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Abstract: The paper focuses on general properties of parametric mini-
mum contrast estimators. The quality of estimation is measured in terms
of the rate function related to the contrast, thus allowing to derive exponen-
tial risk bounds invariant with respect to the detailedprobabilistic structure
of the model. This approach works well for small or moderate samples and
covers the case of a misspecified parametric model. Another important fea-
ture of the presented bounds is that they may be used in the case when the
parametric set is not compact. These bounds do not rely on the entropy or
covering numbers and can be easily computed. The most important statis-
tical fact resulting from the exponential bonds is a concentration inequality
which claims that minimum contrast estimators concentrate with a large
probability on the level set of the rate function. In typical situations, every
such set is a root-n neighborhood of the parameter of interest. We also
show that the obtained bounds can help for bounding the estimation risk
and constructing confidence sets for the underlying parameters. Our gen-
eral results are illustrated for the case of an i.i.d. sample. We also consider
several popular examples including least absolute deviation estimation and
the problem of estimating the location of a change point. What we obtain in
these examples slightly differs from the usual asymptotic results presented
in statistical literature. This difference is due to the unboundness of the
parameter set and a possible model misspecification.
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1. Introduction

One of the most fundamental ideas in statistics is to describe an unknown dis-
tribution P of the observed data Y ∈ Rn with the help of a simple parametric
family (Pθ , θ ∈ Θ) , where Θ is a subset in a finite dimensional space, say, in
Rp . In this situation, the statistical model is characterized by the value of the
parameter θ ∈ Θ and the statistical inference about P is reduced to recovering
θ . The standard likelihood approach suggests to estimate θ by maximizing
the corresponding likelihood function. The maximum likelihood estimator can
be generalized in several ways resulting in the so-called minimum contrast and
M-estimators; see Huber (1967) and Huber (1981). The main idea behind this
generalization is to estimate the underlying parameter θ by minimizing over
Θ a contrast function −L(Y , θ) :

θ̃ = argmin
θ∈Θ

{−L(Y , θ)} = argmax
θ∈Θ

L(Y , θ). (1.1)

The negative sign in this notation comes from the main example which we have
in mind when L(Y , θ) is the log-likelihood or quasi log-likelihood. A natural
condition on the contrast function is that its expectation under the true measure
Pθ0

is minimized at the true parameter θ0 , i.e.

θ0 = argmax
θ∈Θ

Eθ0
L(Y , θ). (1.2)

If L(Y , θ) is log-likelihood ratio, that is,

L(Y , θ) = log
dPθ

dPθ0

(Y )
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then the value −Eθ0
L(Y , θ0) coincides with the Kullback-Leibler divergence

K(Pθ0
, Pθ) between Pθ0

and Pθ . It is well known that K(Pθ0
, Pθ) is always

non-negative and K(Pθ0
, Pθ) = 0 if and only if Pθ0

= Pθ .
If the distribution P does not belong to the parametric family (Pθ , θ ∈ Θ) ,

then the target of estimation can be naturally defined as the point of minimum
of −E L(Y , θ) . Note that the point of minimum can be non-unique, then any
minimizing point can be taken. We will see that this point θ0 indeed minimizes
a special distance between the underlying measure P and the measures Pθ from
the given parametric family. This point θ0 is often called “the best parametric
fit” or “projection” of the underlying measure P on the given parametric family
and it is the natural target of estimation.

The classical parametric statistical theory focuses mostly on asymptotic prop-
erties of the difference between θ̃ and the target value θ0 as the sample size
n tends to infinity. There is a vast literature on this issue. We only mention
the book Ibragimov and Khas’minskij (1981), which provides a comprehensive
study of asymptotic properties of maximum likelihood and Bayesian estima-
tors. Typical results claim that the maximum likelihood and Bayes estimators
are asymptotically optimal under certain regularity conditions. Large deviation
results about minimum contrast estimators can be found in Jensen and Wood
(1998) and Sieders and Dzhaparidze (1987), while subtle small sample size prop-
erties of these estimators are presented in Field (1982) and Field and Ronchetti
(1990).

Another stream of the literature considers minimum contrast estimators in a
general i.i.d. situation, when the parameter set Θ is a subset of some functional
space. We mention the papers Van de Geer (1993), Birgé and Massart (1993),
Birgé and Massart (1998), Birgé (2006) and references therein. The studies
mostly focused on the concentration properties of the maximum maxθ L(Y , θ)

rather on the properties of the estimator θ̃ which is the point of maximum
of L(Y , θ) . The established results are based on deep probabilistic facts from
the empirical process theory; see e.g. van der Vaart and Wellner (1996). In this
paper we also focus on the properties of the maximum of L(Y , θ) over θ ∈ Θ .
However, we do not assume any particular structure of the contrast. Our basic
result claims that if for every θ ∈ Θ the differences L(Y , θ) − L(Y , θ0) has
exponential moments, then under rather general and mild conditions, the max-
imum maxθ{L(Y , θ) − L(Y , θ0)} has similar exponential moments. In what
follows, to keep notation shorter, we omit the argument Y in the contrast
function L(Y , θ) writing L(θ) instead of L(Y , θ) . However, one has to keep
in mind that L(θ) is a random field that depends on the observed data Y . We
also denote

L(θ, θ0) = L(θ) − L(θ0).

To explain the main idea in this paper, introduce the function

M(µ, θ, θ0)
def
= − log E exp

{
µL(θ, θ0)

}
.
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Let µ∗ be a maximizer of this function w.r.t. µ , i.e.

µ∗(θ)
def
= argmax

µ
M(µ, θ, θ0). (1.3)

The rate function is defined via the Legendre transform of L(θ, θ0) :

M∗(θ, θ0)
def
= max

µ
M(µ, θ, θ0) = − logE exp

{
µ∗(θ)L(θ, θ0)

}
. (1.4)

Similar notions have already appeared in Chernoff (1952) and Bahadur (1960)
for studying the models with i.i.d. observations.

Obviously M∗(θ, θ0) ≥ M(0, θ, θ0) = 0 . The following identity follows im-
mediately from the above definition:

E exp
{

µ∗(θ)L(θ, θ0) + M∗(θ, θ0)
}

= 1, θ ∈ Θ.

We aim to extend this pointwise identity to the supremum over θ ∈ Θ , which
particularly enables us to replace θ with the estimator θ̃ . Unfortunately, in
some situations, E exp sup

θ

{
µ∗(θ)L(θ, θ0) + M∗(θ, θ0)

}
= ∞ . We illustrate

this fact by some examples for a simple Gaussian linear model.

1.1. Examples for a linear Gaussian model

To illustrate how the quantities µ∗(θ) and M∗(θ, θ0) can be computed let us
consider the simplest case where L(θ, θ0) is a Gaussian field.

Example 1.1. [Gaussian contrast] Let for each pair θ, θ′ ∈ Θ , the difference
L(θ, θ′) = L(θ)−L(θ′) be a Gaussian random variable. In this case we call L(θ)
a Gaussian contrast. With M(θ, θ′) = −EL(θ, θ′) , D2(θ, θ′) = VarL(θ, θ′) ,
the random variable L(θ, θ′) is normal N

(
−M(θ, θ′), D2(θ, θ′)

)
. Moreover,

M(µ, θ, θ0) = − log E exp
{
µL(θ, θ0)

}
= µM(θ, θ0) − µ2D2(θ, θ0)/2

and the values µ∗(θ), M∗(θ, θ0) defined in (1.3)–(1.4) can be easily computed:

µ∗(θ) = argmax
µ≥0

{
µM(θ, θ0) − µ2D2(θ, θ0)/2

}
=

M(θ, θ0)

D2(θ, θ0)
,

M∗(θ, θ0) = sup
µ≥0

M(µ, θ, θ0) =
M2(θ, θ0)

2D2(θ, θ0)
.

These formulas can be further simplified if L(θ) is a Gaussian log-likelihood.

Example 1.2. [Gaussian model] Let

L(θ, θ0) = log
dPθ

dPθ0

(Y )

be a Gaussian random variable for any θ ∈ Θ , and in addition P = Pθ0
for some

θ0 ∈ Θ . As in previous example, let M(θ, θ0) and D(θ, θ0) denote mean and
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variance of L(θ, θ0) . The likelihood property implies Eθ0
exp{L(θ, θ0)} = 1

yielding M(θ, θ0) = D2(θ, θ0)/2 and hence, µ∗(θ) ≡ 1/2 and M∗(θ, θ0) =
M(θ, θ0)/4 .

Finally we consider a classical linear Gaussian regression.

Example 1.3. [Linear Gaussian model] Consider the linear model Y = Xθ0 +
σε , where Y ∈ Rn, θ ∈ Rp , X is a known n × p matrix, and ε is a white
Gaussian noise in Rn , i.e. εi are i.i.d. standard normal. The variance σ2 is
assumed to be known while θ0 is the unknown target. Then the maximum
likelihood approach leads to the least squares contrast given by

L(θ) = −‖Y − Xθ‖2
n/(2σ2),

where ‖ · ‖n denotes the standard Euclidian norm in Rn . Obviously

M(θ, θ0) = ‖X(θ − θ0)‖2
n/(2σ2), D(θ, θ0) = ‖X(θ − θ0)‖2

n/σ2,

and thus (see Example 1.2)

M∗(θ, θ0) = ‖X(θ − θ0)‖2
n/(8σ2).

The log-likelihood ratio can be written as

L(θ, θ0) = 〈X(θ − θ0), ε 〉n/σ − ‖X(θ − θ0)‖2
n/(2σ2).

Let k denote the rank of the matrix X
⊤

X . Obviously k ≤ p and the vectors
X(θ − θ0) span a linear subspace X in Rn of dimension k . Denote by Π the
projector in Rn on X . Then

sup
θ∈Rp

{
µ∗(θ)L(θ, θ0) + M∗(θ, θ0)

}

= sup
θ∈Rp

{ 〈X(θ − θ0), ε 〉n
2σ

− ‖X(θ − θ0)‖2
n

8σ2

}

= sup
u∈Rn

{〈Πu, ε 〉n
2σ

− ‖Πu‖2
n

8σ2

}

= sup
u∈Rn

{〈Πu, Πε 〉n
2σ

− ‖Πu‖2
n

8σ2

}
= ‖Πε‖2

n/2,

where the maximum is attained at any u ∈ Rn such that Πu = 2σΠε . It is
well known that ‖Πε‖2

n follows χ2 - distribution with k degree of freedom and

Eθ0
exp sup

θ

{
µ∗(θ)L(θ, θ0) + M∗(θ, θ0)

}
= E exp

{
‖Πε‖2

n/2
}

= ∞.

However, for any positive s < 1 , it holds by the same argument that

sup
θ

{
µ∗(θ)L(θ, θ0) + sM∗(θ, θ0)

}

= sup
u∈Rn

{
〈Πu, ε 〉n/(2σ) − (2 − s)‖Πu‖2

n/(8σ2)
}

= ‖Πε‖2
n/(4 − 2s),
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and thus

Eθ0
exp sup

θ

{
µ∗(θ)L(θ, θ0) + sM∗(θ, θ0)

}
= E exp

[‖Πε‖2
n

4 − 2s

]

=
(2 − s

1 − s

)k/2

.

An important feature of this inequality is that it only involves the effective
dimension k of the parameter space and does not depend on the design X ,
noise level σ2 , sample size n , etc. Later we show that such a behaviour of the
log-likelihood is not restricted to Gaussian linear models and it is typical for a
quite general statistical set-up.

1.2. Main result

The examples from Section 1.1 suggest to consider in the general situation the
maximum of the random field µ∗(θ)L(θ, θ0)+sM∗(θ, θ0) for s < 1 . The main
result of the paper shows that under some technical conditions this maximum
is indeed stochastically bounded in a rather strong sense. Namely, for some
ρ ∈ (0, 1)

E sup
θ∈Θ

exp
{

ρ
[
µ∗(θ)L(θ, θ0) + sM∗(θ, θ0)

]}
≤ C(ρ, s), (1.5)

where C(ρ, s) is a constant that can be easily controlled in typical examples.

This result particularly yields that µ∗(θ̃)L(θ̃, θ0) and M∗(θ̃, θ0) have bounded

exponential moments. Another corollary of this fact is that θ̃ concentrates on
the sets A(z, θ0) = {θ : M∗(θ, θ0) ≤ z} for sufficiently large z in the sense that

the probability P
(
θ̃ 6∈ A(z, θ0)

)
is exponentially small in z . Usually every such

concentration set is a root-n vicinity of the point θ0 . See Section 2.3 for precise
formulations. Ibragimov and Khas’minskij (1981) stated a version of (1.5) for

the i.i.d. case and used it to prove consistency of θ̃ .
We briefly comment on some useful features of the basic inequality (1.5). First

of all this bound is non-asymptotic and may be used even if the sample size is
small or moderate. It is also applicable in the situation when the parametric
modeling assumption is misspecified.

Another interesting question is about the accuracy of estimation when the pa-
rameter set Θ is non-compact. The majority of results in the classical paramet-
ric theory has been established for compact parametric sets since this assump-
tion simplifies considerably the conditions and the technical tools. There exist
very few results for the case of non-compact sets. See Ibragimov and Khas’minskij
(1981) for an example. Our conditions are quite mild and particularly, the pa-
rameter set may be non-compact. Moreover, we present some examples in Sec-
tion 4 illustrating that the quality of the minimum contrast estimation can
heavily depend on topological properties of Θ and on the behavior of the rate
function M∗(θ, θ0) for large θ . The corresponding accuracy of estimation can
be different from the classical root- n behavior.
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The paper is organized as follows. The main result is presented in Section 2.
Section 2.3 presents some useful corollaries of (1.5) describing concentration

properties of θ̃ , some risk bounds, confidence sets for the target parameter θ0

based on the L(θ̃, θ) . Section 2.4 specifies the approach to the important case
of a smooth contrast. In this situation the main conditions ensuring (1.5) are
substantially simplified. Section 3 illustrates how our approach applies to the
classical i.i.d. case while Section 4 presents some applications of the general
exponential bound to three particular problems: estimation of the median, of
the scale parameter of an exponential model and of the change point location.
Although these examples have already been studied, the proposed approach
reveals some new features of the classical least squares and least absolute devi-
ation estimators in the cases when the parametric assumption is misspecified or
the parameter set is not compact. In the case of median estimation the result
applies even if the observations do not have the first moment. The last example
in this section considers the prominent change point problem. We particularly
show that in the case when the size of the jump is completely unknown, the
accuracy of estimation of its location differs from the well known parametric
rate 1/n and it depends on the distance of the change point to the edge of the
observation interval and involves an extra iterated-log factor.

2. Risk bound for the minimum contrast

This section presents a general exponential bound on the minimum contrast
value in a rather general set-up. Let −L(θ), θ ∈ Θ, be a random contrast func-
tion of a finite dimensional parameter θ ∈ Θ ⊂ Rp given on some probability
space (Ω, F, P) . We also assume that EL(θ) exists for all θ ∈ Θ and L(θ) is
a separable random field (i. e., that there exists a countable set Θ′ such that
L(θ), θ ∈ Θ′ determine the whole random function L(θ) ). The minimum con-
trast estimator is defined as a minimizer of −L(θ) and the target of estimation
is the value θ0 which minimizes the expectation −EL(θ) . It is clear that for
any θ

◦ ∈ Θ

θ̃ = argmax
θ∈Θ

L(θ, θ◦) = argmax
θ∈Θ

L(θ) − L(θ◦) and θ0 = argmax
θ∈Θ

EL(θ, θ◦).

Our study focuses on the value of maximum in θ of the random field L(θ, θ0) :

L(θ̃, θ0) = sup
θ∈Θ

L(θ, θ0) = sup
θ∈Θ

{
L(θ) − L(θ0)

}
.

By definition, L(θ̃, θ0) is a non-negative random variable.

2.1. Preliminaries. The case of a discrete parameter set

The main goal of this paper is to obtain exponential bounds for the supremum
in θ of the random field L(θ, θ0) , without specifying a particular structure



Yu. Golubev and V. Spokoiny/Exponential bounds for minimum contrast estimators 719

of the model or contrast function L(θ) . Instead we impose some conditions of
finite exponential moments for the increments L(θ, θ′) = L(θ) − L(θ′) . With
M(µ, θ, θ0) = − log E exp

{
µL(θ, θ0)

}
, the global exponential moment condition

reads as follows:

(EG) For any θ ∈ Θ the set Υ (θ, θ0) =
{
µ ∈ (0,∞) : M(µ, θ, θ0) is finite

}

is non-empty.

Note that if Υ (θ, θ0) is non-empty it is automatically an interval on R+

because M(µ, θ, θ0) < ∞ implies M(µ′, θ, θ0) < ∞ for all µ′ < µ . More-
over, in the basic example of the log-likelihood contrast, it holds M(1, θ, θ0) =
− log Eθ0

(
dPθ/dPθ0

)
= 0 for all θ and the condition (EG) is fulfilled automat-

ically with (0, 1] ⊂ Υ (θ, θ0) . In the general case, L(θ) can be viewed as a quasi
log-likelihood and this condition requires that the considered contrast inher-
its some properties of the log-likelihood, namely, boundness of the exponential
moments. We present a simple example when (EG) is not fulfilled.

Example 2.1. Let Y be an i.i.d. sample with Yi = θ + ξi where ξi are i.i.d.
Cauchy random variables and θ is the unknown shift parameter to be estimated.
Consider the usual least squares contrast L(Y , θ) =

∑n
i=1(Yi−θ)2 . Then (EG)

is not fulfilled.

Under the condition (EG) the functions µ∗(θ) and M∗(θ, θ0) from (1.3)–
(1.4) are non-trivial and correctly defined. Usually these functions can be easily
evaluated in a small neighborhood of the target parameter θ0 . However, it might
be difficult to compute them for all θ ∈ Θ . Therefore, in the sequel we proceed
with another function µ(θ) , which can be viewed as a rough approximation
of µ∗(θ) . Section 4 provides some examples. So, let µ(θ) be a given function
taking values in Υ (θ, θ0) . Define

M(θ, θ0)
def
= M(µ(θ), θ, θ0) = − log E exp

{
µ(θ)L(θ, θ0)

}
.

The most important requirement on µ(θ) is that M(θ, θ0) is positive and
increases as θ moves away from θ0 . By definition, for any θ ∈ Θ ,

E exp
{
µ(θ)L(θ, θ0) + M(θ, θ0)

}
= 1. (2.1)

This means that the random function µ(θ)L(θ, θ0) + M(θ, θ0) has bounded
exponential moments for every θ . We aim to derive a similar fact for the supre-
mum of this function in θ ∈ Θ . More precisely, we are interested in bounding
the following value:

Q(ρ, s)
def
= E sup

θ∈Θ
exp
{
ρ
[
µ(θ)L(θ, θ0) + sM(θ, θ0)

]}
, (2.2)

where ρ, s ∈ [0, 1] .
We begin with a rough upper bound for a special case of a discrete parameter

set.
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Proposition 2.1. Assume (EG) and let Θ be a discrete set. Then for any
s < 1

Q(1, s) = E sup
θ∈Θ

exp
{
µ(θ)L(θ, θ0) + sM(θ, θ0)

}

≤
∑

θ∈Θ

exp
{
−(1 − s)M(θ, θ0)

}
. (2.3)

Proof. As E exp
{
µ(θ)L(θ, θ0) + sM(θ, θ0)

}
= exp

{
−(1 − s)M(θ, θ0)

}
, it ob-

viously holds

Q(1, s) ≤
∑

θ∈Θ

E exp
{
µ(θ)L(θ, θ0) + sM(θ, θ0)

}

=
∑

θ∈Θ

exp
{
−(1 − s)M(θ, θ0)

}
.

Usually, the function M(θ, θ0) is quite large for all θ outside of a small
vicinity of θ0 . This helps to bound the sum in the right hand-side of (2.3) by
a fixed constant.

Although Proposition 2.1 is a rather simple corollary of (2.1), the bound (2.3)
yields a number of useful statistical corollaries. Some of them are presented in
Section 2.3. However, even in discrete case, this bound may be too rough (see
the example in Section 4.3). It is also clear that (2.3) is useless in the continuous
case. The next section demonstrates how the bound (2.3) can be extended to
the case of an arbitrary parameter set.

2.2. The general exponential bound

Here we aim to extend the exponential bound (2.3) from the discrete case to the
case of an arbitrary finite dimensional parameter set. We apply the standard
approach which evaluates the supremum over the whole parameter set Θ via a
weighted sum of local maxima.

Define for any θ, θ′ ∈ Θ

ζ(θ)
def
= µ(θ)

{
L(θ, θ0) − EL(θ, θ0)

}
, ζ(θ, θ′)

def
= ζ(θ) − ζ(θ′).

Note that the dependence of ζ(θ, θ′) on θ0 disappears if µ(θ) = µ(θ′) .
Usually the local properties of the centered contrast difference ζ(θ, θ′) are

controlled by the variance D2(θ, θ′) = Var ζ(θ, θ′) , which defines a semi-metric
on Θ see, e.g. van der Vaart and Wellner (1996). However, in some cases, it
is more convenient to deal with a slightly different metric which we denote
by S(θ, θ′) . This metric usually bounds the standard deviation D(θ, θ′) from
above. Sections 2.4 and 3 present some typical examples of constructing such a
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metric. Below in this section we assume that the metric S(·, ·) is given. Define
for any point θ

◦ ∈ Θ and a radius ǫ > 0 the ball

B(ǫ, θ◦) =
{
θ : S(θ, θ◦) ≤ ǫ

}
.

To control the local behavior of the process L(θ) within any such ball B(ǫ, θ◦) ,
we impose the following local exponential condition:

(EL) There exist ǫ > 0 , λ > 0 , and ν0 > 0 such that for any θ
◦ ∈ Θ and

λ ∈ (0, λ]

sup
θ,θ′∈B(ǫ,θ◦)

logE exp
{
2λξ(θ, θ′)

}
≤ 2ν2

0λ
2,

where

ξ(θ, θ′)
def
=

ζ(θ, θ′)

S(θ, θ′)
.

In fact, this condition is equivalent to the assumption that all random increments
ξ(θ, θ′) have a uniformly bounded exponential moment for some λ > 0 (see
Lemma 5.8 in the Appendix).

For a fixed θ
◦ ∈ Θ and ǫ′ ≤ ǫ , by N(ǫ′, ǫ, θ◦) we denote the local covering

number defined as the minimal number of balls B(ǫ′, ·) required to cover the
ball B(ǫ, θ◦) . With this covering number we associate the local entropy

Q(ǫ, θ◦)
def
=

∞∑

k=1

2−k logN(2−kǫ, ǫ, θ◦).

We begin with a local result which bounds the maximum of the process
L(θ, θ0) over a local ball B(ǫ, θ◦) .

Theorem 2.2. Assume (EG) and (EL) with some ǫ > 0 , ν0 ≥ 0 , and
λ > 0 . Then for any θ

◦ ∈ Θ and ρ with 3ǫρ/[2(1− ρ)] ≤ λ

log E sup
θ∈B(ǫ,θ◦)

exp
{

ρ
[
µ(θ)L(θ, θ0) + M(θ, θ0)

]}

≤ 9ν2
0ǫ

2ρ2

2(1 − ρ)
+

2(1− ρ)

3
Q(ǫ, θ◦).

The next theorem provides a global bound generalizing the upper bound from
Proposition 2.1.

Theorem 2.3. Assume (EG) and (EL) for some λ, ν0, ǫ , and let π(·) be a
σ -finite measure on Θ such that

sup
θ∈B(ǫ,θ◦)

π
(
B(ǫ, θ)

)

π
(
B(ǫ, θ◦)

) ≤ ν1 (2.4)
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for some ν1 ∈ [1,∞) . Let for some s < 1 and ρ with 3ǫρ/[2(1 − ρ)] ≤ λ the
function Mǫ(θ

◦, θ0) = infθ∈B(ǫ,θ◦) M(θ, θ0) fulfill

Hǫ(ρ, s)
def
= log

(∫

Θ

1

π
(
B(ǫ, θ)

) exp
{
−ρ(1 − s)Mǫ(θ, θ0)

}
π(dθ)

)
< ∞. (2.5)

Let finally Q(ǫ, θ◦) ≤ Q(ǫ) for all θ
◦ ∈ Θ . Then Q(ρ, s) from (2.2) satisfies

log[Q(ρ, s)] ≤ 9ν2
0ǫ

2ρ2

2(1− ρ)
+

2(1 − ρ)

3
Q(ǫ) + log(ν1) + Hǫ(ρ, s). (2.6)

As in Proposition 2.1, a proper growth of the function M(θ, θ0) ensures that
Hǫ(ρ, s) in (2.6) is bounded by a fixed constant.

Remark 2.1. The measure π(·) shown in condition (2.4) is usually an ap-
poximation of the uniform distribution on the parameter set Θ . The presented
condition means that the π -measure of the ball B(ǫ, θ) is a continuous function
of θ .

Remark 2.2. The condition (2.5) is easy to check in the most of cases, par-
ticularly, it automatically fulfilled for a compact set Θ . However, the quantity
Hǫ(ρ, s) enters in the risk bound, and hence, it matters as well. We show below
in Section 2.4 that under standard regularity conditions this value is bounded
by a fixed constant.

2.3. Some corollaries

This section demonstrates how Proposition 2.1 and Theorems 2.2, 2.3 can be
used in the statistical analysis of the minimum contrast estimator θ̃ . We show
that probabilistic properties of this estimator may be easily derived from the
following inequality: for prescribed ρ, s < 1 ,

E exp
{

ρ
[
µ(θ̃)L(θ̃, θ0) + sM(θ̃, θ0)

]}
≤ Q(ρ, s), (2.7)

that obviously follows from Theorem 2.3 and the definition (2.2) of Q(ρ, s) .

A risk bound for the “natural” loss A first corollary of Proposition 2.1
presents exponential bounds separately for the minimum contrast L(θ̃, θ0) and

for the “natural” loss M(θ̃, θ0) .

Corollary 2.4. For any ρ, s < 1

E exp
{

ρµ(θ̃)L(θ̃, θ0)
}

≤ Q(ρ, 0), (2.8)

E exp
{

ρsM(θ̃, θ0)
}

≤ Q(ρ, s). (2.9)
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Substituting s = 0 in (2.7) yields the first bound. To prove the second one,

notice that L(θ̃, θ0) ≥ 0 . Therefore the elementary inequality 1{x ≥ 0} ≤
exp(µx) for any µ > 0 yields (see also (2.7))

E exp
{
ρsM(θ̃, θ0)

}
= E exp

{
ρsM(θ̃, θ0)

}
1
{
L(θ̃, θ0) ≥ 0

}

≤ E exp
{
ρsM(θ̃, θ0) + ρµ(θ̃)L(θ̃, θ0)

}
≤ Q(ρ, s).

The exponential bound (2.9) implies a similar risk bound for a polynomial

loss
∣∣M(θ̃, θ0)

∣∣r ; see Lemma 5.7 for a precise result.

Concentration properties of the estimator θ̃ The assertion (2.7) can be

used for establishing the concentration property of the estimator θ̃ . Consider
the sets

A(r, θ0)
def
= {θ : M(θ, θ0) ≤ r}

for some r > 0 . The next result shows that the estimator θ̃ does not be-
long to the set A(r, θ0) only with an exponentially small probability of order
exp(−ρsr) .

Corollary 2.5. For any ρ, s < 1 , it holds

P
(
θ̃ 6∈ A(r, θ0)

)
≤ Q(ρ, s) exp(−ρsr).

Proof. The inequalities L(θ̃, θ0) ≥ 0 and M(θ̃, θ0) > r for θ̃ 6∈ A(r, θ0) imply

Eeρsr1
(
θ̃ 6∈ A(r, θ0)

)
≤ E exp

{
ρ
[
µ(θ̃)L(θ̃, θ0

)
+ sM(θ̃, θ0)

]}
≤ Q(ρ, s)

and the assertion follows.

In typical situations, M(θ, θ0) is nearly proportional to n‖θ − θ0‖2 in the

vicinity of θ0 that yields root- n consistency of θ̃ . See the Section 3 for appli-
cations related to the i.i.d. case.

Confidence sets based on L(θ̃, θ) Next we discuss how the exponential
bound (2.7) can be used for constructing the confidence sets for the target

θ0 based on the optimized contrast L(θ̃, θ) . The inequality (2.8) claims that

L(θ̃, θ0) is stochastically bounded. This justifies the following construction of
confidence sets:

E(z) =
{
θ ∈ Θ : L(θ̃, θ) ≤ z

}
.

To evaluate the covering probability, consider first the case when µ(θ) ≥ µ∗ > 0
uniformly in θ ∈ Θ . The next result claims that E(z) does not cover the true
value θ0 with a probability which decreases exponentially with z .
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Corollary 2.6. Assume that µ(θ) ≥ µ∗ > 0 . Then for any z > 0 and any
ρ < 1

P
(
θ0 /∈ E(z)

)
≤ Q(ρ, 0) exp

{
−ρµ∗z

}
.

Proof. The bound (2.8) implies

P
(
θ0 /∈ E(z)

)
= P

(
L(θ̃, θ0) > z

)

≤ E exp
{
−ρµ(θ̃)z

}
exp
{
ρµ(θ̃)L(θ̃, θ0)

}

≤ exp
{
−ρµ∗z

}
E exp

{
ρµ(θ̃)L(θ̃, θ0)

}

≤ Q(ρ, 0) exp
{
−ρµ∗z

}

as required.

In the case when the function µ(θ) cannot be uniformly bounded from be-
low by a positive constant, we assume that such a bound exists for every set
A(r, θ0) . Denote

µ∗(r)
def
= inf

θ∈A(r,θ0)
µ(θ).

Then

P
(
θ0 /∈ E(z)

)
≤ P

(
θ0 /∈ E(z), θ̃ ∈ A(r, θ0)

)
+ P

(
θ̃ /∈ A(r, θ0)

)

and combining Corollaries 2.5–2.6 yields

Corollary 2.7. For any z > 0 and any ρ, s < 1 and any r > 0

P
(
θ0 /∈ E(z)

)
≤ Q(ρ, 0) exp

{
−ρµ∗(r)z

}
+ Q(ρ, s) exp

{
−ρsr

}
.

A reasonable choice of r in this bound is given by the balance relation
µ∗(r)z = sr . With this choice the bound of Corollary 2.6 may by replaced
by

P
(
θ0 /∈ E(z)

)
≤ 2Q(ρ, s) exp

{
−ρµ∗(r)z

}
.

2.4. Exponential bounds for smooth contrasts

This section deals with the case when the contrast L(θ) is a smooth function
of θ . In this situation, the local condition (EL) is easy to verify. Moreover, the
local balls B(ǫ, θ) nearly coincide with usual Euclidean ellipsoids and the local
entropy can be easily bounded by an absolute constant only depending on the
dimensionality p of the parameter space Θ .

Suppose Θ is a convex set in Rp and the function L(θ) along with the
scaling factor µ(θ) are differentiable w.r.t. θ . Below, the symbol ∇ stands for
the gradient w.r.t. θ .
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Define

V (θ)
def
= E∇ζ(θ)

[
∇ζ(θ)

]⊤
.

This matrix describes the local fluctuations of the process ζ(θ) and can be used
for constructing the metric S(θ, θ′) from (ED) . Note that V (θ0) coincides
with the classical Fisher information matrix if L(θ) is the log-likelihood. To
simplify the presentation, here and in what follows we assume that every matrix
V (θ) is non-degenerated. In general, one can regularize V (θ) by adding δIp

for some δ > 0 .
Also define

H(λ, γ, θ)
def
= log E exp

{
2λ

γ⊤∇ζ(θ)√
γ⊤V (θ)γ

}
.

for every unit vector γ ∈ Rp . It is easy to see that H(0, γ, θ) = 0 , ∂H(0, γ, θ)/∂λ =
0 , and

∂2H(λ, γ, θ)

∂2λ

∣∣∣∣
λ=0

=
4γ⊤E∇ζ(θ)

[
∇ζ(θ)

]⊤
γ

γ⊤V (θ)γ
= 4.

Therefore, for small λ , it holds H(λ, γ, θ) ≈ 2λ2 . Below we assume that such
a property is fulfilled uniformly in θ ∈ Θ and in γ over the unit sphere Sp in
Rp .

(ED) There exists λ > 0 such that for some ν0 ≥ 1 uniformly in θ ∈ Θ

sup
|λ|≤λ

sup
γ∈Sp

λ−2H(λ, γ, θ) ≤ 2ν2
0 . (2.10)

Now we define the metric S(θ, θ′) by

S2(θ, θ′)
def
= sup

t∈[0,1]

(θ − θ
′)⊤V

[
(1 − t)θ′ + tθ

]
(θ − θ

′). (2.11)

Define also for every θ
◦ ∈ Θ and ǫ > 0 the ellipsoid B′(ǫ, θ◦) by

B
′(ǫ, θ◦) =

{
θ : (θ − θ

◦)⊤V (θ◦) (θ − θ
◦) ≤ ǫ2

}
.

Obviously B(ǫ, θ◦) ⊆ B′(ǫ, θ◦) .
In what follows, we assume that the radius ǫ can be chosen in such a way

that the functions V (θ) and M(θ, θ0) have bounded fluctuations within the
ball B′(ǫ, θ◦) for every θ

◦ ∈ Θ . More precisely, for a given function f(·) define
its magnitude over B′(ǫ, θ◦) by

Aǫf(θ◦)
def
= sup

θ,θ′∈B′(ǫ,θ◦)

f(θ)

f(θ′)
.

Similarly, the magnitude of the matrix V (θ) over B′(ǫ, θ◦) is computed as
follows

AǫV (θ◦)
def
= sup

θ,θ′∈B′(ǫ,θ◦)

sup
γ∈Sp

γ⊤V (θ)γ

γ⊤V (θ′)γ
.
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Notice that under the condition AǫV (·) ≤ ν1 , the topology induced by the
metric S(·, ·) is (locally) equivalent to the Euclidean topology and the set
B(ǫ, θ◦) can be well approximated by the ellipsoid B′(ǫ, θ◦) and computing
the local entropy Q(ǫ, ·) can be reduced to the Euclidean case; see Lemma 5.4
for more detail.

Now we are ready to state an exponential bound for the contrast process in
the smooth case.

Theorem 2.8. Assume that (EG) and (ED) hold true with some ν0 and
λ > 0 . Suppose that there is a constant ǫ > 0 and ρ < 1 with 3ǫρ/[2(1−ρ)] ≤ λ
and for a fixed ν1 ≥ 1 and each θ ∈ Θ , it holds

AǫV (θ) ≤ ν1. (2.12)

Let for some ρ, s < 1 the function Mǫ(θ
◦, θ0) = infθ∈B(ǫ,θ◦) M(θ, θ0) fulfill

Hǫ(ρ, s)
def
= log

[
ω−1

p ǫ−p

∫

Θ

√
det V (θ) exp

{
−ρ(1 − s)Mǫ(θ, θ0)

}
dθ

]
< ∞,

where ωp is the Lebesgue measure of the unit ball in Rp . Then it holds

Q(ρ, s) ≤ 2(1 − ρ)

3
Qp +

9ν2
0ǫ

2ρ2

2(1 − ρ)
+ 2p log(ν1) + Hǫ(ρ, s).

Remark 2.3. The conditions of this theorem are very mild. (EG) only requires
that L(θ, θ0) has exponential moments. (ED) requires a similar condition
for the centered and normalized gradient ∇L(θ) . The inequalities (2.12) are
equivalent to uniform continuity of the function V (θ) .

Remark 2.4. The presented exponential bound requires that the value Hǫ(ρ, s)
is finite. Fortunately it can be easily checked in typical situations. A typical
example is given in Section 3 which deals with the i.i.d. case.

A risk bound for θ̃ − θ0 Our main result controls the risk of the minimum
contrast estimator in terms of the rate function M(θ, θ0) . In the case of the
smooth contrast, this result may be used to bound the classical estimation loss
θ̃−θ0 . The idea is to bound the rate function M(θ, θ0) by a quadratic function
in a vicinity of the point θ0 and next to make use of the concentration property
of θ̃ .

Note that for any µ , it obviously holds M(µ, θ0, θ0) = 0 and a simple algebra
yields for the gradient of M(µ, θ0, θ0)

∇M(µ, θ, θ0)
∣∣
θ=θ0

=
d

dθ
M(µ, θ, θ0)

∣∣
θ=θ0

= −µE∇L(θ)
∣∣
θ=θ0

= −µ∇EL(θ0) = 0.

So, M(µ, θ0, θ0) can be majorated from below and from above in a vicinity
of θ0 by the Taylor expansion of the second order. The same behavior can be
expected for the optimized rate function M(θ0, θ0) . This argument and the
concentration property from Corollary 2.5 lead to the following result:
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Corollary 2.9. Suppose (EG) , (EL) , and the conditions of Theorem 2.8 are
satisfied. Assume also that for some r > 0 the function M(θ, θ0) fulfills

M(θ, θ0) ≥ (θ − θ0)
⊤V0(θ − θ0), θ ∈ A(r, θ0), (2.13)

for some positive matrix V0 . Then for any ρ, s < 1 and z > 0

P
(
‖
√

V0(θ̃ − θ0)‖2 > z
)
≤ Q(ρ, s) exp{−ρsmin{z, r}}.

Proof. It is obvious that

{
‖
√

V0(θ̃ − θ0)‖2 > z
}

⊆
{
‖
√

V0(θ̃ − θ0)‖2 > z, θ̃ ∈ A(r, θ0)
}
∪
{

θ̃ 6∈ A(r, θ0)
}

⊆
{
M(θ̃, θ0) > z, θ̃ ∈ A(r, θ0)

}
∪
{

θ̃ 6∈ A(r, θ0)
}

=
{
θ̃ 6∈ A(r ∧ z, θ0)

}

and the result follows from Corollary 2.7.

Remark 2.5. The quadratic lower bound (2.13) on the rate function is a kind
of identifiability condition. It ensures that our general exponential bound and
its corollary about concentration of the estimate θ̃ can be rewritten in terms
of the difference θ̃ − θ0 . However, the fact that the condition (2.13) is not
fulfilled only indicates a poor parametrization. Our general results in terms of
the maximum of (quasi) likelihood process apply whatever parametrization is
selected. The reason is that the maximum of the random field L(θ) does not
depend on the selected parametrization and it is a continuous function of the
process L(θ) in the contrary to the point of maximum θ̃ .

In the case of i.i.d. observations, the function M(µ, θ, θ0) and hence the
matrix V0 are proportional to the sample size n and the result of Corollary 2.9
automatically yields the root-n consistency of θ̃ ; see Section 3 for more details.

3. Quasi MLE for i.i.d. data

Let Y = (Y1, . . . , Yn) be an i.i.d. sample from a distribution P . By P we denote
the joint distribution of Y . Let also P = (Pθ , θ ∈ Θ ⊂ Rp) be a parametric
family. In contrast to the standard parametric hypothesis which assumes that
P ∈ P , in this section, we focus on the quality of estimation in the case when the
underlying measure P does not necessarily belong to the parametric family P .
We will see that in this case the maximum likelihood method estimates the point
θ0 , which minimizes some special distance between P and Pθ over θ ∈ Θ .

In the rest of this section, the family P and the underlying measure P are
assumed to be dominated by a measure P0 . We denote by p(y, θ) and p(y)
the corresponding densities: p(y, θ) = dPθ/dP0(y) , p(y) = dP/dP0(y) . The



Yu. Golubev and V. Spokoiny/Exponential bounds for minimum contrast estimators 728

maximum likelihood estimator θ̃ of the underlying parameter θ0 is computed
as follows:

θ̃ = argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

n∑

i=1

ℓ(Yi, θ),

where ℓ(Y, θ) = logp(Y, θ) . Denote ℓ(Y, θ, θ′) = ℓ(Y, θ) − ℓ(Y, θ′) and

m(µ, θ, θ0) = − log E exp{µℓ(Y, θ, θ0)},

The i.i.d. structure of the observations Y implies that

M(µ, θ, θ0) = n m(µ, θ, θ0).

So, we can redefine the function µ∗(θ) in terms of the function m(·, θ, θ0)
corresponding to the marginal distribution P :

µ∗(θ) = argmax
µ

m(µ, θ, θ0)

and µ(θ) can be interpreted as an approximation of µ∗(θ) . Denote also

m(θ, θ0) = m(µ(θ), θ, θ0),

and for ζ1(θ) = µ(θ){ℓ(Y1, θ, θ0) − Eℓ(Y1, θ, θ0)} define

v(θ) = E ∇ζ1(θ)[∇ζ1(θ)]⊤,

h(δ, γ; θ) = logE exp

{
2δ

γ⊤∇ζ1(θ)√
γ⊤v(θ)γ

}
.

Notice that if P coincides with Pθ0
and µ(θ) is constant in a vicinity of θ0 ,

then v(θ0) is the standard Fisher information matrix. One can easily check that

h(0, γ; θ) = 0,
∂h(δ, γ; θ)

∂δ

∣∣∣∣
δ=0

= 0,
∂2h(δ, γ; θ)

∂2δ

∣∣∣∣
δ=0

= 4.

It follows from Lemma 5.8 that for any ν0 > 1 and θ ∈ Θ there exists δ(θ, ν0) >
0 such that h(δ, γ; θ) ≤ 2ν2

0δ2 for all γ ∈ Sp and δ ≤ δ(θ, ν0) . We assume a
slightly stronger condition that δ(θ) can be taken the same for all θ , i.e.

sup
θ∈Θ

sup
γ∈Sp

h(δ, γ; θ) ≤ 2ν2
0δ2, δ ≤ δ. (3.1)

In some cases, the matrix v(θ) should be replaced by its regularization v(θ)
to ensure this property, see Section 4.2 for an example.

Independence of the Yi ’s implies that V (θ)
def
= Cov

{
∇ζ(θ)

}
= nv(θ) and

H(λ, γ, θ)
def
= log E exp

{
2λ

γ⊤∇ζ(θ)√
γ⊤V (θ)γ

}
= nh(n−1/2λ, γ; θ)
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for any λ and any γ ∈ Sp . Therefore, if n−1/2λ ≤ δ , then by (3.1):

H(λ, γ, θ) ≤ 2ν2
0λ2

and the condition (ED) is fulfilled with λ ≤ n1/2δ . Now one can easily refor-
mulate Theorem 2.8 in terms of the marginal distribution P .

Theorem 3.1. Assume (3.1) for some δ > 0 and ν0 ≥ 1 . Suppose that there
are constants ǫ > 0 and ν1 ≥ 1 such that for each θ ∈ Θ

Aǫv(θ) ≤ ν1. (3.2)

Let also for some s < 1 and ρ < 1 with 3ǫρ/[2(1 − ρ)] ≤ n1/2λ

Hǫ(ρ, s)
def
= log

[
1

ωpǫp

∫

Θ

√
det
{
nv(θ)

}
exp
{
−ρ(1 − s)n mǫ(θ, θ0)

}
dθ

]
< ∞,

where mǫ(θ, θ0) = infθ′∈B(ǫ,θ) m(θ, θ0) . Then the value Q(ρ, s) from (2.2)
fulfills

logQ(ρ, s) ≤ 2(1 − ρ)

3
Qp +

9ν2
0ǫ

2ρ2

2(1 − ρ)
+ 2p log(ν1) + Hǫ(ρ, s).

The integral in Hǫ(ρ, s) can be easily bounded in typical situations. The
result presented below involves some conditions on the marginal rate function
m(θ, θ0) . Namely, it is assumed that this function is bounded from below by a

quadratic polynom in a vicinity A1(r, θ0)
def
= {θ : m(θ, θ0) ≤ r} of the point

θ0 for some fixed r > 0 and it increases at least logarithmically with the norm
‖θ − θ0‖ outside of this neighborhood.

In particularly, it is shown in Section 5 that for sufficiently large n

Hǫ(ρ, s) ≈ log

[
1 +

ω−1
p πp

[a2
rǫ

2ρ(1 − s)]p/2

]
. (3.3)

Theorem 3.2. Assume (3.1) and ρ/(1−ρ) ≤ 4nδ
2
/9 . Suppose that (3.2) holds

with ǫ =
√

(1 − ρ)/ρ and for some r > 0 there are a positive matrix v0 and a
constant ar > 0 such that

v(θ) ≤ v0, m(θ, θ0) ≥ a2
r(θ − θ0)

⊤v0(θ − θ0), ∀θ ∈ A1(r, θ0).

Let for some β > 0 , hold:

Cr(β)
def
=

∫

Θ\A1(r,θ0)

√
det
{
v(θ)

}
exp{−βmǫ(θ, θ0)} dθ < ∞.

Finally, let n be sufficiently large to ensure

br(n)
def
= ρ(1 − s)nr − βr − a−1

r ǫ − (p/2) logn ≥ 0. (3.4)

Then for some C depending on ar, ν0, ν1 , Cr(β) only, it holds

log Q(ρ, s) ≤ Cp +
p

2
log
(
|(1 − ρ)(1 − s)|−1

)
,
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This bound together with Corollary 2.9 yields

P
(
na2

r‖v
1/2
0 (θ̃ − θ0)‖2 > z + pC(ρ, s)

)
≤ exp

{
−ρsmin{z, r

√
n}
}

with C(ρ, s) = C+log
(
|(1−ρ)(1−s)|−1

)
/2 . This result means root-n consistency

of θ̃ in a rather strong sense.

4. Examples

This section illustrates how the exponential bounds can be applied to some par-
ticular situations. To simplify technical details, we do not try to cover the most
general case. Rather we aim to show that our basic conditions can be easily
verified in typical situations. The presented results focus on the general expo-
nential bounds and its corollaries about concentration of the estimators. The
quadratic risk bound of Corollary 2.9 can be easily obtained in every example
in a straightforward way.

4.1. Estimation in the exponential model

The exponential model assumes that the observations Y = (Y1, . . . , Yn) are
i.i.d. exponential random variables from the exponential law Pθ with an un-
known parameter θ ∈ R+ : Pθ(Yi > y) = exp(−θy) . In this example we focus on
the classical parametric set-up assuming that the underlying measure P coin-
cides with the product of Pθ0

for some θ0 ∈ R+ . The corresponding maximum
likelihood contrast is given by

L(θ) =

n∑

i=1

ℓ(Yi, θ) = −θ

n∑

i=1

Yi + n log(θ)

yielding

θ̃ = n

/ n∑

i=1

Yi , L(θ̃, θ) = n log(θ̃/θ) + n(θ/θ̃ − 1) = nK(θ̃, θ),

where K(θ, θ′) = θ′/θ−1−log(θ′/θ) is the Kullback-Leibler divergence between
the exponential laws Pθ and Pθ′ .

Define for Y1 ∼ Pθ0

h1(δ)
def
= log E exp

{
−δ(θ0Y1 − 1)

}
= δ − log(1 + δ),

m(µ, u)
def
= µ[u − log(1 + u)] − h1(µu) = log(1 + µu) − µ log(1 + u),

and also

m∗
1(u) = max

µ

{
µ[u− log(1 + u)]− h1(µu)

}
,

µ∗
1(u) = argmax

µ

{
µ[u − log(1 + u)]− h1(µu)

}
.
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Then, with u = θ/θ0 − 1 , it holds

m(µ, θ, θ0)
def
= − log Eθ0

exp
{
µℓ(Y1, θ, θ0)

}
= m(µ, u)

and the optimal choice of µ(θ) that maximizes m(µ, θ, θ0) w.r.t. µ is given by
µ∗(θ) = µ∗

1(u) leading to m∗(θ, θ0) = m∗
1(u) for u = θ/θ0 − 1 . For applying

Theorem 3.1, we need a lower bound for m∗
1(u) . Simple algebra yields

µ∗
1(u) = argmax

µ

{
log(1 + µu) − µ log(1 + u)

}
=

u − log(1 + u)

u log(1 + u)
.

To simplify the calculations, we proceed further with the suboptimal choice

µ(θ) ≡ µ = 1/2 instead of µ∗(θ) = µ∗
1(u) leading to m(θ, θ0)

def
= m(µ, θ, θ0) =

m(u) with

m(u)
def
= log(1 + u/2)− 0.5 log(1 + u) =

1

2
log

(
1 +

u2

4(1 + u)

)

for u = θ/θ0 − 1 > −1 . It is easy to see that m(u) ≥ c1u
2 for |u| ≤ 1 , and

m(u) ≥ c2 log(1 + u) for u ≥ 1 with some c1, c2 > 0 .
Next

ζ1(θ)
def
= µ

{
ℓ(Y1, θ) − Eℓ(Y1, θ)

}
= −µθ(Y1 − 1/θ0),

∇ζ1(θ) = −µ(Y1 − 1/θ0)

so that with σ2 = VarY1 = 1/θ2
0 it holds v(θ)

def
= E

[
∇ζ1(θ)

]2 ≡ µ2σ2 =
1/(4θ2

0) ,

log E exp
{
δ∇ζ1(θ)/

√
v(θ)

}
≡ h1(δ),

and the condition (3.1) is obviously satisfied with some ν2
0 < ∞ . Similarly, the

conditions (3.2) and (3.4) can be easily verified and Theorem 3.2 applied with
s = 0 yields

E exp
{
ρL(θ̃, θ0)/2

}
≡ E exp

{
ρn K(θ̃, θ0)/2

}
≤ C

(1 − ρ)1/2
. (4.1)

An important feature of this result is that it applies for the unbounded param-
eter set (0, +∞) . Another corollary of (4.1) is that the true parameter θ0 is
covered with a high probability by the asymmetric confidence set E(z) of the
form

E(z) = {θ ∈ Θ : θ/θ̃ − 1 − log(θ/θ̃) ≤ z/n}

provided that z is sufficiently large. Selecting z providing a prescribed coverage
probability is recommended by any kind of resampling procedure.
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4.2. LAD contrast and median estimation

Median or more generally quantile estimation is known to be more robust and
stable against outliers and it is frequently used in econometric studies; see
Koenker (2005), Koenker and Xiao (2006).

Suppose we are given a sample Y = (Y1, . . . , Yn) . In the problem of median
estimation, these random variables are assumed i.i.d. and we are interested in
estimating the median θ0 which is a root of the equation

P (Y1 ≤ θ0) = P (Y1 ≥ θ0).

Alternatively, the median minimizes the value E|Y1 − θ| provided that the

expectation of |Y1| is finite. This remark leads to the natural estimator θ̃ of
the median as the minimizer of the contrast −L(θ) =

∑n
i=1 |Yi − θ| :

θ̃ = argmax
θ

L(θ) = argmin
θ

n∑

i=1

|Yi − θ|.

If the Yi ’s are i.i.d. with the Laplace density exp
(
−|y − θ0 |

)
/2 , then L(θ)

coincides (up to a constant factor) with the log-likelihood. In the general case,
L(θ) can be treated as a quasi log-likelihood contrast. Later we also briefly
comment on the case when the Yi ’s are not i.i.d.

Assume first that Yi has the density pθ(y) = p(y−θ) where p(·) is a centrally
symmetric function. To simplify the notation, we also assume that θ0 = 0 . The
general case can be reduced to this one by a simple change of variables. The
density p(y) is supposed to be positive and for y > 0 we define

λ(y) = −(2y)−1 log[2P (Y1 > y)].

Equivalently, we can write P (Y > y) = e−2yλ(y)/2 for y ≥ 0 . The case with
λ(y) ≥ λ0 > 0 corresponds to light tails while λ(y) → 0 as |y| → ∞ means
heavy tails of the distribution P . Below we focus on the most interesting case
when λ(y) is positive and monotonously decreases to zero in y > 0 . For sim-
plicity of presentation we also assume that λ(y) is sufficiently regular and its
first derivative λ′(y) is uniformly continuous on R . The assumption of heavy
tails implies that [yλ(y)]′ ∈ [0, 1] and hence,

|yλ′(y)| =
∣∣[yλ(y)]′ − λ(y)

∣∣ < 1.

Let

m(θ)
def
= E|Y1 − θ|, q(θ)

def
= P (Y1 ≤ θ) − P (Y1 > θ).

Obviously m′(θ)
def
= ∂m(θ)/∂θ = q(θ) . It is also clear that |q(θ)| ≤ 1 . Next, for

θ ≥ 0 , it holds

ℓ′(y, θ, θ0)
def
=

∂

∂y
ℓ(y, θ, θ0) =

{
0, y /∈ [0, θ],

2, otherwise,
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and ℓ(y, θ, θ0) = −θ for y < 0 . Therefore, integration by parts yields

Eeµℓ(Y1,θ,θ0) = −
∫

eµℓ(y,θ,θ0) dP (Y1 > y)

= e−µθ +

∫
µℓ′(y, θ, θ0)e

µℓ(y,θ,θ0)P (Y1 > y) dy

= e−µθ + 2µ

∫ θ

0

eµ(2y−θ)P (Y1 > y) dy

= e−µθ + µe−µθ

∫ θ

0

e2y[µ−λ(y)] dy

and similarly for θ < θ0 . We now fix µ(θ) = λ(θ) . Monotonicity of λ(y) implies

Eeµ(θ)ℓ(Y1,θ,θ0) = e−θλ(θ) + λ(θ)e−θλ(θ)

∫ θ

0

e2y[λ(θ)−λ(y)]dy

≤
{
1 + θλ(θ)

}
e−θλ(θ).

Therefore, for θ > 0 ,

m(θ, θ0) ≥ θλ(θ) − log
{
1 + θλ(θ)

}
. (4.2)

The same lower bound holds true for θ < 0 . For θλ(θ) ≤ 1 it obviously holds

m(θ, θ0) ≥ θ2λ2(θ)/2.

Now we check the condition (3.1) with v(θ) ≡ 1 . It suffices to show that
δ−2h(δ, θ) is uniformly bounded in θ ∈ R and δ ≤ δ for some positive δ

where h(δ, θ)
def
= log Eθ0

exp
{
2δ∇ζ1(θ)

}
. Note that ζ1(θ)

def
= λ(θ)ζ0(θ) , where

ζ0(θ)
def
= E0(|Y1 − θ| − |Y1|) − (|Y1 − θ| − |Y1|).

For θ > 0 , it holds |ζ0(θ)/θ| ≤ 1 ,

∇ζ0(θ) = 1(Y1 ≤ θ) − 1(Y1 > θ) − q(θ), |∇ζ0(θ)| ≤ 1,

Eθ0

∣∣∇ζ0(θ)
∣∣2 = 1 − q2(θ),

Var ζ0(θ) = Var

∫ θ

0

∇ζ0(θ)dθ ≤ θ

∫ θ

0

E
∣∣∇ζ0(θ)

∣∣2dθ = θ

∫ θ

0

{
1 − q2(θ)

}
dθ,

and

θ−2 Var ζ0(θ) = θ−1

∫ θ

0

{
1 − q2(θ)

}
dθ → 0, θ → ∞

because q(θ) → 1 . Next,

∇ζ1(θ) = ∂ζ1(θ)/∂θ = λ(θ)∇ζ0(θ) + θλ′(θ)ζ0(θ)/θ.
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The conditions |∇ζ0(θ)| ≤ 1 , |ζ0(θ)/θ| ≤ 1 , |θλ′(θ)| ≤ 1 , λ(θ) → 0 and
Var
(
ζ0(θ)/θ

)
→ 0 as θ → ∞ , easily imply h(δ, θ) ≤ 2ν2

0δ2 for some fixed

δ > 0, ν0 ≥ 1 .
Moreover, if E|Y1|γ < ∞ for some γ > 0 , then the conditions of Theorem 3.2

are fulfilled. This theorem applied with ρ = s and Corollary 2.4 lead to the
bound for the loss ũ = |θ̃ − θ0| :

E exp
{
ρ2n
[
ũλ(ũ) − log{1 + ũλ(ũ)}

]}
≤ C

ρ1/2(1 − ρ)1/2

with some fixed constant C provided that n exceeds some minimal sample size
n0 .

The case of independent but non i.i.d. observations can be again reduced to
the considered case using P = n−1

∑
i=1 Pi and defining the point θ0 as a root

of the equation

n∑

i=1

Pi(Yi < θ) =

n∑

i=1

Pi(Yi > θ).

4.3. Estimation of the location of a change point

Suppose the observations Y = (Y1, . . . , Yn) follow the change point model:

Yi = A1(i ≤ θ) + σξi, i = 1, . . . , n, (4.3)

where ξi is a standard white Gaussian noise. Our goal is to estimate the change
point location θ ∈ Θ = {1, . . . , n − 1} . The obtained results can be easily ex-
tended to the case of non-i.i.d. and non-Gaussian errors under some exponential
moment conditions on ξi .

We begin with the case when the amplitude A is known. To estimate θ , we
use the maximum likelihood estimator

θ̃A = argmax
θ∈Θ

LA(θ),

where the maximum likelihood contrast is given by

LA(θ) =
A

σ2

θ∑

i=1

Yi −
A2

2σ2
θ =

A2

σ2
min(θ, θ0) −

A2θ

2σ2
+

A

σ

θ∑

i=1

ξi.

Note that LA(θ) is a Gaussian random variable for every θ with

M(θ, θ0)
def
= −ELA(θ) =

A2

2σ2
|θ − θ0|,

D2(θ, θ0)
def
= VarLA(θ) =

A2

σ2
|θ − θ0| = 2M(θ, θ0).
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This yields for any µ ≥ 0

M(µ, θ, θ0) = µM(θ, θ0) − µ2D2(θ, θ0)/2 = (µ − µ2)M(θ, θ0),

and the corresponding values µ∗(θ), M∗(θ, θ0) can be easily computed:

µ∗(θ) = 1/2, M∗(θ, θ0) = M(θ, θ0)/4.

Therefore, for ρ < 1 , Proposition 2.1 implies

E exp
{
ρ2 A2

4σ2
|θ̃ − θ0|

}
≤

∑

θ∈Θ

exp
{
−ρ(1 − ρ)

4
M(θ, θ0)

}

≤ 2

∞∑

k=0

exp

{
−ρ(1 − ρ)A2

8σ2
k

}
=

2

1 − C(ρ)

where C(ρ) = exp{−ρ(1 − ρ)A2/(8σ2)} . By Lemma 5.7

E|θ̃A − θ0|r ≤ C1(r)
(
σ2/A2

)r

with some constant C1(r) .
Now we switch to the case when A > 0 is an unknown parameter. In this

case, we cannot use the contrast LA(θ) because it strongly depends on A . The
profile likelihood approach suggests considering A as a nuisance parameter and
maximizing LA(θ) w.r.t. A ≥ 0 . This leads to the following estimator:

θ̃ = argmax
θ

{
max
A≥0

LA(θ)
}

= argmax
θ

1

2σ2θ

[ θ∑

i=1

Yi

]2

+

,

where [x]+ = max(x, 0) . In what follows we deal with a slightly modified version
of this estimator

θ̃ = argmax
θ∈Θn

L(θ), with a new contrast L(θ) =
1

σ
√

θ

θ∑

i=1

Yi,

which is again a Gaussian one. By the model equation (4.3), this contrast can
be represented in the form:

L(θ) =
1√
θ

θ∑

i=1

ξi +
Amin(θ, θ0)

σ
√

θ
.

It is easy to see that the drift M(θ, θ0) = −EL(θ, θ0) satisfies

M(θ, θ0) = ad(θ, θ0)

with a = σ−1A
√

θ0 and

d(θ, θ′) = 1 −
√

min{θ/θ′, θ′/θ} =

{
1 −

√
θ/θ′, θ ≤ θ′,

1 −
√

θ′/θ, θ ≥ θ′.
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Similarly,

D2(θ, θ′)
def
= VarL(θ, θ′) =

2|θ′ − θ|
(
√

θ +
√

θ′)
√

max(θ, θ′)
= 2d(θ, θ′)

and obviously, M(θ, θ0) = aD2(θ, θ0)/2 . Also D2(θ, θ0) ≤ 2 for all θ . As L(θ)
is a Gaussian contrast, it holds

µ∗(θ) =
M(θ, θ0)

D2(θ, θ0)
=

a

2
, M∗(θ, θ0) =

a2

8
d(θ, θ0);

see Example 1.1. Note that for every θ ∈ Θ , the value M∗(θ, θ0) is bounded
by a2/8 = A2θ0/(8σ2) . So, this example is quite special in the sense that the
Kullback-Leibler divergence between measures Pθ0

and Pθ does not grow to
infinity with θ . We will see that this fact results in an extra loglog-factor in the
bound for the minimum contrast.

For given ǫ > 0 and θ◦ ∈ Θ , the local ball B(ǫ, θ◦) = {D(θ, θ◦) ≤ ǫ} can
be represented in the form

B(ǫ, θ◦) =
{
θ : θ◦(1 − ǫ2/2)2 ≤ θ ≤ θ◦(1 − ǫ2/2)−2

}
.

and it can be transformed into the usual symmetric interval around log θ◦ by
using the parameter log θ instead of θ :

B(ǫ, θ◦) =
{

θ :
∣∣log θ − log θ◦

∣∣ ≤ −2 log(1 − ǫ2/2)
}
.

This immediately implies that the local entropy Q(ǫ, θ◦) is bounded by Q = 1
for all θ◦ ∈ Θ .

Let the measure π(·) assign the mass 1 to any point θ = 1, . . . , n . Then
π
(
B(ǫ, θ◦)

)
is equal to the number Πǫ(θ) of points θ in B(ǫ, θ◦) , and it ob-

viously holds Πǫ(θ) ≈ K(ǫ)θ with K(ǫ) = (1 − ǫ2/2)−2 − (1 − ǫ2/2)2 ≥ ǫ2

for ǫ ≤ 1 , so that (2.4) is fulfilled. Fix ǫ2 = 1/2 . The trivial lower bound
M(θ, θ0) ≥ 0 yields for Hǫ(ρ, s) from (2.5) for any s ≤ 1 :

Hǫ(ρ, s) ≤ log

(
n∑

θ=1

1

Πǫ(θ)

)
≤ log

(
C1 logn

)

for some C1 > 0 . This yields by Theorem 2.3 and its Corollary 2.4 that

E exp
{
ρa2d(θ̃, θ0)/8

}
≤ C2 logn. (4.4)

Combining this with Lemma 5.7 yields

E

∣∣∣
A2θ0

σ2
d(θ̃, θ0)

∣∣∣
r

≤ C| log log n|r.

The extra log log -factor in this bound is due to the unbounded parameter set.
In the case “classical” situation when the size A of the jump is bounded away
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from zero and infinity and the true “relative” location θ0/n is bounded away
from the edge 0 similar calculations (not presented here) lead to a bound

E exp
{
C1ρ

2A2|θ̃ − θ0|
}
≤ C2 which does not involve any extra log-term; see

e.g. Csorgő and Horváth (1997) and references therein for asymptotic versions
of this result.

It is also interesting to compare this result with the accuracy of the maximum
likelihood method in the case, where the magnitude of jump A is known. One
can see that there is a payment for the adaptation to the nuisance parameter
A which is in form of an extra log log -factor. Another observation is that the
accuracy of estimation strongly depends on the true location θ0 , more precisely,
on the value a2 = A2θ0/σ2 . In the “classical” situation this value is of order n
leading to the accuracy of order n−1 log log(n) . If the value a2 is smaller in order
than n , then the accuracy becomes worse by the same factor. In particular, if
A2θ0/σ2 is of order one, then even consistency of θ̃ cannot be claimed.

5. Proofs

This section collects proofs of the main theorems and some auxiliary facts.

5.1. Proof of Theorem 2.2

Assume that θ
◦ ∈ Θ . The main step of the proof is a bound for the stochastic

component ζ(θ, θ♯) over the ball B(ǫ, θ◦) = {θ : S(θ, θ◦) ≤ ǫ} for a given
θ

♯ ∈ B(ǫ, θ◦) .

Lemma 5.1. Assume that ζ(θ) is a separable process satisfying for any given
θ
◦ ∈ Θ the condition (EL) . Then for any given θ

♯ ∈ B(ǫ, θ◦) and any λ ≤ λ

logE exp

{
2λ

3ǫ
sup

θ∈B(ǫ,θ◦)

ζ(θ, θ♯)

}
≤ 2

3
Q(ǫ, θ◦) + 2ν2

0λ2.

Proof. The proof is based on the standard chaining argument (see e.g.
van der Vaart and Wellner (1996)). Without loss of generality, we assume that
Q(ǫ, θ◦) < ∞ . Then for any integer k ≥ 0 , there exists a 2−kǫ -net Dk(ǫ, θ◦)
in the local ball B(ǫ, θ◦) having the cardinality N(2−kǫ, ǫ, θ◦) . Using the nets
Dk(ǫ, θ◦) with k = 0, . . . , K − 1 , one can construct a chain connecting an
arbitrary point θ in DK(ǫ, θ◦) and θ

♯ . It means that one can find points
τ k = τ k(θ) ∈ Dk(ǫ, θ◦) , k = 0, . . . , K − 1 , such that S(τ k, τ k−1) ≤ 2−kǫ for
k = 0, . . . , K . Here τK means θ and τ−1 means θ

♯ . Notice that τ k can be
constructed recurrently starting from τK = θ : τ k−1 = πk−1(τ k) with

πk−1(τ k) = argmin
τ∈Dk−1(ǫ,θ◦)

S(τ k, τ ), k = K, K − 1, . . . , 0.

Here π0(τ 1) ≡ θ
◦ and π−1(τ 0) ≡ θ

♯ . It obviously holds for θ ∈ DK (ǫ, θ◦)

ζ(θ, θ♯) =

K∑

k=0

ζ(τ k, τk−1).
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Define for τ ∈ Dk(ǫ, θ◦)

ck(τ ) = S(τ , πk−1(τ ))/(3ǫ).

Obviously ck(τ ) ≤ c∗k with c∗k = 2−k+1/3 for k ≥ 1 and c∗0 = 1/3 , so that∑K
k=0 c∗k < 1 . For ξ(τ k, τk−1) = ζ(τ k, τk−1)/S(τ k, τ k−1) it holds

ζ(τ k, τk−1) = S(τ k, τ k−1)ξ(τ k, τk−1) = 3ǫ ck(τ k) ξ(τ k, τ k−1)

Therefore,

sup
θ∈DK (ǫ,θ◦)

ζ(θ, θ♯) ≤
K∑

k=0

sup
τ k∈Dk(ǫ,θ◦)

ζ(τ k, πk−1(τ k))

= 3ǫ

K∑

k=0

sup
τk∈Dk(ǫ,θ◦)

ck(τ k) ξ(τ k, πk−1(τ k)).

Lemma 5.6 below and condition (EL) imply

log E exp

{
2λ

3ǫ
sup

θ∈DK (ǫ,θ◦)

ζ(θ, θ♯)

}

≤ logE exp

{
2λ

K∑

k=0

sup
τ k∈Dk(ǫ,θ◦)

ck(τ k) ξ(τ k, πk−1(τ k))

}

≤
K∑

k=0

c∗k log

[
E exp

{
sup

τ k∈Dk(ǫ,θ◦)

ck(τ k)

c∗k
2λξ(τ k, πk−1(τ k))

}]

≤
K∑

k=0

c∗k log

[ ∑

τk∈Dk(ǫ,θ◦)

E exp

{
ck(τ k)

c∗k
2λξ(τ k, πk−1(τ k))

}]

≤
K∑

k=0

c∗k
{
logN(2−kǫ, ǫ, θ◦) + 2ν2

0λ2
}
.

These inequalities and separability of ζ(θ, θ♯) yield

logE exp

{
2λ

3ǫ
sup

θ∈B(ǫ,θ◦)

ζ(θ, θ♯)

}

= lim
K→∞

logE exp

{
2λ

3ǫ
sup

θ∈DK(ǫ,θ◦)

ζ(θ, θ♯)

}

≤ 2ν2
0λ

2 +
∞∑

k=1

2−k+1

3
log N(2−kǫ, ǫ, θ◦) ≤ 2ν2

0λ
2 +

2

3
Q(ǫ, θ◦)

thus completing the proof of the lemma.
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Now we are prepared to complete the proof of the theorem. Denote

θ
♯ = argmax

θ∈B(ǫ,θ◦)

{
µ(θ)EL(θ, θ0) + M(θ, θ0)

}
.

It is clear that

sup
θ∈B(ǫ,θ◦)

{
µ(θ)L(θ, θ0) + M(θ, θ0)

}

≤ µ(θ♯)L(θ♯, θ0) + M(θ♯, θ0) + sup
θ∈B(ǫ,θ◦)

ζ(θ, θ♯).

This yields by the Hölder inequality and Lemma 5.1 with λ = 3ǫρ/[2(1−ρ)] ≤ λ
that

logE exp
{

sup
θ∈B(ǫ,θ◦)

ρ
[
µ(θ)L(θ, θ0) + M(θ, θ0)

]}

≤ log E exp
{

ρ
[
µ(θ♯)L(θ♯, θ0) + M(θ♯, θ0)

]
+ ρ sup

θ∈B(ǫ,θ◦)

ζ(θ, θ♯)
}

≤ ρ log E exp
{

µ(θ♯)L(θ♯, θ0) + M(θ♯, θ0)
}

+(1 − ρ) log E exp
{ ρ

1 − ρ
sup

θ∈B(ǫ,θ◦)

ζ(θ, θ♯)
}

≤ 2(1 − ρ)

3
Q(ǫ, θ◦) + (1 − ρ)2ν2

0

∣∣∣∣
3ǫρ

2(1 − ρ)

∣∣∣∣
2

and the result follows.

5.2. Proof of Theorem 2.3

Theorem 2.2 implies a local bound for the process µ(θ)L(θ, θ0)+M(θ, θ0) over
any ball B(ǫ, θ◦) . To derive a global bound we apply the following general fact:

Lemma 5.2. Let f(θ) be a nonnegative function on Θ ⊂ Rp and let for every
point θ ∈ Θ a vicinity U(θ) be fixed such that θ′ ∈ U(θ) implies θ ∈ U(θ′) .
Let also a measure π

(
U(θ)

)
of the set U(θ) fulfill for every θ

◦ ∈ Θ

sup
θ∈U(θ◦)

π
(
U(θ)

)

π
(
U(θ◦)

) ≤ ν. (5.1)

Then

sup
θ∈Θ

f(θ) ≤ ν

∫

Θ

f∗(θ)
1

π
(
U(θ)

)dπ(θ)

with

f∗(θ)
def
= sup

θ′∈U(θ)

f(θ′).
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Proof. For every θ
◦ ∈ Θ

∫

Θ

f∗(θ)
1

π
(
U(θ)

)dπ(θ) ≥
∫

U(θ◦)

f∗(θ)
1

π
(
U(θ)

)dπ(θ)

≥ f(θ◦)

∫

U(θ◦)

1

π
(
U(θ)

)dπ(θ)

because θ ∈ U(θ◦) implies θ
◦ ∈ U(θ) and hence, f(θ◦) ≤ f∗(θ) . Now by (5.1)

∫

Θ

f∗(θ)
1

π
(
U(θ)

)dπ(θ) ≥ f(θ◦)

ν

∫

U(θ◦)

1

π
(
U(θ◦)

)dπ(θ) = f(θ◦)/ν

as required.

We are going to apply Lemma 5.2 with

f(θ) = exp
{
ρ
[
µ(θ)L(θ, θ0) + sM(θ, θ0)

]}
.

In view of the definition of Mǫ(θ
◦, θ0) = minθ∈B(ǫ,θ◦) M(θ, θ0) , it follows from

the local bound of Theorem 5.1 that

log E exp
{

sup
θ∈B(ǫ,θ◦)

ρ
[
µ(θ)L(θ, θ0) + sM(θ, θ0)

]}

≤ −ρ(1 − s)Mǫ(θ
◦, θ0) +

2(1 − ρ)

3
Q(ǫ, θ◦) +

9ν2
0ǫ2ρ2

2(1 − ρ)
.

and the theorem follows directly from Lemma 5.2.

5.3. Proof of Theorems 2.8

Below by Cp we denote a generic constant (not necessarily the same) which
only depends on the dimensionality p . First we show that the differentiability
condition (ED) implies the local moment condition (EL) .

Lemma 5.3. Assume that (ED) holds with some ν0 and λ . Then for any
θ, θ′ ∈ Θ and any λ with |λ| ≤ λ ,

log E exp

{
2λ

ζ(θ, θ′)

S(θ, θ′)

}
≤ 2ν2

0λ
2. (5.2)

Proof. For θ, θ′ ∈ Θ , denote u = θ
′ − θ . With these notations

L(θ, θ′) = u
⊤

∫ 1

0

∇L(θ + tu)dt.

Similar expressions hold for EL(θ, θ′) and for ζ(θ, θ′) = L(θ, θ′) − EL(θ, θ′) :

ζ(θ, θ′) = u
⊤

∫ 1

0

∇ζ(θ + tu)dt.
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The definition of S(θ, θ′) implies for any t ∈ [0, 1]

c(t)
def
=

√
u⊤V (θ + tu)u

S(θ, θ′)
≤ 1,

and therefore Lemma 5.6 and (2.10) with γ = u/‖u‖ yield

logE exp

{
2λ

ζ(θ, θ′)

S(θ, θ′)

}
= log E exp

{
2λ

∫ 1

0

c(t)
γ⊤∇ζ(θ + tu)√
γ⊤V (θ + tu)γ

dt

}

≤
∫ 1

0

c(t) log E exp

{
2λ

γ⊤∇ζ(θ + tu)√
γ⊤V (θ + tu)γ

}
dt

≤ 2ν2
0λ2

as required.

Due to the next lemma, the smoothness of the contrast implies that the topol-
ogy induced by the metric S(·, ·) is locally equivalent to the Euclidean topology
and computing the local entropy Q(ǫ, ·) can be reduced to the Euclidean case.
Recall the notation

B
′(ǫ, θ◦) =

{
θ : (θ − θ

◦)⊤V (θ◦) (θ − θ
◦) ≤ ǫ2

}
.

The definition of B(ǫ, θ) implies that B(ǫ, θ◦) ⊆ B′(ǫ, θ◦) .

Lemma 5.4. Assume (ED) with some λ , and let, for some fixed ν1 ≥ 1 ,
ǫ > 0

AǫV (θ) ≤ ν1, θ ∈ Θ. (5.3)

Then

• (EL) is fulfilled for λ ≤ λ , i.e. (5.2) holds for all λ ≤ λ .
• supθ∈Θ Q(ǫ, θ) ≤ Qp + p log(ν1), where Qp is the entropy of the unit ball

in Rp in the Euclidean topology.

Proof. The first claim is an immediate corollary of Lemma 5.3. Fix any θ
◦ ∈ Θ .

Linear transformation with the matrix V −1(θ◦) reduces the situation to the
case when V (θ◦) ≡ I and B′(ǫ, θ◦) is a usual Euclidean ball for any ǫ0 ≤ ǫ .
Moreover, by (5.3), each elliptic set B′(ǫ0, θ) for θ ∈ B(ǫ, θ◦) is nearly an
Euclidean ball in the sense that the ratio of its largest and smallest axes (which
is the ratio of the largest and smallest eigenvalues of V −1(θ◦)V 2(θ)V −1(θ◦) ) is
bounded by ν1 . Therefore, for any ǫ0 ≤ ǫ , a Euclidean net De(ǫ0/ν1) with the
step ǫ0/ν1 ensures a covering of B(ǫ, θ◦) by the sets B(ǫ0, θ

◦) , θ
◦ ∈ De(ǫ) .

Therefore, the corresponding covering number is bounded by (ν1ǫ/ǫ0)
p yielding

the claimed bound for the local entropy.

Now we are ready to proceed with the proof of Theorem 2.8. We make use
of the following technical result which helps to bound the global supremum of
a random function over an integral of local maxima.
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Consider the ellipsoid B′(ǫ, θ◦) = {θ : (θ − θ
◦)⊤V (θ◦) (θ − θ

◦) ≤ ǫ2} . Its
Lebesgue measure fulfills π(B′(ǫ, θ◦)) = ωpǫ

p
/√

det{V (θ◦)} where ωp is the
volume of the unit ball in Rp . Condition (2.12) implies (5.1) with ν = νp

1 for
π(U(θ)) = π(B′(ǫ, θ)) and the Lebesgue measure π . Now the result follows
from Theorem 2.3.

5.4. Proof of Theorem 3.2

We start with a technical lemma.

Lemma 5.5. Suppose that for some r > 0 , there are a positive matrix v0 and
a constant ar > 0 such that

v(θ) ≤ v0, m(θ, θ0) ≥ a2
r(θ − θ0)

⊤v0(θ − θ0), θ ∈ A1(r, θ0) (5.4)

Then for any η > 0

∫

A1(r,θ0)

√
det
{
nv(θ)

}
exp
{
−η n mǫ(θ, θ0)

}
dθ ≤ a−p

r

(
ωpǫ

p + |π/η|p/2
)
.

Proof. The conditions of the lemma imply that for θ ∈ A1(r, θ0)

√
nmǫ(θ, θ0) ≥

[√
nar‖v1/2

0 (θ − θ0)‖ − ǫ
]
+

.

Changing the variable θ by u =
(
na2

r

)1/2
v
1/2
0 (θ − θ0) , yields in view of (5.4)

that
∫

A1(r,θ0)

exp
{
−η nmǫ(θ, θ0)

}√
det
{
nv(θ)

}
dθ

≤ 1

a
p
r

(∫

‖u‖≤ǫ

du +

∫

Rp

exp
{
−η‖u‖2

}
du

)
≤ a−p

r

(
ωpǫ

p + |π/η|p/2
)

as required.

To complete the proof of the theorem, we bound the part of the integral
Hǫ(ρ, s) over the complement of A1(r, θ0) . Namely, we aim to show that

∫

Θ\A1(r,θ0)

√
det
{
nv(θ)

}
exp
{
−ρ(1 − s)n mǫ(θ, θ0)

}
dθ ≤ Cr(β)e−br (n). (5.5)

Under (5.4), it obviously holds for θ ∈ Θ\A1(r, θ0) that mǫ(θ, θ0) ≥ r−a−1
r ǫ/n

and

ρ(1 − s)n mǫ(θ, θ0) ≥ βmǫ(θ, θ0) + {ρ(1 − s)n − β}(r − a−1
r ǫ/n)

≥ βmǫ(θ, θ0) + br(n) + (p/2) log n

and (5.5) follows by det
{
nv(θ)

}
= np det

{
v(θ)

}
.
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Lemma 5.5 with η = ρ(1 − s) , (5.5), and br(n) ≤ 0 imply

Hǫ(ρ, s) ≤ a−p
r

(
1 +

ω−1
p πp/2

|ǫ2ρ(1 − s)|p/2

)
+ Cr(β)/(ωpǫp).

To finalize the proof, we apply Theorem 3.1 with ǫ defined by the equation
ǫ2 = (1 − ρ)/ρ .

logQ(ρ, s) ≤ 2(1 − ρ)

3
Qp + 2ν2

0ρ + 2p log(ν1)

+ log
(
1 +

ω−1
p πpa−p

r

|(1 − ρ)(1 − s)|p/2
+

ω−1
p Cr(β)ρp/2

(1 − s)p/2

)

≤ Cp +
p

2
log
(
|(1 − ρ)(1 − s)|−1

)

where C is a constant whose value depends on ar , ν0, ν1 , and Cr(β) . It is
also used that Qp ≤ Cp and log ω−1

p ≤ Cp .

5.5. Auxiliary facts

Lemma 5.6. For any r.v.’s ξk and λk ≥ 0 such that Λ =
∑

k λk ≤ 1

logE exp

(∑

k

λkξk

)
≤
∑

k

λk log Eeξk . (5.6)

Proof. Convexity of ex and concavity of xΛ imply

E exp

{
Λ

Λ

∑

k

λk

(
ξk − log Eeξk

)}
≤ EΛ exp

{
1

Λ

∑

k

λk

(
ξk − logEeξk

)}

≤
{

1

Λ

∑

k

λkE exp
(
ξk − log Eeξk

)}Λ

= 1.

Lemma 5.7. Let ξ ≥ 0 be a random variable and ϕ(λ) = logE exp
(
λξ
)
. Then

for any r > 0

(
Eξr

)1/r ≤ inf
λ: ϕ(λ)≥r

λ−1ϕ(λ). (5.7)

In particular, if ϕ(λ) ≤ a + σ2λ2 for some a, σ ≥ 0 , then

(
Eξr

)1/r ≤ 2σ
√

max{a, r/2}. (5.8)

Proof. Consider the following function

f(x) =

{
logr(x) for x ≥ er,

xrr/er for x ≤ er.
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A simple algebra reveals that for x > er

f ′(x) = rx−1 logr−1(x),

f ′′(x) = r(r − 1)x−2 logr−2(x) − rx−2 logr−1(x)

= rx−2
[
r − 1 − log(x)

]
logr−2(x) < 0.

Since the function f(x) is linear for x ≤ er , it is concave for all x ≥ 0 . It
is also easy to check that [log(x)]r+ ≤ f(x) , because for x ≤ er , the function
f(x) coincides with the tangent of logr(x) at x = er . Therefore,

xr = λ−r logr
(
eλx
)
≤ λ−rf(eλx)

and the Jensen inequality implies for any λ ≥ 0

Eξr ≤ λ−rEf(eλξ) ≤ λ−rf
(
Eeλξ

)
= λ−rf

(
eϕ(λ)

)
. (5.9)

If ϕ(λ) ≥ r , then f
(
eϕ(λ)

)
= logr

(
eϕ(λ)

)
= ϕr(λ) and (5.7) follows from (5.9).

To prove (5.8), it remains to notice that the monotonicity of f(·) implies, in
view of (5.9), that

(Eξr)1/r ≤ inf
λ: a+σ2λ2≥r

{
a

λ
+ σ2λ

}
=

{
σr(r − a)−1/2, a < r/2
2σ

√
a, a ≥ r/2

≤
{

2σ
√

r/2, a < r/2
2σ

√
a, a ≥ r/2

≤ 2σ
√

max{a, r/2}.

Lemma 5.8. Let a r.v. ξ fulfill Eξ = 0 , Eξ2 = 1 and E exp(λ1|ξ|) = κ < ∞
for some λ1 > 0 . Then for any ρ < 1 there is a constant C1 depending on κ ,
λ1 and ρ only such that for λ < ρλ1

logEeλξ ≤ C1λ
2/2.

Moreover, there is a constant λ2 > 0 such that for all λ ≤ λ2

log Eeλξ ≥ ρλ2/2.

Proof. Define h(x) = (λ − λ1)x + m log(x) for m ≥ 0 and λ < λ1 . It is easy
to see by a simple algebra that

max
x≥0

h(x) = −m + m log
m

λ1 − λ
.

Therefore for any x ≥ 0

λx + m log(x) ≤ λ1x + log

(
m

e(λ1 − λ)

)m

.

This implies for all λ < λ1

E|ξ|m exp(λ|ξ|) ≤
(

m

e(λ1 − λ)

)m

E exp(λ1|ξ|).
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Suppose now that for some λ1 > 0 , it holds E exp(λ1|ξ|) = κ(λ1) < ∞ . Then
the function h0(λ) = E exp(λξ) fulfills h0(0) = 1 , h′

0(0) = Eξ = 0 , h′′
0(0) = 1

and for λ < λ1 ,

h′′
0(λ) = Eξ2eλξ ≤ Eξ2eλ|ξ| ≤ 1

(λ1 − λ)2
E exp(λ1|ξ|).

This implies by the Taylor expansion for λ < ρλ1 that

h0(λ) ≤ 1 + C1λ
2/2

with C1 = κ(λ1)/
{
λ2

1(1 − ρ)2
}

, and hence, logh0(λ) ≤ C1λ
2/2 .
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