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On generalized multivariate analysis of variance

José A. Díaz-García
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Abstract. This work studies the behavior of certain test criteria in multi-
variate analysis of variance, under the existence of multiplicity in the sample
eigenvalues of the matrix S−1

E SH; where SH is the matrix of sum of squares
and sum of products due to the hypothesis and SE is the matrix of sum of
squares and sum of products due to the error.

1 Introduction

Consider the multivariate linear model

Y = XB + E,

where Y and E are n × m random matrices, X is a known n × p matrix, and
B is a unknown p × m of parameters termed regression coefficients. We shall
assume that X has rank r ≤ p, that n ≥ m + r , and that the rows of the error
matrix E are independent and identically distributed as multivariate normal with
mean vector zero and covariance matrix �, denoted as E(i) ∼ Nm(0,�) where
E′ = (E(1), . . . ,E(n)). Using matrix variate notation, E ∼ Nn×m(0, In ⊗ �) then
that Y ∼ Nn×m(XB, In ⊗ �). Given M a q × n matrix of known constants, we
known that for MB estimable, the maximum likelihood or the least square estimate
of MB is given by

M̂B ≡ MB̂ = M(X′X)−X′Y = MX+Y,

where A− is any generlized inverse of A (this is, A = AA−A) and X+ is the
Moore–Penrose generalised inverse of X.

The m × m covariance matrix � can be unbiasedly estimated by

�̂ = SE/(n − r),

where SE = (Y − XB̂)′(Y − XB̂) is termed matrix of sum of squares and sum of
products due to the error. We consider the problem of testing the general linear
hypothesis

H0 : CB = 0 vs Ha : CB �= 0,
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where C a q × n matrix of rank q ≤ n of known constants. The matrix of sum of
squares and sum of products due to the hypothesis is given by

SH = (CB̂)′(C(X′X)−C′)−1(CB̂).

Let δ1, . . . , δm and λ1, . . . , λm be the eigenvalues of the matrices SHS−1
E and

SH(SH + SE)−1, respectively; where under the null hypothesis H0 : CB = 0,
SH :m × m is Wishart distributed with νH degrees of freedom, SH ∼ Wm(νH , Im)

and SE ∼ Wm(νE, Im). Specifically, νH and νE denote the degrees of freedom of
the hypothesis and error, respectively. Various authors have proposed a number of
different criteria for testing the multivariate general linear hypothesis; see Kress
(1983), Anderson (1984) and Díaz-García and Caro-Lopera (2008). Then all of
the test statistics may be represented as functions of the s = min(m, νH ) nonzero
eigenvalues λ′s and/or δ′s, observing that λi = δi/(1 + δi) and δi = λi/(1 − λi),
i = 1, . . . , s. Moreover, from Kress (1983) we known that:

(1) The likelihood ratio criterion � of Wilks,

� = |SE|
|SH + SE| =

s∏
i=1

(1 − λi) =
s∏

i=1

1

(1 + δi)
.

(2) The trace criterion of Hotelling and Lawley,

V = tr SHS−1
E =

s∑
i=1

λi

(1 − λi)
=

s∑
i=1

δi .

(3) The maximal root criterion of Roy,

δmax = δmax(SHS−1
E ) = λmax

(1 − λmax)
.

(4) The maximal root criterion of Pillai and Roy (version due to Forster and Rees),

λmax = λmax
(
SH(SH + SE)−1) = δmax

(1 + δmax)
.

(5) The trace criterion of Hotelling–Lawley–Pillai–Nanda–Bartlett,

V (s) = tr SH(SH + SE)−1 =
s∑

i=1

λi =
s∑

i=1

δi

(1 + δi)
.

(6) Third criterion of Wilks (S-criterion of Olson),

S = |SHS−1
E | =

s∏
i=1

λi

(1 − λi)
=

s∏
i=1

δi.
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The decision rule for all the criteria is:

reject H0 if the statistic ≥ critical value.

However, for Wilks’s � criterium, the decision rule is [this class of test are known
in statistical literature as inverse test; see Rencher (1995), page 162]:

reject H0 if the statistic ≤ critical value.

Our interest is to study the distributions of these criteria under null hypothesis
when the multiplicity in the eigenvalues λ′s and δ′s is considered.

Let A be a m × m symmetric matrix with spectral decomposition

A = HLH′, (1.1)

where H is a m × m orthogonal matrix and L is a diagonal matrix, such that L =
diag(l1, . . . , lm). The representation (1.1) is unique if the eigenvalues l1, . . . , lm are
distinct and the sign of the first element in each column is nonnegative, Muirhead
(1982), page 588.

For A a positive definite matrix (A > 0), that is, for l1 > · · · > lm > 0, the Ja-
cobian of the transformation (1.1) has been computed by different authors, James
(1954), Muirhead (1982), pages 104–105 and Anderson (1984), Section 13.2.2,
among many others. Similarly, when A is a positive semidefinite matrix (A ≥ 0),
that is, when l1 > · · · > lr > 0 and lr+1 = · · · = lm = 0, r < m, the respective Ja-
cobian was computed by Uhlig (1994); see also DíazGarcía, Gutiérrez Jáimez and
Mardia (1997).

Note that under the spectral decomposition, the Lebesgue measure defined on
the homogeneous space of m × m positive definite symmetric matrices S +

m [and
implicitly the Jacobian of the transformation (1.1)] is given by

(dA) = 2−m
m∏

i<j

(li − lj )(H′ dH) ∧ (dL), (1.2)

see Muirhead (1982), pages 104–105, where

(H′ dH) =
m∧

i<j

h′
j dhi, (dL) =

m∧
i=1

dli

and (dB) denotes the exterior product of the distinct elements of the matrix dif-
ferentials (dbij ) and in particular (H′ dH) denotes the Haar measure; see James
(1954) and Muirhead (1982), Chapter 2.

By applying the definition of exterior product, it is easy to see that under mul-
tiplicity in the eigenvalues of the matrix A, that is, li = lj at least for a i �= j , we
obtain that (dL) = 0, moreover, in (1.2)

m∏
i<j

(li − lj ) = 0,
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then (dA) = 0. This happens because the multiplicity of the eigenvalues of A
forces it to live in a (ml − l(l − 1)/2)-dimensional manifold of rank l (where l

is the number of distinct eigenvalues of A) on the homogeneous space of m × m

S +
m,l ⊂ S +

m .
Observe that S +

m is a subset of the m(m+1)/2-dimensional Sm Euclidian space
of m × m symmetric matrices, and, in fact, it forms an open cone described by
the following system of inequalities; see Muirhead (1982), page 61 and page 77,
Problem 2.6:

A > 0 ⇔ a11 > 0, det
[
a11 a12
a21 a22

]
> 0, . . . ,det(A) > 0. (1.3)

In particular, let m = 2, after factorizing the Lebesgue measure in Sm by the spec-
tral decomposition, then the inequalities (1.3) are as follows:

A > 0 ⇔ l1 > 0, l2 > 0, l1l2 > 0. (1.4)

But if l1 = l2 = �, (1.4) reduces to

A > 0 ⇔ � > 0, �2 > 0. (1.5)

Which defines a curve (a parabola) in the space, over the line l1 = l2(= �) in the
subspace of points (l1, l2). Formally, we say that A has a density respect to the
Hausdorff measure [Billingsley (1986)].

When A ∈ S +
m , the eigenvalue distributions have been studied by several au-

thors, Srivastava and Khatri (1979), Muirhead (1982), Anderson (1984), among
many others. If A ∈ S +

m(q), that is, A is a positive semidefinite matrix with q

distinct positive eigenvalues, the eigenvalue distributions have been founded by
Díaz-García and Gutiérrez Jáimez (1997), DíazGarcía, Gutiérrez Jáimez and Mar-
dia (1997), Srivastava (2003), Díaz-García and Gutiérrez Jáimez (2006) and Díaz-
García (2007a).

In general, we can consider multiplicity in the eigenvalues of any symmetric ma-
trix, but in some applied cases [multivariate analysis of variance (MANOVA) prob-
lems] the eigenvalues are always assumed distinct, for instance, Okamoto (1973)
studies the matrix SE assuming that N (the sample size) ≥ m (the dimension)
and the sample is independent, that is, the population has an absolutely contin-
uous distribution. However, recall that if S−1/2

E SHS−1/2
E ≥ 0 of rank r ≤ m, then

S−1/2
E SHS−1/2

E has an eigenvalue λ = 0 with multiplicity m − r . In the present
work, we will not assume such conditions and then we will study the test criteria
for a general multivariate linear model.

The main aim of this study is to highlight the fact that on some occasions
there may occur multiplicity among the eigenvalues of the matrices SHS−1

E and
SH(SH + SE)−1. In addition, we show that the distributions, and therefore the crit-
ical values published in the classical tables [see Kress (1983)] are not generally
the most appropriate for taking a decision with respect to the null hypothesis in a
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multivariate general linear model when there exists multiplicity among the eigen-
values of the matrices SHS−1

E and SH(SH + SE)−1. As examples, we examine the
cases m = 2 and m = 3, in which it is apparent that it would be very laborious to
attempt to prepare tables for a general m addressing all the possible combinations
occurring in the multiplicity of the s = min(m, νH ) eigenvalues of the matrices
SHS−1

E and SH(SH + SE)−1; see Section 3. Thus, in our conclusions, we propose a
(heuristic) practical solution to this problem. We wish to make it clear that the most
important properties of these modified tests are obtained immediately. These prop-
erties are their exact distribution and the identification of the critical values; the
solution then becomes a simple modification of the parameters of the distributions
of the standard tests and their corresponding tabulated values; see Díaz-García
(2007b).

2 Preliminary note

Statistics books include often the following assertions:

(1) let X be an m-dimensional normal distributed random vector with parameters
E(X) = μ and Cov(X) = �, so, if � ≥ 0, then X has not a density; and,

(2) consider a follow nultivariate sample X1, . . . ,Xn and let S :m × m be the cor-
responding sample covariance matrix, then with probability 1, all the eigen-
values of S are distinct; among many other examples.

The corresponding appropriate conclusions can be given as follows:

(1) indeed X has not a density respect to the Lebesgue measure in m, but, def-
initely, X has a density in a subspace with dimension equal to the rank of �;
explicitly, X has a density respect to the Hausdorff measure [see DíazGarcía,
Gutiérrez Jáimez and Mardia (1997)]; and,

(2) in this case, no measure and/or density can be specified in the computation of
the probability, but the situation becomes clear if we explain it as follows:

P(ρ1 > · · · > ρm > 0) =
∫

B
dF(ρ1, . . . ρm),

where B is the corresponding space, ρ1, . . . , ρm, ρ1 > · · · > ρm > 0 are the
eigenvalues of S and dF(ρ1, . . . , ρm) denotes the joint density of the eigen-
values ρ1, . . . , ρm.

Now, consider the following example: assume that we have a density function
f (X) with respect to the Lebesgue measure (dX) in n and let N (X) be a surface
in a subspace with dimension r < n in n. Certainly, we can perform any operation
of kind ∫

A
f (X)(dX),
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for some A ⊂ n. However ∫
C

N (X)(dX) = 0,

for every C ⊂ n. Of course, this is not a sufficient reason for refusing to do com-
putations involving the surface N (X). We just need to define an adequate measure
for this surface and we can perform computations of the following type∫

C
dN (X) =

∫
C

N (X) dν,

where dν is an appropriate measure.
This example suggests an unified treatment of the ideas involved in the

cases (1) and (2) and their context: first, define the appropriate measures and
their corresponding density functions and second, perform the analysis based
on � ≥ 0, item (1), and recalling that not all the eigenvalues ρj are distinct,
item (2).

3 Multiplicity in MANOVA

Suppose that the eigenvalues λ′s and δ′s have multiplicity, then, in particular we
get: λ1, . . . , λl, λl+1, . . . , λm, such that 1 > λ1 > · · · > λl > 0 and 1 ≥ λl+1 ≥
· · · ≥ λl ≥ 0, this is, l ≤ s ≤ m denotes the number of nonnull distinct eigenvalues
of the matrix U = (SH + SE)−1/2SH(SH + SE)−1/2. Consider the spectral decom-
position of U, such that

U = HLH′ = (H1H2)

(
L1 0
0 L2

)(
H′

1
H′

2

)
= H1L1H′

1 + H2L2H′
2 = U1 + U2.

We want to find the distribution of U1 and the distribution of L1, where L1 =
diag(λ1, . . . , λl), H1 ∈ Vl,m = {H1 ∈ m×l|H′

1H1 = Il} (the Stiefel manifold).
Also observe that U1 ∈ S +

m,l , so if l = νH ≤ m, then by Uhlig (1994), Theorem 2,

(dU1) = 2−l
l∏

i=1

lm−l
i

l∏
i<j

(li − lj )(H′
1 dH1) ∧ (dL1),

where

(H′
1 dH1) =

m∧
i=1

l∧
j=i+1

h′
j dhi, (dL1) =

l∧
i=1

dli;

Díaz-García and González-Farías (2005a) give alternative expressions of (dU1) in
terms of other factorizations. Under this context from Díaz-García and Gutiérrez
Jáimez (1997), Theorem 4, we have:
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Theorem 1.

(1) The distribution of the nonnull distinct eigenvalues of U (the eigenvalues of
U1) is

f (λ1, . . . , λl) = πl2/2
m[(l + νE)/2]

m[νE/2]
l[l/2]
l[m/2]

×
l∏

i=1

λ
(m−l−1)/2
i

l∏
i=1

(1 − λi)
(νE−m−1)/2

l∏
i<j

(λi − λj ).

(2) If F = S−1/2
E SHS−1/2

E , the distribution of the nonnull distinct eigenvalues of F
is given by

f (δ1, . . . , δl) = πl2/2
m[(l + νE)/2]

m[νE/2]
l[l/2]
l[m/2]

×
l∏

i=1

δ
(m−l−1)/2
i

l∏
i=1

(1 + δi)
−(l+νE)/2

l∏
i<j

(δi − δj ).

Proof. See Díaz-García and Gutiérrez Jáimez (1997), Theorem 4.
Case m = 2. Consider the case m = 2 such that the eigenvalues of the matri-

ces U and F have multiplicity, namely, λ1 = λ2 = λ and δ1 = δ2 = δ, then from
Theorem 1,

fλ(λ) = 
[(νE + 1)/2]

[(νE − 1)/2] (1 − λ)(νE−3)/2, 0 < λ < 1, (3.1)

and

fδ(δ) = 
[(νE + 1)/2]

[(νE − 1)/2](1 + δ)−(νE+1)/2, 0 < δ. (3.2)

For the present particular case (m = 2, νH = l = 1), the test statistics are given
by � = (1 − λ)2, V = 2δ, δmax = δ, λmax = λ, V (s) = 2λ and S = δ2, and the
associated density functions are, respectively:

(1) f�(�) = 
[(νE + 1)/2]
2
[(νE − 1)/2]�

(νE−5)/4, 0 < � < 1,

(2) fV (V ) = 
[(νE + 1)/2]
2
[(νE − 1)/2](1 + V/2)−(νE+1)/2, 0 < V,

(3) fδmax(δmax) = 
[(νE + 1)/2]

[(νE − 1)/2](1 + δmax)

−(νE+1)/2, 0 < δmax,

(4) fλmax(λmax) = 
[(νE + 1)/2]

[(νE − 1)/2](1 − λmax)

(νE−3)/2, 0 < λmax < 1,

(5) fV (s)

(
V (s)) = 
[(νE + 1)/2]

2
[(νE − 1)/2]
(
1 − V (s)/2

)(νE−3)/2
, 0 < V (s) < 2,
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(6) fS(S) = 
[(νE + 1)/2]
2
[(νE − 1)/2]√S

(
1 + √

S
)−(νE+1)/2

, 0 < S.

The following six tables resume results on the six mentioned criteria: the first
two columns show the critical values of the corresponding criterion for α = 0.05
[or (1 − α) = 0.95] and α = 0.01 [or (1 − α) = 0.99], when we do not consider
multiplicity in the eigenvalues; in contrast, the third and fourth columns present the
critical values for α = 0.05 and α = 0.01, when we do consider multiplicity in the
eigenvalues; and finally, the fifth and sixth columns show the p-values for which
the null hypothesis could be rejected or accepted if the decision is taken in function
of the critical values α = 0.05 and α = 0.01 computed without multiplicity of
the eigenvalues, that is, we use the criteria distributions involving multiplicity for
computing the p-values associated to the critical values without multiplicity.

For example, with the criterion of Table 1, we conclude that a rejected (nonmul-
tiplicity) null hypothesis with a significance level of α = 0.05, really reaches an
α ≥ 0.2 when we consider multiplicity in the eigenvalues. Similarly, for a rejected
(nonmultiplicity) null hypothesis with α = 0.01, we really obtain α ≥ 0.1 if we
consider multiplicity in the eigenvalues. Analogous conclusions can be provided
from Tables 2–6 for the remaining criteria.

Case m = 3. Now, consider m = 3, νH = 2, namely, the matrices U and F have
rank 2. Also, assume that l = 1, that is, the nonnull eigenvalues of U (F) are equal,
λ1 = λ2 = λ and δ1 = δ2 = δ. In particular, we will study in this section the behav-
ior of the criterion � of Wilks. Then, by Theorem 1, we obtain:

(1) fλ(λ) = 2
[(νE + 1)/2]√
π
[(νE − 2)/2]λ

1/2(1 − λ)(νE−4)/2,

Table 1 Table of comparisons for third criterion of Wilks (S-criterion of Olson)

Critical value∗ Critical value
(nonmultiplicity) (multiplicity) (1 − p)-value

νE 0.95 0.99 0.95 0.99 0.95 0.99

2 361.00 9801.00 159201.0 1E08 0.804 0.900
5 1.2426 13.26111 12.0557 81.0 0.776 0.953

10 0.1559 0.4463 0.8947 3.17752 0.776 0.899
20 0.0291 0.0752 0.1374 0.38909 0.776 0.899
30 0.0118 0.0296 0.0526 0.13974 0.775 0.899
40 0.0063 0.0157 0.02757 0.07095 0.775 0.899
60 0.0027 0.0065 0.01142 0.02854 0.775 0.898
80 0.0014 0.0036 0.0062 0.01529 0.765 0.899

100 0.0009 0.0022 0.0039 0.0095 0.768 0.896
440 0.00005 0.00011 0.00018 0.00044 0.787 0.898

1000 0.00001 0.00002 0.000036 0.00008 0.793 0.898

∗From Díaz-García and Caro-Lopera (2008).
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Table 2 Comparisons for the criterion � of Wilks

Critical value∗ Critical value
(nonmultiplicity) (multiplicity) p-value

νE 0.05 0.01 0.05 0.01 0.05 0.01

2 6.41E-4 2.5E-5 6.25e-6 1.00E-8 0.150 0.070
5 0.117368 0.049316 0.05000 0.01000 0.117 0.049

10 0.367038 0.245660 0.264098 0.129155 0.105 0.042
20 0.614483 0.505819 0.522230 0.379269 0.099 0.039
30 0.724899 0.637459 0.661527 0.529832 0.097 0.038
40 0.786433 0.714476 0.735463 0.623551 0.096 0.037
60 0.852599 0.799984 0.816196 0.731824 0.095 0.037
80 0.887496 0.846188 0.859261 0.792016 0.094 0.036

100 0.909051 0.875081 0.885999 0.880218 0.094 0.036
440 0.978644 0.970243 0.973073 0.958908 0.094 0.036

1000 0.990552 0.986804 0.988077 0.981730 0.093 0.036

∗From Table 1 in Kress (1983).

Table 3 Comparisons for the maximal root criterion of Roy

Critical value∗ Critical value
(nonmultiplicity) (multiplicity) (1 − p)-value

νE 0.95 0.99 0.95 0.99 0.95 0.99

12 12.23 20.36 3.51 6.18 0.99 0.999
20 10.78 16.90 3.30 5.05 0.99 0.999
25 10.24 15.64 3.23 5.31 0.99 0.999
30 9.95 14.98 3.19 5.18 0.99 0.999
40 9.59 14.20 3.14 5.03 0.99 0.999
50 9.39 13.77 3.11 4.94 0.99 0.999
60 9.27 13.50 3.09 4.88 0.99 0.999
80 9.12 13.17 3.07 4.81 0.99 0.999

100 9.04 13.01 3.05 4.77 0.99 0.999
300 8.79 12.49 3.01 4.66 0.99 0.999

1000 8.71 12.32 3.00 4.62 0.99 0.999

∗From Table 3 in Kress (1983).

(2) fδ(δ) = 2
[(νE + 1)/2]√
π
[(νE − 2)/2]δ

1/2(1 + δ)−(νE+1)/2.

Similar results can be derived for the joint distribution of λ1, λ2 and δ1, δ2 by using
Theorem 1. However, these are not necessary if use the statements by Díaz-García
and Gutiérrez Jáimez (1997) for the coincidence of the nonnull eigenvalue distri-
bution, via singular distributions [Díaz-García and Gutiérrez Jáimez (1997)], and
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Table 4 Comparisons for maximum root criterion of Pillai and Roy (version of Foster and Rees)

Critical value∗ Critical value
(nonmultiplicity) (multiplicity) (1 − p)-value

νE 0.95 0.99 0.95 0.99 0.95 0.99

5 0.8577 0.9377 0.7763 0.9000 0.9797 0.9961
15 0.4475 0.5687 0.3481 0.4820 0.9843 0.9972
21 0.3427 0.4479 0.2588 0.3690 0.9849 0.9973
25 0.2960 0.3915 0.2209 0.3187 0.9851 0.9974
31 0.2457 0.3290 0.1810 0.2643 0.9854 0.9974
35 0.2206 0.2972 0.1615 0.2373 0.9855 0.9975
41 0.1912 0.2594 0.1391 0.2056 0.9856 0.9975
61 0.1324 0.1821 0.0950 0.1423 0.9858 0.9976
81 0.1013 0.1402 0.0721 0.1087 0.9860 0.9976

101 0.0820 0.1140 0.0581 0.0879 0.9861 0.9976
161 0.0521 0.0730 0.0367 0.0559 0.9861 0.9977

∗From Table 5 in Kress (1983) and Anderson (1984), Table 4.

Table 5 Comparisons for trace criterion of Hotelling and Lawley

Critical value∗ Critical value
(nonmultiplicity) (multiplicity) (1 − p)-value

νE 0.95 0.99 0.95 0.99 0.95 0.99

2 985.9 24670 798 19998 0.955 0.991
5 6.2550 15.318 6.9443 18.0000 0.941 0.986

10 1.5818 2.7402 1.8919 3.5651 0.927 0.979
20 0.6019 0.9236 0.7414 1.2475 0.918 0.973
30 0.3693 0.5479 0.4589 0.7475 0.914 0.970
40 0.2661 0.3886 0.3321 0.5327 0.912 0.968
60 0.1706 0.2454 0.2137 0.3379 0.910 0.967
80 0.1255 0.1792 0.1576 0.2473 0.909 0.966

100 0.0993 0.1412 0.1248 0.1499 0.909 0.965
200 0.0485 0.0684 0.0611 0.0947 0.908 0.965

∗From Table 6 in Kress (1983) and Anderson (1984), Table 2.

the respective nonsingular distribution; see, for example, [Muirhead (1982), Sec-
tion 10.4, Case 2, pages 451–455]. Then the critical values of the cited criteria can
be computed from the existing tables (νH < m) by making the parameter trans-
formation (m, νH , νE) → (νH ,m,νE + νH − m), see Muirhead (1982), page 455.
Observe that for the criterion � of Wilks we do not need to perform that transfor-
mation, because the critical values coincide under both parameter definitions; see
Anderson (1984), Theorem 8.4.2, page 302.
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Table 6 Comparisons for trace criterion of Hotelling–Lawley–Pillai–Nanda and Bartlett

Critical value∗ Critical value
(nonmultiplicity) (multiplicity) (1 − p)-value

νE 0.95 0.99 0.95 0.99 0.95 0.99

13 0.5666 0.7212 0.7860 1.0710 0.864 0.931
15 0.5070 0.6516 0.6963 0.9641 0.870 0.936
23 0.3562 0.4694 0.4768 0.6841 0.884 0.947
33 0.2593 0.3474 0.3415 0.5002 0.891 0.952
43 0.2038 0.2756 0.2659 0.3938 0.895 0.955
63 0.1426 0.1948 0.1842 0.2761 0.899 0.985
83 0.1096 0.1507 0.1409 0.2125 0.900 0.964

123 0.0750 0.1036 0.0958 0.1454 0.902 0.964
243 0.0384 0.0535 0.0489 0.0747 0.904 0.962

∗From Table 7 in Kress (1983) and Anderson (1984), Table 3.

Table 7 Comparisons for the criterion � of Wilks

Critical value∗ Critical value
(nonmultiplicity) (multiplicity) p-value

νE 0.05 0.01 0.05 0.01 0.05 0.01

2 0.000000 0.000000 0.000000 0.000000 0.000 0.000
5 0.243139 0.011210 0.009468 0.001078 0.131 0.056

10 0.514622 0.150746 0.156870 0.067583 0.113 0.046
20 0.647501 0.411734 0.429062 0.292612 0.105 0.042
30 0.723938 0.559656 0.577664 0.450770 0.102 0.040
40 0.807778 0.649620 0.666239 0.554541 0.101 0.040
60 0.852653 0.751990 0.765511 0.678456 0.100 0.039
80 0.880557 0.808282 0.819453 0.748957 0.099 0.039

100 0.971785 0.843804 0.853266 0.794241 0.099 0.039
440 0.978644 0.962428 0.964985 0.949572 0.098 0.038

1000 0.987475 0.983312 0.984469 0.977532 0.0938 0.038

∗From Table 1 in Kress (1983).

Next we tabulate a comparison between the nonmultiplicity and multiplicity
critical values, and we also provide the p-values for a sort of νE .

From Table 7 we see that for a rejected (nonmultiplicity) null hypothesis with
a significance level of 0.05 (0.01), we need a significance level of α ≥ 0.09
(α ≥ 0.03) for rejecting the same hypothesis if we consider multiplicity in the
eigenvalues. �
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4 Conclusions

We highlight the variation of the criterion distributions, for testing hypothesis in
a general linear model, when multiplicity of the eigenvalues is considered. The
change is high in the sense that for rejecting a null hypothesis, in general, the
significance level α increases. A practical way for handling the inclusion of multi-
plicity proposes the following modifications of the usual test statistics:

• Consider only the nonnull distinct eigenvalues in the computation of the differ-
ent test statistics, namely, take l instead of νH ; and compare those values with
the tabulated critical values, but make the parameter transformation

(m, νH , νE) → (m, l, νE), 1 ≤ l ≤ νH ≤ m,

where l is the number of nonnull distinct eigenvalues.

Finally, note that the present work considers only the case when νH ≤ m, otherwise
the procedure for finding the distribution of the nonnull distinct eigenvalues of the
matrices U and F remains as an open problem.
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