint

Calibration Escape Small-sample
Method Convex Hull Improvement

F-calibration No Somewhat
Bootstrap calibration No Yes
Bartlett correction No Somewhat
Tsao (2001) calibration No Yes
Tsao (2004) calibration No Yes
Bartolucci (2007) calibration Yes Somewhat
Chen, et al. (2008) calibration Yes Yes

mented data set. Define the following quantities:

v∗ = X̄ − µ, r∗ = ‖v∗‖ , and u∗ =
v∗

r∗
,

so v∗ is the vector from the sample mean to the hypothesized mean of the
underlying distribution, r∗ is the distance between the sample mean and the
hypothesized mean, and u∗ is a unit vector in the direction of v∗. In terms of
these quantities, for the setting described in Section 2, the extra point Xn+1

that Chen, Variyath and Abraham suggest is

Xn+1 = µ − an

(
X̄ − µ

)
= µ − anv∗ = µ − anr∗u∗, (2)

where an is a positive constant that may depend on the sample size n. Then the
resulting adjusted log empirical likelihood ratio statistic is

W∗(µ) = −2 logR∗(µ)

where

R∗(µ) = max

{
n+1∏

i=1

(n + 1)wi

∣∣∣∣∣

n+1∑

i=1

wiXi = µ, wi ≥ 0,

n+1∑

i=1

wi = 1

}
.

They recommend the choice an = 1
2

log(n), but discuss other options as well and

state that as long as an = op(n
2/3) the first order asymptotic properities of the

original log empirical likelihood ratio statistic are preserved for this adjusted
statistic. It is easy to see that this modification also preserves the invariance of
the ordinary empirical likelihood method. However, in the case of small samples
or high dimensions, we have discovered that the AEL adjustment has a limita-
tion that can make the chi-square calibration very inappropriate. The following
Proposition describes this phenomenon.
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Proposition 3.1. With an extra point placed as proposed in Chen, Variyath and
Abraham (2008) at Xn+1 = µ− an(X̄ − µ), the statistic W∗(µ) = −2 logR∗(µ)
is bounded above:

W∗(µ) ≤ B(n, an) ≡ −2

[
n log

(
(n + 1)an

n(an + 1)

)
+ log

(
n + 1

an + 1

)]
.

Proof. We show that weights w̃i given by

w̃i =
an

n(an + 1)
for i = 1, . . . , n

w̃n+1 =
1

an + 1

always satisfy
∑n+1

i=1 w̃iXi = µ when Xn+1 = µ − an(X̄ − µ):

n+1∑

i=1

w̃iXi =

n∑

i=1

w̃iXi + w̃n+1Xn+1

=

n∑

i=1

an

n(an + 1)
Xi +

1

an + 1

(
µ − an(X̄ − µ)

)

=
an

an + 1
X̄ −

an

an + 1
X̄ +

1

an + 1
µ +

an

an + 1
µ

= µ.

Then since clearly
∑n+1

i=1 w̃i = 1, we therefore have

R∗(µ) = max

{
n+1∏

i=1

(n + 1)wi

∣∣∣∣∣

n+1∑

i=1

wiXi = µ, wi ≥ 0,

n+1∑

i=1

wi = 1

}

≥
n+1∏

i=1

(n + 1)w̃i.

So taking logarithms and multiplying by −2 we find that:

W∗(µ) ≤ −2

n+1∑

i=1

log [(n + 1)w̃i]

= −2n log

(
(n + 1)an

(an + 1)n

)
− 2 log

(
n + 1

an + 1

)
.

This result clearly indicates the poor performance of the chi-square calibra-
tion for this statistic with small n or large d, as this bound will in some cases
be well below the 1 − α critical value of the χ2

(d) reference distribution, which

will make the chi-square calibrated 1−α confidence intervals equal R
d. Table 2
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Table 2

Maximum possible confidence level for a non-trivial chi-square calibrated confidence interval
using the AEL method of Chen, Variyath and Abraham (2008). Confidence intervals with
nominal level greater than the given values will include the entire parameter space. These

numbers are for the case when n = 10 and an =
log(n)

2
, for dimension ranging from 1 to 9.

The upper bound for the adjusted log empirical likelihood ratio statistic for this n and an is
B(n, an) = 7.334

Dimension d P

(
χ2

(d)
≤ B(n, an)

)

1 0.993
2 0.974
3 0.938
4 0.881
5 0.803
6 0.709
7 0.605
8 0.499
9 0.398
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Fig 2. Quantile-quantile and probability-probability plots for the null distribution of the ad-
justed empirical likelihood (AEL) statistic versus the reference χ2 distribution when the data
consists of 10 points sampled from a 4 dimensional multivariate Gaussian distrubution. The
x-axis corresponds to quantiles (left) or p-values (right) for the χ2 distribution and the y-axis
is quantiles (left) or p-values (right) of the AEL statistic.

displays the largest possible coverage level that does not result in the trivial pa-
rameter space confidence region using the AEL method, for the situation where
10 observations in d dimensions. For small values of d or large values of n, the
bound will not cause much of a problem. For larger values of d relative to n,
the bound can be rather restrictive: from Table 2, we see that for d ≥ 3, a
95% confidence region based on the χ2

(3) reference distribution will include the
entire space. Predictably, as d increases for a fixed n, this issue becomes more
pronounced. Figure 2 illustrates the bound phenomenon for 10 points in 4 di-
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mensions, and also demonstrates suboptimal calibration even for values of α for
which the boundedness of the statistic is not an issue.

4. Modified sample augmentation

Inspired by the approach of the AEL method, we propose augmenting the sam-
ple with artificial data to address the challenges mentioned above. However
there are several key differences between their approach and ours. In contrast
to the one point, placed at Xn+1 = µ − 1

2
log(n)(X̄ − µ) as suggested by

Chen, Variyath and Abraham, we propose adding two points to preserve the
mean of the augmented data at X̄ . We also modify the placement of the points
to

Xn+1 = µ − scu∗u∗ (3)

Xn+2 = 2X̄ − µ + scu∗u∗ (4)

where cu∗ =
(
u∗TS−1u∗

)
−1/2

. This choice of cu∗ may be recognized as the
inverse Mahalanobis distance of a unit vector from X̄ in the direction of u∗,
and will result in the points being placed closer to µ when the covariance in the
direction of X̄ − µ is smaller, and farther when the covariance in that direction
is larger. We will assume that P (X̄ = µ) = 0 and therefore we do not have to
worry about the case when u∗ is undefined because v∗ is zero.

With the points placed as described, the sample mean of the augmented
dataset is maintained at X̄. The scale factor s can be chosen based on consid-
erations that will be investigated in the next section. Having determined the
placement of the extra points, we then proceed as if our additional points Xn+1

and Xn+2 were part of the original dataset, and compute W̃(µ) = −2 log(R̃(µ))
where

R̃(µ) = max

{
n+2∏

i=1

(n + 2)wi

∣∣∣∣∣

n+2∑

i=1

wiXi = µ, wi ≥ 0,

n+2∑

i=1

wi = 1

}
.

We will refer to this statistic and method as the balanced augmented empiri-
cal likelihood method (BAEL) throughout the paper, to distinguish it from the
unadjusted empirical likelihood statistic (EL) and the adjusted empirical like-
lihood statistic (AEL) of Chen, Variyath and Abraham. By the arguments of
Chen, Variyath and Abraham (2008), it is easy to show that with a fixed value
of s this approach to augmenting the dataset has the same asymptotic proper-
ties as the ordinary empirical likelihood statistic. Other desirable properties of
the EL statistic are retained as well, as addressed in the following Proposition.

Proposition 4.1. Placing the points according to (4) preserves the invariance
property of the empirical likelihood method under transformations of the form
X 7→ X̃ = CX, where C is an arbitrary full-rank matrix of dimension d × d.
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Proof. The transformed ũ is given by

ũ =
¯̃
X − µ̃

‖ ¯̃
X − µ̃‖

=
C
(
X̄ − µ

)
∥∥CX̄ −Cµ

∥∥ ,

and the transformed c̃ũ is given by

c̃ũ =
(
ũT
(
CSCT

)−1
ũ
)
−1/2

=
∥∥CX̄ − Cµ

∥∥
[(

X̄ − µ
)T

S−1
(
X̄ − µ

)]−1/2

.

Thus we have

c̃ũũ =
∥∥CX̄ − Cµ

∥∥
[(

X̄ − µ
)T

S−1
(
X̄ − µ

)]−1/2 C
(
X̄ − µ

)
∥∥CX̄ −Cµ

∥∥

= C
∥∥X̄ − µ

∥∥
[(

X̄ − µ
)T

S−1
(
X̄ − µ

)]−1/2 X̄ − µ∥∥X̄ − µ
∥∥

= C
[
u∗TS−1u∗

]
−1/2

u∗.

Finally, when we place X̃n+1 based on the transformed data, we get

X̃n+1 = µ̃ − sc̃ũũ = Cµ − sC
[
u∗T

S−1u∗

]
−1/2

u∗ = CXn+1 ,

and similarly X̃n+2 = CXn+2 . Using the fact that the original empirical likeli-
hood method is invariant, we may conclude that this augmentation leaves the
statistic invariant under the same group of transformations.

One of the key differences between this approach and that of the AEL method
is that as ‖X̄ − µ‖ increases the distance ‖µ − Xn+1‖ remains constant in our
approach. This avoids the upper bound on W∗(µ) that occurs using the AEL
method. The other key idea in this placement of the extra points is to utilize
distributional information estimated from the sample in the placement of the
extra points.

The use of two points rather than just one is motivated by the original context
of the empirical likelihood ratio statistic as a ratio of two maximized likelihoods:
the numerator is the maximized empirical likelihood with the constraint that
the weighted mean be µ, and the denominator is the unconstrained maximized
empirical likelihood which occurs at the sample mean X̄ . Adding just one point
would necessarily change the sample mean, and therefore as different values
of µ are tested, the resulting likelihood ratios are comparing the constrained
maximum likelihoods to different sample means. Though the resulting weights
in the denominator are the same no matter the value of the sample mean, the
addition of two balanced points retains the spirit of the method and results in
an interesting connection between the empirical likelihood ratio statistic and
Hotelling’s T-square statistic, as discussed further in Section 4.1.

In the next section we will address the choice of the scale factor s on the re-
sulting statistic, and in particular we will describe and prove a result connecting
the empirical likelihood method and Hotelling’s T-square test in small samples.
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4.1. Limiting behavior of W̃(µ) as s → ∞

To reduce notation, we will work with the standardized versions of the data and
the hypothesized mean as described in Section 2, so

R̃(µ) = R̃(µ; X1, . . . , Xn+2) = R̃(η; Z1, . . . , Zn+2) = R̃(η)

W̃ (µ) = W̃ (µ; X1, . . . , Xn+2) = W̃ (η; Z1, . . . , Zn+2) = W̃ (η)

where Zn+1 and Zn+2 are defined as follows. Using the transformed variables,
we let

v = Z̄ − η = −η, r = ‖v‖ = ‖η‖ , and u =
v

r
=

−η

‖η‖
.

As these standardized observations have sample mean equal to zero and sample
covariance matrix equal to Id, the extra points Zn+1 and Zn+2 are then given
by

Zn+1 = η − su and Zn+2 = −η + su. (5)

Then as the distance of these extra points from Z̄ = 0 increases, we are interested
in the limiting behavior of the resulting adjusted empirical likelihood statistic,
which is given by the following theorem:

Theorem 4.2. For a fixed sample of size n

2ns2

(n + 2)2
W̃ (µ) → T 2(µ)

as s → ∞, where T 2(µ) is Hotelling’s T 2 statistic.

Here we present a brief outline of the proof; a complete and detailed proof is
given in the Appendix. We will use the following notation throughout the proof
of the theorem. As in Owen (2001), let λ be the Lagrange multiplier satisfying

n+2∑

i=1

1

(n + 2)

Zi − η

1 + λT (Zi − η)
= 0 (6)

so then the weights that maximize R̃(η) are given by

wi =
1

(n + 2)

1

1 + λT (Zi − η)
.

The proof of the theorem proceeds in the following steps:

1. First we establish that λT u = o(s−1) using a simple argument based on
the boundedness of the weights wi.

2. We bound the norm of λ by ‖λ‖ = o(s−1/2) using the result from step 1
together with the fact that λT (Zi − η) > −1 for all i, and the identity

n+2∑

i=1

λT (Zi − η) = λT (n + 2)(−η).
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3. Using the result from step 2, the unit vector in the direction of λ, given
by θ, is shown to satisfy θT u → 1. Then since from step 1 we have λT u =
o(s−1), we get ‖λ‖ = o(s−1).

4. The limiting behavior of λ is found to be s2λT u → (n+2)r
2 , using the bound

from step 3 together with the constraint given by equation (6), and the
identity

1

1 + x
= 1 − x +

x2

1 + x
.

This gives ‖λ‖ = O(s−2).

5. Finally we use the limiting behavior of λ from step 4 to get 2ns2

(n+2)2
W̃ (µ) →

T 2. This is done by substituting the expression for λ from step 4 into the
expression for W̃ (η):

W̃ (η) = −2

n+2∑

i=1

log [(n + 2)wi]

and using the Taylor series expansion for log(x) as x → 1.

This proof differs in several key ways from the usual empirical likelihood proofs,
and these five steps are presented in full detail in Sections A.1–A.5 of the ap-
pendix.

We mentioned in Section 2.2 that asymptotically the empirical likelihood
test becomes equivalent to Hotelling’s T-square test under the null hypothesis
as n → ∞, but this theorem extends that relationship. This result provides
a continuum of tests ranging from the ordinary empirical likelihood method
to Hotelling’s T-square test for any sample size. The magnitude of s that is
required to achieve reasonable convergence to Hotelling’s test depends on the
dimension and sample size.

5. Results

First we present the results of simulations to compare the accuracy of the
chi-square calibration for the original empirical likelihood method (EL), the
Chen, Variyath and Abraham (2008) adjusted empirical likelihood method (AEL),
and our balanced augmented empirical likelihood method (BAEL) in Section 5.1.
Then we illustrate the effect of the s parameter on the relationship of the BAEL
method to the original empirical likelihood method and to Hotelling’s T-square
test in Section 5.2.

5.1. Calibration results

To compare the calibration of EL, AEL, and BAEL, we performed numerical
comparisons based on simulated datasets for a variety of settings. We considered
four combinations of sample size and dimension: (d, n) = (4, 10), (4, 20), (8, 20),
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Table 3

Skewness and kurtosis of example distributions

Marginal Skewness Kurtosis
Distribution
Normal(0, 1) 0 0
t(3) 0 +∞
Double Exponential(1) 0 3
Uniform 0 -1.2
Beta(0.1, 0.1) 0 -1.875
Exponential(3) 2 6
F(4, 10) 4 54

Chi-square(1) 2
√

2 12
Gamma(0.25, 0.1) 4 24

and (8, 40). For each combination, we simulated datasets from nine different dis-
tributions with independent margins. The distributions were chosen to represent
a range of skewness and kurtosis so that we could evaluate the effects of higher
moments on the calibration of the method. The skewness and kurtosis of the cho-
sen distributions are listed in Table 3. We compared the chi-square calibrations
of EL, AEL, and BAEL by creating quantile-quantile plots of the log empirical
likelihood ratio statistics versus the appropriate chi-square distribution. Figures
3–10 show the resulting improvement in chi-square calibration using our BAEL
method. We also plotted the p-values resulting from the chi-square calibration
versus uniform quantiles in the corresponding probability-probability plots, to
give a better indication of the coverage errors of the different methods. In each
figure, the black lines or points represent the ordinary EL method; the red lines
or points represent the AEL method of Chen, Variyath and Abraham; and the
green lines or points are the results of our BAEL statistic. In the probability-
probability plots, we have also included a blue line for the p-values resulting
from Hotelling’s T-square test. All of these figures were produced using s = 1.9;
more discussion of the choice of s will be given in Section 6.

These plots demonstrate the marked improvement in calibration achieved by
our method: for symmetric distributions, the actual type I error is almost exactly
the nominal level, particularly in the upper right regions of the plots where most
hypothesis testing is focused. For the skewed distributions, the accuracy of the
calibration depends on the degree of skewness and also on the kurtosis of the
distributions. We find that it is harder to correct the behavior of empirical
likelihood in skewed and highly kurtotic distributions, but even in the case
of the Gamma(1/4, 1/10) distribution we have acheived distinct improvement
over the other two versions of empirical likelihood. We have also essentially
matched the calibration performance of Hotelling’s T-square test even though
the value of the scale factor s is not large enough to have forced convergence
to Hotelling’s test, as will be addressed in Section 5.2. Thus we are still in the
empirical likelihood setting, but with significantly improved accuracy for our
test.

Note also that though the behavior in skewed distributions is not completely
corrected by our calibration, it appears from the quantile-quantile plots that a
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Fig 3. Quantile-quantile plots for d = 4, n = 10. The x-axis has quantiles of the χ2
(4)

distribution, and the y-axis is quantiles of the ordinary EL statistic (black), the AEL statistic
(red), and our BAEL statistic (green). Reading across the rows, the distributions are arranged
in order of increasing skewness and then increasing kurtosis. The first five distributions are
symmetric. Black tick marks on the y = x line indicate the 90%, 95%, and 99% quantiles of
the reference distribution.

Bartlett correction might result in a marked improvement by shifting the slope
of the reference distribution line. A Bartlett correction is clearly not as likely to
result in improvement for the EL and AEL statistics, as the quantile-quantile
plots for those methods versus the reference chi-square distribution are quite
non-linear.
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Fig 4. Probability-Probability plots for d = 4, n = 10, for the same scenarios as illustrated
in Figure 3. The x-axis is uniform quantiles, and the y-axis is 1 − p-values computed from
the χ2(4) reference distribution for the ordinary EL statistic (black), the AEL statistic (red),
and the BAEL statistic (green). Hotelling’s T-square 1 − p-values are also included on this
plot (blue).

5.2. Sample space ordering results

Next we explored the degree to which our new calibration deviates from the
ordinary empirical likelihood method to agree with Hotelling’s, as a function of
the scale factor s. Two tests are functionally equivalent if they order the possible
samples in the same way, and therefore will always come to the same conclusion.
Otherwise, if the tests produce different orderings of possible samples, they may
make different decisions on the same dataset. For instance, the two-tailed t-test
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Fig 5. Quantile-quantile plots for d = 4, n = 20.

for a univariate mean is equivalent to the F -test that results from squaring the t

statistic: though these two tests have different reference distributions, they will
always make the same decision for any given sample. In contrast, Pearson’s chi-
square test for independence in 2× 2 tables orders the sample space differently
than Fisher’s exact test does, and thus these two tests may come to different
conclusions. The important idea here is the ordering that different tests impose
on the sample space determines the properties of the tests, such as their power
against various alternatives.

We have shown that as s increases, our BAEL statistic will become equivalent
to Hotelling’s T-square statistic, but we would like to explore the extent to which
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Fig 6. Probability-Probability plots for d = 4, n = 20.

this is true for small values of s. To do this, we generated 100 datasets, each
consisting of 40 observations from a standard multivariate Gaussian distribution
in 8 dimensions. For each dataset, we computed Hotelling’s T-square statistic
T 2(µ0), the EL statistic W(µ0), and the BAEL statistic W̃(µ0). We considered
how the three statistics ordered different samples when testing the true null
hypothesis by ranking the datasets according to each of the statistics. Figure 11
plots the ranking of the samples according to the BAEL statistic on the y-axis
versus the ranking according to Hotelling’s T-square statistic on the x-axis. The
value of s increases as powers of 2 from the top left plot to the bottom right.
These same samples and choices of s are shown again in Figure 12, except now
the x-axis is the rank according to the EL statistic.
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Fig 7. Quantile-quantile plots for d = 8, n = 20.

These figures demonstrate the convergence of the sample space ordering to
that of Hotelling’s T-square statistic as s increases. From these figures we can
see, for example, that for the value s = 1.9 used in the calibration simulations
the ordering imposed by the BAEL statistic has not yet converged to the or-
dering produced by Hotelling’s T-square statistic. It is important to note that
though the sample space ordering of the new augmented empirical likelihood
statistic looks to be identical to that of Hotelling’s statistic when s = 16, this
does not mean that the relationship is linear yet. We also note that for different
combinations of the underlying distribution, sample size, and dimension, the
same value of s will produce different ordering discrepancies between the aug-
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Fig 8. Probability-Probability plots for d = 8, n = 20.

mented empirical likelihood method and Hotelling’s T-square statistic, but the
qualitative behavior as s increases will be preserved.

6. Discussion

We have introduced and explored many of the properties of a new augmented
data empirical likelihood calibration. It has performed remarkably well in diffi-
cult problems with quite small sample sizes, and produces a versatile family of
tests that allow an investigator to take advantage of both the data-driven con-
fidence regions of the empirical likelihood method and the accurate calibration
of Hotelling’s T-square test.
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Fig 9. Quantile-quantile plots for d = 8, n = 40.

In additional simulations we have explored the effect of the scale factor s on
the resulting chi-square calibration of the BAEL statistic. We found that there
is some variability in the value of s∗(d) that produces the best χ2

(d) calibration
for a given dimension, but the range is fairly tight, from approximately 1.6 for
d = 2 to 2.5 for d = 30. The optimal value s∗(d) was chosen to be the value that
gave the best overall fit to the χ2

(d) distribution, as judged by the Kolmogorov-

Smirnov statistic. The default value s∗(d) warrants more detailed investigation,
and will be explored further in later work.

We would like to investigate the potential of a Bartlett correction to improve
the calibration in skewed samples. Since estimating the correction factor for a
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Fig 10. Probability-Probability plots for d = 8, n = 40.

Bartlett correction involves estimating fourth moments, it will be a challenge
in small samples and high dimensions, but it does appear that there may be
significant gains possible. The linearity of the quantile-quantile plots in the
skewed distributions indicates that perhaps the skewness just scales the chi-
square distribution of the augmented empirical likelihood statistic, but does not
otherwise significantly alter it. This certainly warrants further exploration and
theoretical justification.

Concurrent work by Liu and Chen (2009) has explored the use of two addi-
tional data points in another context. They kindly shared a preprint of their
article with us as we were finishing work on our approach. Liu and Chen (2009)
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Fig 11. Comparing the ranking of 100 samples according to Hotelling’s T-square statistic
(x-axis) vs. the BAEL statistic (y-axis) as s increases from 0.5 to 16.

use different criteria for determining the placement of the extra points, and
they investigate a connection between their resulting method and the Bartlett
correction for empirical likelihood.

We have not addressed the power of the resulting test in this work, but we
have made preliminary investigations into the effect of our modification on the
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Fig 12. Comparing the ranking of the 100 samples from Figure 11 according to the EL statistic
(x-axis) vs. the BAEL statistic (y-axis) as s increases from 0.5 to 16.

power of the competing tests. As might be expected, we have found that the
power of BAEL is between that of the ordinary empirical likelihood and the
power of Hotelling’s T-square test. The relationship described in Theorem 4.2
explains this behavior on a heuristic level, and also indicates that as s increases,
the power curve of the augmented empirical likelihood test will more closely
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resemble the power curve from Hotelling’s T-square. For most of the examples
and alternatives that we explored, the power of the ordinary empirical likelihood
and the power of Hotelling’s test were very close.

The connection to Hotelling’s T-square test may prove to be especially inter-
esting in the multi-sample setting. This result has potential implications beyond
the one-sample mean setting, where it is largely of theoretical interest. In multi-
sample settings, this relationship, combined with the generality of the empirical
likelihood method, might be useful in extending Hotelling’s test to scenarios
where it currently does not apply, such as unequal group sizes with different
variances. The use of the empirical likelihood-Hotelling’s T-square continuum
could enable us to produce tests with the accuracy of Hotelling’s T-square, but
with the flexibility and relaxed assumptions of the empirical likelihood frame-
work. Similar extensions may also be made to regression problems.
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Appendix A: Proof of Theorem 4.2

Recall that Zi are the standardized variables Zi = A−1
(
Xi − X̄

)
, leading to the

standardized versions of the sample mean Z̄ = 0, and the hypothesized mean
η = A−1

(
µ − X̄

)
. We have defined the following quantities:

v = Z̄ − η = −η, r = ‖v‖ = ‖η‖ , and u =
v

r
=

−η

‖η‖
.

Note that, by (5), Zn+1 − η = −su and Zn+2 − η = −2η + su = (2r + s)u.
In the following, n is fixed and all limits and O(·) and o(·) notations are to be
interpreted as s → ∞.

A.1. Step 1

Since λ satisfies

0 =
n∑

i=1

wi(Zi − η) + wn+1(−su) + wn+2(2r + s)u,

we have
n∑

i=1

wi(Zi − η) + wn+22ru = (wn+1 − wn+2) su.

Dividing both sides by s, and multiplying on the left by uT gives

1

s

(
n∑

i=1

wiu
T (Zi − η) + wn+22r

)
= wn+1 − wn+2.
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Now because η is inside the convex hull of the augmented sample, 0 < wi < 1
and ∥∥uT (Zi − η)

∥∥ ≤ max
i=1,...,n

{
(Zi − η)T (Zi − η)

}
= O(1),

we have wiu
T (Zi − η) = O(1). Similarly, wn+22r = O(1), and therefore,

(n + 2) (wn+1 − wn+2) =
1

1− sλT u
−

1

1 + (2r + s)λT u
= O(s−1). (7)

Thus since 1 − sλT u > 1 ⇒ 1 + (2r + s)λT u < 1 and vice versa, we must have

λT u = o(s−1). (8)

A.2. Step 2

Since 0 < wi < 1 for i = 1, . . . , n + 2, we have that 1 + λT (Zi − η) > 0 which
implies λT (Zi − η) > −1 for all i. Then using the fact that

n+2∑

i=1

λT (Zi − η) = λT (n + 2)(−η) = (n + 2)rλT u

and the bound given by (8), we conclude that

max
i=1,...,n+2

{
1 + λT (Zi − η)

}
≤ 1 + (n + 2)rλT u + (n + 1) = O(1). (9)

Now we employ the identity

1

1 + x
= 1 −

x

1 + x
(10)

to get

0 =
n+2∑

i=1

Zi − η

1 + λT (Zi − η)

=

n+2∑

i=1

(Zi − η) −

n+2∑

i=1

(Zi − η)
(
λT (Zi − η)

)

1 + λT (Zi − η)
.

Letting λ = ‖λ‖ θ, rearranging the above equality, and multiplying both sides
by λT , we have

n+2∑

i=1

λT (Zi − η) = ‖λ‖
2

n+2∑

i=1

θT (Zi − η)
(
θT (Zi − η)

)

1 + λT (Zi − η)
,

which gives rλT u = ‖λ‖
2
θT S̃θ where

S̃ =

n+2∑

i=1

(Zi − η)(Zi − η)T

1 + λT (Zi − η)
.
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Then letting S∗ =
∑n+2

i=1 (Zi − η)(Zi − η)T and substituting in the bound (9) on
λT (Zi − η) from above, we have

‖λ‖
2
θT S∗θ ≤ ‖λ‖

2
θT S̃θ

[
max

i=1,...,n+2
{1 + λT (Zi − η)}

]

= rλT u

[
max

i=1,...,n+2
{1 + λT (Zi − η)}

]

= o(s−1)O(1).

Furthermore, θT S∗θ ≥ ld where ld is the smallest eigenvalue of the matrix∑n
i=1(Zi − η)(Zi − η)T , and thus

(
θTS∗θ

)
−1

≤ l−1
d = O(1), so ‖λ‖

2
= O(1)×

o(s−1)O(1). Therefore,
‖λ‖ = o(s−1/2). (11)

A.3. Step 3

Let (Zi−η) = fiu+ri where fi = (Zi −η)T u and ri = (Zi−η)−fiu so rT
i u = 0

for all i = 1, . . . , n + 2. Note that

rn+1 = rn+2 = 0 (12)

since both (Zn+1 − η) and (Zn+2 − η) are multiples of u. The remaining ri, for
i = 1, . . . , n satisfy

n∑

i=1

ri =

n∑

i=1

(Zi − η) −
[
(Zi − η)T u

]
u = 0. (13)

Also, we have

n∑

i=1

firi =

n∑

i=1

fi [(Zi − η) − fiu]

=

n∑

i=1

(Zi − η)(Zi − η)T u −

n∑

i=1

f2
i u

=
[
(n − 1)Id + nηηT

]
u −

(
n∑

i=1

f2
i

)
u

=

[
(n − 1) + nr2 −

n∑

i=1

f2
i

]
u.

But since rT
i u = 0 for all i, the only way this equality can hold is if both sides

are 0, so
n∑

i=1

firi = 0. (14)
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Similarly, we can rewrite the original constraint for λ as

0 =

n+2∑

i=1

(Zi − η)

1 + λT (Zi − η)

=

n+2∑

i=1

fiu

1 + λT (Zi − η)
+

n+2∑

i=1

ri

1 + λT (Zi − η)

so that, using (12),

n+2∑

i=1

ri

1 + λT (Zi − η)
=

n∑

i=1

ri

1 + λT (Zi − η)
= 0.

Then using identity (10) twice, and the equality given by (13), we have

0 =

n∑

i=1

ri −

n∑

i=1

riλ
T (Zi − η)

1 + λT (Zi − η)

=

n∑

i=1

riλ
T (Zi − η)

1 + λT (Zi − η)

=

n∑

i=1

fiθ
T riθ

T u

1 + λT (Zi − η)
+

n∑

i=1

(θT ri)
2

1 + λT (Zi − η)

=

n∑

i=1

fiθ
T riθ

T u −

n∑

i=1

fiθ
T riθ

T uλT (Zi − η)

1 + λT (Zi − η)

+

n∑

i=1

(θT ri)
2 −

n∑

i=1

(θT ri)
2λT (Zi − η)

1 + λT (Zi − η)
.

The first term of the last equality is 0 by (14), and the second and fourth terms
are both o(s−1/2) by (11) because each includes a ‖λ‖ factor and everything
else in both terms is bounded. Thus we have

n∑

i=1

(θT ri)
2 = o(s−1/2)

so θT ri = o(s−1/4) for all i, and therefore

θT u → 1 (15)

because θ is a unit vector, and we have shown that for any other vector w such
that uT w = 0 we have θT w → 0. Then since λT u = ‖λ‖ θT u = o(s−1), and
θT u → 1, we may conclude

‖λ‖ = o(s−1). (16)
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A.4. Step 4

We once again use the fact that

n+2∑

i=1

Zi − η

1 + λT (Zi − η)
= 0

together with the identity

1

1 + x
= 1 − x +

x2

1 + x
(17)

to give, using (16),

0 =

n+2∑

i=1

(Zi − η) −

(
n∑

i=1

(Zi − η)λT (Zi − η) + s2uλT u + (s + 2r)2uλT u

)

+

(
n∑

i=1

(Zi − η)
[
λT (Zi − η)

]2

1 + λT (Zi − η)
−

s3u(λT u)2

1 − sλT u
+

(s + 2r)3u(λT u)2

1 + (s + 2r)λT u

)

= (n + 2)ru −
(
o(s−1) + 2s2uλT u + o(1)

)

+
(
o(s−2) − s3u(λT u)2 [(n + 2)(wn+2 − wn+1)] + o(1)

)
.

In the last line, the term s3u(λT u)2 [(n + 2)(wn+2 − wn+1)] is of order o(s3)×
o(s−2)O(s−1) = o(1), using (7) and (8). Thus we get 0 = (n+2)ru−2s2(λT u)u+
o(1), giving

s2λT u →
(n + 2)r

2
(18)

and since λT u = ‖λ‖ θT u, by (15) we conclude

‖λ‖ = O(s−2). (19)

A.5. Step 5

Finally, we use the Taylor series expansion for log(1 + x) about 1 to write

− log ((n + 2)wi) = log
(
1 + λT (Zi − η)

)

= λT (Zi − η) −
1

2

(
λT (Zi − η)

)2
+

1

3

(
λT (Zi − η)

)3
− di

(20)

where ‖di‖ = O(s−4) from (19) and the boundedness of the other terms in the
expansion. Using the representation (20) in the expression

W̃ (η) = −2

n+2∑

i=1

log ((n + 2)wi) , (21)
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we have

W̃ (η) = 2

[
n+2∑

i=1

λT (Zi − η)−
1

2

n+2∑

i=1

(
λT (Zi − η)

)2
+

1

3

n+2∑

i=1

(
λT (Zi − η)

)3
−

n+2∑

i=1

di

]

= 2

[
(n +2)rλT u−

1

2

(
n∑

i=1

(
λT (Zi − η)

)2
+ s2(λT u)2 + (s+ 2r)2(λT u)2

)

+
1

3

(
n∑

i=1

(
λT (Zi − η)

)3
− s3(λT u)3 + (s + 2r)3(λT u)3

)
− O(s−4)

]
.

Multiplying both sides of this equality by s2 and employing (19) gives

s2W̃ (η) = 2

[
(n + 2)rs2λT u −

1

2

(
O(s−2) + 2s4(λT u)2 + O(s−1)

)

+
1

3

(
O(s−4) + O(s−2) + O(s−3) + O(s−4)

)
− O(s−2)

]

= 2
[
(n + 2)rs2λT u − s4(λT u)2 + O(s−1)

]
.

Substituting in the limiting expression (18) for s2λT u, we have

s2W̃ (η) → 2

[
(n + 2)2r2

2
−

(n + 2)2r2

4

]

which simplifies to
2ns2

(n + 2)2
W̃ (η) → nr2. (22)

Then, since in this standardized setting Hotelling’s T-square statistic is given
by

T 2 = nηT η = n(−ru)T (−ru) = nr2,

this completes the proof.
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