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Abstract: Clustering is one of the most useful tools for high-dimensional
analysis, e.g., for microarray data. It becomes challenging in presence of
a large number of noise variables, which may mask underlying clustering
structures. Therefore, noise removal through variable selection is necessary.
One effective way is regularization for simultaneous parameter estimation
and variable selection in model-based clustering. However, existing methods
focus on regularizing the mean parameters representing centers of clusters,
ignoring dependencies among variables within clusters, leading to incorrect
orientations or shapes of the resulting clusters. In this article, we propose
a regularized Gaussian mixture model with general covariance matrices,
taking various dependencies into account. At the same time, this approach
shrinks the means and covariance matrices, achieving better clustering and
variable selection. To overcome one technical challenge in estimating pos-
sibly large covariance matrices, we derive an E-M algorithm to utilize the
graphical lasso (Friedman et al. 2007) for parameter estimation. Numer-
ical examples, including applications to microarray gene expression data,
demonstrate the utility of the proposed method.
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1. Introduction

As an important tool of data analysis, clustering has emerged as indispensable
to analyzing high-dimensional genomic data. For example, in gene function dis-
covery, various methods of clustering have been applied to group genes with
their expressions across multiple conditions (Eisen et al. 1998 [10]; Tavazoie et
al. 1999 [40]); in disease subtype discovery, clustering is used to cluster patients’
tissue samples with their genomic expressions (Golub et al. 1999 [1]). In this
process, because of unknown identities of many relevant genes and/or exper-
imental conditions it is necessary to select informative genes or conditions to
yield meaningful clusters. Such a task of variable selection is critical not only to
clustering but also to other modeling strategies such as classification. For classi-
fication, Alaiya et al. (2002) [1] studied borderline ovarian tumor classification,
where classification using all 1584 protein spots is unsatisfactory but that focus-
ing on a subset of around 200 selected spots provided more accurate results. For
clustering, there have been only a limited number of studies, in contrast to a
large body of literature on variable selection for classification and regression. As
pointed out in Pan and Shen (2007) [31], clustering imposes many unique chal-
lenges to variable selection in that some well known model selection procedures,
e.g. best subset selection with BIC (Schwarz 1978 [37]), may not be applicable
to clustering, which is unlike in classification and regression. One main reason is
that in general there are many true models in clustering, most of which are not
useful. For example, any true noise variable may suggest the existence of only
one cluster; however, this discovery, albeit true, is useless because, in clustering
one would like to uncover the underlying heterogeneity and structures in the
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data, such as identifying informative variables that suggest the existence of two
or more clusters.

Among many clustering approaches, model-based clustering has become in-
creasingly important due to its interpretability. In addition to good empirical
performance relative to its competitors (Thalamuthu et al., 2008 [41]), model-
based clustering has a solid probabilistic framework of mixture models, which
facilitates model building and checking, such as selecting the number of clus-
ters (McLachlan, 1987 [26]; Fraley and Raftery, 1998 [13]). Although Normal
mixture models have been extensively studied by both frequentist and Bayesian
approaches (Banfield and Raftery, 1993 [4]; Muller et al., 1996 [29], and refer-
ences therein), our focus here is on high-dimensional data, for which variable
selection is necessary (e.g. Pan and Shen, 2007 [31]). There are basically two
categories of approaches to variable selection for high-dimensional model-based
clustering: the Bayesian approaches (Liu et al., 2003 [25]; Teh et al., 2004 [42];
Hoff, 2006 [16]; Tadesse et al., 2005 [39]; Kim et al., 2006 [20]; Raftery and
Dean, 2006 [33]) and penalized likelihood approaches (Pan and Shen, 2007 [31];
Xie et al., 2008a [50]; Xie et al., 2008b [51]; Wang and Zhu, 2008 [48]; Guo et
al. 2009 [15]). In general, the Bayesian approaches are more flexible by allow-
ing more general covariance matrices, but computationally are more demanding
due to the use of MCMC for stochastic searches. For the penalized likelihood
approaches, one common assumption is that each cluster has a diagonal co-
variance matrix, implying the same orientation for all clusters (Banfield and
Raftery, 1993 [4]). As to be shown later, this is too stringent and can severely
degrade performance in practice. Conceptually a general or unconstrained co-
variance matrix should be allowed for each cluster; however the challenge is how
to treat means and general covariances subject to the constraint that any re-
sulting covariance matrix estimate is positive definite. This challenge is evident
in the recent literature on Gaussian graphical modeling that estimates a large
covariance matrix based on a Normal sample (Huang et al., 2006 [17]; Yuan
and Lin, 2007 [53]; Levina et al., 2008 [22]; Rothman et al., 2009 [35]; Fan et
al., 2009 [11] and references therein). This problem continues to be even more
challenging for mixture models, because it is unknown which observations are
from which Normal components.

In this article, we propose a general penalized likelihood approach that per-
mits unconstrained covariance matrices in a Normal mixture model. A major
innovation here is the recognition of the connection between fitting Normal mix-
ture models and Gaussian graphical modeling. Our approach utilizes the recent
development in Gaussian graphical modeling by effectively embedding an exist-
ing penalized covariance estimation method into the E-M algorithm for Normal
mixture models. In particular, we implement our method using the graphical
lasso method (Friedman et al., 2007 [12]) for covariance estimation. Moreover,
we generalize the proposed method to semisupervised learning, permitting par-
tially labeled observations.

The rest of this article is organized as follows. Section 2 reviews the penalized
model-based clustering method with diagonal covariance matrices, followed by
a description of our proposed method that allows for a common or cluster-
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specific general covariance matrices. A brief discussion of an extension to semi-
supervised learning is given to permit known cluster memberships for a subset
of observations. Section 3 presents simulation results, and an application to
real microarray data is contained in section 4, to demonstrate the feasibility
and effectiveness of the method compared against its counterpart with diagonal
covariance matrices. Section 5 concludes with a summary and a discussion of
future work.

2. Methods

2.1. Mixture model and its penalized likelihood

Denote by X = {x1, . . . , xn} a random sample of n K-dimensional observations.
Assume that the n observations are standardized with sample mean 0 and sam-
ple variance 1 for each variable. Assume that the observations are independent
and from a mixture distribution with probability density function (pdf)

f(xj) =

g
∑

i=1

πifi(xj; θi), (1)

where fi is the pdf for component or cluster i with unknown parameter vector θi,
and πi is the prior probability for component i with

∑g
i=1 πi = 1. For parameter

estimation, we adopt the maximum penalized likelihood estimator (MPLE) that
maximizes the penalized log-likelihood

logLP (Θ) = log L(Θ) − pλ(Θ) =

n∑

j=1

log

[
g
∑

i=1

πifi(xj; θi)

]

− pλ(Θ), (2)

where Θ represents all unknown parameters and pλ(Θ) is a penalty function
for Θ with a regularization parameter (vector) λ. In what follows, we assume
a Gaussian mixture model with fi being a multivariate Normal density, and
regularize their mean vectors and possibly covariance matrices.

To obtain the MPLE, we employ the E-M algorithm (Dempster et al., 1977
[8]). Let zij denote the indicator of whether xj belongs to component i; namely,
zij = 1 if xj comes from component i, and zij = 0 otherwise. Here zij ’s are
regarded as missing data simply because they are not observed. If zij ’s were
observed, the complete data penalized log-likelihood becomes

log Lc,P (Θ) =
∑

i

∑

j

zij[log πi + log fi(xj ; θi)]− pλ(Θ). (3)

Given a current estimate Θ(r) at iteration r, the E-step of the E-M calculates

QP (Θ; Θ(r)) = EΘ(r)(log Lc,P |Data) =
∑

i

∑

j

τ
(r)
ij [logπi+log fi(xj ; θi)]−pλ(Θ),

(4)
where τij is the posterior probability of xj’s belonging to component i. The
M-step maximizes QP to update the estimate of Θ.
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2.2. Penalized clustering with diagonal covariance matrices

For comparison, we briefly review the method of Pan and Shen (2007) [31], which
specifies the components fi as multivariate Normal with a common diagonal
covariance matrix V = diag(σ2

1 , σ
2
2, . . . , σ

2
K),

fi(x; θi) =
1

(2π)K/2|V |1/2
exp

(

−
1

2
(x − µi)

tV −1(x − µi)

)

with |V | = det(V ) =
∏K

k=1 σ2
k. They proposed a penalty function pλ(Θ) as an

L1-norm of the mean parameters

pλ(Θ) = λ1

g
∑

i=1

K∑

k=1

|µik|, (5)

where µik is the mean of kth variable for component i. Note that the observations
are standardized to have zero mean and unit variance for each variable k. If
µ1k = ... = µgk = 0, then variable k cannot differentiate the components, hence
deemed as noninformative (i.e. a noise variable) and automatically excluded
from clustering. Variable selection is realized when small estimates of µik’s can
be shrunken to be exactly 0 by the use of the L1 penalty (Tibshirani, 1996 [43]).

For convenience, a generic notation Θ(r) is used to represent the parameter
estimate at iteration r. The E-M updating formulas for maximizing the penalized
likelihood (2) are as follows: at iteration r + 1, the posterior probability of xj

belonging to component i is

τ̂
(r)
ij =

π̂
(r)
i fi(xj; θ̂

(r)
i )

f(xj ; Θ̂(r))
=

π̂
(r)
i fi(xj ; θ̂

(r)
i )

∑g
i=1 π̂

(r)
i fi(xj ; θ̂

(r)
i )

, (6)

the prior probability of an observation from the ith component

π̂
(r+1)
i =

n∑

j=1

τ̂
(r)
ij /n, (7)

the variance of variable k

σ̂
2,(r+1)
k =

K∑

k=1

n∑

j=1

τ̂
(r)
ij (xjk − µ̂

(r)
ik )2/n, (8)

and the mean of variable k in cluster i

µ̂
(r+1)
ik =

∑n
j=1 τ̂

(r)
ij xjk

∑n
j=1 τ̂

(r)
ij

(

1−
λ1σ̂

2,(r)
k

|
∑n

j=1 τ̂
(r)
ij xjk|

)

+

, (9)

for i = 1, 2, . . . , g and k = 1, 2, . . . , K. For sufficiently large λ1, we have µ̂ik = 0;
if µ̂1k = µ̂2k = ... = µ̂gk = 0 for variable k, variable k is a noise variable and
does not contribute to clustering as can be seen from equation (6).
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If the variance parameters are not regularized, it is straightforward to ex-
tend (6)–(9) to the case with cluster-specific diagonal covariance matrices Vi =
diag(σ2

i,1, . . . , σ
2
i,1): all the updating formulas remain to be the same except

replacing σ2
k by σ2

i,k:

σ̂
2,(r+1)
i,k =

∑n
j=1 τ̂

(r)
i,j (xj,k − µ̂

(r)
i,k )2

∑n
j=1 τ̂

(r)
i,j

. (10)

Note that the treatment here differs from Xie et al. (2008b) [51], in which the
variance parameters are regularized. Throughout this article, we assume that an
informative variable is defined to have cluster-specific means, no matter whether
it has a common or cluster-specific variances.

2.3. Penalized clustering with a common unconstrained covariance

We now consider a general or unconstrained covariance matrix V by relaxing the
diagonal covariance matrix assumption. Denote W = V −1 the inverse covariance
matrix (or precision matrix) with elements Wkl.

To realize variable selection, we require that a noise variable has a common
mean across clusters. Since the data have been standardized to have mean 0
for each variable, a common mean implies µ1k = ... = µgk = 0. As in Bayesian
approaches (Tadesse et al. 2005 [39]), one can assume that any noise variable
is uncorrelated with any informative variable, though this assumption is not
necessary in our approach (because this assumption does not influence our esti-
mation procedure). To facilitate estimating large and sparse covariance matrices,
we propose the following penalty function:

pλ(Θ) = λ1

g
∑

i=1

K∑

k=1

|µik| + λ2

K∑

k=1

K∑

l=1

|Wkl|. (11)

Note that, the penalty on the mean parameter is mainly for variable selection,
while that for the precision matrix is necessary for high-dimensional data. Since
the data dimension K is larger than the sample size n, the sample covariance
matrix (or the maximum likelihood estimate under the Normality) is necessarily
singular. In addition, as discussed in the literature of Gaussian graphical mod-
eling, penalization on a large covariance (or precision) matrix can yield a better
estimate than the non-penalized one. Although various penalties have been pro-
posed for a covariance (or precision) matrix, some do not yield a positive-definite
covariance estimate. For the problem considered here, since we need to calcu-
late the log-likelihood, and thus the determinant of a covariance estimate, the
positive-definiteness of a covariance estimate is needed, which imposes a major
technical difficulty. In Gaussian graphical modeling, one aims to estimate the
covariance or precision matrix of a Normal distribution; since all the observa-
tions are known to be iid from the same Normal distribution, the problem is
easier than that for mixture models, where we need to cluster the observations
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into various unknown groups (each corresponding to a Normal distribution)
and estimate the covariance matrix (and other parameters) for each group si-
multaneously. A major contribution of our work is recognition of the connection
between Gaussian mixture modeling and Gaussian graphical modeling: in spite
of the unknown cluster- or group-memberships of the observations in a Gaussian
mixture model, the estimation of a covariance (or precision) matrix for a mix-
ture component can be formulated to be similar to that for Gaussian graphical
modeling.

2.3.1. Estimation of the non-covariance parameters

For the EM algorithm, the E-step yields QP as given in (4) and the M-step
maximizes QP with respect to the unknown parameters, resulting in the same
updating formulas for τij and πi as given in (6) and (7). The updating formula
for µij is derived from the following theorem.

Theorem 1. The sufficient and necessary conditions for µ̂ik to be a (global)
maximizer of QP (for a fixed i and k) are

n∑

j=1

τij

(
xt

jW.k

)
−





n∑

j=1

τij



 µ̂t
iWk = λ1sign(µ̂ik), if µ̂ik 6= 0, (12)

and
∣
∣
∣
∣
∣
∣

n∑

j=1

τij





K∑

s=1,s 6=k

(xjs − µ̂is)Wsk + xjkWkk





∣
∣
∣
∣
∣
∣

≤ λ1, if µ̂ik = 0, (13)

where µi = (µi1, . . . , µiK)t and W.k = (W1k, . . . , WKk)t.

Hence, we have the below updating formula for the mean parameter:

if

∣
∣
∣
∣
∣
∣

n∑

j=1

τ̂
(r)
ij





K∑

s=1,s 6=k

(

xjs − µ̂
(r)
is

)

Wsk + xjkWkk





∣
∣
∣
∣
∣
∣

≤ λ1, then µ̂
(r+1)
ik = 0,

(14)
otherwise,





n∑

j=1

τ̂
(r)
ij



 µ̂
(r+1)
ik Wkk + λ1sign(µ̂

(r+1)
ik )

=

n∑

j=1

τ̂
(r)
ij

(
xt

jW.k

)
−





n∑

j=1

τ̂
(r)
ij





(

µ̂
(r)t

i W.k − µ̂
(r)
ik Wkk

)

. (15)

Simple algebra indicates that the updating formulas (14)–(15) for µik reduces
to (9) when the covariance matrix is diagonal. The coordinate-wise updating
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for µ as above converges to the global maximum in view of the results of Tseng
(1988) [45] and Tseng (2001) [46], because the first term of QP , the conditional
expectation of the complete data log-likelihood, is concave, while the second
term, the L1 penalty on the mean parameters, is separable (and concave) in
µik’s.

It remains to derive an updating formula for the covariance matrix in the
E-M algorithm.

2.3.2. Estimation of the inverse covariance matrix

To derive the estimate of the covariance matrix V , we focus on the M-step of (4)
with respect to the V . Replacing V with W−1, we only need to find the updating
formula for W . To maximize Qp with respect to W , it suffices to maximize

n

2
log(det(W )) −

1

2

g
∑

i=1

n∑

j=1

τ
(r)
ij (xj − µi)

tW (xj − µi) − λ2

∑

j,l

|Wjl|

=
n

2
log(det(W )) −

n

2
tr
(
S̃W

)
− λ2

∑

j,l

|Wjl|, (16)

where

S̃ =

∑g
i=1

∑n
j=1 τ

(r)
ij (xj − µi)

t(xj − µi)
∑g

i=1

∑n
j=1 τ

(r)
ij

=

∑g
i=1

∑n
j=1 τ

(r)
ij (xj − µi)

t(xj − µi)

n

is the empirical covariance matrix.
For (16), we shall use the graphical lasso algorithm of Friedman et al. (2007)

[12], to maximize an objective function

log(det(W )) − tr(SW ) − λ

K∑

k=1

K∑

l=1

|Wkl|

over all non-negative definite matrices W for a known covariance matrix S.
Hence, we can apply the algorithm to maximize (16) with λ = 2λ2/n and
S = S̃. Their algorithm is implemented in R package glasso.

2.4. Penalized clustering with cluster-specific covariance matrices

To permit varying cluster volumes and orientations, we now consider component-
specific unconstrained covariance matrices Vi, i = 1, . . . , g. We employ a slightly
modified penalty:

pλ(Θ) = λ1

g
∑

i=1

K∑

k=1

|µik|+ λ2

g
∑

i=1

∑

j,l

|Wi;j,l|. (17)
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In the E-M algorithm, the updating formulas for π and τ remain the same as in
(6) and (7), respectively; for µ, we only need to replace W in (14) and (15) with
Wi. Thus, we only need to consider the covariance matrix estimation. Note

Qp = C +
1

2

g
∑

i=1

n∑

j=1

τ
(r)
ij logdet(Wi) −

1

2

g
∑

i=1

n∑

j=1

(xj − µi)
tWi(xj − µi)

− λ2

g
∑

i=1

∑

j,l

|Wi;j,l|,

where C stands for a constant term unrelated to Wi. To maximize Qp, we only
need to maximize

1

2

g
∑

i=1

n∑

j=1

τ
(r)
ij logdet(Wi)−

1

2

g
∑

i=1

n∑

j=1

τ
(r)
ij (xj −µi)

tWi(xj −µi)−λ2

g
∑

i=1

∑

j,l

|Wi;j,l|

=

g
∑

i=1




1

2

n∑

j=1

τ
(r)
ij logdet(Wi) −

∑n
j=1 τ

(r)
ij

2
tr
(

S̃iWi

)

− λ2

∑

j,l

|Wi;j,l|





with

S̃i =

∑n
j=1 τ

(r)
ij (xj − µi)

t(xj − µi)
∑n

j=1 τ
(r)
ij

.

Hence, we can separately maximize each of these g terms using the graphical
lasso to obtain an updated estimate of Wi.

2.5. Model selection

We propose using the predictive log-likelihood based on an independent tuning
dataset or cross-validation (CV) as our model selection criterion. Through this
criterion, we use a grid search to estimate the optimal (g, λ1, λ2) as the one with
the maximum predictive log-likelihood.

For any given (g, λ1, λ2), because of possibly many local maxima for the
mixture model, we run the EM algorithm multiple times with random starts.
For our numerical examples, we started with the K-means clustering, and used
its result as initial parameter estimates for the E-M algorithm. From the multiple
runs, we selected the one giving the maximal penalized log-likelihood as the final
result for the given (g, λ1, λ2).

2.6. Extension: semi-supervised learning

We further extend the proposed method to mixture model-based semi-supervised
learning, in which some observations have known cluster labels while the oth-
ers do not (McLachlan and Peel, 2002 [28]; Liang et al., 2007 [23]). Pan et al.
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(2006) [32] developed the penalized mixture approach with diagonal covariance
matrices; here we push it to the case with unconstrained covariance matrices.

Without loss of generality, assume that we have partially labeled K-dimensional
data x1, . . . , xn, in which the first n0 observations do not have class labels while
the remaining n1 do have. Furthermore, assume the existence of g0 classes among
the first n0 observations and g1 known classes among the n1 labeled observa-
tions. The log-likelihood is

log L(Θ) =

n0∑

j=1

log

[
g
∑

i=1

πifi(xj; θi)

]

+

n∑

j=n0+1

log

[
g
∑

i=1

zijfi(xj; θi)

]

.

The penalized log-likelihood can be then constructed with a suitable penalty
function pλ(Θ). It is noted that, in the E-M algorithm, because zij’s for the last
n1 observations are indeed observed, their corresponding “posterior probabili-
ties” are known as τij = zij , while those for the first n0 observations are the
same as (6). With the new updating formula for τ , the updating formulas for
µ, π and covariance parameters in the E-M algorithm are the same as before.

Model selection can be performed as before. First, we use an independent
tuning dataset or CV, including both labeled and unlabeled observations, to
select the number of clusters and penalty parameters. Then we fit the selected
model to the whole data set. Note that, after obtaining all parameter estimates,
we calculate the posterior probabilities τ for each observation, including the
n1 observations with known class labels, and use the posterior probabilities for
class assignment.

3. Simulations

3.1. Small K: Why use non-diagonal covariance matrices

To better visualize the advantage of allowing unconstrained covariance matrices,
we applied the methods to two-dimensional data. We considered two simple set-
ups: the first with only one true cluster while the second with two clusters. The
number of observations in each set-up was 200; for set-up 2, 100 observations
were generated from each cluster. We used an independent tuning dataset of an
equal size as that of a training dataset to choose the number of clusters and the
penalty parameters.

Figure 1 displays the true clusters, estimated clusters with cluster-specific
unconstrained and diagonal covariance matrices respectively. Throughout this
article, to reflect the sampling variability, for the true clusters, the parameter
values were estimated based on the true cluster memberships of the observa-
tions. The correctly classified observations were represented by open circles or
diamonds, while incorrect ones by filled ones. For set-up 1 (Figure 1), although
there was only one cluster, due to the use of the diagonal covariance matrices,
to account for the fact that the orientation of the true cluster was not parallel
to either axis, two clusters with their orientation parallel to either axis were
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Fig 1. Simulated data from only one cluster (top panels) and from two clusters (bottom
panels) with K = 2.

needed, leading to selecting an incorrect number of clusters. For set-up 2, even
though a correct number of clusters was identified with the use of diagonal co-
variances, again due to the restriction on the orientation of the clusters imposed
by the diagonal covariances, there were a large number of mis-classified obser-
vations. In contrast, the new method with unconstrained covariance matrices
yielded much better results.

3.2. Simulated data with diagonal covariance matrices

We next considered three set-ups with K > n and diagonal covariance matrices.
The first was a null case with g = 1 cluster; the other two were with two
clusters: one with difference only in the mean parameters, and the other in both
the mean and variance parameters. For each set-up, 100 simulated datasets
were generated. Each dataset contained n = 80 observations with dimension
K = 100. For set-up 1, all observations belonged to the same cluster; for set-ups
2 and 3, the first 40 observations formed the first cluster while the remaining
40 observations belonged to the second cluster. Specifically, for set-up 1, all
variables came from a standard normal distribution N(0, 1); for set-up 2 and 3,
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Table 1

Simulated data with diagonal covariances: frequencies of the selected numbers (g) of
clusters, and mean numbers of predicted noise variables among the true informative (z1)

and noise variables (z2). For set-up 1, the truth was g = 1, z1 = 10 and z2 = 90; for other
set-ups, g = 2, z1 = 0 and z2 = 90.

common covariance cluster-specific covariance diagonal covariance
Set-up g N z1 z2 N z1 z2 N z1 z2

1 100 10 90 59 10 89.8 100 10 90
1 2 0 - - 25 9.4 84.3 0 - -

3 0 - - 16 9.9 89.5 0 - -
1 0 - - 0 - - 1 10 90

2 2 74 0 85.6 58 0 82.7 83 0 84.5
3 26 0 83.5 42 0 81.9 16 0 72.6
1 0 - - 0 - - 9 10 90

3 2 68 0 76.0 87 0 83.1 91 0 82.0
3 32 0 73.5 13 0 76.5 0 - -

90 variables were noises generated from N(0, 1), and the remaining 10 variables
were informative. For set-up 2, the informative variables for the first cluster
came from N(0, 1) and from N(1.5, 1) for the second cluster. For set-up 3,
the informative variables were from N(0, 1) and N(1.5, 2) for the two clusters
respectively.

We applied three methods: a common unconstrained covariance, cluster-
specific unconstrained covariance matrices, and diagonal covariances. For the
one with diagonal covariances, we used either a common diagonal covariance or
cluster-specific diagonal covariances according to the truth to ideally optimize
its performance. For each simulated dataset, we fitted a series of models with
the number of components g = 1, 2 and 3, and performed a grid search to choose
the penalty parameters. We show the frequencies of selecting various numbers
of clusters, the average number of informative variables incorrectly selected to
be noninformative (z1), the average number of noninformative variables cor-
rectly selected (z2), the number of observations correctly classified to cluster
i (Ci), and the number of observations mis-classified from cluster i (ICi). We
also report the Rand index (RI) or adjusted Rand index (aRI) to summarize
the quality of clustering.

As shown in Table 1, for the null case, we could select the correct number
of clusters using the proposed method with a common covariance matrix, while
the proposed method with cluster-specific covariance matrices did not perform
so well. For set-up 2 with the true model with a common covariance matrix, the
proposed method with a common unconstrained covariance matrix correctly se-
lected g = 2 most often, and had a comparable performance to the method with
a diagonal covariance in terms of the sample assignments, as summarized by
the Rand or adjusted Rand index (Table 2). For set-up 3 with the true model
with a cluster-dependent diagonal covariance matrices, the proposed method
with cluster-dependent covariances correctly selected g = 2 nearly as often as
using cluster-dependent diagonal covariance matrices. In terms of sample as-
signments, the proposed method also performed comparably. For these three
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Table 2

Simulated data with diagonal covariance matrices: sample assignments for ĝ = 2 and
(adjusted) Rand index (RI/aRI) values.

# #Ci represents the average number of the samples correctly assigned to cluster i, i = 1, 2;
# #I − Ci represents the average number of the samples incorrectly assigned to cluster i

that # arise from the other cluster, i = 1,2.

Sample assignments, ĝ = 2 Rand Index

Cluster 1 (n = 40) Cluster 2 (n = 40) ĝ = 1 ĝ = 2 ĝ = 3 Overall

Set-up Methods #C1 #IC1 #C2 #IC2 RI aRI RI aRI RI aRI RI aRI

Common 39.8 0.1 40.0 0.0 - - 0.99 0.99 0.98 0.96 0.99 0.98

2 Cluster-spec 37.9 2.1 38.5 1.5 - - 0.93 0.85 0.83 0.66 0.89 0.77

Diagonal 39.6 0.4 39.5 0.5 0.49 0 0.98 0.95 0.75 0.51 0.94 0.88

Common 38.1 1.9 38.5 1.5 - - 0.94 0.88 0.92 0.84 0.94 0.87

3 Cluster-spec 37.9 2.1 38.6 1.4 - - 0.92 0.85 0.87 0.75 0.91 0.84

Diagonal 38.4 1.6 36.8 3.2 0.49 0 0.89 0.78 - - 0.85 0.71

set-ups, a close examination indicated that for the proposed method the highest
(predictive) log-likelihood was achieved when we had a sufficiently large penalty
on the off-diagonal elements of the inverse covariance matrices, leading to the
estimated covariance matrices close to being diagonal as were the truth.

3.3. Simulated data with non-diagonal covariance matrices

We considered some true models with non-diagonal covariance matrices, while
other aspects of simulation remained the same as in section 3.2; in particular,
among 100 variables, ten of which were informative. We used two non-diagonal
covariance matrices for the 10 informative variables: a compound symmetry
(CS) and an AR-1 with ρ = 0.6; the noise variables were independent of each
other and of the informative variables. The resulting two covariance matrices
are denoted as V0,1 and V0,2.

The following four set-ups were considered: set-up 1 was for a null case with
only one cluster; for set-up 2 or3, we had two clusters sharing the same co-
variance matrix V0,1 or V0,2, but with mean parameters differing by 1.5 in each
informative variable; for set-up 4, the two clusters differed in both the mean vec-
tors (by 1.5) and covariance matrices as V0,1 and V0,2 respectively. As before,
a training dataset contained 80 observations, 40 of which came from the first
cluster (if there were two clusters); we used an independent tuning dataset of
size 80. We applied the three methods; again according to the truth, we used a
common diagonal covariance matrix for set-ups 1-3, but cluster-specific diagonal
covariance matrices for set-up 4.

The frequencies of the selected numbers of clusters based on 100 simulated
datasets are shown in Table 3. For each case, the proposed methods performed
better than the diagonal matrix method; between the two proposed methods,
depending on the truth (i.e. whether there was a common covariance matrix),
one of them performed better than the other. The same conclusion can be drawn
on the performance of the methods for sample classification (Table 4).
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Table 3

Simulated data with non-diagonal covariance matrices: frequencies of the selected numbers
(g) of clusters, and mean numbers of predicted noise variables among the true informative
(z1) and noise variables (z2). For set-up 1, the truth was g = 1, z1 = 10 and z2 = 90; for

others, g = 2, z1 = 0 and z2 = 90.

common covariance cluster-specific covariance diagonal covariance
Set-up g N z1 z2 N z1 z2 N z1 z2

1 43 10 90.0 36 10 90.0 0 - -
1 2 25 0 72.6 23 0 81.2 0 - -

3 32 0 88.7 41 0 90.0 100 0 77.5
1 0 - - 7 10 90.0 0 - -

2 2 72 0 89.5 65 0 89.1 0 - -
3 28 0 85.0 28 0 81.4 100 0 75.6
1 0 - - 0 - - 0 - -

3 2 93 0 85.9 80 0 83.0 24 0 79.2
3 7 0 79.0 20 0.7 80.4 76 0 78.1
1 0 - - 0 - - 0 - -

4 2 88 0 89.3 100 0 88.9 79 0 81.3
3 12 0 86.1 0 - - 21 0 82.0

Table 4

Simulated data with non-diagonal covariance matrices: sample assignments for ĝ = 2 and
(adjusted) Rand index (RI/aRI) values.

# #Ci represents the average number of the samples correctly assigned to cluster i, i = 1, 2;
# #I − Ci represents the average number of the samples incorrectly assigned to cluster i

that arise from the other cluster, i = 1, 2.

Sample assignments, ĝ = 2 Rand Index

Cluster 1 (n = 40) Cluster 2 (n = 40) ĝ = 1 ĝ = 2 ĝ = 3 Overall

Set-up Methods #C1 #IC1 #C2 #IC2 RI aRI RI aRI RI aRI RI aRI

common 34.7 5.3 34.2 5.8 - - 0.79 0.55 0.68 0.36 0.76 0.49

2 cluster-spec 34.2 5.8 34.1 5.9 0.49 0 0.73 0.46 0.66 0.32 0.69 0.39

diagonal - - - - - - - - 0.64 0.29 0.64 0.29

common 37.4 2.6 38.2 1.8 - - 0.90 0.81 0.82 0.65 0.90 0.81

3 cluster-spec 37.1 2.9 37.7 2.3 - - 0.88 0.74 0.78 0.57 0.86 0.71

diagonal 36.3 3.7 35.3 4.7 - - 0.81 0.62 0.75 0.51 0.76 0.54

common 37.5 2.5 33.9 6.1 - - 0.86 0.69 0.78 0.58 0.85 0.68

4 cluster-spec 38.4 1.6 37.8 2.2 - - 0.92 0.84 - - 0.92 0.84

diagonal 36.8 3.2 32.9 7.1 - - 0.75 0.49 0.57 0.15 0.71 0.42

4. Examples

4.1. Leukemia gene expression data

4.1.1. Data and a clustering analysis

We first applied the methods to a well-known leukemia gene expression dataset
of Golub et al. (1999) [14] to compare their performance. The (training) data
contained 38 patient samples, among which 11 were acute myeloid leukemia
(AML) while the remaining were acute lymphoblastic leukemia (ALL) samples.
The ALL samples consisted of two subtypes: 8 T-cell and 19 B-cell samples. For
each sample, the expression levels of 7129 genes were measured by an Affymetrix
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Table 5

Clustering results for the leukemia gene expression data with K = 300 genes.

Unconstrained covariances Diagonal covariances
Clusters 1 2 3 1 2 3

(# Samples)
ALL-T (8) 7 1 0 8 0 0
ALL-B (19) 0 19 0 2 16 1
AML (11) 0 1 10 0 3 8

microarray. As in Dudoit et al. (2002) [9], we pre-processed the data in the
following steps: 1) truncation: any expression level xjk was truncated below at
1 if xjk < 1, and above at 16,000 if xjk > 16, 000; 2) filtering: any gene was
excluded if its max/min ≤ 5 and max− min ≤ 500, where max and min were
the maximum and minimum expression levels of the gene across all the samples.
Finally, as preliminary gene screening, we selected the top 300 genes with the
largest sample variances across the 38 samples. Because there were only a small
number of samples, we took stratified sampling by cell types in 3-fold cross
validation (CV). We fitted the models with g = 1, 2 ,3 and 4. The first local
maximum of the predictive log-likelihood was achieved at g = 3.

The clustering results for g = 3 are shown in Table 5. Although all the 300
genes were selected as informative, there was evidence for a large number of
genes with differential expression between the leukemia subtypes (e.g. Pan and
Shen 2007 [31]). It is clear that the new method with cluster-specific uncon-
strained covariance matrices gave fewer errors in sample classification. To see
why, we examined a few genes in more details. Genes CST3 (cystatin c, M23197)
and ZYX (zyxin, X95735) were in the top 50 genes ranked by Golub et al. (1999)
[14], and were two of the 17 genes selected by Antonov et al. (2004) [2] to distin-
guish the AML and ALL subtypes. CST3 was also regarded as a suitable marker
by Bardi et al. (2004) [5]. Baker et al. (2006) [3] and Wang et al. (2005) [47]
further identified ZYX as the most significant gene to discriminate AML/ALL
subtypes. These two genes were also identified among the top 20 genes used
in the classifier by Liao et al. (2007) [24]. In addition, we included two genes
with gene accession number HG613-HT613 and M38591. The expression lev-
els of gene pairs (HG613-HT613, M23197), and (X95735,M38591) are shown in
Figure 2, with the true and estimated clusters. Clearly the true clusters did
not necessarily have orientations parallel with either axis, which was captured
by the proposed method, leading to more accurate sample classifications with
more homogeneous clusters. We also examined element-wise differences between
the covariance matrices resulting from the true clusters and estimated clusters:
the unconstrained covariance matrices were much closer to the true covariance
matrices than the diagonal covariance matrices were (results not shown).
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Fig 2. Expression levels of gene pairs (HG613-HT613, M23197) and (X95735, M38591), and
the corresponding clusters for the leukemia data.

4.1.2. A comparison with a Bayesian method

Kim et al. (2006) [20] proposed a mixture of multivariate normal distributions
via Dirichlet process (DP) mixtures for model-based clustering with the capa-
bility of variable selection for high-dimensional data. In particular, their method
uses non-diagonal covariance matrices. Among others, a concentration param-
eter α for the DP prior and some data-dependent priors have to be specified;
note that, as pointed out by other authors (Richardson and Green, 1997 [36];
Wasserman, 2000 [49]), it is not possible to obtain proper posterior distributions
with fully noninformative priors in mixture models. Kim et al. (2006) [20] ap-
plied their method to the leukemia gene expression data of Golub et al. (1999)
[14]. The data preprocessing was the same as before except that, rather than
using the top 300 genes with the largest sample variances, all the 3571 genes
were used. They considered two values of α. For α = 38, the MCMC sampler
visited models with 4 to 7 components. The sample allocations based on the
maximum a posteriori probability (MAP) and on the least-squares clustering
(LSC) algorithm were respectively,

ĉMAP = (1, 2, 1, . . . , 1, 1, 1, . . . , 1, 1, 1, 1
︸ ︷︷ ︸

ALL

, 2, 1, 4, 5, 3, 2, 3, 4, 2, 2, 7
︸ ︷︷ ︸

AML

),
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Table 6

Clustering results with cluster-specific unconstrained covariance matrices for the leukemia
gene expression data with K = 3571 genes.

g = 3 g = 7
Clusters 1 2 3 1 2 3 4 5 6 7

(# Samples)
ALL-T (8) 7 1 0 6 1 0 0 0 0 1
ALL-B (19) 1 15 3 0 11 0 7 0 1 0
AML (11) 0 0 11 0 0 9 0 2 0 0

ĉLSC = (1, 2, 1, . . . , 1, 2, 1, . . . , 1, 2, 1, 1
︸ ︷︷ ︸

ALL

, 2, 1, 4, 5, 3, 2, 3, 6, 2, 2, 7
︸ ︷︷ ︸

AML

).

On the other hand, with α = 1, the sampler visited models with 3 to 6 compo-
nents, and the clustering results were

ĉMAP = (1, . . . , 1, 1, 1, . . . , 1, 1, 1, 1
︸ ︷︷ ︸

ALL

, 2, 2, 4, 3, 3, 2, 3, 6, 2, 2, 5
︸ ︷︷ ︸

AML

),

ĉLSC = (1, . . . , 1, 2, 1, . . . , 1, 2, 1, 1
︸ ︷︷ ︸

ALL

, 2, 2, 4, 5, 3, 2, 3, 6, 2, 2, 5
︸ ︷︷ ︸

AML

).

In each case, about 120 genes were selected to be informative.
We applied our proposed method with cluster-specific unconstrained covari-

ance matrices. For the number of cluster g = 1 to 7, the predictive log-likelihood
values based on a 3-fold CV were −28160, −24836, −23117, −23551, −23896,
−24432 and −25218, respectively. Hence, we would select g = 3. For comparison,
we showed the clustering results for both g = 3 and g = 7 in Table 6.

Comparing our results with that of Kim et al. (2006) [20], we see some signif-
icant differences. First, our method could distinguish the two subtypes of ALL,
while that of Kim et al. (2006) [20] failed. Second, in contrast to that of Kim et
al. (2006) [20], our results did not show the heterogeneous subgroups of AML
even when we forced to have 7 clusters. Third, our method selected 3 clusters,
corresponding to the three subtypes of the leukemia, while the Bayesian method
chose a larger number of clusters. Finally, the method of Kim et al. (2006) [20]
selected about 120 informative genes, in contrast to 1372 genes selected by our
method for g = 3. We also note that the results of the Bayesian method de-
pended on the choices of the prior and sample allocation method.

Currently we implemented our method in R, in which the glasso function is
called to estimate a covariance matrix. For analysis of Golub’s data as considered
here, it took about two days to complete running our program on a laptop.

4.2. BOEC gene expression data

4.2.1. Data and a clustering analysis

One biologically interesting issue is whether human blood outgrowth endothe-
lial cells (BOECs) belong to or are closer to either large vessel endothelial cells
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Table 7

Clustering results for the BOEC data.

Unconstrained cov Diagonal cov
Clusters 1 2 3 1 2 3

(# Samples)
BOEC (27) 26 0 1 26 0 1
LVEC (28) 0 28 0 2 23 3
MVEC (25) 0 3 22 0 4 21

(LVECs) or microvascular endothelial cells (MVECs) based on global expression
profiling. To address this question, as in Pan et al. (2006) [32], we combined the
data from two separate studies: 28 LVEC and 25 MVEC samples in Chi et al.
(2003) [7], and 27 BOEC samples in Jiang (2007) [18], and normalized the data
as in Jiang (2007) [18]. Jiang (2007) [18] identified 37 genes that would discrimi-
nate the LVEC and MVEC samples, and we applied the proposed method using
these 37 genes to cluster the 80 samples. Here, we used four-fold CV for tuning.
We fitted the models with g = 1, 2, 3 and g = 4; the first local maximum of
the predictive log-likelihood was reached at g = 3. At g = 3, 30 genes out of 37
were selected as informative.

The clustering results for three clusters are shown in Table 7. It is confirmed
that each type of the samples clustered closely together, as observed by Jiang
(2007) [18]. Nevertheless, it is noted that using unconstrained covariance matri-
ces led to more accurate (i.e. more homogeneous) clustering than using diagonal
covariance matrices. For illustration, two pairs of genes were chosen to have their
expression levels and the corresponding true and estimated clusters plotted in
Figure 3. Again, based on the true clusters, it is evident that non-diagonal co-
variance structures were captured better by our proposed method, leading to
better (i.e. more homogeneous) clustering results; a direct examination of the
estimated covariance matrices also confirmed this point (results not shown).

4.2.2. Semi-supervised learning

To address the biological question of whether the BOEC samples belong to
either or neither of the LVEC and MVEC classes, we fully utilize the known
memberships of the LVEC and MVEC samples while allowing the memberships
of the BOEC samples to be determined. This is a semi-supervised learning
problem with some observations with known cluster memberships (McLachlan
and Peel 2002 [28]; Pan et al. 2006 [32]). Below we illustrate the application of
the methods to the BOEC data.

For the BOEC data, treating the LVEC and MVEC samples with known class
labels (i.e. g1 = 2), we obtained the following results using the 37 genes as used
before. First, if we did not allow the BOEC samples to form their own class with
g0 = 0, the BOEC samples (largely) fell to the class of MVEC, as shown before
(Pan et al. 2006). Second, if we allowed the possibility of the BOEC samples to
form their own class with g0 = 1, they indeed formed a separate class. As shown



H. Zhou et al./Penalized model-based clustering 1491

−2 0 2 4

−
2

0
2

4

True

A2BP1

F
M

R
1

BOEC
LVEC
MVEC

−2 0 2 4

−
2

0
2

4

Unconstrained

A2BP1

F
M

R
1

BOEC
LVEC
MVEC

−2 0 2 4

−
2

0
2

4

Diagonal covariances

A2BP1

F
M

R
1

BOEC
LVEC
MVEC

−2 0 2 4

−
2

0
2

4

True

APRT

S
S

B
P

2

BOEC
LVEC
MVEC

−2 0 2 4

−
2

0
2

4
Unconstrained

APRT

S
S

B
P

2

BOEC
LVEC
MVEC

−2 0 2 4

−
2

0
2

4

Diagonal covariances

APRT

S
S

B
P

2

BOEC
LVEC
MVEC

Fig 3. Expression levels of gene pairs (A2BP1, FMR1) and (APRT, SSBP2), and the corre-
sponding clusters for the BOEC data.

Table 8

Semi-supervised learning results for the BOEC data.

g0 = 0, g1 = 2
Unconstrained cov Diagonal cov

Clusters 1 2 1 2
(# Samples)
BOEC (27) 0 27 2 25
LVEC (28) 28 0 24 4
MVEC (25) 0 25 3 22

g0 = 1, g1 = 2
Unconstrained cov Diagonal cov

Clusters 1 2 3 1 2 3
(# Samples)
BOEC (27) 22 3 2 22 2 3
LVEC (28) 0 28 0 0 27 1
MVEC (25) 0 0 25 0 4 21

in Table 8, in either case, the proposed method with unconstrained covariance
matrices performed better than using diagonal covariance matrices with fewer
mixed sample assignments. The proposed method selected 26 and 29 informative
genes for the two cases respectively.
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5. Discussion

We have proposed a new approach to penalized model-based clustering with
unconstrained covariance matrices. We have shown its better empirical perfor-
mance than that using diagonal covariance matrices when some informative
variables are correlated, which is often the case for high-dimensional genomic
data, as supported by co-expressions of functionally-related genes for microar-
ray gene expression data. One key technical challenge is in estimating a possibly
large covariance matrix. By taking advantage of the recent development in Gaus-
sian graphical models, we have implemented our approach with the use of the
graphical lasso algorithm (Friedman et al. 2007 [12]), largely due to its fast
speed. Nevertheless, in principle, other covariance estimation methods, either
frequentist (Huang et al. 2006 [17]; Yuan and Lin 2007 [53]; Levina et al. 2008
[22]; Rothman et al. 2009 [35]; Fan et al. 2009 [11], and references therein),
or Bayesian (Jones et al. 2005 [19]; Scott and Carvalho 2009 [38]; Carvalho
and Scott 2009 [6], and references therein), could be used, though computa-
tional speed is an important factor. Alternatively, some non-diagonal structural
assumptions may be imposed on covariance matrices. Xie et al. (2009) [52] pro-
posed such an approach based on the mixture of factor analyzers: some latent
variables are used to model the covariance structure in each cluster, which how-
ever is computationally demanding if the number of the latent variables needs
to be chosen data-adaptively. We comment on that, although we have focused
on its application in variable selection, penalized model-based clustering may
be useful in its own right, such as in providing better parameter estimates (due
to regularization) and thus better clustering results for small samples. For fu-
ture improvement, we may follow Xie et al. (2008b) [51] to impose a penalty
on variance parameters to account for clustering structures in varying variances
across clusters, in addition to that in locations or means. It may be of interest
to extend the proposed method to deal with other issues in high-dimensional
genomic data, such as prior biological knowledge and outliers (Pan 2006 [30];
Tseng 2007 [44]). More investigations are necessary, especially in further evalu-
ating the proposed method with real-world applications.

Free software will be posted on our web site.

Appendix A: Appendix: Proof of Theorem 1

For simplicity of notation, we drop the “hat” from any parameter estimate.
Since QP is differentiable with respect to µik when µik 6= 0, while non-

differentiable at µik = 0, we consider the following two cases:
i) If µik 6= 0 is a maximum, given that QP is concave and differentiable, then

the sufficient and necessary condition for µik to be the global maximum of QP

is

∂QP /∂µik = 0 ⇐⇒

n∑

j=1

τij

(
K∑

l=1

(xjl − µil)Wlk

)

− λ1sign(µik) = 0,
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from which (12) can be easily derived if we separate µik from other components
of µi.

ii) If µik = 0 is a maximum, we compare QP (0, .) with QP (∆µik, .), the values
of QP at µik = 0 and µik = ∆µik respectively (while other components of µi

are fixed at its maximum). By definition, we have

QP (0, .) ≥ QP (∆µik, .) for any ∆µik near 0

⇐⇒
n∑

j=1

τ
(r)
ij

[
(xj − µi)

tW (xj − µi)|µik=∆µik
− (xj − µi)

tW (xj − µi)|µik=0

]

≥ −2λ1|∆µik|

⇐⇒
n∑

j=1

τ
(r)
ij



2∆µik

K∑

s=1,s 6=k

(xjs − µis)Wks + Wkk

(
−∆µ2

ik + 2xjk∆µik

)





≤ 2λ1|∆µik|

⇐⇒
∣
∣
∣
∣
∣
∣

n∑

j=1

τ
(r)
ij





K∑

s=1,s 6=k

(xjs − µis)Wsk + xjkWkk





∣
∣
∣
∣
∣
∣

≤ λ1, as ∆µik → 0.

This yields (12) and (13).
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