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Comment on Article by Monni and Tadesse

Hongzhe Li∗

I congratulate Dr. Monni and Dr. Tadesse (MT) on an elegant Bayesian implemen-
tation of an important problem of linking two types of high-dimensional genomic data
in small sample size settings. This type of data appears frequently in genomic research.
MT demonstrated their methods using the gene expression and array CGH data on NCI
60 cell lines samples. Other potential applications include identifying the SNPs that
are associated with gene expression variations (e.g., in the context of eQTL analysis)
and identifying the epigenomic features that are associated with genomic features. The
methods of MT represent a major methodological development in the area of stochastic
partitioning and Bayesian variable selection and will find many applications in these
areas. My discussion consists of two parts: (1) some comments on simulations and
application to NCI60 cancer cell line data set; and (2) an alternative approach to the
same problem based on penalized likelihood and regularization.

1 Comments on simulations and real data analysis

I suspect that the very high signal-to-noise ratios (SNR) used for the first set of simula-
tions have led to almost perfect performance of the proposed procedure, as represented
in Figure 1 and Figure 2 of the paper. It is not surprising that the method of MT
performed better than the multivariate method of Brown et al. (1998) for the simulated
scenario since the later method allows for possible different regression coefficients for the
same set of covariates over different responses in the same partition. I was wondering
how the univariate stochastic search variable selection (SSVS) algorithm, when applied
to each response separately, performs in such high SNR settings. I therefore would put
more weights on the results presented in Section 4.1.6 when the regression coefficients
were sampled in the range [-1.5,-0.5] and [0.5,1.5]. I was wondering whether the au-
thors have similar plots as Figure 1 and Figure 2 for this set of simulations. I would
explain the better performance of the proposed method over the SSVS by the implicit
increases in sample sizes when the correct partitions of the responses are identified since
the same mean models are assumed for all the responses in the same partition. I was
wondering whether MT have checked what would happen if different responses in the
same partition depend on the same set of the covariates but with different coefficients.

The results from analysis of aCGH and gene expression profiles based on the NCI
60 cell lines are interesting and provide certain insights on how copy number changes
affect the gene expressions. For example, the deletion of the c−abl oncogene 1 (ABL1),
a receptor tyrosine kinase, in leukemia cell lines was found to be related to increased
transcript abundance in four genes involved in hematopoietic development and lympho-
cyte proliferation. While Figure 3 shows that the four genes have similar expression
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profiles over 59 samples, it would be interesting to also show how the expression levels
are related to the CGH measurements of ABL1 gene and the corresponding regression
coefficients. Similarly, for Figure 5, it would be interesting to show how the CGH mea-
surements of BRY P clone are related to the expression levels of the three genes shown.
It would also help to assess whether the linearity assumption holds. In contrast, Figure
4 is less interesting, as it simply pointed out that four probe sets of the same gene can
be partitioned together into one group. I was also curious whether these transcripts
and the CGH clones identified in Figures 3-5 can also be identified based on simple uni-
variate analysis, e.g., whether these pairs rank on the top based on univariate analysis.
This could be a great demonstration that simultaneous partitions of the responses and
the covariates can indeed lead to something more substantial than simple univariate
analysis. My last comment is that since the true copy numbers for clones are in fact
discrete, I was wondering whether it might be a good idea to first estimate these copy
numbers and then to link these copy numbers to the gene expression data, rather than
directly using the CGH intensities as the covariates.

2 An alternative approach based on penalized likelihood

The model considered by MT is essentially a minor modification of the sparse regression
mixture model (SRMM) introduced in Khalili and Chen (2007) and Li (2008). Using the
same notation as in MT, let the data consist of N independent samples with p covariates,
X = (X1, . . . , Xp) and q outcomes Y = (Y1, · · · , Yq). Assume that each response Yi can
be assigned to one and only one of M + 1 clusters. Define Zj to be a random variable
that follows a multinomial distribution Mult(π) with π = (π0, π1, · · · , πM )′, πm ≥ 0
and

∑M
m=0 πm = 1. We assume that

Yji|Zj = m ∼ N (αj + µm,i, σ
2
m),

µm,i =
p∑

r=1

βmrXqi, (1)

for j = 1, · · · , q, i = 1, · · · , N and m = 0, 1, · · · ,M . We assume that β0r ≡ 0 for r =
1, · · · , q, which corresponds to the cluster that has no regression covariates associated
with the response variable. If we appropriately center both the responses and the
covariates, we can simply let αj = 0 for all j = 1, · · · , q. MT consider the settings
when p and q are large and the regression models are sparse and aim to simultaneously
estimate the cluster membership Zj and the corresponding covariates that can explain
the cluster-specific variation of the responses. This is basically a variable selection
problem, aiming to identify the non-zero elements of the vector βm = (βm1, · · · , βmp)′

for each cluster or partition of the responses. We can impose the following sparsity
constraints to model (1),

|βm|1 =
p∑

r=1

|βmr| < sm, m = 1, · · · ,M,
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for some tuning parameters sm, m = 1, · · · ,M . This is the SRMM considered in Li
(2008).

One way to estimate the model parameters is through a penalized log-likelihood,
which can be defined as

l̃(β, π, σ2) = l(β, π, σ2) + CM

M∑
m=0

log πm −
M∑

m=1

πmλm|βm|1, (2)

where β = (β1, · · · , βM ), σ2 = (σ2
0 , σ2

1 , · · · , σ2
M )′, l(β, π, σ2) is the standard log-likelihood

function based on the mixture model with M + 1 groups, CM and λm are the tuning
parameters. For simplicity we can assume that λ1 = · · · = λM = λ. The first penalty
function forces the estimated values of πm away from 0 to prevent over-fitting with small
values of mixing proportions (Chen and Kalbfleisch, 1996; Chen and Khalili, 2008). The
second penalty function induces the sparse solutions and leads to cluster-specific vari-
able selection, which serves the purpose of partitioning the covariates as in MT. Other
penalty functions such as the SCAD (Fan and Li, 2001), bridge (Frank and Friedman,
1993) and the minimax concave penalty (MCP, Zhang, 2007) can also be used for the
second penalty term.

For a given M , a modified EM-algorithm can be developed for maximizing the
penalized log-likelihood (2) (Khalili and Chen, 2007; Li 2008), where the E-step is
essentially the same as the standard finite mixture models and the M-step involves
maximizing the conditional expectation of the complete data log-likelihood, which is
given at the (k + 1)th M-step as

Q(Ψ;Ψ(k)) =
q∑

j=1

M∑
m=1

w
(k)
jm log{f(Yj ; βm, σ2

m)} − λ

M∑
m=1

πm|βm|1

+
q∑

j=1

M∑
m=1

[w(k)
jm +

CM

N
] log πm,

where w
(k)
jm is the conditional probability of Zj = m given the data and the current

estimate of the model parameters Ψ(k) and f(Yj ;βm, σ2
m) is the normal density based

on model (1). An efficient cyclical coordinate descent algorithm (Friedman et al., 2007)
can be used to find the β which maximizes Q(Ψ;Ψ(k)).

We now briefly discuss the choice of the tuning parameter λ, CM and also the number
of clusters M . The results are expected to be not very sensitive to the value of CM (see
Chen and Khalili, 2008). For a given M , we can use a componentwise deviance-based
GCV criterion for choosing λ(M), which leads to estimate of the effective number of
the parameters. We can then use the BIC to choose the number of clusters M .

It would be interesting to compare the performance of the stochastic partitioning
method of MT and the regularization method for both simulated and NCI 60 cell line
data sets. I was wondering whether MT can comment on the potential advantages of
their Bayesan approach over the regularization-based approach outlined above.
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Finally, for some genomic applications, it may make more sense to assume that
some responses are clustered together if they are affected by the same predictors, but
with possible different coefficients. I was wondering whether MT have any thoughts on
whether it is possible to extend their stochastic partitioning method to such settings.
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