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Nonparametric estimation of the distribution
function in contingent valuation models

David S. Leslie∗, Robert Kohn† and Denzil G. Fiebig‡

Abstract. Contingent valuation models are used in Economics to value non-
market goods and can be expressed as binary choice regression models with one
of the regression coefficients fixed. A method for flexibly estimating the link func-
tion of such binary choice model is proposed by using a Dirichlet process mixture
prior on the space of all latent variable distributions, instead of the more restricted
distributions in earlier papers. The model is estimated using a novel MCMC sam-
pling scheme that avoids the high autocorrelations in the iterates that usually arise
when sampling latent variables that are mixtures. The method allows for variable
selection and is illustrated using simulated and real data.

Keywords: binary choice regression, Dirichlet process, latent variable, mixture
model, variable selection

1 Introduction

Contingent valuation (CV) is an important stated preference method that is widely
used to value non-market goods such as parks or medical facilities. A hypothetical
market is constructed and respondents are asked how much they are willing to pay
for the good. Implementation of a CV study requires two key issues to be resolved:
the distributional assumption about willingness to pay, which is our focus, and the
elicitation format. Several types of question formats have been developed, but the
dichotomous choice request supported by Arrow et al. (1993) is preferred to open-ended
questions. Thus, rather than ask “How much would you be prepared to pay in order to
receive a given service?”, subjects are asked “Would you be prepared to pay a specified
amount to receive the service?” For a comprehensive discussion of contingent valuation
methods with special reference to applications in environmental economics see Carson
and Hanemann (2005) while Diener et al. (1998) provide a survey of applications in
health economics.

Our article estimates a CV model flexibly by using a binary choice model which is
expressed in terms of a latent variable regression similarly to Albert and Chib (1993),
but assuming that one of the regression coefficients is known, and using a Dirichlet
process mixture prior base distribution (Escobar and West 1995) over the set of all
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density functions of the latent variables. This results in a binary choice model where
the data determine the distribution of the latent variables and hence the link function.

Our model is more general than models that assume a specific link function, such as
probit and logit models which assume normal and logistic latent variables respectively.
We show that predictions under the Dirichlet process mixture prior can be much more
accurate than those obtained by choosing a specific link function.

We fit the model using a new Markov chain Monte Carlo simulation method that
generates the latent variables simultaneously with the allocation to components of the
mixture model. This is more efficient than a straightforward generalisation of the sam-
pling scheme of Albert and Chib (1993) and Leslie et al. (2007) that updates the latent
variables conditional on all the other parameters and then updates all the other param-
eters conditional on the latent variables, which would result in significant autocorrela-
tions. Similar inefficiencies are encountered by Holmes and Held (2006) in the context
of simple probit regression, and by Handcock et al. (2007) when latent variables from
a mixture distribution are used to investigate clustering in social networks. Since the
standard MCMC schemes for Dirichlet process models already consider each observation
in turn on each iteration of the sampling process, this new block-updating scheme adds
negligibly to the computation time per iteration.

The idea of generalising the probit model using a Dirichlet process prior is not
new. However, previous work uses a location mixture of normal distributions (Erkanli
et al. 1993; Mukhopadhyay and Gelfand 1997), which does not account for heavy
tails, or a scale mixture of normal distributions (Geweke and Keane 1999; Basu and
Mukhopadhyay 2000b), which does not accommodate bimodality or skewness. Basu
and Mukhopadhyay (2000a) generalise their method to include mixtures of truncated
normal distributions, but this still does not produce the fully general, and natural, prior
over latent variable distributions achieved in our article.

An advantage of using the full Dirichlet process mixture prior in our article is that
it becomes straightforward to carry out variable selection as in Kohn et al. (2001)
because the standard marginalisation of the unknown noise distribution (Ferguson 1973;
Antoniak 1974) results in a normal mixture model, in which most parameters can be
integrated out when the variable selection step is carried out.

However, such a general formulation of the model results in identifiability problems.
Previous articles resolve this issue by fixing some characteristic of the latent variable
distribution. For example Newton et al. (1996) use a prior which fixes the median
and range of the latent variable distribution, and while they use a hierarchical model to
allow inference over these fixed characteristics it is not trivial to understand the resulting
prior structure over distributions. In contrast we identify the model by fixing one of
the regression coefficients which is automatic in contingent valuation models and allows
us to maintain the full, and well-understood, Dirichlet process mixture prior which has
dense support on the set of density functions on the real line (Lo 1984).

An alternative fully non-parametric approach models the argument of a given link
function as a general function of the covariates (see for example Wood and Kohn 1998;
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Mallick et al. 2000). However, this approach usually requires a large number of obser-
vations and is restricted to having only a small number of covariates. It is also difficult
to implement when the covariates are both discrete and continuous.

In Section 6 we discuss how our approach can be used more generally in binary
regression models and illustrate with an example.

2 The Dirichlet process probit model

Most models of binary choice that assume linear dependence on a set of regressors can
be expressed as

yi = x′iβ + εi,
di = I{yi>0},

(1)

where di is the binary response associated with regressors xi, yi is a latent variable, β
is a vector of regression coefficients, and εi is a random variable from some distribution.
In all of the standard models of binary choice, some distribution is assumed for the εi:
in probit regression this distribution is the standard normal distribution and in logit
regression it is the standard logistic distribution. In these cases, the model is identified
by the choice of distribution of εi, and in particular by normalising the variance of these
distributions.

Our article does not specify a parametric distribution for the εi, and instead places
a prior over essentially all possible density functions on the real line. This results in a
very general model for binary choice where the regressors enter linearly; in particular,
both logit and probit regression are supported by the model, as are binary regressions
with skewed or bimodal distributions for εi. The prior is the Dirichlet process mixture
of normal distributions used by Escobar and West (1995) for density estimation, and
by Leslie et al. (2007) in the context of heteroscedastic linear regression. This prior is
defined hierarchically as

εi |µi, σ
2
i ∼ N (µi, σ

2
i )

µi, σ
2
i |G ∼ G (2)

G ∼ DP(αG0)

where N (µ, σ2) is a normal distribution with mean µ and variance σ2, and DP(αG0) is
a Dirichlet process with parameter αG0 (Ferguson 1973). Lo (1984) shows that if the
support of G0 is R× R+ (so that positive density is given to any valid values of µ and
σ2) then the closure of the support of this prior on the distribution of εi is the set of
all density functions on the real line; following Escobar and West (1995), we therefore
define the base distribution by (µ, σ2) ∼ G0 iff

σ2 ∼ IG(aσ, bσ) and µ |σ2 ∼ N (m, τ2σ2),

where IG(a, b) denotes an inverse gamma distribution with shape parameter a and scale
b.
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Clearly, if prior knowledge is available the parameters of this prior can be selected
manually. However, following Leslie et al. (2007), we use hyperpriors with “generic”
parameter settings:

α ∼ Ga(2, 4), m ∼ N (0, n), τ2 ∼ IG(2, 1),
aσ = 2, bσ ∼ Ga(0.5, 1),

where Ga(a, b) denotes a Gamma distribution with shape parameter a and scale 1/b, and
n is the number of observations in the sample. This prior maintains the same structure
as that employed by earlier papers, including those by Escobar and West (1995) and
Leslie et al. (2007); an appropriate prior distribution over densities for density estimation
is an appropriate prior for densities in other settings too. The prior for α controls the
amount of departure from the (inverse gamma/normal) base distribution for the latent
variables. Escobar and West (1995) observe that the parameters in the prior for α have
a strong effect on inference about the number of components in the mixture model which
results from the Dirichlet process, but have much less influence on the estimate of an
unknown density. The prior for σ2 means that all the σ2

i have similar values, but the
value is unspecified and has a diffuse prior with expected value 1. The prior for µ must
be proper, since we are dealing with mixture models (Richardson and Green 1997),
but as more observations become available it can be made more diffuse; this scaling
is achieved by allowing the prior variance to depend on the number of observations n
(see also the discussion on hierarchical centring at the end of this section). Finally, the
prior for τ2 is chosen to be fairly diffuse but with mean 1. We have found that the
hyperparameter settings above, along with the flexible prior structure, are adequate for
most data sets. However, we can consider a more refined approach where we first fit a
logistic or probit regression to the data by maximum likelihood or Bayesian methods.
Using this fit we can estimate the likely range for the error term and use that to form
a prior for σ2.

With such a general formulation for the distribution of the εi there is an identification
problem. The parameters of this binary model are only identified up to scale, and so
some normalisation is needed (beyond that provided by the prior). In particular, for
this model it is difficult to consider scale-free estimates, such as those obtained by
dividing by the variance of the noise or by a particular regression parameter at each
iteration of the MCMC scheme; in the former case the variance is not an appropriate
quantity to use for such a general noise distribution, and in the latter it is quite possible
that a variable may be selected out at a particular iteration of the scheme. The usual
convention is to fix some characteristic of the distribution of the latent variables, such
as the variance (probit, logit models) or the mean (Basu and Mukhopadhyay 2000b).
Our approach retains the full Dirichlet process mixture prior for the latent variable
distribution and identifies the model by fixing a regression coefficient, which is automatic
for the contingent valuation model and may be useful more generally as discussed in
section 6.

The model can now be estimated by placing a noninformative prior on the regression
coefficient. However, to carry out variable selection for the model it is necessary to place
a weakly informative prior the regression coefficients β that are not fixed. This prior is
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specified through a vector of indicator variables J , such that

Ji = 1 ↔ βi 6= 0.

We follow Kohn et al. (2001) and assume that the unconstrained Ji are independent
with P(Ji = 1 | θ) = θ and with θ uniformly distributed on [0, 1]. Denoting by βJ the
non-fixed components of β for which Ji = 1, the prior for β is completed by specifying

βJ |J ∼ N (0, nπ
2 (X ′

JXJ )−1)

where 0 denotes a vector of zeros of the appropriate length, n is the number of observa-
tions, and XJ denotes the matrix consisting of the columns of X for which Ji = 1. This
is a special case of the prior used by Nott and Leonte (2004), in which the information
content of the prior is the same as the information content of one observation; see Kass
and Wasserman (1995). It is necessary to use a proper prior for variable selection, but
desirable to use a prior which is reasonably noninformative. The unit information prior
is used extensively in many applications and has worked well in our examples. How-
ever, it is straightforward to generalize our treatment to the class of priors considered
by Liang et al. (2008) in the linear regression case.

Note that we can specify the model with a fixed intercept and with µ ∼ N (0, τ2σ2).
However, the hierarchical centring used in our article is known to result in more efficient
inference (Gelfand et al. 1995). Note that m in G0 therefore takes the place of the
intercept term.

3 Inference

This section describes how to perform inference on the Dirichlet process probit model
using MCMC to draw samples from the posterior distribution. It is well known (Fer-
guson 1973; Antoniak 1974) that the random distribution G can be integrated out,
resulting in allocation of observations to components of a finite normal mixture model.
The updates to this allocation to components can be made without conditioning on the
parameters µi and σ2

i , so that it is unnecessary to use reversible jump MCMC (Green
1995). Conditional on an allocation to components, we draw the σ2

i followed by the
other parameters of the model.

More specifically, once G is integrated out, the Dirichlet process prior is effectively
a prior on partitions S of the observations into groups, with all observations in one
component of the partition having the same values of µ and σ2. Writing nj for the
number of observations allocated to group j, and k(S) for the total number of groups
in the partition S, the prior on partitions is

p(S |α) =
αk(S)Γ(α)

∏k(S)
j=1 Γ(nj)

Γ(α + n)
, (3)

where Γ is the gamma function. The prior on the values of µ̃j and σ̃2
j , the mean and

variance of each observation allocated to component j, is the base distribution G0. See
Green and Richardson (2001) for details.
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Therefore, conditional on the hyperparameters, we could write down a joint posterior
distribution for the latent variables y = (yi)i=1,...,n, the regression coefficients β, the
partition S and the component means and variances, which we will denote by µ̃ =
(µ̃j)j=1,...,k(S) and σ̃2 = (σ̃2

j )j=1,...,k(S). However, this full posterior distribution is
complex and not particularly instructive, so instead we concentrate on the conditional
distributions that are needed for MCMC sampling.

A simple sampling scheme updates all model parameters except for the latent vari-
ables conditional on y, then updates y conditional on all the model parameters. Since
the sampling of all variables other than y is identical to the sampling under a compara-
ble linear regression model (Leslie et al. 2007) the additional coding effort is minimal in
this case. However, as observed by Holmes and Held (2006), updating latent variables
conditional on a set of parameters, then updating the parameters, can result in high
autocorrelations in the sampled iterates. This is a particular problem in our model and
that of Handcock et al. (2007), in which the latent variables are sampled from a mixture
distribution.

To illustrate this point, consider the case of well-separated components of the mix-
ture distribution, as in the bimodal example of Section 4. We assume for simplicity
that there are two components in the normal mixture model for the latent variables.
For some observations it will be clear to which component of the mixture model the
latent variable should be allocated. However for others (those for which the true mean
function x′iβ is far from zero, for example) there will be little information in the data to
aid the allocation to components, and the latent variable should be allocated frequently
to both components of the mixture. However, when one updates the latent variable
yi conditional on the allocation to components of the mixture model, it is likely that
the sampled yi will clearly be associated with the current cluster membership. Further-
more, when one updates the allocation to components of the mixture model the latent
variable will be strongly associated with previous cluster membership and a switch of
membership is highly unlikely. We see that cluster membership and latent variable can
be highly correlated and therefore updating them independently can result in a highly
inefficient sampler.

Instead of this naive sampling scheme we introduce a new technique for sampling
when latent variables come from mixture models. In this scheme we update the allo-
cation variable si and the latent variable yi as a block, conditional on the other latent
variables, denoted by y−i, and the partition of the other observations, denoted by S−i.
We don’t explicitly write the conditioning on the covariates, β, and the hyperparameters
in the following equations to simplify notation. First, note that

p(si, yi |y−i,S−i,d) ∝ p(d |y,S)p(si, yi |y−i,S−i) (4)

where si runs over components of the partition S−i and in addition a new component
consisting only of observation i. Hence we can calculate p(si, yi |y−i,S−i) without
worrying about the truncation imposed on y by the observations d. Now
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p(si, yi |y−i,S−i) =
∫ ∫

p(si, yi | µ̃si , σ̃
2
si

, y−i,S−i)×
p(µ̃si

, σ̃2
si
|y−i,S−i) dµ̃si

dσ̃2
si

, (5)

where µ̃si and σ̃2
si

are the parameters of the normal distribution associated with compo-
nent si. Since we are using the conjugate inverse gamma/normal prior for component
parameters, and the conditional distribution of the parameters of component si does
not depend on observations not currently allocated to component si, we have (as in
MacEachern 1994) that

p(µ̃j , σ̃
2
j |y−i,S−i) = φ

(
µ̃j −mj

σ̃2
j /(nj + τ−2)

)
bj

aj exp(−bj/σ̃2
j )

Γ(aj)(σ̃2
j )aj+1

, (6)

where φ denotes the standard normal density function,

mj =
∑

rl+mτ−2

n−i
j +τ−2 , aj = aσ +

n−i
j

2

bj = bσ + 1
2

(∑
r2
l + m2τ−2 − (

∑
rl−mτ−2)2

n−i
j +τ−2

)

rl = yl − x′lβ,

with all summations taken over the set {l ∈ Sj , l 6= i}, and n−i
j the number of elements

in this set (in the case where si denotes a component containing only i, the summations
and n−i

j take the value 0). In other words, the mean and variance of component j follow
an inverse gamma/normal distribution with parameters that depend on the prior, on
the current value of β, and on the latent variables of the observations allocated to
component j. Furthermore,

p(si, yi | µ̃si , σ̃
2
si

,y−i,S−i) = p(si | µ̃si , σ̃
2
si

, y−i,S−i)p(yi | µ̃si , σ̃
2
si

, y−i,S)
= p(si | S−i)p(yi |msi , asi , bsi) (7)

and it is again a standard calculation to combine (5), (6) and (7) to see that

p(si, yi |y−i,S−i) = p(si | S−i)t2asi

(
yi − x′iβ; msi , (1 + 1/(n−i

si
+ τ−2))bsi/asi

)
(8)

where tν(x; l, s2) is the density of the t distribution with shape parameter ν, mode l, and
variance ν

ν−2s2 (if ν > 2) evaluated at x. The term p(si | S−i) can easily be evaluated
from (3). Finally, we can use (4) to show that

p(si |d, y−i,S−i)

=
∫

p(si, yi |d,y−i,S−i) dyi

∝ p(si | S−i)
∫

I{yi>0}=di

t2asi

(
yi − x′iβ; msi , (1 + 1/(n−i

si
+ τ−2))bsi/asi

)
dyi

= p(si | S−i)T2asi


(−1)di+1 x′iβ + msi√

((1 + 1/(n−i
si + τ−2))bsi/asi)


 (9)
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where Tν(x) is the cumulative distribution function of the standard t distribution with
shape parameter ν evaluated at x. It also follows directly from these calculations that,
conditional on si, yi is drawn from a truncated t distribution, with shape 2asi , mean
msi

+ x′iβ, and variance
asi

asi − 2
(1 + 1/(n−i

si
+ τ−2))bsi/asi .

In the sampling scheme, we therefore condition on β and the hyperparameters, and
go through each observation in turn, using Gibbs sampling to reallocate the observation
to a component then sample a new latent variable for that observation, conditional on
the latent variables and allocations of the other observations. This avoids the problem
of autocorrelation caused by sampling latent variables conditional on allocations, then
allocations conditional on latent variables.

Note that even in the naive scheme for this model (which updates all the latent vari-
ables conditional on the model parameters and allocation variables, then updates the
allocation variables conditional on the latent variables and the model parameters) each
observation must be reallocated in turn to a new component of the mixture, and this
is the most computationally intensive part of the scheme. For the improved scheme we
are faced with the same computational bottleneck, but have reduced the autocorrelation
problem described above. In practice we find that the running speed for comparable
numbers of iterations is similar for both the naive and improved schemes, but conver-
gence to the stationary distribution is faster for the improved scheme.

Sampling the indicator variables J and regression coefficients β, as well as the hy-
perparameters, conditional on the latent variables y and the partition S, is identical to
the method used by Leslie et al. (2007). A brief description is in Appendix A; a full
description is available from the authors on request. One particular point to note is that
since, conditional on the partition S, the model is Gaussian, one can perform variable
selection by integrating out all the parameters µ̃ and βJ and updating J as in Chan
et al. (2006).

4 Simulation study

This section uses simulated data to show that our method works for various different
noise distributions, including normal and logistic distributions. We compare our method
with an unconventional Bayesian probit model, identified by fixing the same regression
coefficient as is used to identify the Dirichlet process probit model and estimating the
variance parameter (instead of fixing the variance to 1 and estimating every regression
coefficient). We find that assuming normality results in reasonable inference on the
regression coefficients, but posterior predictive probabilities are incorrectly estimated.
On the other hand, the flexible model introduced in Section 2 results both in inference
on β under a model which supports the data generating process, and more accurate
posterior predictive probabilities.

Each of our four examples uses a 500 × 5 design matrix of independent standard
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normal random variables. The true regression coefficients are (1, 0,−1, 0, 0)′, so that
only the first and third covariates are relevant. We generate

di = I{x′iβ+εi>0}, i = 1, . . . , 500

where εi is distributed as:

1. a standard normal distribution, so that the probit model applies,

2. a logistic distribution, so that the logit model applies,

3. a mixture of two normal distributions, with weights 0.5, means of −2 and 2, and
variance 0.25, and

4. log(Z) where Z is drawn from a χ2
2 distribution.

Note that since the true value of β1 is 1, we identify the model by fixing β1 = 1; inference
about the true generating distribution follows.

In each case we ran the sampler for 11000 iterations, discarding the first 1000 for
burn-in. For the full model, this took approximately 10 minutes in Matlab 7 on an
Opteron 2GHz CPU, reducing to just 25 seconds when normality is assumed. We note
that the reported results change very little if we take only 2000 observations in the
sampling period. Furthermore, trace plots of the iterates of the parameters show no
sign that the Markov chain has not converged to the stationary distribution.

In all cases the correct variables are included in the model, and approximately correct
posterior mean values for β are recovered. Inference for β is similar under both the
restricted model and the general model. Table 1 shows the results.

The most apparent differences between the models are observed in the estimated
densities for the latent noise distributions, and the plots of predicted probabilities of
observing a 1 at each set of covariates, shown in Figure 1. The clearest contrast between
the normal distribution and the more flexible distribution occurs when the distribution
is bimodal. The predictive probabilities are roughly equivalent to the ghosting approach
of Marshall and Spiegelhalter (2003), also used by Leslie et al. (2007): we estimate p̂i =
p(drep

i = 1 |d) for each i = 1, . . . , n, where d
rep
i is a replicated “ghost” of observation

di with the same covariates, but independent latent noise ε
rep
i . More specifically, the

estimate is given by

p̂i ≈ (N − b)−1
N∑

t=b+1

p(drep
i = 1 |d,β(t),S(t), θ(t)), (10)

where b gives the burn-in period, β(t) and S(t) are the sampled regression parameters and
partition at iteration t, and θ(t) denotes the vector of all hyperparameters at iteration
t. We see that



582 Nonparametric estimation in contingent valuation models

Table 1: Summaries of the posterior in the simulated experiments. The posterior mean
of J and β are given for each experiment, with the posterior standard deviation of β
given in brackets. Note that the posterior mean of J is the posterior probability of
inclusion of the regression coefficients.

Model: Normal probit Dirichlet process probit
Dataset Variable J β J β

x1 1.0000 1.0000(0.0000) 1.0000 1.0000(0.0000)
x2 0.0412 0.0009(0.0143) 0.0339 0.0003(0.0129)

Normal x3 1.0000 −1.1262(0.1111) 1.0000 −1.1251(0.1090)
x4 0.0588 0.0045(0.0241) 0.0748 0.0055(0.0286)
x5 0.0616 0.0053(0.0284) 0.0599 0.0043(0.0248)
x1 1.0000 1.0000(0.0000) 1.0000 1.0000(0.0000)
x2 0.1769 0.0243(0.0659) 0.1539 0.0214(0.0622)

Logistic x3 1.0000 −0.8449(0.1231) 1.0000 −0.8424(0.1265)
x4 0.1091 −0.0093(0.0405) 0.0688 −0.0054(0.0313)
x5 0.0816 0.0027(0.0282) 0.0670 0.0022(0.0264)
x1 1.0000 1.0000(0.0000) 1.0000 1.0000(0.0000)
x2 0.1730 −0.0269(0.1115) 0.1177 −0.0080(0.0485)

Bimod x3 0.9999 −1.0018(0.2821) 1.0000 −1.2507(0.1992)
x4 0.1412 0.0108(0.0881) 0.1202 −0.0104(0.0509)
x5 0.1441 −0.0017(0.0851) 0.0748 0.0005(0.0344)
x1 1.0000 1.0000(0.0000) 1.0000 1.0000(0.0000)
x2 0.0545 −0.0032(0.0228) 0.0555 −0.0034(0.0224)

Skew x3 1.0000 −0.9542(0.1041) 1.0000 −0.9826(0.1091)
x4 0.0513 −0.0029(0.0210) 0.0625 −0.0033(0.0211)
x5 0.1079 −0.0116(0.0425) 0.0710 −0.0060(0.0317)
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Figure 1: Posterior mean densities and predicted probabilities for the simulated results.
In each case the true density (dotted), the estimated density assuming normality (solid),
and the estimated density under a Dirichlet process prior (dashed) are shown in the left
hand plot. Scatter plots of estimated probabilities against true probabilities are shown
in the middle and right hand plots of each row.

p(drep
i = 1 |d, β,S, θ) = p(x′iβ + ε

rep
i > 0 |d,S, θ)

=
k∑

j=1

nj

n + α
T2aj


 x′iβ + mj√

(1 + 1/(n−i
j + τ−2))bj/aj




+
α

n + α
T2aσ

(
x′iβ + m√

(1 + τ2)bσ/aσ

)

where nj , mj , aj and bj are as in (9) but without observation i removed. Figure 1
shows that the predictions can be quite different when the assumption of normality is
dropped.

In the experiment where the data are generated from a probit model, the analysis
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under the general model results in near identical results to analysis under the normality
assumption. In the case of bimodal or skewed noise, however, the density predictions
are significantly different under the two analyses, with the general model resulting in
accurate reporting of the generating density. The predicted probabilities under the
general model are close to the true probabilities, whereas the normality assumption
results in inaccurate predictions.

5 Contingent valuation

Responses in contingent valuation using a dichotomous choice format are binary, with
di = 1 if subject i is offered a bid of bi and chooses to accept; otherwise di = 0. In this
case, we know that subject i’s willingness to pay is greater than bi; if we assume that
the willingness to pay is of the form

x′iβ + εi,

where xi is a set of regressors associated with subject i, then

di = 1 ⇔ bi < x′iβ + εi.

Defining

yi = −bi + x′iβ + εi = (bi x′i)
(−1

β

)
+ εi

we see that di = I{yi>0}, and we have precisely the latent variable formulation (1). It
is therefore natural to identify this model through fixing a coefficient instead of some
characteristic of the latent variable distribution: the coefficient of bi is −1 through the
formulation of the problem. In contrast with this, the standard method for analysing
such data is to assume a parametric distribution for εi, usually either a standard normal
or logistic distribution (see for example Cameron and James 1987; Cameron 1988), then
post-process the results to recover a coefficient of −1 for bi. Fernández et al. (2004)
study a more complex contingent valuation model using Bayesian methodology, but their
continuous noise terms are restricted to be skew-normal distributions. Our formulation
can easily be extended to include the positive probability of having willingness to pay
of 0 that is allowed under the model of Fernández et al. (2004), but we retain the
simple probit structure to illustrate the differences between our flexible model and that
originally used to study our data.

5.1 Contingent valuation of screening in rural Australia

We take the data from Clarke (2000) and analyse them using the method described in
this paper, as well as under a normal Bayesian probit model with variable selection. The
data consist of 372 responses to a survey of women in rural Australia, designed to assess
the willingness to pay for visits of a mobile mammographic screening unit. See Clarke
(2000) for a more complete description of the data including variable definitions. We first
scaled all explanatory variables to have mean 0 and variance 1, to ensure that numerical
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considerations do not affect the inference — without this rescaling the explanatory
variables had variances ranging from 0.08 to 7586. The procedure outlined in Section 3
was then carried out, with β1 fixed to −1, before the results were transformed back to
the original scale for reporting.

Table 2 gives the posterior probabilities of inclusion, and the posterior means and
standard deviations of the regression coefficients. Figure 2 plots the posterior density of
the εi. Table 2 shows that both estimation techniques result in probable inclusion of the
“Intended use” variable, but not the “Distance” variable found to be significant (after
various transformations) by Clarke (2000). When the error term is assumed normal,
the marginal posterior probability of “Age” entering the regression is 0.25, but with the
more general model for the errors the corresponding posterior probability is negligible.
Furthermore, Figure 2 shows that the general model gives a very different prediction of
the actual distribution of willingness to pay, with significant skewness of the distribution
of εi. To help compare these two models we consider the quantity

∑

di=1

log p̂i +
∑

di=0

log(1− p̂i)

for each model, which is equivalent to comparing the deviances of each model. For
the probit model this takes the value −209.4, whereas under the more general model
it takes a value −198.7, which suggests that the Dirichlet process model fits the data
more accurately.

Although not reported here, we also ran the same procedures with the “Bid” variable
transformed as in Clarke (2000). With this transformation, his simple variable selection
procedure selected “Distance” as a significant variable. The full Bayesian methodology
presented here contradicts this finding, both when normality is assumed and when it is
not. The same variables are selected for the transformed data as for the untransformed
data, and the estimated density for εi remains highly skewed when normality is not
assumed, despite the fact that the Box–Cox method is used to select the transformation
of the “Bid” variable.

6 More general applications

We believe that our method can be used more generally because in many applications
we would know, or expect, that some covariates should be in the regression with the sign
of their coefficients known and the coefficient estimates highly statistically significant.
A more general use of our method is now illustrated when the values (and signs) of
the regression coefficients in a binary choice model are unknown, but we attempt to
identify a suitable candidate coefficient to fix through a preliminary analysis of the
data. In many econometrics problems the coefficient of price is a suitable candidate as
it will be negative and significant. However, the method needs to be used with some
caution as a suitable coefficient may be unavailable.
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Table 2: Summaries of the posterior for the contingent valuation data. The posterior
mean of J and β are given for each experiment, with the posterior standard deviation
of β given in brackets. The covariates have the following meaning: Bid is the bid
offered; Distance is the distance to the nearest fixed site (km); Intended use equals one
if the respondent stated she would use a mobile unit if it visited their nearest town,
otherwise 0; Married equals one if respondent is married; Senior high school equals one
if respondent’s highest level of education is senior high school; Technical college equals
one if respondent’s highest level of education is technical college; University equals one
if respondent’s highest level of education is university; Age is respondent’s age (years);
Knowledge equals one if respondent knows someone who has had breast cancer in the
last five years; CART (Cancer Action in Rural Towns) equals one if the respondent lives
in a CART intervention town; Received information equals one if the respondent stated
that they had received the information sheet.

Model: Normal Dirichlet process
Variable J β J β
Bid 1.0000 −1.0000(0.0000) 1.0000 −1.0000(0.0000)
Distance 0.0989 0.0243(0.0846) 0.0729 0.0112(0.0473)
Intended use 0.3104 19.7062(32.5992) 0.9495 71.2288(37.7568)
Married 0.1004 4.1725(14.1757) 0.0709 1.6306(7.2644)
Senior high school 0.0231 0.3870(5.5586) 0.0182 0.0359(2.6102)
Technical college 0.0400 1.5015(9.9586) 0.0502 1.5125(7.8194)
University 0.0299 0.9491(8.2568) 0.0218 0.4492(4.2909)
Age 0.2753 −0.7093(1.2806) 0.0392 −0.0508(0.3083)
Knowledge 0.0384 0.8878(5.7402) 0.0153 0.1863(2.2815)
CART 0.0603 1.8374(8.6944) 0.0222 0.3250(2.9986)
Received information 0.0250 −0.3701(5.7823) 0.0158 −0.2869(3.3314)
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Figure 2: Posterior mean density for εi for the data of Clarke (2000). The estimates
under normality and under the general model are given by the solid and dashed lines
respectively.

6.1 PAP test awareness data

We reanalyse the data of Belkar et al. (2006) who consider whether Australian women
are aware of the availability of a PAP smear test for the early detection of cancer of the
cervix. Because the large majority of women in the sample are aware, this is an example
of an unbalanced binary response and is one of the situations where traditional logit and
probit models potentially give very different predictions. For our particular analysis,
the other distinctive feature of this example is that, unlike the contingent valuation
case, there is no clear candidate regressor on which to identify the model. However, by
performing an initial analysis using a traditional probit model we select an identifying
variable, then refine the initial analysis using the full model.

The data consist of 8969 observations, which take value 1 if the subject is aware
of the availability of PAP smear testing; 95% of subjects were aware of testing. The
29 explanatory variables consist largely of indicator variables, taking values one or
zero depending on where survey respondents were born, where they live, their level of
education, and their ability to speak English. In addition to these indicators, there
are three variables which are also surveyed as ordered factors, but that we code as
continuous values: age, income and spouse’s income, with the midpoint of the class taken
as the response value. There are missing values for the two income variables, which are
handled by retaining the data with missing observations and using the modified zero
order method. If z has a missing observation it is coded as zero and a new dummy
variable is created (zmiss) that equals 1 when the z observation is missing and is zero
otherwise. The estimated coefficient on this dummy represents the estimated z effect
for the missing observation. Finally, the square of each continuous variable was added
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to the regression matrix. This dataset is fully described in Belkar et al. (2006).

The results of a frequentist probit analysis are given in the first two columns of
Table 3. We place the variable AGE2 first in the list, since this variable has the lowest p
value, and is therefore an appropriate variable for fixing the regression coefficient; for the
Bayesian approaches we identify the model by fixing this value to -1, and do not allow
the variable to be selected out. We therefore scale the results of this initial analysis so
that the first coefficient is −1, thus allowing easier comparison of the frequentist probit
with the Bayesian methods presented here.

Again, the variables were scaled to have mean 0 and variance 1, then the Bayesian
procedures were run, before the results were rescaled to be reported on the original scale.
For this more complex dataset we ran the sampler for 25000 iterations, discarding the
first 5000 as burn-in. The programs in this case took approximately 25 minutes when
normality was assumed, and 4400 minutes for the full model. Note that the time per
iteration increases approximately linearly with the number of observations, since on
each iteration we consider re-allocating each observation in turn to components of the
mixture, so that these times are significantly longer than the previous examples because
of the large amount of data.

Table 3 gives the results of the frequentist analysis and the Bayesian analyses assum-
ing both normal and general error distributions. Figure 3 shows the density estimates
and the predicted probabilities, the latter analogous to those shown in Figure 1. These
results show that the Dirichlet process does not show a large deviation from normality.
Also shown in Figure 3 is a plot of predicted probabilities of awareness for women of dif-
ferent ages, comparing the difference in probability between Australian born and Asian
born women of different ages. Table 3 shows being Asian born (ASBORN) is highly
statistically significant, but that this translates into only small probability differences
for the representative cases displayed in Figure 3.

For this dataset, a logit regression results in different predictions to a probit regres-
sion. To test whether our method recognises data generated from a logit model, we
use the posterior mean regression coefficients β̂ from the Bayesian probit analysis (col-
umn 5 of Table 3) to generate a second data set from the original design matrix. The

noise terms were drawn from a logistic distribution then multiplied by 1/|β̂logit
1 |, where

β̂logit is the coefficient vector estimated by a logit analysis, so that the scale of the noise
is approximately correct given the regression coefficients. The simulated observations
d were then calculated, with 8657 of them being 1, a comparable number to those in
the initial dataset. The same analyses as for the real data-set were applied. Figure 4
shows the density estimates and estimated probabilities. It is clearly seen that for this
generated data set our model recognises the non-normal model, estimating heavier tails
on the distribution of εi than under the probit analysis. Furthermore, the predictions
from the general model are more accurate than those from the restricted model, with
the probit model consistently overestimating the lower probabilities (the distinct lines
in the middle plot of Figure 4 are due to the mis-estimation of a regression coefficient
corresponding to an indicator variable).
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Table 3: Analysis of the PAP test awareness data.

Frequentist probit Bayesian probit Dirichlet process
Variable β p val J β J β
AGE2 −1.00 0.00 1.00 −1.00 (0.00) 1.00 −1.00 (0.00)
AGE 91.18 0.00 1.00 90.74 (1.52) 1.00 90.63 (1.58)
EXENG 631.65 0.00 1.00 662.82(113.11) 1.00 691.85(125.21)
ENGLISH 773.85 0.00 1.00 708.18(112.63) 1.00 711.70(116.77)
ENGEXENG −195.05 0.36 0.01 −1.43 (25.50) 0.01 −1.84 (29.50)
NUBORN 111.40 0.31 0.01 1.35 (17.46) 0.01 0.48 (9.05)
SEBORN −310.74 0.02 0.11 −36.18(110.50) 0.10 −34.94(110.87)
WEBORN 177.23 0.43 0.01 3.17 (38.34) 0.01 4.63 (52.89)
ASBORN −782.06 0.00 1.00 −698.60(113.20) 1.00 −710.71(118.89)
OTBORN 21.14 0.88 0.01 1.60 (22.91) 0.00 0.34 (10.23)
TERT 228.42 0.04 0.17 49.24(119.74) 0.14 40.70(107.99)
DIPLOMA −26.26 0.80 0.01 −0.10 (6.53) 0.00 −0.23 (7.56)
TRADE 53.16 0.51 0.01 0.57 (10.75) 0.01 0.72 (11.68)
INC 3.69 0.59 0.01 0.05 (0.57) 0.01 0.01 (0.26)
INC2 0.04 0.81 0.05 0.01 (0.03) 0.01 0.00 (0.01)
INCMISS 69.32 0.56 0.01 1.84 (19.53) 0.01 1.61 (17.24)
SINC 19.80 0.00 1.00 11.31 (2.54) 1.00 11.13 (2.61)
SINC2 −0.16 0.06 0.01 −0.00 (0.02) 0.00 −0.00 (0.00)
SINCMISS 338.30 0.01 0.12 36.88(107.88) 0.13 42.75(118.70)
VIC −29.42 0.72 0.01 −0.35 (6.28) 0.01 −0.60 (8.32)
SA 139.62 0.16 0.03 4.61 (30.80) 0.02 2.62 (21.52)
WA −132.25 0.21 0.02 −2.95 (23.18) 0.01 −1.95 (19.31)
TAS −3.74 0.98 0.01 0.15 (11.84) 0.01 −0.40 (10.52)
NT −223.49 0.07 0.02 −3.40 (29.75) 0.02 −3.84 (30.46)
ACT 114.28 0.36 0.01 2.45 (24.39) 0.01 2.15 (22.91)
BRISBANE 103.85 0.49 0.01 1.36 (21.07) 0.00 0.28 (9.42)
OTQLD 122.33 0.45 0.01 0.89 (19.53) 0.00 0.19 (8.55)
RURAL 84.93 0.49 0.00 0.41 (8.89) 0.00 0.41 (10.92)
REMRURAL −36.12 0.69 0.01 −0.33 (8.48) 0.01 −0.13 (7.37)
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Figure 3: Posterior mean densities and predicted probabilities for the PAP awareness
data of Belkar et al. (2006). The estimated density assuming normality (solid), and the
estimated density under a Dirichlet process prior (dashed) are shown in the left hand
plot. The middle plot compares the probabilities under the different models. The right
hand plot presents the predicted probability of awareness under the general model for
a woman of different ages, who speaks English, and has average income and spouse’s
income, but has all other indicators set to zero. The diamond marks are for a woman
of Australian birth, whereas the cross marks are for a woman of Asian birth.

Because of the unbalanced nature of the data, an analyst choosing between tradi-
tional logit and probit models could perform a specification test for non-nested models
such as that proposed by Silva (2001). For these data, and using both the z(0) and z(1)
versions of the test, the null of the probit model is not rejected while the null of the
logit model is rejected, and hence there is strong evidence in favour of the probit spec-
ification. While this is consistent with our analysis, the key advantage of our approach
is that the prior over all distributions means that the set of models is not confined to a
finite predetermined set of alternatives.

7 Conclusion

A Bayesian nonparametric approach is proposed for binary choice models that arise in
the context of single-bound contingent valuation. The approach does not require making
a distributional assumption on the latent variable. Instead, we place a prior on the set
of distributions on the real line and let the data select an appropriate distribution.
Previous approaches have restricted the form of the latent noise distribution in order
to identify the model, whereas we identify the model by fixing one of the regression
coefficients, allowing the use of the completely flexible prior over noise distributions
that was introduced by Escobar and West (1995) and used by Leslie et al (2007).

While we have concentrated on the contingent valuation situation where a certain
coefficient is fixed, we believe the procedures developed here often apply more generally
in binary choice settings. For example, we are often interested in ratios of coefficients.
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Figure 4: Posterior mean densities and predicted probabilities for the PAP awareness
data of Belkar et al. (2006). The estimated density assuming normality (solid), and the
estimated density under a Dirichlet process prior (dashed) are shown in the left hand
plot. The middle and right hand plots compare the probabilities estimated under the
different models with the true probabilities.

In economics these represent marginal rates of substitution, e.g. how much in dollar
terms are you willing to trade for an improvement in each of the attributes of the
good. In this case, fixing one coefficient, say price, provides direct estimates of marginal
willingness-to-pay.

Another popular form of elicitation in contingent valuation involves a second follow-
up bid, offered after the initial contingent valuation question. Our approach could be
extended to this case and thus would provide an alternative to the approach in Fernndez,
et al. (2004). Alternatively, with such data one could relax the assumption that each
person has a willingness to pay that is not affected by the question asked. This requires
jointly estimating binary responses, with flexible error distributions where it is necessary
to allow for dependence between the responses. More generally, outside the contingent
valuation case, these examples suggest natural extensions of our work to ordered probit
and bivariate probit models.
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Appendix A: Sampling scheme

This appendix presents details of the sampling scheme. These details are contained in
earlier papers, and in particular the methods used here build upon the work of Leslie
et al. (2007). Throughout the descriptions we condition on the partition S and latent
variables y, which are also updated on each iteration of the MCMC scheme as described
in Section 3.

Firstly note from (6) that, given y and S, the group variance parameters σ̃2
j can be

sampled from an inverse gamma distribution. Furthermore, conditional only on σ̃2 and
S, α and bσ are conditionally independent of each other and of all other parameters.
West (1992) shows how to update α using an auxiliary variable method. Richardson
and Green (1997) show that bσ can be drawn from a Gamma distribution.

It has been previously noted (Kohn et al. 2001; Chan et al. 2006) that MCMC for
variable selection is most efficient when the regression coefficients β can be integrated
out of the likelihood. Write µ = (µi)i=1,...,n for the vector of individual means resulting
from the Dirichlet process, and Σ = diag(σ2

i )i=1,...,n for the diagonal matrix of individual
variance parameters. It follows directly from the definition of the model that

y |β, µ,Σ ∼ N (µ + Xβ,Σ).

Given a partition S resulting from the Dirichlet process prior, with k components, we
define ES to be the n × k matrix with each row being a unit vector with a one in
the position corresponding to the component to which point yi is allocated in S. It
follows that µ = ESµ̃ where µ̃ = (µ̃j)j=1,...,k is the vector of component means. Note
that, since Xβ = XJβJ where βJ is the subvector of β consisting only of the non-zero
elements (i.e. the elements for which Ji = 1),

µ + Xβ = (ES XJ )
(

µ̃

βJ

)
.

Now conditional on σ̃2, S, τ2 and m the prior tells us that
(

µ̃

βJ

)
∼ N (η̂, P )

where

η̂ =
(

m1
0

)
and P =

(
τ2diag(σ̃2) 0

0 nπ
2 (X ′

JXJ )−1

)
.

It is therefore easy to marginalise out the parameters µ̃ and βJ resulting in the likelihood
equation

p(y |J , Σ,S, τ2, m) =
1

|2πΣ|1/2|P |1/2|X̃′X̃ + P−1|1/2
(11)

× exp

[
−1

2

{
ỹ′ỹ + η̂′P−1η̂ − (X̃′ỹ + P−1η̂)′(X̃′X̃ + P−1)−1(X̃′ỹ + P−1η)

}]

where

ỹ = Σ−1/2y

X̃ = Σ−1/2(ES XJ ).
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The procedure for updating J now closely follows that of Chan et al. (2006). The
elements of J are chosen sequentially in blocks, with the block size chosen at random
to be 2, 4 or 6, and the elements of the block selected randomly from the elements of J
yet to be updated in the current iteration. Let JB be one such block; a new value for
this block is proposed from the prior, conditional on the value of the parts of J that
are not being updated. This step is described in detail by Kohn et al. (2001). The
proposed new values are then accepted according to a likelihood ratio calculated using
(11). In choosing the block size, there is a tradeoff between more efficient sampling with
larger block sizes if the sampling can be done exactly, and higher rejection rates with
larger blocks when the proposal is from the prior. Because we do not know the optimal
size of block to use, the proposed scheme attempts to reduce dependence in the chain
by randomizing on block size and the order in which elements are selected. In their
application Chan et al. (2006) found empirically that block sizes much greater than 6
resulted in rejection rates that were too high.

We update m using an additive random walk Metropolis–Hastings move with a
N (0, 1) proposal distribution. Since τ2 must be positive, we propose a new value τ2eZ

where Z ∼ N (0, 1) and again decide whether or not to accept the proposal using a
Metropolis–Hastings acceptance probability.

Finally, the vector βJ is sampled from a multivariate normal distribution to allow
the updates of S and y to be performed as described in Section 3.
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Appendix B: Description of the covariates in Pap smear
data

Table 4: Covariates in the PAP test awareness data.

Variable Description Variable Description

AGE Age in years NCMISS 1 if income missing

AGE2 Age squared SINC Personal income of spouse

$’000

EXENG 1 if able to speak English SINC2 square of SINC

ENGLISH 1 if usually speaks English SINCMISS 1 if spouse income missing

ENGEXENG EXENG*ENGLISH VIC 1 if reside in VICTORIA

NUBORN 1 if born in New Zealand

or UK

SA 1 if reside in SOUTH

AUSTRALIA

SEBORN 1 if born in Southern Eu-

rope

WA 1 if reside in WESTERN

AUSTRALIA

WEBORN 1 if born in Western Eu-

rope

TAS if reside in TASMANIA

ASBORN 1 if born in Asia NT if reside in NORTHERN

TERRITORY

OTBORN 1 if born in other countries ACT 1 if reside in AUS-

TRALIAN

CAPITAL TERRITORY

TERT 1 if tertiary qualifications BRISBANE 1 if reside in Brisbane

DIPLOMA 1 if diploma OTQLD 1 if reside in QLD but not

Brisbane

TRADE 1 if trade qualification RURAL 1 if reside in rural area

INC Personal income $’000 REMRURAL 1 if reside in remote rural

area

INC2 INC squared
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