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1. Introduction

In many practical situations, e.g. functional Magnetic Resonance Imaging (fMRI)
or microarray data, the problem of testing simultaneously a large number m of
null hypotheses arises. Since Neyman-Pearson’s approach is the most commonly
used strategy for single testing, many researches have focused on generalizing
this approach to the multiple testing case. First, one should choose a global
type I error to be controlled, as the probability of making at least one false
discovery (family-wise error rate, FWER) or more recently the mean propor-
tion of false discoveries among all the discoveries (false discovery rate, FDR, see
Benjamini and Hochberg (1995)). Second, one should build a procedure that
controls the so-chosen global type I error rate. For instance, Benjamini and
Hochberg (1995) proved that the linear step-up procedure (LSU) controls the
FDR when the underlying tests are independent. Third, one should show that
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the obtained procedure has good power performance, the power being generally
defined as the expected number of true discoveries.

To our knowledge, while the two first points above are widely studied (e.g.
building FDR controlling procedures, see e.g. Benjamini and Yekutieli (2001);
Storey (2002); Sarkar (2002))), the last point is most of the time evaluated
with simulations, without a full theoretical support. Only few works have stud-
ied rigorously the optimality of certain classes of multiple testing procedures
(see Lehmann et al. (2005); Wasserman and Roeder (2006); Rubin et al. (2006);
Storey (2007); Finner et al. (2009)).

Maximizing the power while controlling the FDR remains a difficult task,
because the FDR involves a random denominator (the number of discoveries).
The present paper gives a contribution to the latter maximization problem, in
the simple case where the null and alternative distributions are known. This
framework is natural for the power maximization of tests, as it was also used in
Neyman-Pearson’s lemma for single testing. Although leading to oracle proce-
dures, it can be used in practice as soon as the null and alternative distributions
are estimated or guessed reasonably accurately from independent data.

More formally, assume that each hypothesis is tested using a test statistic,
that can then be transformed into a p-value pi, and denote by Fi the alternative
c.d.f. of pi. In general, the Fi’s can be possibly very different (e.g. with heteroge-
neous underlying data) and the p-values cannot be considered interchangeably.
Therefore, a p-value weighting approach seems appropriate to improve the per-
formance of a multiple testing procedure. This technic, that can be traced back
to Holm (1979), consists in replacing in input each original p-value pi by the
weighted p-value p′i = pi/wi for some weight vector (w1, . . . , wm) summing to
m. Here, we focus on the weighted version of the LSU procedure that was pro-
posed in Genovese et al. (2006) (see also Blanchard and Roquain (2008)). In
the latter paper, it was demonstrated that the weighted LSU still controls the
FDR for any weighting (under independence between the p-values), and that
some of these procedures could improve the power of the LSU asymptotically.
In the present paper, we aim to find the most powerful procedure among all the
weighted LSU procedures, or more precisely, to find a procedure that mimics the
best procedure among the weighted LSU procedures. Moreover, this procedure
should be computable from the p-values distributions, i.e. the Fi’s.

When using the weighted version of the FWER-controlling Bonferroni proce-
dure, Wasserman and Roeder (2006) (see also Rubin et al. (2006)) have found
the optimal weighting. In Storey (2007), an optimal procedure was also pro-
posed, maximizing the expected number of true discoveries while controlling
the expected number of false discoveries. All these procedures use deterministic
thresholds, which make the power maximization feasible. However, in the case
of the FDR-controlling weighted LSU, the threshold depends on the final num-
ber of discoveries and a power maximization seems very difficult to make, even
in the asymptotic framework where the number of p-values m tends to infinity
(see Genovese et al. (2006)).

The main idea of this paper is to find the optimal weights simultaneously for
all the possible rejection proportions u ∈ [0, 1]. These multi-weights are then
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collected in optimal weight functions u 7→ W ⋆
i (u) which in turn are sequentially

integrated in a step-up procedure. While the LSU procedure uses as threshold
function u 7→ αu, we find that the new procedure uses a threshold function
u 7→ αuW ⋆

i (u) not necessarily linear (and depending on the F ′
is).

The new procedure, called “optimal multi-weighted step-up procedure”, will
be presented in detail in Section 3. In Section 4, we show that it enjoys the
following properties:

(i) FDR control for a finite number of hypotheses, up to slight modifications;
(ii) power optimality for a finite number of hypotheses, up to error terms;
(iii) power optimality without error term and FDR control without modifi-

cation when the number of hypotheses m tends to infinity (in a specific
asymptotic setting).

These results are established in two different (classical) models of p-values, both
assuming independence between the p-values. The results (ii) and (iii) addition-
ally use that the Fi’s are strictly concave functions and that the maximization
of the power at any rejection proportion is feasible, which remain quite mild
assumptions.

In Section 5, we present a simulation study which exhibits the behavior of the
new procedure when the Fi’s are correctly specified or misspecified. Section 5
discusses some applications and our conclusions are given in Section 7. All our
results are proved in Section 8, while some technical parts are gathered in Ap-
pendix. Our proofs mainly use the “self-consistency condition” introduced in
Blanchard and Roquain (2008) (see also Finner et al. (2009)) and Hoeffding’s
inequality (see Hoeffding (1963)).

2. Preliminaries

2.1. Models for the p-values

Let us first define the two different models for the p-values that will be used
throughout the paper.

We consider a finite set of m null hypotheses on a probability space and we
let Hi := 0 (resp. 1) if the i-th null hypothesis is true (resp. false). Letting
H := (Hi)1≤i≤m ∈ {0, 1}m, we denote by H0 := {i ∈ {1, . . . , m} | Hi = 0} the
set corresponding to the true null hypotheses and by m0 := |H0| its cardinal.
Analogously, we define H1 := {i ∈ {1, . . . , m} | Hi = 1} and m1 := |H1| for
the alternative hypotheses. Since H1 is the complement of H0 in {1, . . . , m}, we
have m1 = m − m0. The proportion of true nulls (resp. false nulls) is denoted
by π0 := m0/m (resp. π1 := m1/m) as usual. We suppose that for the i-th null
hypothesis it is given a p-value pi i.e. a measurable function from the observation
space into [0, 1] such that the distribution of pi is uniform on [0, 1] when the
i-th null hypothesis is true:

∀i ∈ H0, ∀t ∈ [0, 1], P(pi ≤ t) = t. (1)
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Under the alternative, we denote by Fi the cumulative distribution function
of pi: ∀i ∈ H1, ∀t ∈ [0, 1], Fi(t) := P(pi ≤ t). In our setting, the Fi’s are
allowed to be different and we denote F := (Fi)i∈H1 the family of alternative
c.d.f.’s. The p-values are assumed mutually independent. The latter model has
parameters (H, F) and will be referred troughout the paper as the conditional
model (because it uses a fixed vector H).

Additionally, we will consider the so-called random effects model (see e.g.
Efron et al. (2001); Storey (2003); Genovese and Wasserman (2004)). In this
model, H is generated independently from all other random variables, from m
i.i.d. Bernoulli priors. The probability for a null to be true (resp. false) is denoted
by π0 := P(Hi = 0) ∈ (0, 1) (resp. π1 := 1−π0). Then, the p-values are assumed
to follow the conditional model conditionally to H: the p-values are mutually
independent conditional to H and each pi is uniform conditional to Hi = 0 (i.e.
satisfies (1) conditional to Hi = 0) and has for alternative c.d.f. Fi conditional
to Hi = 1. As a consequence, unconditionally, the p-values are independent and
for i = 1, . . . , m, the c.d.f. of each p-value pi is t 7→ π0t+π1Fi(t). This model has
for parameters (π0, F) where F = (Fi)1≤i≤m is the family of alternative c.d.f.’s.
The latter model will be referred trough the paper as the unconditional model.

2.2. Assumptions and notation

We introduce the following possible regularity assumptions on the parameter F
of each model, the derivative of Fi being denoted by fi:

the Fi’s are continuous, strictly concave functions on [0, 1]; (A1)

the Fi’s are twice differentiable on (0, 1); (A2)

the functions i 7→ fi(0
+) and i 7→ fi(1

−) are constant (A3)

for each i, j, limy→fi(0+) f−1
j (y)/f−1

i (y) exists in [0, +∞]. (A4)

As illustration, the assumptions (A1)–(A4) are all satisfied in the one-sided
testing Gaussian case where we test for any i the null “µi = 0” against “µi > 0”
from a Gaussian test statistic of mean µi and variance 1. In that case, we have

Fi(x) = Φ
(
Φ

−1
(x) − µi

)
and fi(x) = exp

{
µi

(
Φ

−1
(x) − µi

2

)}
, (2)

where we denoted Φ(z) := P [Z ≥ z] for Z ∼ N (0, 1).
Finally, for any non-decreasing function F : [0, 1] → [0, 1] we denote

I(F ) := sup{u ∈ [0, 1] | F (u) ≥ u},
J (F ) := sup{u ∈ [0, 1] | ∀u′ ≤ u, F (u′) ≥ u′},

and for λ > 0,

I+
λ (F ) := (I(F ) + λ) − F (I(F ) + λ) when λ < 1 − I(F ),

I−
λ (F ) := F (I(F ) − λ) − (I(F ) − λ) when λ < I(F ).

We easily check that I(F ) and J (F ) are maxima and that F (I(F )) = I(F )
and F (J (F )) = J (F ).
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2.3. Multiple testing procedures, FDR and power

A multiple testing procedure R is defined as an algorithm which, from the data,
aims to reject part of the null hypotheses. Below, we will consider, as is usually
the case, multiple testing procedures which can be written as a function of the
family of p-values p = (pi, i ∈ {1, . . . , m}). More formally, we define a multiple
testing procedure as a measurable function R, which takes as input a realization
of the p-value family p ∈ [0, 1]m and which returns a subset R(p) of {1, . . . , m},
corresponding to the rejected hypotheses (i.e. i ∈ R(p) means that the i-th
hypothesis is rejected by R).

As introduced by Benjamini and Hochberg (1995), the false discovery rate
(FDR) of a multiple testing procedure is defined as the mean proportion of true
hypotheses in the set of the rejected hypotheses:

FDR(R) = E

[ |H0 ∩ R(p)|
|R(p)| ∨ 1

]
, (3)

where | · | denotes the cardinality function. Of course, the FDR in (3) depends
on the model chosen for the p-values. In particular, the FDR in the conditional
model involves an expectation taken conditionally to H, whereas the FDR in the
unconditional model additionally uses an averaging over H. It is worth noticing
that, if a procedure controls the FDR in the conditional model, that is condi-
tionally to any value of H ∈ {0, 1}m, it controls also the FDR unconditionally.

Finally, we use the standard power criterium equal to the mean proportion
of correctly rejected hypotheses, that is,

Pow(R) = m−1
E

[
|H1 ∩ R(p)|

]
. (4)

In the notation below, we will sometimes drop the explicit dependency in p
for short, writing e.g. R instead of R(p).

2.4. Weighted linear step-up procedures

Let us consider w = (wi)i a vector of non-negative real numbers such that∑m
i=1 wi = m, called here a weight vector, and consider the weighted p-values

p′i = pi/wi, ordered as: p′(1) ≤ · · · ≤ p′(m) with the convention p′(0) = 0.

As introduced by Genovese et al. (2006), the weighted linear step-up procedure
associated to w, denoted here by LSU(w), rejects the i-th hypothesis if p′i ≤ αû,
with

û = m−1 max{r ∈ {0, 1, . . . , m} | p′(r) ≤ αr/m}. (5)

In particular, the procedure LSU(w) using ∀i, wi = 1 corresponds to the stan-
dard linear step-up procedure of Benjamini and Hochberg (1995), denoted here

by LSU. Letting Ĝw(u) = m−1
∑m

i=1 1{pi ≤ αwiu}, the rejection proportion û
can equivalently be defined as

û = I(Ĝw), (6)
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using the notation of Section 2.2. Contrary to (5), expression (6) does not make
any specific use of the reordered p-values p′(1), . . . , p

′
(m), so that it is generally

more convenient from a mathematical point of view.
For any choice of weight vector w, Genovese et al. (2006) proved that the

weighted linear step-up procedure controls the FDR at level αm−1
∑

i(1 −
Hi)wi ≤ α in the conditional model and (thus) at level π0α ≤ α in the un-
conditional model.

3. New approach

We present in this section a new family of multiple testing procedures, called
multi-weighted procedures. We start by motivating their introduction from the
power optimization problem among the family of weighted linear step-up pro-
cedures.

3.1. Weight functions

Following Genovese et al. (2006), the explicit computation of the power of the
LSU(w) is a difficult task (even asymptotically): it depends on the final pro-

portion of rejections of the procedure û = I(Ĝw), which is a random variable
itself depending on w. Therefore, we propose here to perform the optimization
for each fixed rejection proportion u which in turn leads to a family of optimal
weight vectors depending on u, 0 < u ≤ 1.

First, define the power of the procedure that thresholds each p-value pi at
level αwiu:

Powu(w) := Pow({i | pi ≤ αwiu}), (7)

corresponding intuitively to the “power of the LSU(w) at rejection propor-
tion u”.

Second, define a weight (vector) function as a function W : u ∈ (0, 1] 7→
W(u) = (Wi(u))i ∈ (R+)m such that each W(u) is a weight vector, that is,
∀u ∈ (0, 1],

∑m
i=1 Wi(u) = m and such that the following property holds

∀i ∈ {1, . . . , m}, u 7→ Wi(u) u is nondecreasing on (0, 1]. (8)

Additionally, a weight function is said continuous if for all i, u ∈ (0, 1] 7→ Wi(u)
are continuous functions.

Definition 3.1. Any weight function W⋆ solving simultaneously the maximiza-
tion problems:

∀u ∈ (0, 1], Powu(W⋆(u)) = max
{
Powu(w), w weight vector

}
, (9)

is called the optimal weight function.

Note that W⋆ is called here abusively “the” optimal weight function even if
it is not proved to be unique. Of course the optimal weight function depends



E. Roquain and M. van de Wiel/Optimal weighting for FDR control 684

on the model chosen for the p-values. The following proposition gives (strong)
sufficient conditions for existence and unicity of the optimal weight function in
the different models described in Section 2.1.

Proposition 3.2. Assume (A1)–(A2)–(A3) and denote the derivative of Fi by
fi. Then the weight function W⋆ satisfying (9) exists and is unique in either of
the following cases:

• In the conditional model, if α < π1, with for all u ∈ (0, 1],

W ⋆
i (u) = (αu)−1f−1

i

(
y⋆(u)

)
1{Hi = 1}. (10)

• In the unconditional model, with for all u ∈ (0, 1],

W ⋆
i (u) = (αu)−1f−1

i

(
y⋆(u)

)
.

In each case, y⋆(u) is defined as the unique element providing
∑m

i=1 W ⋆
i (u) = m.

Moreover, in both models, the weight function W⋆ is continuous, and assuming
in addition (A4), the limits W ⋆

i (0+) exist for all i.

The proof, which is based on similar arguments than those proposed in
Rubin et al. (2006) and Wasserman and Roeder (2006), is given in Section 8.6.
Of course, the optimal weight function depends on the parameters of the model:
on (H, F) in the conditional model and on F (only) in the unconditional model.

For instance, when the p-values are generated from the Gaussian model (2),
the optimal weight function in the unconditional model is given by

W ⋆
i (u) = (αu)−1Φ

(
µi

2
+

c(u)

µi

)
, (11)

where c(u) is the unique element of R such that
∑m

i=1 W ⋆
i (u) = m. It there-

fore only depends on the vector of alternative means µ = (µi)1≤i≤m. Figure 1
displays the optimal weight vectors W(u) for a particular choice of means and
different values of u. We observe that W(u) strongly depends on u: for u = 1,
the weight vector is larger for small means, whereas as u decreases, the weight
vector is maximum on larger means. In particular, for small u, the weighting is
close to zero for the smallest means, because they produce p-values much larger
than αu (with high probability).

The Gaussian formula (11) can be also suitable for test statistics “close to
be Gaussian”, namely for locally uniform asymptotically normal test statis-
tics (see Chapter 14 of van der Vaart (1998) and Section 4.3 and Section 7 of
Roquain and van de Wiel (2008)). This is the case for instance for the Mann-
Whitney test statistic.

3.2. Multi-weighted procedures

From the previous section, we have now to integrate several weight vectors in
a single multiple testing procedure, or more precisely to use a weight vector w
which may depend on u. For this, we extend the definition of weighted linear
procedures to the case of multi-weighted procedures.
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Fig 1. Plot of the optimal weights (W⋆

i
(u))i in function of the alternative means (µi)i, for u =

1/m (solid), u = 10/m (dashed-dotted), u = 100/m (dotted), u = 1 (dashed). Unconditional
model and Gaussian one-sided case with m = 1000, α = 0.05, µi = 5i/m for i = 1, . . . ,m.
Each curve is normalized to have a maximum equal to 1.

First, we define the threshold collection ∆ = (∆i(u))i,u associated to a given
weight function W(·) = (Wi(·))i by ∀i ∈ {1, . . . , m}, ∀u ∈ [0, 1],

∆i(u) := α Wi(u) u if u > 0 and ∆i(0) := 0.

Conversely, given any threshold collection ∆ = (∆i(u))i,u such that each ∆i is
nonnegative, nondecreasing on [0, 1] and such that ∀u ∈ (0, 1], m−1

∑
i ∆i(u) =

αu, we define the weight function W = (Wi(u))i,u associated to ∆ by ∀i ∈
{1, . . . , m}, ∀u ∈ (0, 1], Wi(u) := ∆i(u)/(αu). As a consequence, the threshold
collection ∆ and the weight function W are one to one associated.

Definition 3.3. Consider a weight function W(·) = (Wi(·))i and its associ-
ated threshold collection ∆. The multi-weighted step-up procedure with weight
function W, denoted by SU(W), rejects the i-th null hypothesis if pi ≤ ∆i(û),
where

û = I(ĜW), (12)

and where we denoted ĜW(u) := m−1
∑m

i=1 1{pi ≤ ∆i(u)} for all u ∈ [0, 1].

In particular, in the case where for all u, Wi(u) = wi is independent of u, the
procedure SU(W) reduces to LSU(w). More generally, the above definition of
SU(W) allows to choose thresholding ∆i(u) not linear in u.

As for LSU(w), the multi-weighted procedure SU(W) can also be derived
from a re-ordering based algorithm. The main difference is that the original p-
values are ordered in several ways, because several weighting are used. Namely,
if for r ≥ 1, qr denotes the r-th smallest W(r/m)-weighted p-value i.e. is equal
to p′(r) where ∀i, p′i = pi/Wi(r/m) and putting q0 = 0, we have

û = m−1 max{r ∈ {0, 1, . . . , m} | qr ≤ αr/m}.
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Similarly to the step-up case, we can define the multi-weighted step-down pro-
cedure with weight function W (and associated threshold collection ∆), denoted
by SD(W), as rejecting the i-th null hypothesis if pi ≤ ∆i(ũ), where

ũ = J (ĜW), (13)

or equivalently, ũ = m−1 max{r ∈ {0, 1, . . . , m} | ∀r′ ≤ r, qr′ ≤ αr′/m}.
Remark that the procedures SU(W) and SD(W) only use the values of W(u)

for u ∈ {1/m, 2/m, . . . , 1}, which makes them easily computable. We refer the
reader to Appendix A for explicit algorithmic versions of the procedures SU(W)
and SD(W).

The particular multi-weighted step-up procedure SU(W⋆) using the opti-
mal weight function W⋆ is called the optimal multi-weighted procedure. From
an intuitive point of view, since this weighting maximizes the power at any
rejection proportion, the latter procedure should be more powerful than any
standard weighted procedure LSU(w). One of the goal of Section 4 is to state
this optimality result formally.

Finally, let us remark that in the unconditional model and under the as-
sumptions and notation of Proposition 3.2, the optimal multi-weighted step-up
procedure may be written under the following form: reject the i-th hypothesis if
fi(pi) ≥ y⋆(û), where fi is the (decreasing) alternative density of pi and y⋆(û)
is adjusted from all the p-values, the fi’s and the pre-specified level α. As a
consequence, this procedure is based on individual tests of Neyman-Pearson’s
type (the observed variables being restricted to the p-values).

4. Main results

We present in this section the main properties of the multi-weighted procedures.
First, the finite-sample FDR control of SU(W) for any weight function W,
up to slight modifications. Second, the finite-sample power optimality of the
procedure SU(W⋆) (using the optimal weight function), up to some small error
terms. Third, a consistency result, proving that the latter slight modifications
are unnecessary and that error terms vanish, in a particular asymptotic setting
where m tends to infinity.

4.1. Finite-sample FDR control

First, let us recall that for any choice of weight vector w = (w1, . . . , wm),
the weighted linear step-up procedures LSU(w) controls the FDR at level
αm−1

∑
i(1 − Hi)wi ≤ α in the conditional model and at level π0α ≤ α in

the unconditional model (see Genovese et al. (2006); Blanchard and Roquain
(2008)). These controls are non-asymptotic, in the sense that they are valid for
any finite m ≥ 2.

Unfortunately, the procedure SU(W) cannot be proved to control the FDR at
level α for any choice of weight function W and for any m ≥ 2. In Appendix C,



E. Roquain and M. van de Wiel/Optimal weighting for FDR control 687

a (least favorable) choice of weight function is given when m = 2, for which
FDR(SU(W)) slightly exceeds α. Therefore, in order to obtain rigorous FDR
control for each m and any weight function, we need to slightly correct SU(W).

Theorem 4.1. Consider W(·) = (Wi(·))i any weight function. Then for any
finite m ≥ 2, the two following procedures

• SU(W̃) with W̃i(u) = Wi(u)/(1 + αWi(1)),

• SD(W̃) with W̃i(u) = Wi(u)/(1 + αuWi(u)),

have their FDR less than or equal to

α max
1≤k≤m

{
m−1

m∑

i=1

(1 − Hi)Wi(k/m)

}
≤ α

in the conditional model. As a consequence, their FDR are less than or equal to
αE

(
max1≤k≤m

{
m−1

∑m
i=1(1 − Hi)Wi(k/m)

})
≤ α in the unconditional model.

The proof of Theorem 4.1 is given in Section 8.3. Note that this result covers
the earlier result of Genovese et al. (2006); Blanchard and Roquain (2008), by
taking Wi(u) = wi constant in u.

Since from (8), we have αuWi(u) ≤ αWi(1), both modifications of SU(W)
proposed above should be not too large when αWi(1) is close to 0 (e.g. when
α is small). Furthermore, while the correction proposed in the weighting of the
step-up procedure is more conservative than the one of the step-down, a step-up
procedure is always more powerful than a step-down procedure (for the same
threshold collection). Therefore, in general, no modified procedure dominates
the other. Nevertheless, in the particular simulation setting of Section 5, we will
see that the step-down modification appears to be better.

When using the optimal weight function W⋆, Theorem 4.1 provides two mod-
ifications of the optimal multi-weighted procedure SU(W⋆) that control the
FDR. More importantly, it shows that any misspecification in W⋆ (e.g. in the
model parameters) still leads to the correct FDR control. This is a crucial point
in practice.

Explicit finite-sample bounds for the FDR of SU(W) – the step-up procedure
without modification – are given in Proposition 8.4 in the unconditional model
(see Section 8.5). It shows that FDR(SU(W)) should be close to π0α when m
is large, so that the modifications of Theorem 4.1 are not needed anymore in
that case. We will develop the resulting FDR consistency result more formally
in Section 4.3 under some asymptotic conditions and for the optimal weighting.

4.2. Finite-sample power optimality

For a given weight function W of associated threshold collection ∆, let us denote

GW(u) := E

[
ĜW(u)

]
= m−1

m∑

i=1

P [pi ≤ ∆i(u)] , (14)
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being the mean proportion of rejections at levels (∆i(u))i and define similarly
Gw(u) for a weight vector w. Then the following theorem holds:

Theorem 4.2. In the unconditional model, assume that F satisfies (A1) and
consider a weight function W⋆ which maximizes the power at every proportion
rejection, i.e. satisfying (9). Consider λ > 0 with λ < π0(1− α). Then we have
for any finite m,

Pow(SU(W⋆)) ≥max
w

{
Pow(LSU(w)) − ε(m, I+

λ (Gw))
}

− ε(m, I−
λ (GW⋆))1{λ < I(GW⋆)} − 2λ(1 − απ0), (15)

where ∀x ∈ R, ε(m, x) := π1m
2 exp

{
−2m

(
x−m−1

)2

+

}
and where the maximum

is taken over all the weight vectors w. Moreover, we have I−
λ (GW⋆) > 0 when

λ < I(GW⋆) and I+
λ (Gw) > 0.

The proof is made in Section 8.2. Expression (15) can be seen as a non-
asymptotic “oracle inequality”, stating that the power of the optimal multi-
weighted procedure is close to the power of the best weighted linear step-up
procedure. This finite-sample optimality result makes sense because SU(W⋆), as
all the weighted linear step-up procedures, controls the FDR non-asymptotically
at level α (up to the slight modifications presented in Section 4.1).

In Theorem 4.2, condition λ < π0(1 − α) (resp. λ < I(GW⋆)) ensures that
I+

λ (Gw) (resp. I−
λ (GW⋆)) is well defined. Moreover, in (15), λ should be chosen

such that the errors terms ε(m, I+
λ (Gw)), ε(m, I−

λ (GW⋆)) and 2λ(1 − απ0) are
as small as possible. From an asymptotic point of view, assuming that the
quantities I−

λ (GW⋆) and I+
λ (Gw) are bounded away from 0 when m tends to

infinity (for any fixed λ), the error terms tend to zero by taking successively
m tending to infinity and λ tending to zero. However, the best choice λ = λm

depends on the parameter F and seems quite difficult to derive under an explicit
form (and so are the corresponding convergence rates in (15)).

The next section presents sufficient asymptotic conditions making I−
λ (GW⋆)

and I+
λ (Gw) bounded away from 0 when m tends to infinity, so that the error

terms will asymptotically vanish in oracle inequality (15).

4.3. Consistency

We propose in this section an asymptotic framework in which the optimality of
SU(W⋆) and its FDR control hold when m tends to infinity, without modifica-
tion or error term.

First, we define the asymptotic setting. For all m ≥ 2, we consider the m-
unconditional model, where the m p-values are chosen as the m first p-values of
an infinite sequence of independent p-values (pi)i≥1, each p-value pi having the
c.d.f. π0t + π1Fi(t), for a given infinite sequence of c.d.f.’s F = (Fi)i≥1. In this
context, the weight functions depend on m, and we underline this dependence
in the notation, by denoting W(m) instead of W (and w(m) instead of w).



E. Roquain and M. van de Wiel/Optimal weighting for FDR control 689

Second, we define a converging weight function sequence (W(m))m as a se-
quence of weight functions such that the associated function sequence (GW(m))m

(defined in (14)) converges point-wise (on [0, 1]). For short, we will often use the
notation G∞ for the limit function of (GW(m))m.

Theorem 4.3. Consider the above asymptotic framework in which F is assumed
to satisfy (A1) and consider a class W of converging weight function sequences.
Let (W⋆,(m))m be a sequence of weight functions such that for all m, W⋆,(m)

maximizes the power at every proportion rejection in the m-unconditional model
(i.e. satisfies (9)). For the sequence (W⋆,(m))m, assumed to lie in W, and for
any weight vector sequence (w(m))m belonging to W, we additionally assume
that the associated limit function G∞ is continuous and satisfies I−

λ (G∞) > 0
for λ < I(G∞). Then the multi-weighted procedure SU(W⋆,(m)) satisfies

lim
m

Pow(SU(W⋆,(m))) ≥ max
(w(m))m

{
lim
m

Pow(LSU(w(m)))
}

, (16)

the maximum above being taken over any sequence of weight vectors (w(m))m

belonging to W. Moreover, we have

lim
m

FDR(SU(W⋆,(m))) ≤ π0 α , (17)

assuming either that I(G∞) > 0 (with G∞ = limm GW⋆,(m)) or that we have

limn limm m−1
∑m

i=1 sup0<u<n−1

{
W

⋆,(m)
i (u)

}
= 1.

Theorem 4.3 is proved in Section 8.5.
Under the conditions of Theorem 4.3, inequalities (16) and (17) imply that

SU(W⋆) is asymptotically more powerful than any weighted linear step-up pro-
cedure (in a certain class of converging weight vector sequences) while having the

same asymptotic FDR control. Since the uniform weighting sequence w
(m)
i = 1

is always converging (with a continuous strictly concave limit function, from
(A1)), it can always be added in the class W. As a consequence, the proce-
dure SU(W⋆) always improves the original LSU asymptotically. However, this
should be balanced with the fact that SU(W⋆) uses the true parameters of the
model, whereas LSU does not.

To satisfy the assumptions of Theorem 4.3, we have to choose a convenient
class of converging weighting sequences W, containing the optimal weighting
sequence. We give below two examples of such choice when F is assumed to
have a particular structure.

A first example is the case of clustered p-values: consider a parameter F

satisfying (A1) and such that Fi is equal to FA (resp. FB) for i ∈ S(m)
A (resp.

i ∈ S(m)
B ), where {S(m)

A ,S(m)
B } forms a (deterministic) partition of {1, . . . , m}

(this model may of course be generalized to the case K ≥ 2 clusters). For

simplicity, we assume that the proportion of p-values πA = |S(m)
A |/m in cluster

S(m)
A (resp. πB = |S(m)

B |/m in cluster S(m)
B ) does not depend on m (this holds

up to take a subsequence of m). In this context, we merely check that a weight
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vector maximizing the power (at a given rejection proportion) has the same
weight within a cluster. It is therefore natural to consider the following class of
weighting:

W =
{(

W(m)
)
m

∣∣∣ ∀m, W
(m)
i = WA (resp. WB) for i ∈ S(m)

A (resp. i ∈ S(m)
B ),

for WA(·),WB(·) ≥ 0 satisfying ∀u ∈ (0, 1], πAWA(u) + πBWB(u) = 1,

and u 7→ WA(u)u, u 7→ WB(u)u continuous nondecreasing on [0, 1]
}

.

Since for any weight function sequence
(
W(m)

)
m

of W the function GW(m)(u) =
π0αu + π1πAFA(αuWA(u)) + π1πBFB(αuWB(u)) does not depend of m, W is
a class of converging weight function sequences. Moreover, G∞(u) = GW(m)(u)
is continuous and satisfies I−

λ (G∞) > 0 for λ < I(G∞), either for W(m)(u) =
w(m) a weight vector, or for W(m)(u) = W⋆,(m)(u) the optimal weight func-
tion (from one of the last statements of Theorem 4.2). Finally, we can apply
Theorem 4.3 to obtain the oracle inequality (16). Moreover, the last assumption
required for the FDR control (17) holds assuming that the limits W ⋆

A(0+) and
W ⋆

B(0+) exist (as is the case under assumptions (A1)–(A4), see Proposition 3.2).

A second example is the continuous one-sided Gaussian setting, where for

all m, and 1 ≤ i ≤ m, Fi(x) = Φ
(
Φ

−1
(x) − µ(i/m)

)
, for a mean function

µ : [0, 1] → R+ assumed continuous with µ(t) > 0 for t > 0. In this context, we

denote Fi/m and W
(m)
i/m

instead of Fi and W
(m)
i for more convenience. Also note

that the function t 7→ Ft can be extended to all t in [0, 1]. In that setting, it is
relevant to consider the following class of weighting:

W =

{
(
W(m)

)
m

weight function sequence such that

∀u ∈ [0, 1],
1

m

m∑

i=1

Fi/m(αuW
(m)
i/m(u)) −−−−→

m→∞

∫ 1

0

Ft(αuWt(u))dt,

for (Wt(·))t∈[0,1] ≥ 0 satisfying ∀u, t ∈ [0, 1] 7→ Wt(u) continuous

}
.

Any weight function sequence (W(m))m of W is converging, because GW(m)(u) =

π0αu+π1m
−1

∑m
i=1 Fi/m(αuW

(m)
i/m(u)) → G∞(u) = π0αu+π1

∫ 1

0
Ft(αuWt(u))dt.

Moreover, expression (11) provides the form of the optimal weight function:

αuW
⋆,(m)
i/m (u) = Φ

(
µ(i/m)/2 + c(m)(u)/µ(i/m)

)
where c(m)(u) is taken such

that
∑m

i=1 W
⋆,(m)
i/m

(u) = m. In Section 8.7, we prove that (W⋆,(m))m belongs to

W, with a “limit weighting” (W ⋆
t (·))t∈[0,1] ≥ 0 given by

W ⋆
t (u) = (αu)−1Φ

(
µ(t)

2
+

c∞(u)

µ(t)

)
,
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where c∞(u) ∈ R satisfies
∫ 1

0
Φ

(µ(t)
2

+ c∞(u)
µ(t)

)
dt = αu. Similarly, any weight

vector sequence of the form w(m) = W⋆,(m)(u0) (with u0 fixed in (0, 1]) belongs

to W with a limit function G∞(u) = π0αu + π1

∫ 1

0
Ft(αuW ⋆

t (u0))dt continuous

and strictly concave (implying I−
λ (G∞) > 0 for λ < I(G∞)). Denoting G⋆,∞

the limit function of GW⋆,(m) , we merely check that G⋆,∞ ≥ G∞. Since this
holds for any choice of u0, we derive that I−

λ (G⋆,∞) > 0 for λ < I(G⋆,∞) (using
inequalities similar to (25)). As a consequence, we may apply Theorem 4.3 to
obtain the oracle inequality (16). In particular, the power of the multi-weighted
procedure SU(W⋆,(m)) is always asymptotically larger than the power of the
weighted linear step-up LSU(w(m)) for any weight vector of the form w(m) =
W⋆,(m)(u0), with u0 ∈ (0, 1]. Roughly, the latter signifies that SU(W⋆,(m))
automatically chooses the best weighting among {W⋆,(m)(u0)}u0 .

5. Simulation study

An important point is now to evaluate the improvement of the new multi-
weighted procedure, both when we plug the true parameters or misspecified
parameters in the optimal weighting. For this, we propose to perform simula-
tions in the – restricted but convenient – one-sided Gaussian testing framework
under the conditional model.

5.1. Simulations framework

We consider the problem of testing for each i ∈ {1, . . . , m}, the null “µi = 0”
against the alternative “µi > 0” from the observation of m independent variables
(Xi)i with Xi ∼ N (µi, 1). The parameters (H, F) of the (conditional) model
are fully determined from the vector µ = (µi)i, namely by Hi = 1{µi > 0} and
(2), respectively. They represent informations of a different nature: H provides
the location of the positive means while F supplies their values.

For all our experiments, the number of tests is m = 1000. The vector µ is
taken such that the m0 = 700 first components of µ are equal to zero (the pro-
portion of zeros in the mean vector is thus π0 = 0.7). The m1 = 300 remaining
non-zero means are taken in two different ways:

• Case 1: the non-zero means increase linearly from 3
m1

µ to 3µ.
• Case 2: the non-zero means are gathered in three groups of different values

µ, 2µ and 3µ, of respective sizes 120, 120 and 60.

In both cases µ is an “effect size” parameter taking values in the range 0.5 +
0.25k, k ∈ {0, . . . , 10}.

The following procedures are considered:

– [LSU] the linear step-up procedure LSU,
– [LSU⋆] the step-up procedure with threshold collection αu/π0,

– [SU-W-oracle] the multi-weighted step-up procedure SU(W̃⋆) of Theo-
rem 4.1, using the optimal weight matrix W⋆ (given by (11)),
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– [SD-W-oracle] the multi-weighted step-down procedure SD(W̃⋆) of The-
orem 4.1, using the optimal weight matrix W⋆,

– [Unif-oracle] the weighted linear step-up procedure LSU(w⋆) using a weight
vector uniform on H1: w⋆

i = 0 for µi = 0 and w⋆
i = m/m1 for µi > 0.

The procedures [SU-W-oracle], [SD-W-oracle] and [Unif-oracle] correspond to
the case where the weighting uses the true mean vector µ, hence the name “or-
acle”. In situations where we replace µ by a “guess” µ̃ in the weights, the pro-
cedures are called “guessed” and are denoted by [SU-W-guess], [SD-W-guess],
[Unif-guess] respectively. The procedure [Unif-oracle/guess] renders a uniform
weighting over the (guessed) false nulls and is close in spirit to the approach
of Genovese et al. (2006). It takes only into account the subset where the hy-
potheses are false (“location information”), but not the values of the non-zero
means.

The procedure [LSU⋆] is performed to compare with quite recent develop-
ments on π0-adaptive procedures (see e.g. Benjamini et al. (2006)). Since it
uses a perfect estimation of π0, it represents the best theoretical π0-adaptive
modification of the LSU that we can build. For clarity reasons, we avoid the
problem of choosing a particular estimator of π0 and we only consider [LSU⋆].

All the latter procedures have provable FDR control (see Section 4.1), so
that it is relevant to compare them in terms of power. In all experiments the
targeted FDR level is either α = 0.01 or α = 0.05. The different performed
procedures are compared in terms of relative power (RelPow) with respect to the
LSU procedure, defined as the expected surplus proportion of correct rejections
among the false nulls: for a multiple testing procedure R,

RelPow(R) := (m1)
−1

(
E(|R ∩H1|) − E(|LSU∩H1|)

)
. (18)

Roughly speaking, this relative power represents the surplus “probability” of a
false null to be rejected with respect to the LSU. This power is estimated us-
ing Monte-Carlo simulations. Additionally, we also evaluate the “power range”
defined by the power of the weighted linear procedures LSU(W⋆(u0)) for any
u0 ∈ {1/m, 2/m, . . . , 1}. It is represented by a gray area over the pictures.
Finally, the optimal multi-weighted step-up procedure SU(W⋆) without cor-
rection (which controls the FDR when m → ∞) is also considered, but it is not
reported on our figures, because its (relative) power is almost indistinguishable
from the top of the power range.

5.2. Procedures using the true parameters

We report on Figure 2 the relative power (18) of [LSU], [LSU⋆], [SU-W-oracle],
[SD-W-oracle] and [Unif-oracle] in function of the parameter µ (1000 simula-
tions). The gray area represents the power range as defined in the previous
section.

The conclusion of this experiment is that, in the most favorable case where the
multi-weighting is used with the true parameters of the model, the improvement
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Fig 2. Procedures using the true parameters. Relative power of [LSU] (solid), [LSU⋆] (short-
dashed), [SU-W-oracle] (dotted-dashed), [SD-W-oracle] (long-dashed) and [Unif-oracle] (dot-
ted) in function of µ (see text). Left: case 1 of means, right: case 2 of means. Top α = 0.01;
bottom α = 0.05.

of the multi-weighted procedures over [LSU] is satisfactory. Also, [SD-W-oracle]
performs here better than [SU-W-oracle] (especially for α = 0.05), so that the
loss in the correction within [SU-W-oracle] seems significantly larger than the
loss in the correction within [SD-W-oracle].

Furthermore, [SD-W-oracle] is more powerful than [LSU⋆] (actually, this is
still true using a smaller π0, e.g. π0 = 0.5), and [SD-W-oracle] is always better
than [Unif-oracle], and allows sometimes for much more discoveries. This seems
coherent because [SD-W-oracle] takes into account more (correct) prior infor-
mations than [Unif-oracle]: namely, [SD-W-oracle] uses both the values and the
location of the non-zero means (we are in the conditional model), while [Unif-
oracle] only uses the location information.

Finally, the procedure [SD-W-oracle] is close to the top of the power range
(gray area), that is, has a power close to the power of the best procedure among
LSU(W⋆(u0)), u0 ∈ {1/m, 2/m, . . . , 1}. This corroborates the optimality re-
sults of Section 4.2 and Section 4.3 in this (conditional) setting.
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5.3. Procedures using misspecified parameters

We consider here the same experiment as before, except that we take into ac-
count the “randomness” due to a prior guess µ̃i of each µi. For this, we add a
misspecification parameter σ and we suppose that the guessed means are of the
form: ∀i ∈ {1, . . . , m},

µ̃i = µi + εi,

where εi are i.i.d with distribution N (0, σ2) (taken independent of the pi’s). The
misspecification parameter σ is taken in the range {j/4, j = 0, . . . , 12}. Remark
here that the way of guessing the mean is quite raw, because it does not take
into account the specific form of the parameters (of course, this guessing can
be improved here by taking local means). However, we keep this raw modeling
here because we do not want to make any assumption on the parameters.

Figure 3 reports the relative power (18) of [LSU], [LSU⋆], [SU-W-guess], [SD-
W-guess] and [Unif-guess] with respect to σ. We performed 100 simulations to
compute the relative power and the latter is moreover averaged over 10 generated
values of the µ̃i’s (for each values of σ).

In this experiment, we see that both multi-weighted procedures are better
than other procedures when the guesses are good i.e. over the range σ ∈ [0, 1.2],
but may be worst than the simple [LSU] procedure when σ is large. Further-
more, note that the procedure [Unif-guess] quickly collapses when σ grows and
therefore only proposes a slight improvement of [LSU] (or [LSU⋆]) when the
guesses are good. However, it is “less risky” than the multi-weighted proce-
dures for large σ. Again, this conclusion is natural because the multi-weighted
procedures take here into-account more prior information than [Unif-guess].

Finally, although admittedly of a limited scope, these experiments show that
in principle, taking into account a correct guess of the parameters in the multi-
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Fig 3. Procedures using misspecified parameters. Relative power of [LSU] (solid), [LSU⋆]
(short-dashed), [SU-W-guess] (dotted-dashed), [SD-W-guess] (long-dashed) and [Unif-guess]
(dotted) in function of the misspecification parameter σ (see text). Left: case 1 of means,
right: case 2 of means (see text). µ = 1; α = 0.05.
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weighted procedures should improve the power substantially. The loss/gain mag-
nitude of these procedures depends on the quantity of prior information used
(location of the positive means, value of the positive means, or both).

6. Application to mRNA and DNA microarray experiments

In a typical microarray experiment, we want to find differentially expressed
mRNA genes between two groups of individuals. For the i-th gene, the level
expression is of the form Xi,1, . . . , Xi,ki

for group 1 and Yi,1, . . . , Yi,ℓi
for group

2, where ki (resp. ℓi) is the number of individuals in group 1 (resp. group 2).
In some microarray experiments, the sample sizes (ki, ℓi) available to assess

the differential mRNA expression of gene i may strongly depend on i, e.g. when
the number of missing data differs per gene. In this application, we consider
a covariate, the DNA copy number status of the same gene, which determines
the groups and the sample sizes. DNA copy number status is obtained from an
independent array CGH experiment, after a few pre-processing steps (see e.g.
Picard et al. (2007)). We focus on the covariate Ai,j which is equal to 1 when
gene i is gained for individual j (i.e. when sample j has an abnormally high DNA
copy number of gene i), and 0 otherwise. The biological goal behind this is to find
the genes for which the mRNA expression is induced by the DNA copy number.
This is particularly useful to study cancer pathologies (see e.g. Hyman et al.
(2002)). Sample size dependent weights are in particular attractive here, because
many genes show a large unbalance in the amount of gains (defining group 1)
and non-gains (defining group 2).

Using the above framework, we analyze microarray lymphoma cancer data
of Muris et al. (2007). In these data m = 11 169 genes and n = 42 individuals
are studied. The p-value of each gene was computed using a Mann-Whitney
test. We aim to consider as prior the sample size information only, without
any guess on which hypotheses are false or true. The asymptotic normality of
the Mann-Whitney test statistic is used to define asymptotically optimal multi-
weights W⋆ which depend only on (ki, ℓi) and an estimate for the global effect
θ, which is a gene-independent parameter for the effect of copy number gain on
mRNA gene expression. The expression of the multi-weights and the estimate
for θ, θ̂m, are detailed in Roquain and van de Wiel (2008). The estimator θ̂m

converges in probability when m grows to infinity, so that we believe that the
fluctuations of θ̂m in the weights will have a marginal effect on the effective FDR
of the so multi-weighted procedure when m becomes large (however we did not
investigate formally the corresponding asymptotic study for now).

We applied the step-up multi-weighted procedure SU(W⋆), using the esti-

mator θ̂m ≃ 1.01 of the global effect size θ. Since m is large we focus on the
unmodified version of our procedure, which guarantees asymptotic FDR control.
For different values of α, the number of discoveries of this procedure and of the
LSU are given in Table 1.

We observe that our new step-up procedure discovers more differentially ex-
pressed genes when α ∈ {0.005, 0.01}. For α ∈ {0.05, 0.1}, the performance of
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Table 1

Number of discoveries for the new step-up and the standard linear step-up

α LSU SU(W)
0.005 43 98
0.01 121 156
0.05 478 476
0.1 836 859

the two step-up procedures is similar. So, the improvement of our procedure
is here mostly noticeable when the proportion of rejections is small. This is in
accordance with our intuition: the prior information (here the sample sizes) is
particularly useful when the proportion of rejections is expected to be small. Fi-
nally, let us remark that these positive results on the sample size problem have
been corroborated in a specific simulation study as well (not reported here).

7. Conclusion and discussions

When the parameters of the p-value model are known, we proposed to solve
the problem of the LSU optimal weighting by finding a new procedure which
provably outperforms all the weighted LSU procedures (up to small error terms)
and which can be easily computed from these parameters. Our simulations il-
lustrated the strength of the improvement of our new approach in situations
where it uses the true or misspecified parameters.

In our results, the assumptions concerning the marginal distributions of the
p-values were quite mild: the FDR control only required that each p-value is
uniform under the null while the optimality results only required the strict con-
cavity of the c.d.f.’s of the p-values. Moreover, the existence of the optimal
weight function only asked to maximize simultaneously the power at any pro-
portion rejection, and we gave strong sufficient assumptions for its existence and
unicity.

Several extensions to this work are possible: first, we have supposed the inde-
pendence between the p-values all along the paper, which is a standard but some-
what unrealistic assumption for the applications. In Roquain and van de Wiel
(2008), we proposed some extensions of the present FDR control results to the
case of positively regressively dependence or unspecified dependence. However,
the so-derived procedures seemed too conservative for practical use. Therefore,
there is a room left for future investigations, which join the very active (but
challenging) research field studying the impact of p-value dependence on FDR
control (see e.g. Kim and van de Wiel (2008); Romano et al. (2008)).

Second, our FDR controls are done at level smaller than π0α (asymptotically,
in the unconditional model). Therefore, when π0 is small, our procedures are
inevitably conservative, because their actual FDR is much lower than the fixed
target. This is a classical problem for the LSU procedure and several works
have been proposed to address this issue, by integrating a π0-estimate in the
threshold, building so-called adaptive LSU procedures (see e.g. Benjamini et al.
(2006); Blanchard and Roquain (2009)). A possible interesting extension of our
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work could therefore be to derive adaptive multi-weighted procedures, which
would increase the power when the data contain a lot of signal.

A third – and maybe more important – direction for future works is the inves-
tigation of data-driven weighting. A first idea could be to replace the function
Powu(·), the power at rejection proportion u, by an empirical substitute and to
perform the simultaneous maximization with this substitute. This would yield

an empirical optimal weight function Ŵ⋆ that can in turn be integrated in a
multi-weighted procedure. While this certainly requires to use a model with
some replications, the theoretical FDR control and power optimality of such
data-driven procedure are not straightforward from the present work, because
all our proofs here use the fact that the weight functions are deterministic.

8. Proofs

8.1. Useful notation and lemmas

Let us first introduce the following notation that will be useful throughout our
proofs: if R is the step-up procedure associated to a given weight function W of
associated threshold collection ∆, and û := |R|/m its rejection proportion, that

is û = I(ĜW), we denote by:

1. R−i the step-up procedure on the set of hypotheses corresponding to
{1, . . . , m}\{i}, that is excluding the i-th null, and associated to the
threshold collection ∀j 6= i, ∀u, ∆j((1−m−1)u); and we denote by û−i :=

|R−i|/(m−1) its rejection proportion, so that ûi = I(Ĝ−i) with Ĝ−i(u) :=
(m − 1)−1

∑
j 6=i 1{pj ≤ ∆j((1 − m−1)u)};

2. R′
−i the step-up procedure on the set of hypotheses excluding the i-th null

associated to the threshold collection ∀j 6= i, ∀u, ∆j((1− m−1)u + m−1);
and we denote û′

−i := |R′
−i|/(m− 1) its rejection proportion, hence û′

−i =

I(Ĝ′
−i) with Ĝ′

−i(u) := (m− 1)−1
∑

j 6=i 1{pj ≤ ∆j((1 − m−1)u + m−1)}.
Similarly, when R is step-down, we define R−i and R′

−i as step-down procedures

and we denote ũ := J (ĜW), ũ−i := J (Ĝ−i), ũ′
−i := J (Ĝ′

−i) instead of û, û−i,
û′
−i, respectively.
The two following lemmas make a link between the rejection proportions of

R, R−i and R′
−i, for different values of pi. They are proved in Appendix B and

are related to Lemma 10.20 of Roquain (2007).

Lemma 8.1. Let R be the step-up procedure associated to a given weight func-
tion of threshold collection ∆ and consider û, û−i and û′

−i as above. Then we
have point-wise:

1. pi ≤ ∆i(û) ⇐⇒ pi ≤ ∆i((1−m−1)û′
−i +m−1) ⇐⇒ û = (1−m−1)û′

−i +
m−1 ;

2. pi > ∆i(û) ⇐⇒ û = (1 − m−1)û−i .



E. Roquain and M. van de Wiel/Optimal weighting for FDR control 698

Lemma 8.2. Let R be a step-down procedure associated to a given weight func-
tion of threshold collection ∆ and consider ũ and ũ−i as above. Then we have
point-wise, for any k ∈ {1, . . . , m},

1. ũ ≥ k/m and pi > ∆i((k − 1)/m) =⇒ ũ−i ≥ (k − 1)/(m− 1) ;
2. ũ−i ≥ (k − 1)/(m− 1) and pi ≤ ∆i((k − 1)/m) =⇒ ũ ≥ k/m ;
3. pi > ∆i((1 − m−1)ũ−i + m−1) =⇒ ũ = (1 − m−1)ũ−i .

8.2. Proof of Theorem 4.1 – step-up part

The inequalities are established in the conditional model (the result in the un-
conditional model directly follows).

We use in all our FDR bounds that a procedure R satisfying the “self-
consistency condition” R = {i | pi ≤ ∆i(|R|/m)} has a FDR equal to

FDR(R) = E

[ |R ∩H0|
|R| ∨ 1

]
=

m∑

i=1

(1 − Hi)E

[
1{pi ≤ ∆i(|R|/m)}

|R|

]
. (19)

Now, consider the multi-weighted step-up procedure R = SU(W̃) of Theo-

rem 4.1, and denote by ∆ the threshold collection associated to W̃: ∆i(k/m) =

αW̃i(k/m)k/m = αWi(k/m)k/m(1 + αWi(1))−1 ≤ 1. Since any step-up pro-
cedure satisfies the self consistency condition, we may use (19). Furthermore,
using the notation of Section 8.1 and applying Lemma 8.1 (first statement), the
assertion pi ≤ ∆i(|R|/m) = ∆i(û) is equivalent to û = (1 − m−1)û′

−i + m−1.
Thus, we may rewrite the FDR as follows:

FDR(R) =

m∑

i=1

(1 − Hi)E

[
1{pi ≤ ∆i(û)}

û m

]

=

m∑

i=1

(1 − Hi)

m∑

k=1

k−1
P [pi ≤ ∆i(k/m), û m = k]

=
m∑

i=1

(1 − Hi)
m∑

k=1

k−1
P

[
pi ≤ ∆i(k/m), (m− 1)û′

−i + 1 = k
]
.

Then, since û′
−i only depends on the p-values of (pj, j 6= i), it is independent of

pi and we obtain

FDR(R) =
α

m

m∑

i=1

(1 − Hi)

m∑

k=1

W̃i(k/m)P
[
(m− 1)û′

−i + 1 = k
]

=
α

m

m∑

i=1

(1 − Hi)

m∑

k=1

Wi(k/m)(1 − ∆i(1))P
[
(m − 1)û′

−i + 1 = k
]

=
α

m

m∑

i=1

(1 − Hi)
m∑

k=1

Wi(k/m)P
[
pi > ∆i(1), (m− 1)û′

−i + 1 = k
]
,

(20)
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where we used that pi has a uniform distribution on [0, 1] (from (1)). Next, con-
sider the threshold collection ∀j ∈ {1, . . . , m}, ∀u, ∆′

j(u) = ∆j((1 − m−1)u +

m−1) and the associated step-up procedure that we denote by R′. Let us also de-
note its rejection proportion by û′ = |R′|/m. From the definition of Section 8.1,
the restriction of R′ to the hypothesis set corresponding to {1, . . . , m}\{i} is ex-
actly the procedure R′

−i. Therefore, from Lemma 8.1 (second statement applied
to R′), the condition pi > ∆i(1) = ∆′

i(1) ≥ ∆′
i(û

′) implies mû′ = (m − 1)û′
−i.

Therefore,

FDR(R) ≤ α

m

m∑

i=1

(1 − Hi)
m∑

k=1

Wi(k/m)P [pi > ∆i(1), mû′ + 1 = k]

≤ α

m

m∑

k=1

[
m∑

i=1

(1 − Hi)Wi(k/m)

]
P [mû′ + 1 = k]

≤ α max
1≤k≤m

{
m−1

m∑

i=1

(1 − Hi)Wi(k/m)

}
.

8.3. Proof of Theorem 4.1 – step-down part

Again, it is sufficient to look at the conditional model. First, let us prove that for
any step-down procedure R with threshold collection ∆ and rejection proportion
ũ, we have for any i,

FDR(R) ≤
m∑

i=1

(1 − Hi)

m∑

k=1

1

k
P [(m − 1)ũ−i = k − 1, pi ≤ ∆i(k/m)] , (21)

where ũ−i is the rejection proportion of the step-down procedure associated to
∆ and restricted to the hypotheses different from the i-th hypothesis as defined
in Section 8.1. This result has been implicitly proved in Gavrilov et al. (2009)
(Section 3), using a specific non-weighted step-down procedure. Here, we state
(21) in a more general framework. Applying the two first points of Lemma 8.2,
we obtain the following relations:

m∑

k=1

1

k
P [mũ = k, pi ≤ ∆i(k/m)]

=

m∑

k=1

1

k

[
P [mũ = k, pi ≤ ∆i((k − 1)/m)]

+ P [mũ = k, ∆i((k − 1)/m) < pi ≤ ∆i(k/m)]
]

=

m∑

k=1

1

k
P [mũ ≥ k, ∆i((k − 1)/m) < pi ≤ ∆i(k/m)]

−
m∑

k=1

[
1{k > 1}

k − 1
− 1

k

]
P [mũ ≥ k, pi ≤ ∆i((k − 1)/m)]
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≤
m∑

k=1

1

k
P [(m − 1)ũ−i ≥ k − 1, ∆i((k − 1)/m) < pi ≤ ∆i(k/m)]

−
m∑

k=1

[
1{k > 1}

k − 1
− 1

k

]
P [(m − 1)ũ−i ≥ k − 1, pi ≤ ∆i((k − 1)/m)]

=

m∑

k=1

1

k
P [(m − 1)ũ−i = k − 1, pi ≤ ∆i(k/m)] .

As a consequence, the latter combined with (19) states (21).
Now, consider the step-down procedure R of Theorem 4.1, that is, associated

to the threshold collection ∆i(k/m) = αW̃i(k/m)k/m = αWi(k/m)k/m(1 +
αWi(k/m)k/m)−1 ≤ 1. We use the independence between the p-values and (21)
to show

FDR(R) ≤
m∑

i=1

(1 − Hi)

m∑

k=1

1

k
P [(m − 1)ũ−i = k − 1, pi ≤ ∆i(k/m)]

=
α

m

m∑

i=1

(1 − Hi)

m∑

k=1

Wi(k/m)(1 − ∆i(k/m))P [(m − 1)ũ−i = k − 1]

=
α

m

m∑

i=1

(1 − Hi)

m∑

k=1

Wi(k/m)P [(m − 1)ũ−i = k − 1, pi > ∆i(k/m)] .

The third point of Lemma 8.2 thus implies

FDR(R) ≤ α

m

m∑

i=1

(1 − Hi)

m∑

k=1

Wi(k/m)P [mũ = k − 1, pi > ∆i(k/m)]

≤ α

m

m∑

k=1

[ m∑

i=1

(1 − Hi)Wi(k/m)

]
P [mũ = k − 1]

≤ α max
1≤k≤m

{
m−1

m∑

i=1

(1 − Hi)Wi(k/m)

}
.

8.4. Proof of Theorem 4.2

Let us assume that the following proposition holds (the proof is given at the
end of this section):

Proposition 8.3. In the unconditional model, consider a weight function W
with its associated threshold collection ∆ and put ū = I(GW). Then the follow-
ing holds:

(i) assuming that for all u′ > u > ū, u′ −GW(u′) > u−GW(u), we have for
all λ > 0, λ < 1 − ū,
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Pow(SU(W)) − (1 − απ0)ū

≤ π1m
2 exp

{
− 2m

(
I+

λ (GW) − m−1
)2

+

}
− I+

λ (GW) + λ(1 − απ0); (22)

(ii) assuming ∆ ≤ 1, we have for all λ > 0, λ < ū,

Pow(SU(W)) − (1 − απ0)ū

≥ −π1m exp
{
− 2m(I−

λ (GW))2+
}

+ I−
λ (GW) − λ(1 − απ0). (23)

We now prove Theorem 4.2 by applying Proposition 8.3. First, remark that,
in the unconditional model, we have for any weight vector w,

Gw(u) = απ0u + Powu(w),

so that maximizing in w the power at rejection level u is equivalent to maximize
Gw(u) in w. As a consequence, taking the optimal weight function W⋆, we
deduce from (9) that for any weight vector w and for any u we have Gw(u) ≤
GW⋆(u). Denoting uw := I(Gw) and u⋆ := I(GW⋆), this in turn implies that

uw ≤ u⋆ (24)

Second, remark that W⋆ has a threshold collection ∆⋆ satisfying ∆⋆ ≤ 1. The
latter holds because the Fi’s are increasing (as non-decreasing strictly concave
functions), and because ∆⋆

i (u) ≤ αW ⋆
i (1) with W⋆(1) maximizing the power at

rejection proportion 1. Third, we check the assumption of (i) Proposition 8.3 for
W(·) constantly equal to a weight vector w, which directly follows from the strict
concavity of Gw (itself coming from the strict concavity of the Fi’s). Forth, let
us prove that I+

λ (Gw) > 0 and I−
λ (GW⋆) > 0. The first statement comes from

the definition of I(Gw). To prove the second statement, consider u⋆ = I(GW⋆)
and the weight vector w = W(u⋆), so that u⋆ is equal to uw = I(Gw) (because
uw ≤ u⋆ from (24)). Using again that W⋆ is a maximum, we obtain

GW⋆(u⋆ − λ) ≥ Gw(u⋆ − λ) = Gw(uw − λ) =
Gw(uw − λ)

uw − λ
(uw − λ)

>
Gw(uw)

uw

(uw − λ) = u⋆ − λ , (25)

by the strict concavity of Gw. This implies I−
λ (GW⋆) > 0.

Finally, using (22) with W(·) constantly equal to any weight vector w, to-
gether with (23) used with W = W⋆, we obtain for all λ > 0, λ < u⋆ and
λ < π0(1 − α),

Pow(SU(W⋆))

≥ (1 − απ0)u
⋆ − ε(m, I−

λ (GW⋆)) − λ(1 − απ0)

≥ (1 − απ0)uw − ε(m, I−
λ (GW⋆)) − λ(1 − απ0)

≥ Pow(LSU(w)) − ε(m, I+
λ (Gw)) − ε(m, I−

λ (GW⋆)) − 2λ(1 − απ0),

which proves (15).
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Let us now prove Proposition 8.3. Using that the procedure R = SU(W)
satisfies the self-consistency condition R = {i | pi ≤ ∆i(|R|/m)}, Lemma 8.1
(first statement) and the notation of Section 8.1, the power of the procedure R
may be expressed as follows:

Pow(SU(W)) = π1m
−1

m∑

i=1

P [pi ≤ ∆i(|R|/m) | Hi = 1]

= π1m
−1

m∑

i=1

P
[
pi ≤ ∆i((1 − m−1)û′

−i + m−1) | Hi = 1
]

≤ π1m
−1

m∑

i=1

E
[
Fi ◦ ∆i((1 − m−1)û′

−i + m−1)
]
, (26)

where we used both the independence between pi and û′
−i conditionally to H

and the independence between û′
−i and Hi. For simplicity, we introduce the

increasing function φ(u) := (1−m−1)u+m−1 of invert φ−1(v) = (mv−1)/(m−
1). Fix now λ > 0, with ū + λ < 1. Expression (26) may be rewritten as

Pow(SU(W)) − (1 − απ0)ū

≤ E

[
π1m

−1
m∑

i=1

Fi ◦ ∆i(φ(û′
−i)) − (1 − απ0)ū

]

≤ π1P(Ωc
1) + GW(ū + λ) − απ0(ū + λ) − (1 − απ0)ū

= π1P(Ωc
1) + GW(ū + λ) − (ū + λ) + λ(1 − απ0),

where Ω1 denotes the event
{
∀i, 1 ≤ i ≤ m, φ(û′

−i) ≤ ū + λ
}

and where the last
inequality comes from the definition of ū. We upper-bound now the probability
of Ωc

1:

P [Ωc
1] ≤

m∑

i=1

P
[
û′
−i > φ−1(ū + λ)

]

≤
m∑

i=1

∑

u>φ−1(ū+λ)

1{u(m− 1) ∈ {0, 1, . . . , m− 1}}P
[
Ĝ

′
−i(u) ≥ u

]

=

m∑

i=1

∑

v>ū+λ

1{vm ∈ {1, 2, . . . , m}}P
[
Ĝ

′
−i(φ

−1(v)) ≥ φ−1(v)
]

≤
m∑

i=1

∑

v>ū+λ

1{vm ∈ {1, 2, . . . , m}}P
[
ĜW(v) ≥ v − m−1

]
,

where the last inequality uses that mĜW(v) ≥ (m − 1)Ĝ′
−i(φ

−1(v)). As a con-
sequence:

P [Ωc
1] ≤ m

∑

v>ū+λ
vm∈{1,2,...,m}

P

[
ĜW(v) − GW(v) ≥ v − GW(v) − m−1

]
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≤ m
∑

v>ū+λ
vm∈{1,2,...,m}

P

[
ĜW(v) − GW(v) > (ū + λ) − GW(ū + λ) − m−1

]

≤ m2 exp
{
− 2m

(
(ū + λ) − GW(ū + λ) − m−1

)2

+

}
, (27)

where we used successively the assumption in (i) of Proposition 8.3 and Ho-
effding’s inequality (see Hoeffding (1963)) for the last inequality. This finally
yields (22).

The point (ii) of Proposition 8.3 is similar: noticing that (26) is an equality
when ∆ ≤ 1, we obtain

Pow(SU(W)) − (1 − απ0)ū

≥ −π1P(Ωc
2) + (GW(ū − λ) − (ū − λ)) − λ(1 − απ0),

with Ω2 =
{
∀i, 1 ≤ i ≤ m, φ(û′

−i) ≥ ū − λ
}
. Next, we have

P(Ωc
2) ≤

m∑

i=1

P
[
û′
−i < φ−1(ū − λ)

]

=

m∑

i=1

P

[
Ĝ

′
−i(φ

−1(ū − λ)) < φ−1(ū − λ)
]

≤
m∑

i=1

P

[
ĜW(ū − λ) < ū − λ

]
,

where the last inequality uses that mĜW(ū− λ) ≤ (m− 1)Ĝ′
−i(φ

−1(ū−λ)) + 1

and thus φ−1(ĜW(ū − λ)) ≤ Ĝ′
−i(φ

−1(ū − λ)). As a consequence, we obtain

P(Ωc
2) ≤ mP

[
ĜW(ū − λ) < ū − λ

]

= mP

[
ĜW(ū − λ) − GW(ū − λ) < ū − λ − GW(ū − λ)

]

≤ m exp{−2m(ū − λ − GW(ū − λ))2+},

which implies (23).

8.5. Proof of Theorem 4.3

First remark that for any weight function sequence of W, the convergence of
(GW(m))m to G∞ is uniform, because all these fonctions are non-decreasing
and because G∞ is assumed to be continuous on [0, 1]. Next we prove that
I(GW(m)) → I(G∞). (This will imply directly that I+

λ (GW(m)) → I+
λ (G∞)

and I−
λ (GW(m)) → I−

λ (G∞) for λ < I(G∞).) For this, take a subsequence m′

such that I(G
W(m′)) converges and prove that its limit ℓ is equal to I(G∞).

From the uniform convergence and the continuity of G∞, ℓ satisfies G∞(ℓ) = ℓ.
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If I(G∞) = 0, the only possible fixed point of G∞ is 0 and ℓ = 0. If I(G∞) > 0,
0 and I(G∞) are the only possible fixed points of G∞ (because I−

λ (G∞) > 0
for λ < I(G∞)). Next, we have G

W(m′)(I(G∞)/2) ≥ I(G∞)/2 for large m′

(because G∞(I(G∞)/2) > I(G∞)/2 ) and thus ℓ ≥ I(G∞)/2 > 0, which in
turn implies ℓ = I(G∞).

Fix a sequence of weight vector (w(m))m belonging to W. We aim now to
prove:

lim
m

Pow(SU(W⋆,(m))) = (1 − π0α) lim
m

{I(GW⋆,(m))} (28)

lim
m

Pow(SU(w(m))) = (1 − π0α) lim
m

{I(Gw(m))} (29)

Expression (16) will then directly follow from I(GW⋆,(m)) ≥ I(Gw(m)) (as stated
in the proof of Theorem 4.2).

Let us state now (28) (the proof for (29) is similar). Fix λ > 0 with λ <
π0(1 − α). Applying Proposition 8.3, we obtain that

|Pow(SU(W⋆,(m))) − (1 − π0α)I(GW⋆,(m))|
≤ ε(m, I+

λ (GW⋆,(m))) + ε(m, I−
λ (GW⋆,(m)))1{λ < I(GW⋆,(m))} − 2λ(1 − π0α).

First, denoting G⋆,∞ = limm GW⋆,(m) , we have I+
λ (GW⋆,(m)) → I+

λ (G⋆,∞) >
0 and thus limm ε(m, I+

λ (GW⋆,(m))) = 0. Second, if I(G⋆,∞) > 0, we have
I−

λ (G⋆,∞) > 0 for λ < I(G⋆,∞) and thus limm ε(m, I−
λ (GW⋆,(m))) = 0 for

λ < I(G⋆,∞). If I(G⋆,∞) = 0, we trivially have that 1{λ < I(GW⋆,(m))} is
equal to zero for m large. As a result, we obtain for λ small enough that

lim sup
m

{∣∣∣Pow(SU(W⋆,(m))) − (1 − π0α)I(GW⋆,(m))
∣∣∣
}
≤ −2λ(1 − π0α).

This yields (28) by letting λ → 0 and by noticing that limm {I(GW⋆,(m))} exists.
Finally, we have to check that the use of W⋆,(m) in Proposition 8.3 was allowed,
i.e. that for all m and u′ > u > u⋆ := I(GW⋆,(m)), inequality u′−GW⋆,(m)(u′) >
u−GW⋆,(m)(u) holds. For this, we let w := W⋆,(m)(u′) and uw := I(Gw). Since
u⋆ ≥ uw and Gw(uw) = uw we have u′ − Gw(u′) > u − Gw(u) (Gw being
strictly concave). Therefore, for this particular weight vector w,

u′ − GW⋆,(m)(u′) = u′ − Gw(u′) > u − Gw(u) ≥ u − GW⋆,(m)(u),

where the last inequality holds because W⋆,(m) is a maximum.
Finally, to get the FDR statement (17), we use the same reasoning as above

combined with the following finite FDR approximation result:

Proposition 8.4. In the unconditional model, consider a weight function W
with its associated threshold collection ∆ and put ū = I(GW). Assume that for
all u′ > u > ū, u′ −GW(u′) > u−GW(u) and take λ > 0 with λ < 1− ū. Then
the following bounds hold:
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FDR(SU(W)) ≤ π0α + π0αm3 exp
{
− 2m

(
I+

λ (GW) − m−1
)2

+

}

+π0α1{ū > λ}
[
m2 exp

{
− 2m(I−

λ (GW))2+
}

+
2λ

ū − λ

]

+π0α1{ū ≤ λ}
[
m−1

m∑

i=1

sup
0<u≤2λ

{Wi(u)} − 1

]
. (30)

Assuming additionally ∆ ≤ 1, we have

FDR(SU(W)) ≥ π0α − π0αm3 exp
{
− 2m

(
I+

λ (GW) − m−1
)2

+

}

−π0α1{ū > λ}
[
m2 exp

{
− 2m(I−

λ (GW))2+
}

+
2λ

ū + λ

]

−π0α1{ū ≤ λ}
[
1 − m−1

m∑

i=1

inf
0<u≤2λ

{Wi(u)}
]

. (31)

To prove Proposition 8.4, we write the FDR as (using the same reasoning
and notation as in Section 8.4),

FDR(SU(W)) = π0

m∑

i=1

E

[
1{pi ≤ ∆i(|R|/m)}

|R|

∣∣∣∣Hi = 0

]

= π0

m∑

i=1

E

[
1{pi ≤ ∆i(φ(û′

−i))}
mφ(û′

−i)

∣∣∣∣Hi = 0

]

≤ π0m
−1

m∑

i=1

E

[
∆i(φ(û′

−i))

φ(û′
−i)

]

≤ π0m
−1

m∑

i=1

E

[
∆i(φ(û′

−i))

φ(û′
−i)

1{Ω1 ∩ Ω2}
]

+ π0αm(P [Ωc
1] + P [Ωc

2]). (32)

On one hand, when ū > λ, we may write

m−1
m∑

i=1

E

[
∆i(φ(û′

−i))

φ(û′
−i)

1{Ω1 ∩ Ω2}
]
≤ m−1

m∑

i=1

[
∆i(ū + λ)

ū − λ

]
= α + 2α

λ

ū − λ
.

On the other hand, when ū ≤ λ, we have Ωc
2 = ∅ and

m−1
m∑

i=1

E

[
∆i(φ(û′

−i))

φ(û′
−i)

1{Ω1}
]
≤ αm−1

m∑

i=1

sup
0<u≤2λ

{Wi(u)} .

This implies (30). The proof for (31) is similar, by noticing that (32) is an
equality when ∆ ≤ 1.
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8.6. Proof of Proposition 3.2

Let t = αu and assume (A1)–(A2)–(A3). Consider first the conditional model.
Following the constrained Lagrange multiplier method, the problem is to max-
imize in (λ, w) the function:

L(λ, w) =
∑

i∈H1

Fi(wit) − λ

( ∑

i∈H1

wi − m

)
.

Assume that (wi)i is a critical point, i.e. that for each i: ∂L
∂wi

(λ, w) = tfi(wit)−
λ = 0, so that wi = t−1f−1

i (λt−1). Then, λ is chosen such that
∑

i wi = m
i.e. λ = tΨ−1(t) for Ψ(y) = m−1

∑
j∈H1

f−1
j (y). Hence, we find that the only

possible critical point is ∀i, wi = W ⋆
i (u). To conclude, it is sufficient to prove that

(W ⋆
i (u))i is a maximum. The latter holds because for each i, fi is decreasing, so

that ∂2L
∂w2

i

(λ, w) = t2f ′
i (wit) < 0. Therefore, since αuW ⋆

i (u) = ζ−1
i (αu), where

ζi(x) = Ψ(fi(x)) = m−1
∑

j∈H1
f−1

j (fi(x)) is a differentiable increasing function
from (0, 1) to (0, π1), we easily check that W⋆ satisfies (8) and is continuous.
Next, assuming in addition (A4), we obtain for all i,

lim
u→0+

W ⋆
i (u) = lim

u→0+

ζ−1
i (αu)

αu
= lim

ε→0+

ε

ζi(ε)
= lim

y→fi(0+)

f−1
i (y)

m−1
∑

j∈H1
f−1

j (y)
,

which exists in [0, m]. Finally, the results in the unconditional model follow from
the same reasoning as above by replacing H1 by {1, . . . , m}.

8.7. Proof for the continuous Gaussian case of Section 4.3

Fix u ∈ (0, 1]. We aim to prove that

1

m

m∑

i=1

Φ

(
− µ(i/m)

2
+

c(m)(u)

µ(i/m)

)
→

∫ 1

0

Φ

(
− µ(t)

2
+

c∞(u)

µ(t)

)
dt. (33)

First, we have c(m)(u) → c∞(u), because c(m)(u) = Ψ−1
m (αu) and c∞(u) =

Ψ−1(αu) where Ψm(x) = 1
m

∑m
i=1 Φ

(
µ(i/m)/2 + x/µ(i/m)

)
and where Ψ(x) =∫ 1

0
Φ

(
µ(t)/2 +x/µ(t)

)
dt are decreasing continuous functions such that Ψm con-

verges uniformly to Ψ. Second, we have for any ǫ > 0,

1

m

m∑

i=1

∣∣∣∣Φ
(
− µ(i/m)

2
+

c(m)(u)

µ(i/m)

)
− Φ

(
− µ(i/m)

2
+

c∞(u)

µ(i/m)

)∣∣∣∣

≤ m−1|{i | µ(i/m) ≤ ǫ}| +
∣∣c(m)(u) − c∞(u)

∣∣
ǫ
√

2π
,

where we used that Φ is 1/
√

2π-Lipschitz. Since the measure m−1
∑m

i=1 δi/m

converges weakly to the Lebesgue measure Λ on [0, 1], we derive the inequality
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lim supm(m−1|{i | µ(i/m) ≤ ǫ}|) ≤ Λ(t | µ(t) ≤ ǫ). By assumption, µ is positive
on (0, 1] so that the latter converges to 0 as ǫ tends to 0. This implies (33).

Appendix

Appendix A: Practical implementation of the new procedures

Algorithm A.1. (Step-up algorithm for SU(W))

– Step 1: compute for each i the weight vector (Wi(1))i and the weighted
p-values p′i = pi/Wi(1). If all the weighted p-values are less than or equal
to α, then reject all the null hypotheses. Otherwise go to step 2.

– Step j (j ≥ 2): put r = m− j +1 and u = r/m and compute for each i the
weight vector (Wi(u))i and the weighted p-values p′i = pi/Wi(u). Order
the weighted p-values following p′(1) ≤ · · · ≤ p′(m). If p′(r) ≤ αu, then reject

the r null hypotheses corresponding to the smaller weighted p-values p′(i),

1 ≤ i ≤ r. Otherwise go to step j + 1 (if j = m stop and reject no null
hypothesis).

Algorithm A.2. (Step-down algorithm for SD(W))

– Step 1: compute for each i the weight vector (Wi(1/m))i and the weighted
p-values p′i = pi/Wi(1/m). If the smallest weighted p-values is strictly
larger than α/m, then reject no null hypothesis. Otherwise go to step 2.

– Step j (j ≥ 2): put r = j, u = r/m and compute for each i the weight vec-
tor (Wi(u))i and the weighted p-values p′i = pi/Wi(u). Order the weighted
p-values following p′(1) ≤ · · · ≤ p′(m). If p′(r) > αu, then reject the r − 1

null hypotheses corresponding to the smaller weighted p-values p′(i), 1 ≤
i ≤ r − 1. Otherwise go to step j + 1 (if j = m stop and reject all the null
hypotheses).

Appendix B: Proofs of technical lemmas

Proof of Lemma 8.1. Let us first prove the first point. Denote ∆′
j(u) = ∆j((1−

m−1)u + m−1), and φ(u) := (1 − m−1)u + m−1 with φ−1(u) = (mu − 1)/(m−
1), so that ∆j(u) = ∆′

j(φ
−1(u)). Since mĜW(u) = (m − 1)Ĝ′

−i(φ
−1(u)) +

1{pi ≤ ∆i(u)} the following equivalence holds when pi ≤ ∆i(u):

ĜW(u) ≥ u ⇐⇒ Ĝ
′
−i(φ

−1(u)) ≥ φ−1(u). (34)

First, assuming pi ≤ ∆i(û), equivalence (34) used with u = û leads to inequal-

ity Ĝ′
−i(φ

−1(û)) ≥ φ−1(û) and thus φ−1(û) ≤ û′
−i because û′

−i is defined as
a maximum. This implies pi ≤ ∆i(û) = ∆′

i(φ
−1(û)) ≤ ∆′

i(û
′
−i). Conversely,

assuming pi ≤ ∆′
i(û

′
−i) = ∆i(φ(û′

−i)), equivalence (34) used with u = φ(û′
−i)

yields ĜW(φ(û′
−i)) ≥ φ(û′

−i) and thus φ(û′
−i) ≤ û by definition of û. The first



E. Roquain and M. van de Wiel/Optimal weighting for FDR control 708

point is thus proved by additionally noticing that when both pi ≤ ∆i(û) and
pi ≤ ∆′

i(û
′
−i) we have both û′

−i ≥ φ−1(û) and φ(û′
−i) ≤ û, so that φ(û′

−i) = û.
For the second point of the lemma, remark that

mĜW(u) = (m − 1)Ĝ−i(um/(m − 1)) + 1{pi ≤ ∆i(u)}. (35)

Therefore, we always have ĜW(u) ≥ u ⇐= Ĝ−i(um/(m − 1)) ≥ um/(m− 1),
which implies, using u = (1 − m−1)û−i, that û ≥ (1 − m−1)û−i always holds.

Next, when pi > ∆i(u), we have ĜW(u) ≥ u =⇒ Ĝ−i(um/(m − 1)) ≥
um/(m−1), so that taking u = û in the relation above leads to û ≤ (1−m−1)û−i

and thus û = (1 − m−1)û−i. Conversely, if pi ≤ ∆i(û), from the first point of
the lemma we obtain û = (1 − m−1)û′

−i + m−1 and since û′
−i ≥ û−i (because

pointwise Ĝ−i ≤ Ĝ′
−i), we deduce û > (1−m−1)û−i which finishes the proof.

Proof of Lemma 8.2. For the first point, take u′ ≤ (k − 1)/(m − 1) and

apply (35) with u = (1 − m−1)u′, which gives mĜW((1 − m−1)u′) = (m −
1)Ĝ−i(u

′)+1{pi ≤ ∆i((1 − m−1)u′)}. Since (1−m−1)u′ ≤ (k−1)/m, assuming

ũ ≥ k/m and pi > ∆i((k−1)/m), we obtain pi > ∆i((1−m−1)u′) and ĜW((1−
m−1)u′) ≥ (1 − m−1)u′, which thus leads to Ĝ−i(u

′) ≥ u′. Since this holds for
any u′ ≤ (k − 1)/(m − 1), we finally have ũ−i ≥ (k − 1)/(m− 1).

To prove the second point, take u′ ≤ (k − 1)/m and use (35) with u =

u′. This gives mĜW(u′) = (m − 1)Ĝ−i(u
′m/(m − 1)) + 1{pi ≤ ∆i(u

′)}. Since
u′m/(m − 1) ≤ (k − 1)/(m − 1) and u′ ≤ (k − 1)/m, if ũ−i ≥ (k − 1)/(m − 1)

and pi ≤ ∆i((k−1)/m), we obtain ĜW(u′) ≥ u′ +m−1 ≥ u′. This holds for any

u′ ≤ (k − 1)/m and also for u′ = k/m because ĜW(k/m) ≥ ĜW((k − 1)/m) ≥
(k − 1)/m + m−1 = k/m. Finally ũ ≥ k/m.

For the third point, remark that since we trivially have ũ ≥ (1 − m−1)ũ−i

(with an argument similar than in the step-up case), it is sufficient to prove
ũ ≤ (1 − m−1)ũ−i. For this, use (35) with u′ = (1 − m−1)ũ−i + m−1, leading

to mĜW(u′) = (m − 1)Ĝ−i(u
′m/(m − 1)) + 1{pi ≤ ∆i(u

′)}. Since R−i is step-
down and since u′m/(m − 1) = ũ−i + (m − 1)−1 we have by definition of ũ−i

that Ĝ−i(u
′m/(m − 1)) > u′m/(m − 1). Therefore, assuming pi > ∆i(u

′), we

obtain that ĜW(u′) > u′, meaning that ũ < u′ because R is step-down. Hence
ũ ≤ (1 − m−1)ũ−i.

Appendix C: Some FDR bounds for SU(W) and SD(W)

C.1. Step-up case

Lemma C.1. Consider the conditional model in the situation where only two
true hypotheses are tested, that is, m = m0 = 2. Then for any weight function
W , the procedure SU(W) has a FDR equal to α + α2(1 − W1(1))(W1(1) −
W1(1/2)).
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In particular, in the conditional model with m = m0 = 2, the FDR in the
above lemma has a maximum equal to α + α2/4, attained e.g. for the weight
function W1(1/2) = 0; W2(1/2) = 2; W1(1) = 0.5; W2(1) = 1.5. Additionally,
in the unconditional model, the FDR of the above procedure is larger than
π2

0(α + α2/4) and can thus be larger than α when π0 is (very) close to 1.

C.2. Step-down case

The next result states that SD(W) control non-asymptotically the FDR without
correction in the case m = 2 and when m0 = m in the conditional model. This
is quite intriguing and we may think that SD(W) controls the FDR for any m
and m0.

Lemma C.2. For any weight function W, the procedure SD(W) controls the
FDR at level α in either of the two following cases:

(i) in the unconditional model when all the hypotheses are true, that is m0 =
m,

(ii) in both conditional and unconditional model when m = 2.

To prove (i), we easily check that, when all the hypotheses are true, the

FDR of SD(W) is 1 − P
[
ĜW (1/m) = 0

]
and is thus equal to the FDR of

LSD(W(1/m)), which is equal to α from results on weighted linear step down
procedures (see e.g. Blanchard and Roquain (2008)). To prove point (ii), we
just have to check the case m0 = 1 from point (i). This trivially holds from (20)
(which also holds in the step-down case), because all the weights are smaller
than m = 2.
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