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Skew-normal distribution in the multivariate null intercept
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Abstract. In this paper we discuss inferential aspects and the local influence
analysis of the multivariate null intercept measurement error model where
the unobserved value of the covariate (latent variable) follows a skew-normal
distribution. In order to develop the hypotheses testing of interest and the lo-
cal influence diagnostics, closed-form expressions of the marginal likelihood,
the score function and the observed information matrix are presented. Addi-
tionally, an EM-type algorithm for evaluating the unrestricted and restricted
maximum likelihood estimates of the parameters under equality constraints
on the regression coefficients is examined. Also, we derive the appropriate
matrices to assess the local influence on the parameters estimate under dif-
ferent perturbation schemes. The results and methods are applied to a dental
clinical trial presented in Hadgu and Koch [Journal of Biopharmaceutical
Statistic 9 (1999) 161–178].

1 Introduction

Error-in-variables regression models constitute an attractive alternative to model-
ing many practical experimental problems, especially when the same responses
are observed on the same units under different experimental conditions. A wide
bibliography can be found, for instance, in Cheng and Van-Ness (1999). Consider
a bivariate random variable (ηi, ξi) satisfying the linear relation ηi = α + βξi ,
i = 1, . . . , n. Suppose that ηi and ξi can not be observed directly, but instead we
observe

xi = ξi + δi, (1.1)

yi = ηi + εi, (1.2)

where yi and xi , i = 1, . . . , n, respectively denote the observed values of the re-
sponse and explanatory variables, ξi, i = 1, . . . , n, indicate the true values of the
latter, α represents the (unknown) intercept, β stands for the (unknown) slope and
the errors δi and εi have zero means and unknown variances σ 2

δ and σ 2, respec-
tively and are independently distributed, i = 1, . . . , n. It is common to assume
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that all the random variables in the error-in-variables regression model are jointly
normal. In this case it is well known that such a model is not identifiable and to
bypass this inconvenience, we must make an extra assumption about the param-
eters. Among the available alternatives, we identify (i) σ 2 or (and) σ 2

δ known,
(ii) λ = σ 2/σ 2

δ known, (iii) kx = σ 2
x /(σ 2

x + σ 2
δ ) known or (iv) α known, where

σ 2
x is the variance of ξi , i = 1, . . . , n. In the normal structural model with no side

conditions, E(ξi) = μx is the only parameter that is identifiable. Chan and Mak
(1979) studied the maximum likelihood estimation of the parameters when the in-
tercept is known and presented the information matrix explicitly. Patefield (1985)
considered the case where the intercept and the ratio of the variances are known.
Aoki, Bolfarine and Singer (2001) discussed the model with known intercept and
repeated measurement data. The first development of the class of skew-normal
measurement error models is given in Arellano-Valle et al. (2005), and Lachos,
Montenegro and Bolfarine (2008) considered the model defined in (1.1) and (1.2)
with known intercept where the true value of the covariate follows a skew-normal
distribution and discussed the maximum likelihood estimation, as well as the in-
fluence diagnostics analysis. In this paper we extend the model defined in Lachos,
Montenegro and Bolfarine (2008) for a multivariate context.

The skew-normal distribution represents a superset of the normal family and has
a shape parameter that defines the direction of the asymmetry of the distribution.
Motivation for using such general structures include easiness of interpretation, as
well as estimation efficiency and the most important fact is that there are many
real datasets presenting clear indication of skewness in diverse areas, such as engi-
neering, medicine, psychology and agriculture, among others (Genton, 2004). Al-
though the idea of modeling a parametric class of asymmetric distributions which
are analytically tractable and that can accommodate practical values of skewness
and kurtosis, including the normal distribution, was proposed in the literature for a
long time, it was Azzalini (1985) who thoroughly set the foundations for the uni-
variate skew-normal distribution. An extension to the multivariate setting was pro-
posed by Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999) em-
phasized the statistical applications of the multivariate skew-normal distribution.
Generalizations of these ideas have been proposed by many authors. For example,
skew-t distributions (Azzalini and Capitanio, 2003); skew-elliptical distributions
(Branco and Dey, 2001); and fundamental skew distributions (Arellano-Valle and
Genton, 2005). The book edited by Genton (2004) presents a recent overview of
the skewed distributions including many real problems.

Despite the interesting properties of the skew-normal distribution, it is well
known that when the “direct parameterizations”—as defined in Azzalini (1985) and
Azzalini and Capitanio (1999)—is used, the Fisher information matrix is singular
for λ = 0. Pewsey (2000) discuss the problem of maximization of the direct param-
eterizations of the model defined in Azzalini (1985) and Azzalini and Capitanio
(1999). Sartori (2006) proposed the use of a modified score function as an estimat-
ing equation for the shape parameter to avoid the problem of finding the maximum
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likelihood (ML) of the shape parameter to be infinity with positive probability for
moderate sample sizes. Liseo and Loperfido (2006) proposed different methods to
deal with the problem of the shape parameter from a Bayesian perspective. Re-
cently, Loperfido (2010) deals with this problem in the multivariate setting and
proposed a canonical transformation to circumvent the problem, being based on
the maximizing sample skewness. However, this methodology is hard to be applied
in complicated models as is the case of our proposed model. We would like to call
attention to the fact that this problem is only confined to the shape parameter and
this rarely appears in practice in a multivariate context.

Hadgu and Koch (1999) analyzed a clinical dataset where 105 volunteers with
preexisting dental plaque were randomized to two experimental mouth rinses
(A and B) or a control mouth rinse with double blinding and evaluated with respect
to the dental plaque index at baseline, after three months and after six months from
the baseline with the use of the corresponding mouth rinses (A, B or control C).
The dental plaque was scored by the Turesky modification of the Quingley–Hein
index (Turesky, Gilmore and Glickman, 1970), a continuous measurement. As the
measurements are subject to measurement error, Aoki et al. (2003) proposed the
use of the measurement error model. In addition, hence the plaque index was col-
lected at baseline and two followup times, to incorporate a possible within sub-
jects correlation structure, the structural model where the true unobserved value
of the covariate follows a normal distribution was considered. No intercept were
included in the proposed model, since null dental plaque index at baseline imply
null expected post test values after the use of each mouth rinse, that is, the dental
plaque index should not increase after the use of each mouth rinse. The proposed
model was given by

xi = ξ i + δi , (1.3)

y1,i = β1,iξ i + ε1,i , (1.4)

y2,i = β2,iξ i + ε2,i , i = 1, . . . , p, (1.5)

where x�
i = (xi1, . . . , xini

), y�
k,i = (yk,i1, . . . , yk,ini

), ξ�
i = (ξi1, . . . , ξini

), δ�
i =

(δi1, . . . , δini
), ε�

k,i = (εk,i1, . . . , εk,ini
), with δij

iid∼ N(0, σ 2
δ ), εk,ij

ind∼ N(0, σ 2
i ),

δij and εk,ij not correlated and independent of ξij
iid∼ N(μx,σ

2
x ), k = 1,2, i =

1, . . . , p, j = 1, . . . , ni . Considering the clinical trial, we have i = 1,2,3 repre-
senting the mouth rinse type: control, A and B, respectively, k = 1 (2) represents
the plaque index after three (six) months from the baseline, so that y1,ij (k = 1)

and y2,ij (k = 2) represents, respectively, the observed plaque index after three
months and after six months from the beginning of the study, with the use of the
mouth rinse i for the subject j and βk,i stands for the (unknown) slopes, while xij

represents the observed plaque index at baseline for the j th subject that used the
ith mouth rinse and ξij the corresponding unobserved real plaque index at base-
line. The parameters of interest are βk,i , k = 1,2, i = 1,2,3, as it represents the
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dental plaque reduction after three (k = 1) and after six (k = 2) months from the
baseline, with the use of the ith mouth rinse.

A generalization of that proposed model can be considered with ξij follow-
ing a skew normal distribution, which is a class of distributions which includes
the normal distribution as a special case. The asymmetry parameter of the skew
normal distribution incorporates skewness in the latent variable ξij and conse-
quently in the observed quantities. If this parameter is set to 0, then the asym-
metric model reduces to the normal model. So we are introducing more flexi-
bility to the model to make it capable of adapting as closely as possible to the
real data. Let yi = (y�

1,i ,y�
2,i)

� represent the observed values of the response vari-
ables, here we extend it by considering that yi is given by yi = (y�

1,i , . . . ,y�
m,i)

�,
rather than yi = (y�

1,i ,y�
2,i)

� as was defined in Aoki et al. (2003). Inspired by
the work of Lachos, Montenegro and Bolfarine (2008), who considered the case
in which m = 1, in this paper we consider the study of inference and the local
influence analysis in the multivariate null intercept measurement error regres-
sion model with the assumption that the unknown quantity ξij (latent variable)
follows a univariate skew-normal distribution, implying that the observed vector
zi = (x�

i ,y�
1,i , . . . ,y�

m,i)
�, i = 1, . . . , p, follows a multivariate skew-normal dis-

tribution (Arellano-Valle et al., 2005).
On the other hand, influence diagnostics is an important step in the analysis of a

dataset, as it provides us indication of bad model fitting or influential observations.
This analysis has received a great deal of attention since the paper by Cook (1977).
Typically the analysis is based on the case-weight perturbation scheme where the
case (observation) is either deleted or retained. Cook (1986) proposed a method
to assess the local influence of minor perturbations of a statistical model. Since
then several papers have been written with respect to the local influence approach
which is considered by some authors in measurement error regression models.
Aoki, Singer and Bolfarine (2007) considered the local influence diagnostic for
the null intercept measurement error model defined in Aoki, Bolfarine and Singer
(2001). More recently, Lachos, Montenegro and Bolfarine (2008) applied the lo-
cal influence method in the skew-normal null intercept measurement error model
without a longitudinal structure, that is, m = 1 (the univariate case). Here, we ex-
tend those results to a model that allows the longitudinal structure (the multivariate
case).

The paper is organized as follows. In Section 2 the multivariate null inter-
cept measurement error model under the skew-normal distribution is defined
(SN-MEM, hereafter). The EM-algorithm to obtain the maximum likelihood es-
timates of the parameters and an EM-type algorithm for evaluating the restricted
maximum likelihood estimates under equality constraints on the regression coef-
ficients are presented. The latter will be used to obtain the score and the likeli-
hood ratio test statistics to test the hypotheses of interest. Section 3 contains the
main concepts of local influence and the related concepts of diagnostics. Consider-
ing various perturbation schemes and the model proposed in Section 2, we derive
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the appropriate matrices to assess the normal curvature and to construct influence
graphs that provide us an indication of bad model fitting or of influential observa-
tions. Finally, in Section 4 applications of the results and methods are illustrated
with a numerical example and in Section 5 some final conclusions are discussed.

2 The skew-normal multivariate null intercept measurement error
model and the hypotheses testing

To better motivate our proposed methodology, we give a brief introduction of the
multivariate SN distribution. We say that a k × 1 random vector Y follows a SN-
distribution with k × 1 location vector μ, k × k positive definite dispersion matrix
� and k × 1 skewness parameter vector λ, and write Y ∼ SNk(μ,�,λ), if its
probability density function (pdf) is given by

f (y) = 2φk(y;μ,�)�
(
λ��−1/2(y − μ)

)
, (2.1)

where φk(·;μ,�) stands for the pdf of the k-variate normal distribution with mean
vector μ and covariance matrix � , Nk(μ,�) say, and �(·) is the cumulative
distribution function (cdf) of the standard univariate normal and �1/2 satisfies
�1/2�1/2 = � . Note that for λ = 0 (2.1) reduces to the symmetric Nk(μ,�)-
pdf, while for nonzero values of λ, it produces a perturbed (asymmetric) family
of Nk(μ,�)-pdf’s. Except for a straightforward difference in the parametrization
considered in (2.1), this model corresponds to that introduced by Azzalini and
Dalla Valle (1996), with properties extensively studied in Arellano-Valle and Gen-
ton (2005) and Arellano-Valle, Bolfarine and Lachos (2005). An interesting result,
due to Arellano-Valle and Genton (2005), is the marginal stochastic representation
of a SN random vector with pdf (2.1), which is given by

Y d= μ + �1/2(
δ|T0| + (Ik − δδ�)1/2T1

)
, with δ = λ√

1 + λ�λ
, (2.2)

where T0 ∼ N1(0,1) and T1 ∼ Nk(0, Ik) are independent, with Ik denoting an

identity matrix of order k and “ d=” meaning “distributed as.”

2.1 The model

A generalization of the model defined in (1.3), (1.4) and (1.5) may be obtained by
considering

xij = ξij + δij , (2.3)

yk,ij = βk,iξij + εk,ij , (2.4)

k = 1, . . . ,m, i = 1, . . . , p, j = 1, . . . , ni , where for the unobserved random vari-
ables ξij , δij and εk,ij it is assumed that they are independent for all i, j , k, with

ξij
iid∼ SN(μx, σ

2
x , λx), δij

iid∼ N(0, σ 2
δ ) and εk,ij

ind∼ N(0, σ 2
i ). (2.5)
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The above model considers, for instance, that in the case of the Hadgu and Koch
(1999) dataset the dental plaque index may not be symmetrically distributed in
the population. On the other hand, the errors are related to measurement errors
so that it is expected to be normally distributed. If λx = 0, then the asymmetric
model reduces to the multivariate normal null intercept measurement error model
(N-MEM), so this construction allows a continuous variation from normality to
nonnormality.

Let zij = (xij , y1,ij , . . . , ym,ij )
� be the vector of observations for the j th sub-

ject in the ith group, then from Arellano-Valle et al. (2005)—see also Lachos,
Montenegro and Bolfarine (2008)—it follows that

zij
ind∼ SNm+1(μi ,�i , λ̄i ), i = 1, . . . , p, j = 1, . . . , ni, i.e.,

fZij
(zij ) = 2φm+1(zij ;μi ,�i )�1

(
λ̄�

i �
−1/2
i (zij − μi )

)
, (2.6)

where μi = β0iμx,�i = D(φi ) + σ 2
x β0iβ

�
0i , λ̄i = λxσ

2
x �

−1/2
i β0i/

√
σ 2

x + λ2
x�i,

with β0i = (1,β�
i )�, βi = (β1,i , . . . , βm,i)

�, φi = (σ 2
δ , σ 2

i , . . . , σ 2
i )� and �i =

σ 2
x /(1 + σ 2

x β�
0iD

−1(φi )β0i ).

It follows that the log-likelihood function for θ = (β�,σ 2�
, σ 2

δ ,μx, σ
2
x , λx)

� ∈
R

(m+1)p+4, with β = (β�
1 , . . . ,β�

p )� and σ 2 = (σ 2
1 , . . . , σ 2

p)�, given the observed
sample z = (z�

11, . . . , z�
1n1

, . . . , z�
p1, . . . , z�

pnp
)� is given by

(θ) =
p∑

i=1

ni∑
j=1

ij (θ), (2.7)

ij (θ) = log(2) − (m + 1)

2
log(2π) − 1

2
log |�i | − 1

2
gij + log(Kij ), (2.8)

with gij = (zij − μi )
��−1

i (zij − μi ),Kij = �1(λ̄
�
i �

−1/2
i (zij − μi )) and μi ,

�i , λ̄i as in (2.6). The score function and the observed information matrix are
given in Appendix A and Appendix B, respectively. These derivatives can be used
to obtain the asymptotic confidence intervals and also to test the hypotheses of in-
terest. Note that algorithms such as Newton–Raphson (NR) can be implemented
using these results. An oft-voiced complaint of the NR algorithm is that it may not
converge unless good starting values are used. The EM algorithm (Dempster, Laird
and Rubin, 1977), which takes advantage of being insensitive to the starting values
is a powerful computational tool that requires the construction of unobserved data.
It has been well developed and has become a broadly applicable approach to the
iterative computation of ML estimates. One of the major reasons for the popular-
ity of the EM algorithm is that the M-step involves only the complete data ML
estimation, which is often computationally simple. Moreover, the EM algorithm
is stable and straightforward to implement since the iterations converge monoton-
ically and no second derivatives are required. In the next subsections we discuss
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the unrestricted and the restricted estimation of the parameters based on the EM
algorithm, as well as the hypotheses testing of interest. First, note from (2.2) that

zij |ξij
ind∼ Nm+1(β0iξij ,D(φi )), (2.9)

ξij |Tij = tij
ind∼ N1

(
μx + σxδxtij , σ

2
x (1 − δ2

x)
)
, (2.10)

Tij
iid∼ HN1(0,1), (2.11)

i = 1, . . . , p, j = 1, . . . , ni , all independent, where HN1(0,1) denote the stan-
dardized univariate half-normal distribution and δx = λx/(1 + λ2

x)
1/2.

2.2 Maximum likelihood estimation

In this subsection we summarize the E-step and the M-step of the EM algorithm
to obtain the maximum likelihood estimates of the parameters. From Arellano-
Valle et al. (2005)—see also Lachos, Montenegro and Bolfarine (2008)—and con-
sidering the hierarchical representation (2.9)–(2.11) with υ2 = σ 2

x (1 − δ2
x) and

τ = φ
1/2
x δx , we can obtain the E-step and the M-step as follows.

E-step. Given θ = θ̂ compute

t̂ij = E[Tij |θ = θ̂ , zij ] = μ̂Tij
+ W�1

(
μ̂Tij

N̂T i

)
N̂T i, (2.12)

t̂2
ij = E[T 2

ij |θ = θ̂ , zij ] = μ̂2
Tij

+ N̂2
T i + W�1

(
μ̂Tij

N̂T i

)
N̂T iμ̂Tij

,

ξ̂ij = E[ξij |θ = θ̂ , zij ] = ĉij + d̂i t̂ij ,

ξ̂2
ij = E[ξ2

ij |θ = θ̂ , zij ] = M̂2
i + ĉ 2

ij + 2ĉij d̂i t̂ij + d̂2
i t̂2

ij and

t̂ ξ ij = Etij ,ξij
[Tij ξij |θ = θ̂ , zij ] = ĉij t̂ij + d̂i t̂

2
ij ,

where zij = (xij , y1,ij , . . . , ym,ij )
�, i = 1, . . . , p, j = 1, . . . , ni , W�1(u) =

φ1(u)/�1(u), N̂2
T i = [1 + τ̂ 2β̂

�
0i (D(φ̂i ) + υ̂2β̂0i β̂

�
0i )

−1β̂0i]−1, μ̂Tij
= τ̂ N̂2

T i β̂
�
0i ×

(D(φ̂i ) + υ̂2β̂0i β̂
�
0i )

−1(zij − β̂0i μ̂x), M̂ 2
i = υ̂2[1 + υ̂2β̂

�
0iD

−1(φ̂i )β̂0i]−1, ĉij =
μ̂x + M̂ 2

i β̂
�
0iD

−1(φ̂i )(zij − β̂0i μ̂x), d̂i = τ̂ (1 − M̂ 2
i β̂

�
0iD

−1(φ̂i )β̂0i ) and N =∑p
i=1 ni .

M-step. Update θ̂

β̂k,i =
∑ni

j=1 yk,ij ξ̂ij∑ni

j=1 ξ̂2
ij

, k = 1, . . . ,m, i = 1, . . . , p,
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σ̂ 2
i = 1

mni

(
m∑

k=1

ni∑
j=1

y2
k,ij −

∑m
k=1(

∑ni

j=1 yk,ij ξ̂ij )
2∑ni

j=1 ξ̂2
ij

)
, i = 1, . . . , p,

σ̂ 2
δ = 1

N

p∑
i=1

ni∑
j=1

(x2
ij − 2xij ξ̂ij + ξ̂2

ij ), τ̂ =
∑p

i=1
∑ni

j=1(t̂ξ ij − μxt̂ij )∑p
i=1

∑ni

j=1 t̂2
ij

,

μ̂x =
∑p

i=1
∑ni

j=1 ξ̂ij

∑p
i=1

∑ni

j=1 t̂2
ij − ∑p

i=1
∑ni

j=1 t̂ ξ ij

∑p
i=1

∑ni

j=1 t̂ij

N
∑p

i=1
∑ni

j=1 t̂2
ij − (

∑p
i=1

∑ni

j=1 t̂ij )2
and

υ̂2 = 1

N

p∑
i=1

ni∑
j=1

(̂ξ2
ij + μ2

x + τ 2 t̂2
ij − 2μxξ̂ij − 2τ t̂ξ ij + 2τμx t̂ij ). (2.13)

In our case the obtention of the maximum likelihood estimate considering the EM
algorithm is straightforward, as we have closed-form expressions for all the param-
eters. The shape and scale parameters of the latent variable, ξ , can be estimated by
noting that λx = τ/υ and σ 2

x = τ 2 + υ2. Starting values are often chosen to be the
corresponding estimates under a normal assumption, with λx = 3 (or λx = −3)
if the data present positive (negative) skewness, which can be depicted by look-
ing at a data histogram. As recommended in the literature, it is useful to run the
EM-algorithm several times with different starting values. Inspection of informa-
tion criteria such as Akaike Information Criterion (AIC, −(̂θ) + P ), Schwarz’s
Bayesian Information Criterion (BIC, −(̂θ) + 0.5 log(mN)P ), and the Hannan–
Quinn Criterion (HQ, −(̂θ) + log(log(mN))P ), where P is the number of free
parameters in the model and N = ∑p

i=1 ni , can be used in practice to select be-
tween N-MEM and SN-MEM fits. Next, we discuss the hypotheses testing of in-
terest and the EM-algorithm for evaluating the restricted MLE in the SN-MEM
with especial emphasis in the slope parameters.

2.3 Hypotheses testing and restricted estimation

Let I = [∑p
i=1

ni

N
E(Jij (θ))], where N = ∑p

i=1 ni and Jij (θ) as presented in (Ap-
pendix B, equation (A.2)). Then under regularity conditions, Bradley and Gart
(1962) show that

√
N(θ̂ − θ0) → N(0, I−1), with θ0 denoting the true parameter

vector. However, in complex models as in the case here, the use of the observed
information matrix Ĵ = 1

N
[∑p

i=1
∑ni

j=1(Jij (θ)) |θ=θ̂ ] in place of I, with θ̂ denot-
ing the MLE of θ , is preferable (Pawitan, 2001). In the context of dental clinical
trial the main interest was to test if the experimental mouth rinses A and B are
more efficient than the control mouth rinse C after three and after six months
from the baseline leading to the following testing hypotheses: H01 :βk,1 = βk,2
and H02 :βk,1 = βk,3, k = 1,2, since βk,i represents the dental plaque reduction
rate after three (k = 1) and after six (k = 2) months from the beginning of the
study with the use of the ith mouth rinse (control i = 1, A (i = 2) or B (i = 3)).
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Another question of interest was to know if the experimental mouth rinses A and
B were long lasting, that is, H03 :β1,2 = β2,2 and H04 :β1,3 = β2,3, respectively.
Next, we conduct inference regarding the regression coefficients β .

To test the hypothesis of interest, H01, H02, H03 and H04, we may consider the
likelihood ratio (LR), score (SR) or Wald (W ) test statistics. These tests are par-
ticulary useful when the parameter space is multidimensional and they are asymp-
totically equivalent under the null hypothesis. Let θ̂ and θ̃ be the ML estimates
of θ ∈ R

mp+p+4 under the unrestricted model and under the null hypothesis, re-
spectively. We notice that the hypothesis of interest can be written as H0 : Cβ = d,

where C is a q ×mp dimensional matrix with rank(C) = q ≤ mp and d is a q × 1,
known vector. Thus, the statistics LR, SR and W (Sen and Singer, 1993; Cox, 2006)
can be written as

LR = 2[(̂θ) − (̃θ)], SR = [Uβ (̃θ)]�[J−1
ββ (̃θ)][Uβ (̃θ)]

and

W = [Cβ̂ − d]�[CJ−1
ββ (θ̂)C�]−1[Cβ̂ − d],

where (θ) is the log-likelihood function, Uβ and J−1
ββ corresponds to the partition

of U(θ) and J(θ) (see Appendix A and Appendix B, respectively) as

U(θ) = (U�
β ,U�

θ−β)� and J−1(θ) =
[

J−1
ββ J−1

β,θ−β

J−1
θ−β,β J−1

θ−β,θ−β

]
,

with θ − β = (σ 2
1 , . . . , σ 2

p, σ 2
δ ,μx, σ

2
x , λx)

� and β = (β�
1 , . . . ,β�

p )�. Under the
null hypothesis, the three statistics follow asymptotically a chi-square distribution
with q degrees of freedom (χ2

q ).
The EM algorithm for estimating the parameters of the model (2.3), (2.4) and

(2.5) under the restriction Cβ = d, denoted by θ̃c, follows the same procedures
given in (2.12)–(2.13), replacing β̂ by β̃c in the M-step of the algorithm.

β̃
(r+1)

c = (
�(r)

x

)−1
δ(r)
xy + (

�(r)
x

)−1C�[
C

(
�(r)

x

)−1C�]−1[
d − C

(
�(r)

x

)−1
δ(r)
xy

]
= β̂

(r) + (
�(r)

x

)−1C�[
C�(r)

x

−1
C�]−1[

d − Cβ̂
(r)]

(2.14)

for r = 0,1, . . . , where β̂
(r)

, δ(r)
xy and �(r)

x are obtained using the M-step given in
the unrestricted case. Note from (2.14) that the problem of testing linear inequality
hypotheses of the form H0 : Cβ − d ≥ 0 can easily be treated using conditions
given in Fahrmeir and Klinger (1994) which guarantee that β̃c corresponds to the
inequality restricted estimate.

3 Local influence

Case deletion is a common way to assess the effect of an observation on the esti-
mation process. This is a global influence analysis, since the effect of the obser-
vation is evaluated by eliminating it from the dataset. The work of Cook (1986),
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laid the foundation for assessing local influence of a group of observations when
a minor perturbation is made in the statistical model or in the dataset. Based on
his proposal many papers have been written on the subject. In his seminal pa-
per, Cook (1986) shows that the normal curvature for θ ∈ R

mp+p+4 in the di-
rection of d ∈ R

q , ‖d‖ = 1 is given by Cd = 2|d���J−1�d|, where J is the
observed information matrix and � is the (mp + p + 4) × q matrix with ele-
ments �rs = ∂2(θ |ω)/∂θr ∂ωs , both evaluated at θ = θ̂ and ω = ωo (postulated
model), with (θ |ω) denoting the log-likelihood function of the perturbed model,
r = 1, . . . , (mp + p + 4), s = 1, . . . , q . The suggestion is to pick the direction
dmax corresponding to the largest curvature Cmax. The index plot of dmax may re-
veal how to perturb the model (or data) to obtain large changes in the estimate
of θ . For a more detailed information, we refer the reader to the work of Lachos,
Montenegro and Bolfarine (2008) and the references therein.

Another important direction, according to Escobar and Meeker (1992), is l = ek ,
a N × 1 vector of zeros with a one in the kth position. In that case, the normal
curvature called the total local influence of subject k, is given by Cek

= 2|e�
k Bek| =

2|bkk|, where bkk is the kth diagonal element of B = ��J−1�, k = 1, . . . ,N . In
the case of the SN-MEM we have that N = ∑p

i=1 ni .
In order to compare local and global influence, we may use the Cook’s distance

(Dij ) and the likelihood displacement (LDij ), which are defined, respectively, as

Dij = (
θ̂ (ij) − θ̂

)�J
(
θ̂ (ij) − θ̂

)
/(mp + p + 4),

LDij = 2
[
l(̂θ) − l

(
θ̂ (ij)

)]
,

for i = 1, . . . , p, j = 1, . . . , ni , where θ̂ (ij) denotes the ML estimates without the
case ij .

3.1 Curvature derivation for SN-MEM

In order to obtain the normal curvature we derive the � matrix in closed-form
expressions for different perturbation schemes.

Case weight perturbation. The logarithm of the likelihood function is given
by (2.7), where ij (θ) is the contribution of the ij th observation (equally weighted)
to the likelihood, i = 1, . . . , p, j = 1, . . . , ni . A perturbed log-likelihood func-
tion—allowing different weights for different observations—can be defined by

(θ |ω) =
p∑

i=1

ni∑
j=1

ωij ij (θ), (3.1)

where, θ = (β,σ 2, σ 2
δ ,μx, σ

2
x , λx)

� and ω = (ω11, . . . ,ω1n1, . . . ,ωp1, . . . ,ωpnp)�.
ω is the vector of weights corresponding to the contribution of each observa-
tion to the likelihood and ω0 = 1N = (1, . . . ,1)� (no perturbation vector), with



Measurement error models 155

N = ∑p
i=1 ni . This perturbation scheme is intended to evaluate whether the con-

tribution of the observations with differing weights affect the maximum likelihood
estimate of θ and it is the most commonly used method to evaluate the influence of
a small modification in the model. Thus, using (3.1) it follows after some algebraic
manipulation that the delta matrix is given by

� = (�11(θ), . . . ,�1n1(θ), . . . ,�p1(θ), . . . ,�pnp(θ)), (3.2)

where, �ij = ∂ij (θ)

∂θ , i = 1, . . . , p, j = 1, . . . , ni , with individual elements given

in Appendix A. The above � matrix is to be evaluated at θ̂ .

Response variables perturbation. In this case, our interest is to detect the sensi-
tivity of the model when yk,ij is perturbed. The perturbation considered here, is
given by

yk,ij (ωij ) = yk,ij + Skωij ,

where Sk is a sequence of scale factors S1, . . . , Sm, which can be taken, for ex-
ample, as the sample standard deviation of the observations indexed by k and
ω = (ω11, . . . , ω1n1, . . . , ωp1, . . . , ωpnp)�. The no perturbation case follows by
taking ω0 = 0 and the perturbed log-likelihood function can be obtained from (2.7)
with yk,ij replaced by yk,ij (ωij ), i = 1, . . . , p, j = 1, . . . , ni. Then

(θ |ω) =
p∑

i=1

ni∑
j=1

ij (θ |ωij ), (3.3)

where ij (θ |ωij ) ∝ −1
2 log |�i | − 1

2gij (ωij ) + log(Kij (ωij )) with gij (ωij ) =
(zij (ωij ) − μi )

��−1
i (zij (ωij ) − μi ), and Kij (ωij ) = �1(Aiaij (ωij )) with

aij (ωij ) = (zij (ωij ) − μi )
�D−1(φi )β0i .

Differentiating (θ |ω) with respect to ω and θ leads to � as defined in (3.2),
where

�ij (θ) = −∂Pij (ωij )

∂θ
+ W�1(Aiaij (ωij ))

[
∂Ai

∂θ
Qij (ωij ) + Ai

∂Qij (ωij )

∂θ

]
+ AiW

′
�1

(Aiaij (ωj ))Qij (ωij )

[
Ai

∂aij (ωij )

∂θ
+ aij (ωij )

∂Ai

∂θ

]
, (3.4)

with Pij (ωij ) = (zij (ωij ) − μi )
��−1

i d, Qij (ωij ) = d�D−1(φi )β0i , W�1(u) =
φ1(u)/�1(u), W ′

�1
(u) = −W�1(u)(u+W�1(u)), u ∈ R, d = ∂zij (ωij )

∂ωij
= (d1,d�

2 )�

a (m + 1) × 1 vector and ∂aij (ωij )

∂θ is as in the unperturbed case, replacing zij =
(xij , y1,ij , . . . , ym,ij )

� by zij (ωij ) = (xij , y1,ij + S1ωij , . . . , ym,ij + Smωij )
�, i =

1, . . . , p, j = 1, . . . , ni .
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The expressions for ∂Pij (ωij )

∂θ evaluated at ωo = 0 is given by

∂Pij (ωij )

∂βi

= − 1

σ 2
i

d2 + 2
�2

i

σ 2
i

aijβiβ
�
0iD

−1(φi )d

− �i

σ 2
i

[(W2ij − μxβi )β
�
0iD

−1(φi )d + aij d2],

∂Pij (ωij )

∂σ 2
i

= − 1

σ 4
i

W�
2ij d2 − �2

i

σ 4
i

aijβ
�
0iD

−1(φi )d

+ �i

σ 4
i

[W�
2ijβiβ

�
0iD

−1(φi )d + aijβ
�
i d2],

∂Pij (ωij )

∂σ 2
δ

= − d1

σ 4
δ

W1ij − �2
i

σ 4
δ

aijβ
�
0iD

−1(φi )d

+ �i

σ 4
δ

[W1ijβ
�
0iD

−1(φi )d + aij d1],

∂Pij (ωij )

∂μx

= −β�
0i�

−1
i d,

∂Pij (ωij )

∂σ 2
x

= −c−2
i aijβ

�
0iD

−1(φi )d,

∂Pij (ωij )

∂λx

= 0,

where W1ij = xij − μx , W2ij = Yij (ωij ) − βiμx , d1 = 0 and d2 = S, with
Yij (ωij ) = (y1,ij + S1ωij , . . . , ym,ij + Smωij )

�, i = 1, . . . , p, j = 1, . . . , ni and

S = (S1, . . . , Sm)�. Then Qij (ωij ) = 1
σ 2

i

S�βi . The vector ∂aij (ωij )

∂θ is as given in

the unperturbed case and can be found in Appendix A. The ∂Ai

∂θ can also be found
in the Appendix A.

Explanatory variable perturbation. If we are interested in investigating the sensi-
tivity of minor perturbation in the explanatory variable, we can define for example,
the following perturbation scheme for the explanatory variable, in the same way
that was defined for the response variable

Xij (ωij ) = xij + ωij .

The perturbed log-likelihood follows from (3.3) with xij replaced by Xij (ωij )

and yk,ij (ωij ) replaced by yk,ij , i = 1, . . . , p, j = 1, . . . , ni . As in the re-
sponse variables perturbation scheme, ω = (ω11, . . . ,ω1n1, . . . ,ωp1, . . . ,ωpnp)�,
ωo = 0 and the � matrix is as given in (3.2), with �ij as given in (3.4) re-
placing zij (ωij ) = (xij , y1,ij + S1ωij , . . . , ym,ij + Smωij )

� by zij (ωij ) = (xij +
ωij , y1,ij , . . . , ym,ij )

�. In this case d1 = 1 and d2 = 0m, which leads to
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Qij (ωij ) = 1
σ 2

δ

. The expressions for ∂Pij (ωij )

∂θ evaluated at ωo = 0 are the same

as given in the response variables perturbation scheme, noting that W1ij =
xij + ωij − μx , W2ij = yij − βiμx and d = (1,0�

m)�.

4 Application

In this section, we apply the methodology discussed in this work to a real dataset
analyzed in Hadgu and Koch (1999) using generalized estimating equations.
The dataset and the objective of the study was respectively described in the In-
troduction and Section 2.3. In Lachos, Montenegro and Bolfarine (2008) a part of
this dataset was analyzed considering the skew-normal distribution and in Aoki
et al. (2003), this dataset was analyzed considering the normal model from a
Bayesian perspective. To compare the symmetric and the asymmetric model to fit
this dataset, the ML estimates of the parameters of the model were obtained for the
SN-MEM and N-MEM. The results are presented in Table 1. As can be seen, the
estimate of the parameters for the two models are close, except for the estimates
of μx and σ 2

x . Moreover, clearly, the values of βij which is less than 1 indicates

Table 1 Results of fitting SN-MEM and N-MEM to the dental plaque index dataset. CI represents
the 95% confidence interval based on the normal approximation of the ML estimates. PCI is the 95%
confidence interval based on the profile likelihood. SE represents the estimated asymptotic standard
errors based on the observed information matrix given in Appendix B

SN-MEM N-MEM

Parameter Estimate SE CI PCI Estimate SE

β1,1 0.7020 0.0339 [0.635; 0.768] [0.643; 0.769] 0.7021 0.0340
β1,2 0.5239 0.0441 [0.437; 0.610] [0.434; 0.615] 0.5241 0.0442
β1,3 0.5088 0.0317 [0.447; 0.571] [0.443; 0.574] 0.5087 0.0317
β2,1 0.6857 0.0339 [0.619; 0.752] [0.616; 0.755] 0.6859 0.0340
β2,2 0.5016 0.0441 [0.415; 0.588] [0.411; 0.589] 0.5017 0.0441
β2,3 0.4139 0.0317 [0.352; 0.476] [0.349; 0.479] 0.4139 0.0317
σ 2

1 0.2746 0.0460 [0.184; 0.365] [0.200; 0.393] 0.2739 0.0461

σ 2
2 0.4306 0.0752 [0.283; 0.578] [0.309; 0.627] 0.4308 0.0751

σ 2
3 0.2257 0.0377 [0.152; 0.300] [0.164; 0.324] 0.2253 0.0380

σ 2
δ 0.0010 0.0154 [−0.029; 0.031] [0.001; 0.012] 0.0021 0.0210

μx 2.1082 0.0425 [2.025; 2.192] [2.010; 2.199] 2.5343 0.0325
σ 2
x 0.2907 0.0550 [0.183; 0.398] [0.208; 0.462] 0.1086 0.0210

λx 6.1291 6.0782 [−5.784; 18.042] [3.431; 11.517] – –

log-likelihood −194.4457 −203.3778
AIC 1.9757 2.0512
BIC 2.1400 2.2029
HQ 2.0422 2.1127
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Figure 1 Dental plaque index dataset. Histogram of the observed covariate x (plaque-index at
baseline) superimposed by the estimated densities using skew-normal (solid) and normal distribution
(dashed).

dental plaque reduction. Note that the estimated standard deviation for λx seems
to be large, but AIC, BIC and HQ values shown in the bottom of the Table 1 seem
to favor SN-MEM over N-MEM, supporting the contention of the departure from
normality. This conclusion is also supported by the results from the likelihood ratio
test for H0 :λx = 0 (LR = 17.8642, p-value � 0) and also graphically by Figure 1.
Nevertheless, a nominally 95% symmetric confidence interval for λx , calculated
using the (very large) estimated standard deviation of 6.0782 and large-sample nor-
mal approximation, was found to be (−5.8,18.0), in clear disagreement with the
previously quoted results. However, as noted in simulation studies conducted by
the authors, it appears to indicate that Wald type statistics based on the asymptotic
covariance matrix, estimated using the observed information matrix, is typically
less powerful at detecting skewness than the likelihood ratio statistic. To over-
come this problem we have also constructed the profile confidence interval (PCI)
as suggested by Meeker and Escobar (1995) and Pawitan (2001), among others.
This interval was found to be (3.45,11,55), indicating the presence of asymme-
try (Table 1 and Figure 2). Alternatively, in Aoki, Pinto and Achcar (2006) it was
considered a model where the true value of the covariate follows a mixture of two
normal distributions in order to model the asymmetry displayed by the data.

The primary purpose of the experiment was to compare the efficiency of the two
experimental mouth rinses, A and B, with the control mouth rinse C, namely, we
are interested in comparing the slope parameters βk,2 and βk,3 with respect to βk,1,
k = 1,2. Considering the hypothesi of interest H01 :β1,1 = β1,2 (H01 :β1,1 = β1,3),
the value of the test statistics were given by LR = 10.7836, W = 10.2624 and SR =
12.6282 (LR = 17.4729, W = 17.2691 and SR = 21.8584) which corresponds to a
p-values around zero and for the hypothesis H02 :β2,1 = β2,2 (H02 :β2,1 = β2,3),
the value of the test statistics were given by LR = 11.5355, W = 10.9701 and
SR = 13.6127 (LR = 34.5931, W = 34.2282 and SR = 51.8797). Considering
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Figure 2 Dental plaque index dataset. Likelihood ratio (LR) based on the profile likelihood:
(a) β1,2; (b) β2,2; (c) σ 2

1 and (d) λx . The line in each graphic is the 95% limit (χ2
1 (0.95) = 3.84).

these results, we conclude that both experimental mouth rinses were more efficient
then the control mouth rinse in reducing the plaque index after three and after six
months. If we consider the hypotheses H03 :β1,2 = β2,2 and H04 :β1,3 = β2,3, we
obtain LR = 0.1288, W = 0.1287, SR = 0.1294 and LR = 4.4733, W = 4.4730,
SR = 5.0487, respectively. Thus, we fail to reject H03 and reject H04, which means
that the experimental mouth rinse B is long lasting. These conclusions are the same
as those obtained in Hadgu and Koch (1999) and Aoki et al. (2003). If we now con-
sider the hypothesis H05 :β1,1 = β2,1, β1,2 = β2,2, which corresponds to analyzing
whether the control mouth rinse C and the mouth rinse A reduce dental plaque at
the same rates over the entire clinical trial, we fail to reject it since LR = 0.2440,
W = 0.2439 and SR = 0.2440, which corresponds to p-values greater than 0.1.
The general conclusion is that the mouth rinse B is more effective for dental plaque
reduction.
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Next, we apply the diagnostic methods specified in Section 3 to the Hadgu and
Koch dataset. The index plots of lmax to assess the influence of the perturbation on
the ML estimate of the parameter vector θ are presented in Figures 3–5. Consider-
ing these graphs, the first 36 observations correspond to the observations obtained
by the volunteers who used the control mouth rinse C, the observations 37 through
69 correspond to those obtained using the experimental mouth rinse A, while the
last 36 observations correspond to those obtained using the experimental mouth
rinse B.

In Figure 3 we present the index plot of |lmax| and |Ck| under the case weight
perturbation. Based on this perturbation scheme and plot (a), we find that subjects
7, 19 and 26 of the control month rinse C and subjects 27 and 35 of B are the

Figure 3 Dental plaque index dataset. Index plot of (a) |lmax| and (b) Ck for the case weight
perturbation scheme. (—) and (· · ·) denotes the index plot for the SN-MEM and N-MEM, respectively.

Figure 4 Dental plaque index dataset. Index plot of (a) likelihood displacement LDk and
(b) Cook’s distance Dk . (—) and (· · ·) denotes the index plot for the SN-MEM and N-MEM, re-
spectively.
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Figure 5 Dental plaque index dataset. Perturbation of the responses variables. Index plot of
(a) |lmax| and (b) |Ck |. (—) and (· · ·) denotes the index plot for the SN-MEM and N-MEM, re-
spectively.

group of observations that may exert influence on θ̂ under the SN-MEM. These
volunteers are the ones with the smallest dental plaque index in the beginning
of the study and also they presented a reasonable reduction of the dental plaque
index after the use of the control mouth rinse C and experimental mouth rinse B,
respectively. Considering the plot (b), we notice that observations 7 and 19 of the
control mouth rinse are the most influential ones. In the plot (a) these observations
stands out less than the observation 26. However, in the plot (a) we are looking
for the group of observations that exert influence in the parameter estimates, while
in the plot (b) we are looking for the individuals that exert more influence alone.
Under the N-MEM the observations that corresponds to the subjects 6 of A and 21
of the month rinse B are jointly the most influential. The observation 6 of A is
the observation with the highest value of the dental plaque index in the beginning
of the study and it is also the one that stands out in the plot (b). Notice that the
observations which are influential considering these two models (SN-MEM and
N-MEM) are not the same.

In order to compare with the result of local influence, in Figure 4 we present
some results of global influence, such as likelihood distance (LDk) and Cook’s
distance (Dk), k = 1, . . . ,N . Note that, (LDk) and (Dk) reveals subjects 6 and 16
of A as the most globally influential under the N-MEM and SN-MEM. These two
observations are the ones with the greatest value of the dental plaque index in the
beginning of the study. Also, these observations stands out more in the N-MEM
then in SN-MEM.

Under the perturbation of the response and explanatory variables we find that
the Clmax (̂θ) = 6.2178 and Clmax (̂θ) = 110.4162, respectively. Notice in Figure 5
that the observations corresponding to the control mouth rinse C stands out in
plot (a), which mean that they are jointly influential, however if we look at the
plot (b), we observe that these observations are not individually influent. When
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the explanatory variable perturbation is considered none observations are jointly
influential. Considering the plot of |Ck| we observe that subjects 20 of the month
rinse A and 30 and 32 of the month rinse B are the most influential, which are also
very different of the one under the N-MEM (22 of the control mouth rinse, 6 of the
mouth rinse A and 11 of the mouth rinse B) as expected, due to the asymmetric
distribution that we have considered.

5 Final conclusions

In this work we have treated the problem of estimation, hypotheses testing and
influence diagnostics to the multivariate null intercept measurement error model
under the skew-normal distribution. Parameter estimates are obtained via maxi-
mum likelihood considering the EM algorithm, yielding closed-form expressions
for the equations in the M-step. Hypotheses testing is approached by using likeli-
hood ratio, score and Wald statistics. Also, we derive the appropriate matrices to
evaluate the effect of a small perturbation in the model or the data and different
perturbation schemes are investigated. We applied the proposed methodology con-
sidering the real dataset analyzed previously in Hadgu and Koch (1999). The main
conclusion is that the skew-normal model presents a better fit and influent obser-
vations are different from those obtained when we consider the normal model.
The conclusions of the analysis of the dataset regarding the questions of interest
are the same in all of the considered models. In addition, as the dental plaque in-
dex is positive an alternative approach may be developed considering the paper
of Chen, Gupta and Troskie (2003), where the latent variable is considered to be
positive. Finally, we want to mention that this work extends the early results found
in Lachos, Montenegro and Bolfarine (2008) and Aoki et al. (2003).

Although the SN-MEM model considered in this article has shown great flex-
ibility in regulating skewness, its robustness against outliers could be seriously
affected by thick-tailed observations. Lachos, Ghosh and Arellano-Valle (2010)
recently proposed a remedy to accommodate skewness and heavy-tailedness si-
multaneously using scale mixtures of skew-normal (SMSN) distributions. We con-
jecture that the methodology presented in this article can be undertaken under a
multivariate setting of SMSN distributions and should yield satisfactory results in
certain situations, at the expense of additional complexity in its implementation.
Nevertheless, a deeper investigation of those modifications is beyond the scope of
the present article, but provides interesting topics for further research.

Appendix A: The score function

The score function is given by

U(θ) = ∂(θ)

∂θ
= ∂

∂θ

p∑
i=1

ni∑
j=1

lij (θ) =
((

ni∑
j=1

Uij (θ1)

)�
,

( p∑
i=1

ni∑
j=1

Uij (θ2)

)�)�
,
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with

Uij (θ1) = ∂ij (θ)

∂θ1
= (Uij (β1), . . . ,Uij (βp),Uij (σ

2
1 ), . . . ,Uij (σ

2
p))�,
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+ ∂logKij
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γ = β1, . . . ,βp, σ 2
1 , . . . , σ 2

p, σ 2
δ ,μx, σ

2
x , λx, i = 1, . . . , p, j = 1, . . . , ni. From

(2.6), we have after some algebraic manipulations that the expression of Kij

given in (2.7) can be written as Kij = �1(Aiaij ), with Ai = λx�i√
σ 2

x +λ2
x�i
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= (2ci + λ2
x − c2

i )

2c2
i λ

2
x�

2
i

A3
i and

∂Ai

∂λx

= σ 2
x

�2
i λ

3
x

A3
i , i = 1, . . . , p.
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(IV) ∂gij

∂γ equals zero for γ = λx and

∂gij

∂βi

= − 2

σ 2
i

[
μx(yij − βiμx) + σ 2

x

ci

aij (yij − 2β iμx) − σ 4
x

c2
i

bijβi

]
,

∂gij

∂σ 2
i

= − 1

σ 4
i

[
σ 4

x

c2
i

bijβ
�
i βi + (yij − βiμx)

�(yij − βiμx)

− 2σ 2
x aij

ci

β�
i (yij − βiμx)

]
,

∂gij

∂σ 2
δ

= − 1

σ 4
δ

[
σ 4

x bij

c2
i

+
(

1 − 2σ 2
x

ciσ
2
δ

)
(xij − μx)

2

− 2σ 2
x

ciσ
2
i

(xij − μx)[(yij − βiμx)
�βi]

]
,

∂gij

∂μx

= −2aij

ci

and
∂gij

∂σ 2
x

= −bij

c2
i

, i = 1, . . . , p, j = 1, . . . , ni.

Appendix B: The observed information matrix

The matrix of second derivatives with respect to θ is given by

J(θ) = ∂2(θ)

∂θ ∂θ� = ∂2

∂θ ∂θ�
p∑

i=1

ni∑
j=1

ij (θ)

=

⎛⎜⎜⎜⎜⎜⎝
ni∑

j=1

∂2ij (θ)

∂θ1 ∂θ�
1

∑ni

j=1
∂2ij (θ)

∂θ1 ∂θ�
2

ni∑
j=1

∂2ij (θ)

∂θ2 ∂θ�
1

∑p
i=1

∑ni

j=1
∂2ij (θ)

∂θ2 ∂θ�
2

⎞⎟⎟⎟⎟⎟⎠ ,

with θ1 = (β�
1 , . . . ,β�

p , σ 2
1 , . . . , σ 2

p)� and θ2 = (σ 2
δ ,μx, σ

2
x , λx). From (A.1) it

follows that the observed, per element, information matrix is given by

Jij (θ) = −
[
∂2ij (θ)

∂γ ∂τ�
]
, (A.2)

where

∂2ij (θ)

∂γ ∂τ� = −1

2

∂2log|�i |
∂γ ∂τ� − 1

2

∂2gij

∂γ ∂τ� + ∂2logKij

∂γ ∂τ� , with

∂2logKij

∂γ ∂τ� = W�1(Aiaij )

[
∂Ai

∂γ

∂aij

∂τ� + Ai

∂2aij

∂γ ∂τ� + ∂aij

∂γ

∂Ai

∂τ� + aij

∂2Ai

∂γ ∂τ�
]
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+ ��1(Aiaij )

[
Ai

∂aij

∂γ
+ aij

∂Ai

∂γ

][
Ai

∂aij

∂τ� + aij

∂Ai

∂τ�
]
,

��1(u) = W ′
�1

(u) = −W�1(u)(u + W�1(u)), u ∈ R, γ ,τ = β1, . . . ,

βp, σ 2
1 , . . . , σ 2

p, σ 2
δ ,μx, σ

2
x , λx . We also have that ∂2log|�i |

∂γ ∂τ = ∂2gij

∂γ ∂τ = ∂2aij

∂γ ∂τ =
∂2Ai

∂γ ∂τ = 0 for γ = βi and τ = β l or τ = σ 2
l , i = l, i, l = 1, . . . , p, γ = σ 2

i and

τ = σ 2
l , i = l, i, l = 1, . . . , p and for γ = μx and τ = λx . Also,

(I) ∂2log|�i |
∂γ ∂τ equals zero for γ = μx and τ = βi or τ = σ 2

i or τ = σ 2
δ or τ = μx

or τ = σ 2
x , γ = βi and τ = λx , γ = σ 2

i and τ = λx , γ = σ 2
δ and τ = λx , γ = σ 2

x

and τ = λx , γ = λx and τ = λx , i = 1, . . . , p,

∂2log|�i |
∂βi ∂βi

= 2σ 2
x

σ 2
i ci

(
Im − 2σ 2

x

ciσ
2
i

βiβ
�
i

)
,

∂2log|�i |
∂βi ∂σ 2

i

= − 2σ 2
x

ciσ
4
i

(
1 − σ 2

x

ciσ
2
i

[β�
i βi]

)
βi ,

∂2log|�i |
∂βi ∂σ 2

δ

= 2

σ 2
i

(
σ 2

x

ciσ
2
δ

)2

βi ,
∂2log|�i |
∂βi ∂σ 2

x

= 2

σ 2
i c2

i

βi ,

∂2log|�i |
∂σ 2

i ∂σ 2
δ

= −
(

σ 2
x

σ 2
δ σ 2

i ci

)2

[β�
i βi],

∂2log|�i |
∂σ 2

i ∂σ 2
i

= − 1

σ 4
i

[
p − σ 2

x

σ 2
i ci

(
2 − σ 2

x

σ 2
i ci

[β�
i βi]

)
[β�

i βi]
]
,

∂2log|�i |
∂σ 2

i ∂σ 2
x

= − 1

(ciσ
2
i )2

[β�
i βi],

∂2log|�i |
∂σ 2

δ ∂σ 2
δ

= − 1

σ 4
δ

[
1 − σ 2

x

ciσ
2
δ

(
2 − σ 2

x

ciσ
2
δ

)]
,

∂2log|�i |
∂σ 2

δ ∂σ 2
x

= − 1

(ciσ
2
δ )2

,

∂2log|�i |
∂σ 2

x ∂σ 2
x

= 1

σ 2
x ci

(
1

σ 2
x

+ 1

ci

β�
0iD

−1(φi )β0i

)
− 1

σ 4
x

, i = 1, . . . , p.

(II) ∂2gij

∂γ ∂τ equals zero for γ = βi and τ = λx , γ = σ 2
i and τ = λx , γ = σ 2

δ and

τ = λx , γ = σ 2
x and τ = λx , γ = λx and τ = λx , i = 1, . . . , p.

∂2gij

∂βi ∂βi

= −2μx

σ 2
i

(
2σ 2

x

aij

ci

− 1
)

Im

+ 2σ 2
x

σ 4
i

(
2σ 2

x

aij

c2
i

(yij − 2βiμx)β
� − 1

ci

(yij − 2βiμx)(yij − 2β iμx)
�
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− 4σ 4
x

bij

c3
i

βiβ
�
i + 2σ 2

x

aij

c2
i

βi (yij − 2β iμx)
�

)
,

∂2gij

∂βi ∂σ 2
i

= 2

σ 2
i

[
μx(yij − βiμx) + σ 2

x

aij

ci

(yij − 2βiμx) − σ 4
x

bij

c2
i

βi

+ σ 4
x

bij

2ci

(yij − 2βiμx)β
�
i βi − σ 2

x
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(yij−2βiμx)β
�
i (yij − βiμx)

− σ 6
x
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c3
i
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x
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,

∂2gij

∂βi ∂σ 2
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σ 2
i σ 4

δ
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σ 2

x
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(xij − μx) − σ 4
x

c2
i

aij
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(yij − 2βiμx)

+
(

σ 6
x

ci

bij − φ2
x
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i

aij (xij − μx)

)
βi

]
,

∂2gij

∂βi ∂μx
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1
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x
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∂βi ∂σ 2
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x
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]
,
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∂σ 2
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σ 4

x
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i
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�
i βi + (yij − βiμx)
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− 2σ 2
x aij
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β�
i (yij − βiμx)

]
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σ 8
i
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σ 6

x

bij

c3
i

β�
i βi − σ 4

x
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i

aijβ
�
i (yij − βiμx)

)
β�

i βi

−
(
σ 4

x

aij

c2
i

β�
i βi − 2σ 2

x (yij − βiμx)
�βi

)
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]
,

∂2gij

∂σ 2
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σ 4
i σ 4

δ
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σ 6

x
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x
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i
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i βi

+
(

σ 2
x
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∂2gij
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(III) ∂2aij

∂γ ∂τ equals zero for γ = μx and τ = μx or τ = σ 2
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δ and τ = σ 2
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(IV) ∂2Ai
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∂2Ai

∂λx ∂λx

= − 3σ 2
x

λ4
x�

2
i

A3
i + 3σ 4

x

λ6
x�

4
i

A5
i ,

with Bi , bij , β0i , β i , yij , zij , φi , μi , ci , aij ,W1ij and W2ij as given in Appendix A,
i = 1, . . . , p, j = 1, . . . , ni .
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