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LIMIT THEOREMS FOR EMPIRICAL PROCESSES OF
CLUSTER FUNCTIONALS1

BY HOLGER DREES AND HOLGER ROOTZÉN

University of Hamburg, and Chalmers University and Gothenburg University

Let (Xn,i )1≤i≤n,n∈N be a triangular array of row-wise stationary R
d -

valued random variables. We use a “blocks method” to define clusters of
extreme values: the rows of (Xn,i ) are divided into mn blocks (Yn,j ), and
if a block contains at least one extreme value, the block is considered to
contain a cluster. The cluster starts at the first extreme value in the block
and ends at the last one. The main results are uniform central limit theo-
rems for empirical processes Zn(f ) := 1√

nvn

∑mn

j=1(f (Yn,j ) − Ef (Yn,j )),

for vn = P {Xn,i �= 0} and f belonging to classes of cluster functionals, that
is, functions of the blocks Yn,j which only depend on the cluster values
and which are equal to 0 if Yn,j does not contain a cluster. Conditions for
finite-dimensional convergence include β-mixing, suitable Lindeberg condi-
tions and convergence of covariances. To obtain full uniform convergence, we
use either “bracketing entropy” or bounds on covering numbers with respect
to a random semi-metric. The latter makes it possible to bring the power-
ful Vapnik–Červonenkis theory to bear. Applications include multivariate tail
empirical processes and empirical processes of cluster values and of order
statistics in clusters. Although our main field of applications is the analysis
of extreme values, the theory can be applied more generally to rare events
occurring, for example, in nonparametric curve estimation.

1. Introduction. The next challenge for extreme value statistics is modeling
and estimation of the structure of clusters of extreme values. As one concrete ex-
ample, the Europe 2003 heat wave may have killed around 60,000 persons. There
has been a substantial discussion of whether it could be attributed to global warm-
ing. The Nature paper [Stott, Stone and Allen (2004)] uses extreme value methods
with average summer temperature as a proxy for a heat wave to try to answer this
question. However, the health effects are in reality linked to clusters of extremely
high temperatures over much shorter time periods, and the fluctuations of temper-
ature during this period determine risks.

Similarly, river flooding may be caused by not just one extreme rainfall event,
but also by the ground already being saturated with water due to high precipitation
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during the preceding 5–10 days. This was, for example, the case for the large
flood which occurred in Northern Sweden on July 26, 2000. Thus, again, an entire
sequence of large values are at the center of interest.

This paper develops an empirical limit theory for clusters of extremes in sta-
tionary sequences. It provides a unified basis for asymptotic analysis of statistical
methods which aim at answering questions such as the ones above. Results in-
clude limit theorems for tail array sums, in particular, for multivariate tail empiri-
cal processes, and for joint survival functions of the values and order statistics in a
cluster. More special examples, such as upcrossings, compound insurance claims,
kernel density and bootstrap estimators, are also studied.

Estimation of the extremal index (roughly, the inverse of the expected clusters
length) has received substantial attention in the extreme value statistics literature.
The results of this paper can be used to prove asymptotic normality for a general
type of estimator based on blocks of exceedances; see Drees (2010). There are also
a few papers [e.g., Bortot and Tawn (1998), Sisson and Coles (2003)] on Markov
chain modeling of clusters of extreme values. However, a major part of the work
to develop useful statistical methods for the structure of clusters of extremes still
remains to be done. Our goal is that this paper will be useful for the analysis of
existing methods, and that it will spur development of new methods.

More specifically, we consider triangular arrays of row-wise stationary se-
quences of random variables. The variables are assumed to take their values in
some set E ⊂ Rd , with E = R and E = R

d as the standard examples. Clusters of
extremes are defined through a “blocks” method. The variables in each row of the
array are divided up into blocks, and a cluster of extremes starts with the first “ex-
treme” value in a block, if there is such a value, and ends with the last one. Such
a cluster is termed the “core” of the block. A function which maps a block into a
real number is called a “cluster functional” if it only depends on the core of the
block and if it equals 0 for blocks without extremes. In contrast to standard uni-
form central limit theorems, cores (i.e., clusters of extremes) consist of a random
number of variables, and, hence, cluster functionals have to be defined on a space
of vectors of arbitrary lengths.

The aim is to prove uniform central limit theorems for interesting classes of
cluster functionals. We throughout use β-mixing (or, with another name, absolute
regularity) as the basic dependence restriction. It is very widely applicable and
makes it possible to transfer calculations from dependent blocks to easier calcula-
tions with independent blocks. Finite-dimensional convergence of the cluster func-
tionals in addition requires Lindeberg conditions and convergence of covariances.
We use suitable formulations of “bracketing entropy” to give conditions for asymp-
totic tightness, and bounds on covering numbers with respect to a random semi-
metric to prove asymptotic equicontinuity. The latter, in particular, makes it possi-
ble to use the Vapnik–Červonenkis theory to prove asymptotic equicontinuity. As
usual, uniform central limit theorems follow from finite-dimensional convergence
together with asymptotic tightness, or together with asymptotic equicontinuity.
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In the important context of estimation for panel count data, two articles by Well-
ner and Zhang (2000, 2007) use uniform central limit theory for vectors of random
lengths. These articles are aimed at the specific application and not at general the-
ory. Hence, they use special properties (such as monotonicity) of the classes of
functions, do not consider triangular arrays, assume that the vectors are indepen-
dent, and, in the second paper, also assume that the lengths of the vectors are
uniformly bounded. However, the basic tools to prove tightness, that is, random
covering numbers for the general case, and bracketing entropy for the uniformly
bounded case are the same as in the present paper. We have not found any other
references on uniform central limit theory for random vectors with random lengths.

One application of the theory of this paper is to multivariate tail empirical
processes for stationary time series. Let (Xi)i∈N be a time series with marginal
survival function H̄ = 1−H . The univariate tail empirical process is defined as

en(x) := 1√
nvn

n∑
i=1

(
1{Xn,i>x} − H̄ (un + anx)

)
, x ∈ [0,∞),

where

Xn,i :=
(

Xi − un

an

)
+
=max

(
Xi − un

an

,0
)
, 1≤ i ≤ n.(1.1)

The multivariate tail empirical process is defined analogously; see Examples 3.1
and 3.8 below. In the definition (un)n∈N is an increasing sequence of thresholds
such that vn := P {X1 > un}→ 0, and (an)n∈N is a sequence of positive normaliz-
ing constants such that the conditional distribution of Xn,1 given that Xn,1 > 0 con-
verges weakly to some nondegenerate limit. [In particular, the distribution function
(df) of X1 then belongs to the domain of attraction of some extreme value dis-
tribution.] Rootzén (1995, 2009) proved weak convergence of en to a Gaussian
process; see Example 3.8 for details. Such limit theorems have proved quite useful
for semi-parametric statistical analysis of the marginal tail behavior [Drees (2000,
2002, 2003)]. The present paper extends convergence to multivariate tail empirical
processes and makes a small improvement of the results in Rootzén (2009).

Tail empirical processes do not capture information on location in the extreme
clusters, and hence do not catch the serial extremal dependence structures which
are at the center of interest in connection with, for example, heat waves or river
floods. A second class of applications of our main theorems is to joint survival
functions and joint distributions of the order statistic of the values within an ex-
treme cluster.

The paper is organized as follows. In Section 2 we first introduce empirical
processes of cluster functionals. This generalizes concepts first introduced by Yun
(2000) and developed further by Segers (2003). We then derive uniform central
limit theorems for these empirical processes under quite general abstract condi-
tions. Sections 3 contains applications to tail array sums, with the multivariate tail
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empirical process as a prominent example. In Section 4 we consider empirical
processes of indicator variables, and, in particular, joint distributions of variables
and of the order statistics in the clusters of extreme values. Proofs are given in
Section 5.

2. Limit theorems for general empirical cluster processes. This section
first sets out the basic definitions and assumptions which are used throughout
the paper and then, in Section 2.1, gives conditions for finite-dimensional con-
vergence of the empirical processes (Zn(f ))f∈F (defined below). The following
subsections consider asymptotic tightness and asymptotic equicontinuity of these
empirical processes. As usual, finite-dimensional convergence together with either
asymptotic tightness or asymptotic equicontinuity gives convergence of Zn in the
space �∞(F ) of bounded functions indexed by F .

For some d ∈ N, let E be a measurable subset of R
d containing 0 and let

(Xn,i)1≤i≤n,n∈N be a triangular array of row-wise stationary random variables
(r.v.’s) with values in E. Typically the (Xn,i) have been obtained by “renormaliza-
tion” of some other process, where the renormalization maps all nonextreme val-
ues to 0. A generic example (cf. the Introduction) is E =R and Xn,i = (Xi−un

an
)+,

where (Xi)i∈N is a stationary univariate time series. Here un tends to the right
endpoint of the support of Xi , so that Xn,i is 0 unless Xi is “large,” that is, unless
Xi > un.

The “empirical process Zn of cluster functionals” is defined as

Zn(f ) := 1√
nvn

mn∑
j=1

(
f (Yn,j )−Ef (Yn,j )

)
, f ∈ F .

Here Yn,j is the j th block of rn consecutive values of the nth row of (Xn,i). Thus,
there are mn := 	n/rn
 :=max{j ∈N0 | j ≤ n/rn} blocks

Yn,j := (Xn,i)(j−1)rn+1≤i≤jrn, 1≤ j ≤mn,

of length rn. We write Yn for a “generic block” so that Yn
d= Yn,1. The block lengths

rn tend to infinity, but slower than n, and

vn := P {Xn,1 �= 0}→ 0.

Further, F is a class of “cluster functionals,” that is, functions which only depend
on the part of the block which contains all nonvanishing observations; see below.

In the univariate case E = R, cluster functionals have been introduced by Yun
(2000) and Segers (2003). The definition is as follows:

DEFINITION 2.1. (i) The set E∪ :=⋃l∈N El of vectors of arbitrary length is
equipped with the σ -field E∪ that is induced by the Borel-σ -fields on El , l ∈N.



EMPIRICAL CLUSTER PROCESSES 2149

(ii) For an arbitrary k ∈ N and x = (x1, . . . , xk) ∈ Ek the core xc ∈ E∪ of x is
defined by

xc :=
{

(xl)l1≤l≤l2, if x �= (0, . . . ,0),
0, otherwise,

where

l1 :=min
{
i ∈ {1, . . . , k} | xi �= 0

}
,

l2 :=max
{
i ∈ {1, . . . , k} | xi �= 0

}
.

The length of the core of x is defined as L(x) := l2− l1+1 if xc �= 0 and L(x)= 0
if xc = 0.

(iii) A measurable map f : (E∪,E∪)→ (R,B) is called a cluster functional if
f (x)= f (xc) for all x ∈E∪, and f (0)= 0.

Typical examples are functionals of the type

f (x1, . . . , xk) :=
k∑

l=1

φ(xl),

where φ :E →R satisfies φ(0)= 0, which are related to so-called tail array sums,
and, in the case E = [0,∞),

f (x1, . . . , xk) := max
1≤i≤k

xi,

which corresponds to the (componentwise) maximum of a cluster. Many more
examples will be discussed in Sections 3 and 4.

The proofs below will use the well-known “big blocks, small blocks” technique
together with a β-mixing condition to boil down convergence to convergence of
sums over i.i.d. blocks. The β-mixing coefficients (also called the coefficients of
absolute regularity) for (Xn,i)1≤i≤n are defined by

βn,k := sup
1≤l≤n−k−1

E
(

sup
B∈Bn

n,l+k+1

|P(B|Bl
n,1)− P(B)|

)
,

where Bj
n,i denotes the σ -field generated by (Xn,l)i≤l≤j . Since the Xn,i take values

in a Polish space, the supremum can be taken over a countable set of B’s, and
hence is measurable. [On general spaces “sup” has to be replaced by “ess-sup,”
which is defined as a measurable function which is a.s. larger than or equal to
|P(B|Bl

n,1)−P(B)| for all B ∈ Bn
n,l+k+1 and a.s. smaller than or equal to all other

measurable functions with this property.] In addition to the β-mixing coefficients
and the lengths rn of the big blocks, the “big blocks, small blocks” technique uses
an intermediate sequence �n of integers, the lengths of small blocks which are used
to separate the big blocks in the proofs.

Throughout we will use the following basic assumptions:
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(B1) The rows (Xn,i)1≤i≤n are stationary, �n = o(rn), �n → ∞, rn = o(n),
rnvn → 0, nvn →∞,
and

(B2) βn,ln
n
rn
→ 0.

Sometimes we will also use the assumption
(B3) limm→∞ lim supn→∞ βn,m = 0.

It follows from rnvn → 0 that vn → 0 and hence that nonzero values of Xn,i are
rare events. The most important example we have in mind are the standardized
excesses given in (1.1). However, other examples occur in the context of nonpara-
metric density estimation or nonparametric regression in a natural way (cf. Exam-
ple 3.5). Since nvn is the expected number of nonzero values of (Xn,i)1≤i≤n, the
assumption nvn →∞ seems necessary if one wants to obtain normally distributed
limits.

More specifically, the assumption rnvn → 0 means that the probability of a
block being nonzero tends to zero. In particular, it implies that if the row variables
are i.i.d., then, asymptotically, cores—or, equivalently, clusters of “extremes”—
will have length one, as they intuitively should have. To see this, note that if the
variables in a row are independent, then asymptotically the number of nonzero
values in a block of length rn has a Poisson distribution with mean rnvn and
that then the conditional probability that there are more than one nonzero value
in a block, given that there is at least one nonzero value, is (approximately)
(1− e−rnvn − rnvne

−rnvn)/(1− e−rnvn). This tends to zero if and only if rnvn → 0.
For a given sequence (rn)n∈N, assumption (B2) requires a minimum rate at

which the mixing coefficients βn,l tend to 0 as l →∞. The condition (B3), for
example, holds if the Xn,i are obtained by renormalizing a single absolutely regu-
lar process.

REMARK 2.2. (i) The proofs of Theorems 2.3 and 2.8, of Lemma 2.5(ii) and
(iii), and of Lemma 5.1 below, in fact, do not use the assumption rnvn → 0 of
(B1), but only that vn → 0. The same remark applies to Theorem 2.10 if one re-
places condition (D5) below by the following slightly stronger version: For all
δ > 0, n ∈ N, l ∈ {0,1}, (ei)1≤i≤	mn/2
+1 ∈ {−1,0,1}	mn/2
+1 and k ∈ {1,2}, the

map supf,g∈F ,ρ(f,g)<δ

∑	mn/2
+l
j=1 ej (f (Y ∗n,j )− g(Y ∗n,j ))

k is measurable.
Hence, these results hold also if the assumption rnvn → 0 is replaced by the

weaker vn → 0.
(ii) It is not essential that E is a subset of R

d . Indeed, one may assume that Xn,i

takes on values in an arbitrary set E. Then one chooses some special element e0 ∈
E which takes over the role of 0. In this more general setting, a cluster functional
is defined as a functional on

⋃
l∈N El whose value is not changed if e0 is added at

the beginning or at the end of some vector in
⋃

l∈N El .
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2.1. Convergence of fidis. We first give a general result on the convergence
of the finite-dimensional marginal distributions (fidis), and then introduce simpler,
but more restrictive assumptions, which also are sufficient for convergence. Proofs
are deferred to Section 5.

We will use the notation x(k) for the vector (x1, . . . , xk) made up by the first k

components in the vector x, if x has at least k components, and otherwise x(k) = x.
Similarly, we write x(�;k) = (x�, . . . , xk) for the vector consisting of components
number � to number k in x, if x has at least k components, and otherwise x(�;k)

starts at component no. � and ends at the end of x (if x is shorter than �, then

x(�;k) = 0). As before, let F be a class of cluster functionals, and recall that Yn
d=

Yn,1, where Yn,1 is the first block in the nth row. For f ∈ F write

�n(f ) := f (Yn)− f
(
Y (rn−�n)

n

)
for the difference between f evaluated at the rn components of the entire block and
f evaluated at the first rn−�n components of the block. The general “convergence
conditions” are as follows:

(C1) E
((

�n(f )−E�n(f )
)21{|�n(f )−E�n(f )|≤√nvn}

)= o(rnvn),

P
{|�n(f )−E�n(f )|>√

nvn

}= o(rn/n)

for all f ∈ F .

(C2) E
((

f (Yn)−Ef (Yn)
)21{|f (Yn)−Ef (Yn)|>ε

√
nvn}

)= o(rnvn)

∀ε > 0, f ∈ F .

(C3)
1

rnvn

Cov(f (Yn), g(Yn))→ c(f, g) ∀f,g ∈ F .

The block Y
(rn−�n)
n is obtained from Yn by omitting a small block of ln observations

at the end. Accordingly, (C1) means that asymptotically this omission does not
influence the fidis of the empirical process of cluster functionals (see the proof
of Lemma 5.1). By the definition of cluster functionals, this is usually fulfilled if,
with high probability, there are few or no nonzero observations in the omitted short
blocks. Specifically, if components number rn − ln + 1≤ i ≤ rn all are zero, then
Yn and Y

(rn−�n)
n have the same core, and, thus, �n(f )= 0.

Assumption (C2) is the standard Lindeberg condition. The assumption of con-
vergence of covariances, (C3), is the final ingredient needed to ensure finite-
dimensional convergence in the present triangular array setup.

THEOREM 2.3. Suppose the basic assumptions (B1) and (B2) hold, and that
(C1)–(C3) are satisfied. Then the fidis of the empirical process (Zn(f ))f∈F of
cluster functionals converge to the fidis of a Gaussian process (Z(f ))f∈F with
covariance function c.
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In general, the convergence (C3) of the covariance function must be verified di-
rectly. However, we also give additional sufficient conditions which are simpler to
verify in some situations. A first very simple version, (C3′), requires convergence
only after “truncation” to a fixed (but arbitrary) length. Before stating it, we recall
the notation L(Yn) for the length of the core of Yn:

(C3′) For f ∈ F it holds that

lim
k→∞ lim sup

n→∞
1

rnvn

E
(
f (Yn)

21{L(Yn)>k}
)= 0,(2.1)

and for f,g ∈ F there is a sequence Rn,k with limk→∞ lim supn→∞|Rn,k| =
0 such that

lim
n→∞

1

rnvn

E
(
f (Yn)g(Yn)1{L(Yn)≤k}

)+Rn,k = ck(f, g).(2.2)

A typical situation when (2.1) holds is when the cluster lengths (L(Yn))
∞
n=1 are

tight under P(·|Yn �= 0) and (f (Yn)
2)n∈N is uniformly integrable under P(· | Yn �=

0), for f ∈ F . This follows from the observation that 1
rnvn

|E(·)| ≤ |E(· | Yn �= 0)|,
which in turn follows from P(Yn �= 0)≤ rnvn.

In a second assumption (C3′′) we generalize the powerful results of Segers
(2003) to the present abstract setting. In doing this, we do not aim at the great-
est possible generality, but give versions which suit our purposes best. It may be
noted that, unlike in the situation considered by Segers, in general weak conver-
gence of the indicators 1{0}(Xn,i) does not follow from weak convergence of Xn,i .
In the statement of the condition we use that the value of a cluster functional f

applied to a sequence (xi)i∈N with mx := sup{i ∈ N | xi �= 0}<∞ can be defined
in a natural way as f ((xi)1≤i≤mx ). The conditions are as follows:

(C3′′)
(C3.1′′) There is a sequence W = (Wi)i∈N of E-valued r.v.’s such that, for all

k ∈ N, the joint conditional distribution P (Xn,i ,1{0}(Xn,i ))1≤i≤k |Xn,1 �=0 con-
verges weakly to P (Wi,1{0}(Wi))1≤i≤k , and all f ∈ F are a.s. continuous
with respect to the distributions of W(k) and W(2;k), for all k, that is,

P
{
W(2;k) ∈Df,k−1,Wi = 0 ∀i > k

}
(2.3)

= P
{
W(k) ∈Df,k,Wi = 0 ∀i > k

}= 0

with Df,k denoting the set of discontinuity points of f|Ek .
(C3.2′′) For all f ∈ F the sequence (f (Yn)

2)n∈N is uniformly integrable under
P(·)/(rnvn).

Again, (C3.2′′) is implied by the perhaps more intuitive condition that (f (Yn)
2)n∈N

is uniformly integrable under P(· | Yn �= 0).
In the proof of the next two results we will, in fact, use a slightly weaker (but

instead more complicated) version of (2.3); see Remark 2.6 below.
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COROLLARY 2.4. Suppose that (B1), (B2) and (C1) are satisfied. If, further-
more, either (C2) and (C3′) or else (B3) and (C3′′) hold, then the fidis of the
empirical process (Zn(f ))f∈F of cluster functionals converge to the fidis of a
Gaussian process (Z(f ))f∈F . Specifically, (C3′) implies that (C3) holds and that
the covariance function c of Z is obtained as

c(f, g)= lim
k→∞ ck(f, g).

If (C3′′) holds, then

c(f, g)=E
(
(fg)(W)− (fg)

(
W(2;∞))).(2.4)

Equation (2.4) is explained in Lemma 2.5 below. It generalizes the most impor-
tant results of Segers (2003) to the present more abstract setting.

LEMMA 2.5. (i) If (B1) and (B3) hold, then

E
(
f (Yn) | Yn �= 0

)= 1

θn

E
(
f
(
X(rn)

n

)− f
(
X(2,rn)

n

) |Xn,1 �= 0
)+ o(1),(2.5)

where the term o(1) tends to 0 as n tends to∞ uniformly for all cluster functionals
f such that ‖f ‖∞ ≤ C, for any C ∈R, and

θn := P {Yn �= 0}
rnvn

= P
(
X(2;rn)

n = 0 |Xn,1 �= 0
)(

1+ o(1)
)
.

(ii) If (B1), (B3) and the assumption of (C3.1′′) all are satisfied, then

mW = sup{i ≥ 1 |Wi �= 0}<∞(2.6)

and

lim
n→∞ θn = θ := P {Wi = 0 ∀i ≥ 2} = P {mW = 1}> 0.

(iii) If (B1), (B3) and (C3.1′′) hold, then the conditional distribution
P f (Yn)|Yn �=0 converges weakly to the probability measure

μf,W := 1

θ

(
P {f (W) ∈ ·} − P

{
f
(
W(2;∞)) ∈ ·,mW ≥ 2

})
.

Note that μf,W (R)= 1 by (ii). However, it is not so obvious that μf,W is indeed
a positive (and hence a probability) measure.

REMARK 2.6. We will prove Corollary 2.4 and Lemma 2.5 under the follow-
ing weaker version of the continuity assumption (2.3):

For k ∈ N and I ⊂ {1, . . . , k} let Nk,I := {x ∈ Ek | xi = 0,∀i ∈ I, xi �= 0,∀i /∈
I } and denote by Df,k,I the set of discontinuity points of f |Nk,I

. Then we assume

P
{
W(k) ∈Df,k,I ,W

(k+1,∞) = 0
}= 0 ∀k ∈N, I ⊂ {1, . . . , k},(2.7)

P
{
W(2;k) ∈Df,k−1,I ,W

(k+1,∞) = 0
}= 0 ∀k ≥ 2, I ⊂ {1, . . . , k− 1}.(2.8)
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This version can be used in some examples where (2.3) is not satisfied, because
the boundary of [0,∞)k belongs to the discontinuity sets Df,k and, according to
Lemma 2.5(ii), the r.v. Wi equals 0 with positive probability for i > 1.

In the situation considered by Segers (2003) [i.e., with Xn,i defined by (1.1)
for a stationary time series whose finite-dimensional marginal distributions all be-
long to the domain of attraction of some extreme value distribution], the sequence
(Wi)i∈N is related to the so-called tail sequence (or tail chain) (Ui)i∈N [cf. Segers
(2003), Theorem 2] via Wi = max(Ui,0). Then (C3′′) is automatically satisfied,
for example, for bounded cluster functionals if Df,m is a Lebesgue null subset of
(0,∞)m for all m and f ∈ F , because the r.v.’s Ui are continuous.

Further simpler, but more restrictive, sufficient conditions are given in Lem-
ma 5.2 below. In particular, for bounded cluster functionals one obtains the fol-
lowing:

COROLLARY 2.7. If ‖f ‖∞ = supx∈E∪ |f (x)|<∞ for all f ∈ F and the con-
ditions (B1), (B2), (B3) and (C3.1′′) hold, then the fidis of the empirical process
(Zn(f ))f∈F of cluster functionals converge to the fidis of a Gaussian process
(Z(f ))f∈F with covariance function c defined by (2.4).

2.2. Asymptotic tightness. In this subsection we give conditions which ensure
asymptotic tightness of Zn in the space �∞(F ). As a consequence, uniform central
limit theorems for Zn hold if in addition the conditions of Theorem 2.3 are satis-
fied. The alternative route via asymptotic equicontinuity is considered in the next
subsection.

In general, the supremum of Zn(f ) taken over uncountably many cluster func-
tionals f need not be measurable. Hence, in some instances, one has to work with
outer probabilities and expectations, denoted by P ∗ and E∗ in the following; see
van der Vaart and Wellner (1996), Section 1.2, for details. The sequence (Zn)n∈N

is asymptotically tight if to any ε > 0 there is a compact set K ⊂ �∞(F ) such that

lim sup
n→∞

P ∗(Zn /∈Kδ) < ε for any δ > 0.

Here Kδ is the set of elements in �∞(F ) which are at most a distance δ away
from K .

We will use the assumptions (D1)–(D4) below to prove tightness. The first two
assumptions in various ways restrict the sizes of the functions in F . In particu-
lar, (D1) ensures that sample paths of Zn belong to the space �∞(F ) of bounded
functions on F . Assumption (D3) is an asymptotic continuity condition on the
covariance function which is needed to ensure that the limiting process has con-
tinuous sample paths. The most crucial condition, (D4), restricts the complexity of
the index set F via the so-called bracketing entropy. To state this assumption, the
following concept is needed.
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The bracketing number N[·](ε, F ,Ln
2) here is defined as the smallest number

Nε such that for each n ∈N there exists a partition (F ε
n,k)1≤k≤Nε of F such that

E∗ sup
f,g∈F ε

n,k

(
f (Yn)− g(Yn)

)2 ≤ ε2rnvn ∀1≤ k ≤Nε.(2.9)

The assumptions are as follows:

(D1) The index set F consists of cluster functionals f such that E(f (Yn)
2) is

finite for all n≥ 1 and such that the envelope function

F(x) := sup
f∈F

|f (x)|

is finite for all x ∈E∪.
(D2)

E∗(F(Yn)1{F(Yn)>ε
√

nvn}
)= o

(
rn
√

vn/n
) ∀ε > 0.

(D3) There exists a semi-metric ρ on F such that F is totally bounded (i.e., for all
ε > 0 the set F can be covered by finitely many balls with radius ε w.r.t. ρ)
such that

lim
δ↓0

lim sup
n→∞

sup
f,g∈F ,ρ(f,g)<δ

1

rnvn

E
(
f (Yn)− g(Yn)

)2 = 0.

(D4)

lim
δ↓0

lim sup
n→∞

∫ δ

0

√
logN[·](ε, F ,Ln

2) dε = 0.

THEOREM 2.8. If the basic assumptions (B1) and (B2) hold and (D1)–(D4)
are satisfied, then the process Zn is asymptotically tight in �∞(F ). If in addition
the finite-dimensional distributions converge [which, in particular, hold if (C1)–
(C3) also are satisfied], then Zn converges to a Gaussian process Z with covari-
ance function c.

We collect a number of comments and variations of the conditions of the the-
orem in the following remark. In particular, we consider a strengthened version
(D2′) of (D2):

(D2′) E∗(F 2(Yn)1{F(Yn)>ε
√

nvn}
)= o(rnvn) ∀ε > 0.

The proof of part (ii) of the remark is given in Section 5.

REMARK 2.9. (i) If, for all ε > 0, there exists a partition (F ε
k )1≤k≤Nε of F

which does not depend on n and which satisfies

E∗ sup
f,g∈F ε

k

(
f (Yn)− g(Yn)

)2 ≤ ε2rnvn ∀1≤ k ≤Nε,



2156 H. DREES AND H. ROOTZÉN

then (D3) and (D4) can be replaced with the simpler condition∫ δ

0

√
logNε dε <∞

for some δ > 0 [cf. Theorem 2.11.9 of van der Vaart and Wellner (1996)].
(ii) If F(Yn) satisfies the Lindeberg condition (D2′), then (C2) and (D2) are

satisfied. In particular, this holds if nvn →∞ and

E∗F(Yn)
2+δ =O(rnvn) for some δ > 0.(2.10)

(iii) Thus, if (B1), (B2), (C3), (D1), (D3) and (D4) hold with a bounded enve-
lope function F , then the empirical processes Zn converge to a centered Gaussian
process with covariance function c.

2.3. Asymptotic equicontinuity. Like tightness, the asymptotic equicontinuity
of Zn w.r.t. ρ, that is,

∀ε, η > 0 ∃δ > 0 : lim sup
n→∞

P ∗{ sup
f,g∈F ,ρ(f,g)<δ

|Zn(f )−Zn(g)|> ε
}

< η

is necessary and sufficient for the convergence of Zn, provided all fidis of Zn

converge.
To prove asymptotic equicontinuity, we need a technical measurability condi-

tion, condition (D5) below, and, crucially, suitable bounds (D6) or (D6′) on the
rate of increase of covering numbers. The condition (D5), in particular, is satis-
fied if the processes (f (Yn))f∈F are separable. The condition (D6) is stated in
terms of a “random entropy,” while (D6′), which implies (D6), is phrased in terms
of uniform entropy. To state the assumptions, we need the following definitions:
for a given semi-metric d on F , the (random) covering number N(ε, F , d) is the
minimum number of balls with radius ε w.r.t. d needed to cover F . The condition
(D6) bounds the rate of increase of N(ε, F , dn) as ε tends to 0 for the random
semi-metric

dn(f, g) :=
(

1

nvn

mn∑
j=1

(
f (Y ∗n,j )− g(Y ∗n,j )

)2)1/2

,

that is, the L2-semi-metric w.r.t. empirical measure (nvn)
−1∑mn

j=1 εY ∗n,j
, where

Y ∗n,j , 1 ≤ j ≤mn, are i.i.d. copies of Yn,1. In (D6′) we instead use the supremum

of all covering numbers N(ε, F , dQ), where dQ(f, g) := (
∫
(f − g)2 dQ)1/2 and

Q ranges over the set of discrete probability measures Q. With this notation, the
conditions are as follows:

(D5) For all δ > 0, n ∈ N, (ei)1≤i≤	mn/2
 ∈ {−1,0,1}	mn/2
 and k ∈ {1,2}, the

map supf,g∈F ,ρ(f,g)<δ

∑	mn/2

j=1 ej (f (Y ∗n,j )− g(Y ∗n,j ))

k is measurable.

(D6) lim
δ↓0

lim sup
n→∞

P ∗
{∫ δ

0

√
logN(ε, F , dn) dε > τ

}
= 0 ∀τ > 0.
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(D6′) The envelope function F is measurable with E(F(Yn)
2)=O(rnvn) and

∫ 1

0
sup
Q∈Q

√
logN

(
ε

(∫
F 2 dQ

)1/2

, F , dQ

)
dε <∞.

THEOREM 2.10. Suppose the basic assumptions (B1) and (B2) hold and that
(D1), (D2′), (D3) and (D5) are satisfied. Then if also (D6) [or, more restrictively,
(D6′)] holds, it follows that Zn is asymptotically equicontinuous. Further, if in
addition the finite-dimensional distributions converge [which, in particular, holds
if (C1) and (C3) also are satisfied], then Zn converges to a Gaussian process with
covariance function c.

REMARK 2.11. In view of (D6′), one can apply the powerful Vapnik–
Červonenkis theory to verify asymptotic equicontinuity. In particular, (D6′) is sat-
isfied if F is a so-called VC-class or, more generally, a VC-hull class. We refer to
Section 2.6 of van der Vaart and Wellner (1996) for an outline of the most impor-
tant uniform bounds on covering numbers N(ε(

∫
F 2 dQ)1/2, F , dQ).

3. Generalized tail array sums. Generalizing the tail empirical process
en(x) (for some fixed x ≥ 0), Rootzén, Leadbetter and de Haan (1990) considered
so-called tail array sums

n∑
i=1

φ(Xn,i)(3.1)

for functions φ : R → R satisfying φ(0) = 0 and Xn,i defined by (1.1); see also
Leadbetter and Rootzén (1993), Leadbetter (1995) and Rootzén, Leadbetter and
de Haan (1998).

Like the tail empirical process, these tail array sums do not allow inference
about the extremal dependence structure, as the summands φ(Xn,i) depend on just
one observation. However, if Xn,i denotes the vector of d consecutive standardized
excesses, that is,

Xn,i :=
((

Xi − un

an

)
+
,

(
Xi+1 − un

an

)
+
, . . . ,

(
Xi+d−1 − un

an

)
+

)
,(3.2)

then the statistic (3.1) with φ : (E, B(E))→ (R,B) (and E = R
d ) contains infor-

mation on the extremal dependence structure.
Therefore, in the general setting of a row-wise stationary triangular array

(Xn,i)n∈N,1≤i≤n used in Section 2, the generalized (standardized) tail array sum
(tail array sum for short) given by a measurable function φ : (E, B(E))→ (R,B)

with φ(0)= 0 is defined as

Z̃n(φ) := 1√
nvn

n∑
i=1

(
φ(Xn,i)−Eφ(Xn,i)

)
.(3.3)
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The tail array sum (3.3) can be obtained as the empirical process Zn evaluated at
the cluster functional

gφ :E∪ →R, x = (x1, . . . , xk) �→
k∑

i=1

φ(xi),

if n is a multiple of rn. In general,

Z̃n(φ)−Zn(gφ)= (nvn)
−1/2

n∑
i=rnmn+1

(
φ(Xn,i)−Eφ(Xn,i)

)
,

which is asymptotically negligible under weak conditions specified in Corol-
lary 3.6 below.

For the remainder of this section, we assume that a family � of functions φ of
the above type is given, and assume it is totally bounded w.r.t. a semi-metric ρ�

and has a finite envelope function φmax := supφ∈�|φ|.

EXAMPLE 3.1 (Multivariate tail empirical processes). If Xn,i is defined as in
(3.2) and � := {1(x,∞) | x ∈ [0,∞)d}, then (Zn(gφ))φ∈� is the (reparametrized)
multivariate tail empirical process. In particular, if d = 1, then (Zn(gφ))φ∈� is a
reparametrization of the tail empirical process en discussed in the Introduction.

For simplicity, we will assume that the Xi are uniformly distributed; the gen-
eral case can be easily obtained by a marginal quantile transformation [cf. Rootzén
(2009) for details]. Then one chooses an = 1− un = vn for a sequence of thresh-
olds un tending to 1, so that the conditional distribution of the standardized ex-
cesses Xn,i = (Xi − un)/an, given that they are strictly positive is also uniform.
Thus, it suffices to consider � := {1(x,1] | x ∈ [0,1]d} with envelope function
φmax = 1(0,1]d and metric ρ�(1(x,1],1(y,1]) :=max1≤l≤d |xl − yl|, x, y ∈ [0,1]d .

EXAMPLE 3.2 (Upcrossings). If one is interested in upcrossings of a univari-
ate time series over intervals [x, y], then one may define Xn,i as in Example 3.1
with d = 2 and consider � := {1[0,x)×(y,1] | x, y ∈ [0,1], x ≤ y} with envelope
function 1{(x,y)∈[0,1]2|x<y}.

EXAMPLE 3.3 (Compound insurance claim). If Xi denotes the ith claim
of an insurance portfolio with deductible un + ant and Xn,i as in (1.1), then
φt : R → [0,∞) given by φt(x) = (x − t)1(t,∞)(x) is the standardized total
claimed amount. Thus, the empirical process (Zn(gφt ))t≥0 corresponding to � :=
{(x − t)1(t,∞)(x) | t ≥ 0} describes the influence of the deductible on the random
amount the insurance has to pay.

EXAMPLE 3.4 (Bootstrapping the Hill estimator). A stationary time se-
ries (Xi)i∈N has extreme value index γ > 0 if its marginal survival func-
tion F̄ is regularly varying with index −1/γ , that is, if limt→∞ F̄ (tx)/F̄ (t) =
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x−1/γ . Let Xn,i := Xi/un1{Xi>un}, φ1(x) = log(x)1{x>1} and φ2(x) = 1{x>1}
so that Eφ2(Xn,1) = vn and γn = Eφ1(Xn,1)/Eφ2(Xn,1) = Eφ1(Xn,1)/vn =
E(log(X1/un)|X1 > un) → γ [cf. de Haan and Ferreira (2006), Theorem 1.2.1
and Remark 1.2.3]. Then the Hill estimator γ̂n of γ may be written as

γ̂n :=
∑n

i=1 log(Xi/un)1{Xi>un}∑n
i=1 1{Xi>un}

= γn + Z̃n(φ1)/
√

nvn

1+ Z̃n(φ2)/
√

nvn

.(3.4)

Write gk := gφk
, k ∈ {1,2}, and suppose we draw independent blocks Y

(n)
i from

the empirical distribution of Yn,i , 1≤ i ≤mn. Then a bootstrap version of the Hill
estimator is obtained as

γ̂ ∗n :=
∑mn

i=1 g1(Y
(n)
i )∑mn

i=1 g2(Y
(n)
i )

.

EXAMPLE 3.5 (Kernel density estimators). In this simple example we demon-
strate that applications of the theory presented in Section 2 are not restricted to ex-
treme value theory. Further examples may be obtained from the literature on “local
empirical processes.” For the analysis of such processes for i.i.d. data we refer to
Einmahl (1997), Giné, Mason and Zaitsev (2003) and Giné and Mason (2008) and
to the lists of references in these papers.

Suppose that (Xi)i∈N is a univariate stationary time series whose marginal df H

has a Lebesgue density h. Kernel estimators of the type

ĥn(x0) := 1

nbn

n∑
i=1

K

(
Xi − x0

bn

)

are probably the most widely used nonparametric estimators for h(x0) (x0 ∈ R).
Here K denotes a suitable kernel, for example, a probability density with support
[−1,1], and (bn)n∈N is a sequence of bandwidths tending to 0. Let

Xn,i :=
(

2+ Xi − x0

bn

)
1[x0−bn,x0+bn](Xi), 1≤ i ≤ n,

where the constant 2 has been inserted to ensure Xn,i > 0 for Xi ∈ [x0 − bn, x0 +
bn]. Let Ĥn be the corresponding empirical df. Then integration by parts yields

ĥn(x0)= 1

bn

∫
K(y − 2)Ĥn(dy)

= 1

bn

∫ (
1− Ĥn(y + 2)

)
K(dy)

= 1

nbn

∫ n∑
i=1

1(y+2,∞)(Xn,i)K(dy),
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provided that K has bounded variation. Hence, for Z̄n(y) = Z̃n(1(y+2,∞)), y ∈
[−1,1], and n= rnmn, we have that∫

Z̄n(y)K(dy)=
√

n

vn

bn

(
ĥn(x0)−Eĥn(x0)

)
,

where
√

n/vnbn ∼ √n/(2h(x0)bn)bn = √nbn/(2h(x0)) as n →∞, if h is con-
tinuous and positive at x0. Thus, one obtains the asymptotic normality of ĥn(x0)

from the convergence of Z̄n (or Z̃n) toward a Gaussian process. Indeed, this way
it is not difficult to derive normal approximations for ĥn uniformly over families
of kernels with compact support.

To obtain conditions for weak convergence of tail array sums, we first focus on
families � such that the envelope function φmax is bounded, which is true in the
Examples 3.1, 3.2 and 3.5, but not in Example 3.3 (unless the support of Xn,i is
uniformly bounded). We let F := {gφ | φ ∈�} be equipped with the semi-metric
ρ(gφ, gψ)= ρ�(φ,ψ).

COROLLARY 3.6. Suppose that φmax = supφ∈�|φ| is bounded and measur-
able, that � is totally bounded w.r.t. ρ�, that (B1) and (B2) hold, and that
rn = o(

√
nvn). Further assume that

E

(
rn∑

i=1

1{Xn,i �=0}
)2

=O(rnvn).(3.5)

Then the conditions (C1), (D1) and (D2′) hold, and thus also (C2) and (D2) are
satisfied. Moreover,

sup
φ∈�

|Z̃n(φ)−Zn(gφ)| → 0 in outer probability.(3.6)

If, in addition, (C3) holds and one of the following two sets of conditions,

(i) (D4) with a partition of F independent of n, or
(ii) (D3), (D5) and (D6),

are satisfied, then (Z̃n(φ))φ∈�, and the empirical processes (Zn(gφ))φ∈� of clus-
ter functionals, converge weakly to a Gaussian process with covariance function c.

REMARK 3.7. (i) It is possible to replace (C3) in the corollary by more basic
assumptions. Specifically, assume that the cluster lengths L(Yn) satisfy

lim
k→∞ lim sup

n→∞
1

rnvn

P {L(Yn) > k} = 0(3.7)

[which by Lemma 5.2(vii) holds if (B3) is satisfied], that there exist functions
dj :�2 →R such that, for k ∈N and φ,ψ ∈�,

1

vn

E(φ(Xn,1)ψ(Xn,k))→ dk−1(φ,ψ) as n→∞,(3.8)
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and that

E

(
rn∑

i=1

1{Xn,i �=0}
)2+δ

=O(rnvn)(3.9)

for some δ > 0. Then (C3′), and hence, by Corollary 2.4, also (C3) hold with

c(gφ, gψ)= d0(φ,ψ)+
∞∑
i=1

(
di(φ,ψ)+ di(ψ,φ)

)
.(3.10)

The proof is given in Section 5.
(ii) Suppose that the following simpler version of (C3′′) is satisfied, viz. that

there exists a sequence (Wi)i∈N of E-valued random variables such that, for all
k ∈ N, P (Xn,1,Xn,k)|Xn,1 �=0 → P (W1,Wk) weakly, with P {Wk ∈Dφ \ {0}} = 0 for all
φ ∈�, k ∈N, where Dφ is the discontinuity set of φ. Then, in view of Lemma 2.5,
Remark 2.6 and the boundedness of φ and ψ ,

1

vn

Eφ(Xn,1)ψ(Xn,k) = E
(
φ(Xn,1)ψ(Xn,k)|Xn,1 �= 0

)
→ Eφ(W1)ψ(Wk)=: dk−1(φ,ψ),

so that equation (3.8) holds.

EXAMPLE 3.8 (Multivariate tail empirical processes, ctd.). In this example
we give a set of conditions for the convergence of the multivariate tail empirical
process from Example 3.1 for uniformly distributed r.v.’s Xi . We then discuss how
the condition (C3) on convergence of covariances may be checked in the present
situation. Finally, we show that the central condition (3.11) may be weakened in the
univariate case to condition (3.13). This improves earlier results in the literature.

Thus, we first show that if rn = o(
√

nvn), (B1), (B2) and (C3) are satisfied, and
there exist a constant K and a δ > 0 such that, for all sufficiently large n,

E

(
rn∑

i=1

1(x,y]
(

Xi − un

an

))2

≤K|log(y − x)|−(1+δ)rnvn

(3.11)
∀0≤ x < y ≤ 1, y − x ≤ 1/2,

then the multivariate tail empirical process(
1√
nvn

n∑
i=1

(
1(x,1](Xn,i)− P

(
Xn,i ∈ (x,1]))

)
x∈[0,1]d

converges weakly to a Gaussian process with covariance function c.
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Clearly, (3.11) implies (3.5). By Corollary 3.6, it is hence enough to show
that condition (i) of the corollary is satisfied. Now, to each ε > 0, let η = ηε :=
exp(−(K−1d−3ε2)−1/(1+δ)) and define sets

�ε
(i1,...,id ) :=

{
1×d

l=1(xl,1] | (il − 1)η ≤ xl ≤min(ilη,1) ∀1≤ l ≤ d
}
,

i1, . . . , id ∈ {1, . . . , �1/η�},
such that

⋃
i1,...,id∈{1,...,�1/η�}�ε

(i1,...,id ) =�. Since, by (B1) and (3.11),

E sup
φ,ψ∈�ε

(i1,...,id )

|gφ(Yn)− gψ(Yn)|2

=E

(
rn∑

i=1

1×d
l=1((il−1)η,1]\×d

l=1(ilη,1](Xn,i)

)2

≤E

(
rn∑

i=1

d∑
l=1

1((il−1)η,ilη]
(

Xi+l−1 − un

an

))2

≤ d2E max
1≤l≤d

(
rn∑

i=1

1((il−1)η,ilη]
(

Xi+l−1 − un

an

))2

≤ d3K|logη|−(1+δ)rnvn

= ε2rnvn,

it follows that

logN[·](ε, F ,Ln
2)≤ log(�1/η�d)=O

(
ε−2/(1+δ))

as ε ↓ 0. Hence, the condition (D4) on entropy with bracketing holds with a parti-
tion independent of n, as required to prove the claim.

The convergence (C3) of covariance functions which was used above may
sometimes be replaced by simpler conditions. Specifically, Remark 3.7 gives suffi-
cient conditions for (C3) to hold, for general d ∈N. Assume, for example, that all
bivariate distributions (X1,Xm) belong to the domain of attraction of some bivari-
ate extreme value distribution. Then, since the limiting random variables Wi are
continuous on (0,∞), the assumptions of Remark 3.7(ii) are satisfied, and, hence,
(3.8) holds [cf. Segers (2003), Theorem 2]. Further, condition (3.9) holds if and
only if for some δ > 0

E

(
rn∑

i=1

1(un,1](Xi)

)2+δ

=O(rnvn).(3.12)



EMPIRICAL CLUSTER PROCESSES 2163

For the case d = 1, the condition (3.11) can be weakened, to the requirement
that

E

(
rn∑

i=1

1(x,y]
(

Xi − un

an

))2

≤ h(y − x)rnvn ∀0≤ x < y ≤ 1,(3.13)

for some function h : (0,∞)→ (0,∞) satisfying limt↓0 h(t)= 0. To see this, note
that the functions φx = 1(x,1], x ∈ [0,1], are linearly ordered, and hence so are the
corresponding cluster functionals gφx , x ∈ [0,1]. Hence, F = {gφx | x ∈ [0,1]} is
a VC class of functions [van der Vaart and Wellner (1996), Section 2.6]. Thus, ac-
cording to Remark 2.11, (D6′) [and hence also (D6)] is satisfied. The measurabil-
ity condition (D5) holds, since all processes occurring in this setting are separable.
Moreover, (D3) is satisfied for the metric ρ(gφx , gφy ) := |y − x|:

lim sup
n→∞

1

rnvn

sup
x,y∈[0,1],|y−x|<δ

E
(
gφx (Yn)− gφy (Yn)

)2

= lim sup
n→∞

1

rnvn

sup
x,y∈[0,1],|y−x|<δ

E

(
rn∑

i=1

1(x,y](Xn,i)

)2

≤ sup
0<t≤δ

h(t)

→ 0

as δ ↓ 0 by (3.13), so that version (ii) of Corollary 3.6 applies. This proves the
claim that (3.11) may be weakened to (3.13) in the univariate case.

If we could assume that {Xi;1 ≤ i ≤ n} could be split up into consecutive in-
dependent blocks of length rn, then (3.13) would be seen to be the same as to
assume that E(Zn(gφy )− Zn(gφx ))

2 ≤ h(|y − x|), for some h with properties as
above. This is the same as to assume that Zn is uniformly mean square continu-
ous. However, in the proofs in Section 5 we use mixing to translate to cases where
this independence assumption in fact can be made, and, accordingly, (3.13) seems
quite minimal. In fact, in view of the counterexamples in Hahn (1977), it may even
be surprising that this condition is sufficient.

Rootzén (1995, 2009) proved convergence of the univariate tail empirical
process en using a more restrictive version of (3.11) and the stronger condition
that rn = o((nvn)

1/2−ε) for some ε > 0. In Drees (2000) Rootzén’s conditions
were slightly weakened to the requirements that rn = o((nvn)

1/2 log−2(nvn)) and
that

E

(
rn∑

i=1

1(x,y]
(

Xi − un

an

))2

≤K(y − x)rnvn ∀0≤ x < y ≤ 1,(3.14)

instead of (3.11). Condition (3.14) is much more restrictive than (3.11) for small
y−x. In many specific time series models, it was condition (3.14) (for small y−x)
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that turned out to be most difficult to verify; see, for example, the discussion of the
solutions of a stochastic recurrence equation in Drees (2000), Section 4. Therefore,
it might be useful that the bound in (3.11) converges to 0 much more slowly as
y − x tends to 0.

It is possible to deal with Examples 3.2 and 3.5 in a similar fashion.
As already mentioned, Example 3.3 does not fit into the framework of Corol-

lary 3.6 if the underlying df belongs to the domain of attraction of an extreme value
distribution with nonnegative extreme value index, because then the support is not
bounded. In that case, condition (3.5) must be strengthened.

COROLLARY 3.9. In the setting of Corollary 3.6 the assertions remain true if
φmax is measurable but not necessarily bounded, provided (3.5) is replaced with

E

(
rn∑

i=1

φmax(Xn,i)

)2+δ

=O(rnvn) for some δ > 0.(3.15)

EXAMPLE 3.10 (Compound insurance claim, ctd.). In the setting of Exam-
ple 3.3, uniform convergence of the empirical process of cluster functionals can
be expected only if the deductible t is restricted to some bounded set. Therefore,
we consider the set �T := {φt | t ∈ [0, T ]} for an arbitrary T ∈ (0,∞). This set
is totally bounded w.r.t. the metric d�(φs,φt ) := |s − t |. The envelope function is
φmax(x)= φ0(x)= x+.

Suppose conditions (B1), (B2), (C3), (3.5) and

E

(
rn∑

i=1

Xn,i

)2+δ

=O(rnvn)(3.16)

for some δ > 0, are satisfied. Then the empirical process (Zn(gφt ))0≤t≤T con-
verges weakly to a Gaussian process.

To see this, first observe that the functions φt are monotonically decreasing in t .
Hence, �T is a VC class of functions, so that (D6) holds (see Remark 2.10). Since
all sample paths are continuous, the measurability condition (D5) trivially holds.

To prove (D3), check that

sup
0≤s≤t≤T ,|t−s|<δ

1

rnvn

E

(
rn∑

i=1

(
(Xn,i − s)+ − (Xn,i − t)+

))2

≤ sup
0≤s≤t≤T ,|t−s|<δ

1

rnvn

E

(
rn∑

i=1

(t − s)1(s,∞)(Xn,i)

)2

≤ δ2 1

rnvn

E

(
rn∑

i=1

1(0,∞)(Xn,i)

)2

.
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By (3.5), the lim sup of the right-hand side (as n tends to ∞) is bounded by a
multiple of δ2, which yields (D3). Further, (3.16) is just a reformulation of (3.15)
to the present setting. Hence, all the conditions of Corollary 3.9 have been verified,
and thus the result follows.

By Corollary 2.4, the condition (C3) in turn follows if, in addition, one assumes
that all finite-dimensional marginal distributions of the time series (Xi)i∈N belong
to the domain of attraction of some extreme value distributions and that the normal-
izing constants un and an are chosen accordingly. Then (C3.1′′) holds [cf. Segers
(2003), Theorem 2], and (C3.2′′) also follows from (3.15) and Lemma 5.2(vi).

EXAMPLE 3.11 (Bootstrapping the Hill estimator, ctd.). Continuing Exam-
ple 3.4, we now sketch proofs of asymptotic normality of the Hill estimator and of
consistency of the block bootstrap. Full process convergence may also be obtained
and is useful if, for example, un is replaced by the knth largest order statistic, for
some suitable sequence kn. We use asymptotic normality to show consistency of
the block bootstrap—but the hope is that the bootstrap has better small-sample
properties than the normal approximation with estimated variance.

For this we assume that (B1) and (B2) and, with the notation of Example 3.4,
that for k, l ∈ {1,2}

E

(
rn∑

i=1

φk(Xn,i)

)4

=O(rnvn),(3.17)

lim
n→∞

1

rnvn

rn∑
i=1

rn∑
j=1

E(φk(Xn,i)φl(Xn,j ))= σkl.

Then, in a similar way as in the proofs of Corollaries 3.6 and 3.9, it can be seen
that (Z̃n(φk))1≤k≤2 converges to a centered normal distribution with covariance
matrix (σkl)1≤k,l≤2. It follows that

γ̂n = γn + (nvn)
−1/2(Z̃n(φ1)− γ Z̃n(φ2)

)+ op((nvn)
−1/2),(3.18)

and thus that
√

nvn(γ̂n − γn)−→ N(0,σ11+γ 2σ22−2γ σ12)
in distribution.(3.19)

Writing X(n) := (Xi)1≤i≤n for the original data, we next show that

sup
t∈R

∣∣P (√nvn(γ̂
∗
n − γ̂n)≤ t |X(n))− P

{√
nvn(γ̂n − γn)≤ t

}∣∣= oP (1),(3.20)

that is, consistency of the block bootstrap estimator. With the notation from Exam-
ple 3.4,

E(g1(Y
(n)
i )|X(n))

E(g2(Y
(n)
i )|X(n))

= m−1
n

∑mn

i=1 g1(Yn,i)

m−1
n
∑mn

i=1 g2(Yn,i)
= γ̂n.



2166 H. DREES AND H. ROOTZÉN

From arguments as in the proof of Lemma 5.1 below [in particular, (5.4)], it follows
that if condition (3.17) holds, then Zn(gkgl)=OP (1). Hence, for k, l ∈ {1,2},

1

rnvn

Cov
(
gk

(
Y

(n)
1

)
gl

(
Y

(n)
1

) |X(n))

= 1

rnvn

(
1

mn

mn∑
i=1

gk(Yn,i)gl(Yn,i)− 1

mn

mn∑
i=1

gk(Yn,i) · 1

mn

mn∑
i=1

gl(Yn,i)

)

= 1

rnvn

Cov(gk(Yn,1), gl(Yn,1))− 1

mn

Zn(gk)Zn(gl)

+ 1√
nvn

(
Zn(gkgl)−E(gl(Yn,1))Zn(gk)−E(gk(Yn,1))Zn(gl)

)
→ σkl

in probability. Similarly, as in (3.18), we have that

γ̂ ∗n = γ̂n + (nvn)
−1

mn∑
i=1

(
g1
(
Y

(n)
i

)− γg2
(
Y

(n)
i

)−E
(
g1
(
Y

(n)
i

)− γg2
(
Y

(n)
i

) |X(n)))

+ op((nvn)
−1).

Moreover, one can conclude from (3.17) that

mnE

((
gk(Y

(n)
1 )−E(gk(Y

(n)
1 )|X(n))√

nvn

)3 ∣∣∣X(n)

)
=OP (mn(nvn)

−3/2rnvn)

=OP ((nvn)
−1/2),

and, thus, the Berry–Esséen inequality yields

sup
t∈R

∣∣∣∣∣P
(
(nvn)

−1/2
mn∑
i=1

(
g1
(
Y

(n)
i

)− γg2
(
Y

(n)
i

)

−E
(
g1
(
Y

(n)
i

)− γg2
(
Y

(n)
i

) |X(n)))≤ t
∣∣∣X(n)

)

−�
(
(σ11 + γ 2σ22 − 2γ σ12)

−1/2t
)∣∣∣∣∣= oP (1).

In view of (3.19), this proves (3.20).

4. Indicator functionals. Another important class of cluster functionals are
indicator functions. Notice that by definition these indicator functions are applied
to whole clusters, while in the Examples 3.1, 3.2 and 3.5 above indicator functions
of single observations Xn,i were summed up. For C ⊂ E∪ the indicator function
1C is a cluster functional if and only if the set satisfies the following two condi-
tions:
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• x = (x1, . . . , x�) ∈ C ⇐⇒ (0, x1, . . . , x�) ∈ C ⇐⇒ (x1, . . . , x�,0) ∈ C for all
x ∈E∪;

• 0 /∈C.

In this section we study situations where the set of cluster functionals is of the
form{F = {1C | C ∈ C} for some family C ⊂ 2E∪ of such sets.

EXAMPLE 4.1 (Joint survival function of cluster values). The conditional
joint survival function of the first k observations in a cluster core Y c

n , given that
the core has length greater than or equal to k, can be estimated by∑mn

j=1 1Ct1,...,tk
(Yn,j )∑mn

j=1 1C0,...,0(Yn,j )

with

Ct1,...,tk := {x ∈E∪ | ∃j :xi = 0 ∀1≤ i ≤ j, xj+i > ti ∀1≤ i ≤ k}.
Obviously, a limit theorem for the empirical process

Z̃n(t1, . . . , tk) := Zn(1Ct1,...,tk
), t1, . . . , tk ∈ [0,1],

is useful for the asymptotic analysis of the above estimator.

EXAMPLE 4.2 (Order statistics of cluster values). Let

Dt1,...,tk :=
k⋂

j=1

Ej,tj

with

Ej,tj :=
{
(x1, . . . , xm) ∈E∪

∣∣∣m ∈N,

m∑
i=1

1(tj ,1](xi)≥ j

}
,

that is, Dt1,...,tk contains all vectors of arbitrary length such that the j th largest
value exceeds tj for all 1 ≤ j ≤ k. Then the empirical process Z̃n(t1, . . . , tk) =
Zn(1Dt1,...,tk

) describes the standardized joint empirical survival function of the k

largest order statistics of the cluster cores.

Next we discuss the conditions imposed in Theorem 2.10 to ensure convergence
of the empirical processes considered in this section.

The conditions (D1) and (D2′) are trivial, and condition (C1) holds by Lem-
ma 5.2(ii).

If rnvn → 0 [which is a part of assumption (B1)], then (C3) is equivalent to

1

rnvn

P {Yn,1 ∈ C ∩D}→ c(1C,1D),(4.1)
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since Cov(1C(Yn),1D(Yn))= P {Yn ∈C ∩D}−P {Yn ∈ C} ·P {Yn ∈D} and since
P {Yn ∈ C} · P {Yn ∈D} =O((rnvn)

2)= o(rnvn).
Similarly, condition (D3) can be reformulated as

lim
δ↓0

lim sup
n→∞

sup
C,D∈C,ρC (C,D)<δ

1

rnvn

P {Yn ∈C�D} = 0,(4.2)

where C�D = (C \ D) ∪ (D \ C) denotes the symmetric difference between
C and D and ρC is a semi-metric on C that induces a semi-metric ρ on F via
ρ(1C,1D) := ρC (C,D).

If (C3′′) holds, then

1

rnvn

P {Yn ∈ C�D} −→ P {(Wi)i≥1 ∈ C�D} − P {(Wi)i≥2 ∈ C�D},
where (Wi)i≥1 ∈ C�D is interpreted as (Wi)1≤i≤m ∈ C�D for some m ≥ mW ,
that is, Wi = 0 for all i > m. If the following continuity property holds

lim
δ↓0

sup
C,D∈C,ρC (C,D)<δ

P {(Wi)i≥1 ∈ C�D} − P {(Wi)i≥2 ∈ C�D} = 0,

then results by Fabian (1970) may help to conclude (D3). However, in the examples
of this section we will verify (D3) in a more direct way.

Finally, if C is a VC-class, then condition (D6′) is fulfilled (cf. Remark 2.11).
The following result gives conditions for the convergence of the empirical

processes in Examples 4.1 and 4.2. Here we assume that the random variables
Xn,i are [0,1]-valued so that it suffices to consider the processes Z̃n with index set
[0,1]k . If the r.v.’s Xn,i are standardized excesses defined in (1.1) (as we assume in
the second part of the following corollary), then this can be achieved by a simple
quantile transformation (cf. Example 3.1).

COROLLARY 4.3. (i) Let Z̃n(t1, . . . , tk) be as in Examples 4.1 or 4.2, with
ti ∈ [0,1], i = 1, . . . , k, and suppose (B1), (B2), (B3), (C3.1′′) and (D3) hold
with ρ(1Cs1,...,sk

,1Ct1,...,tk
) :=∑k

i=1 |si − ti |, respectively, ρ(1Ds1,...,sk
,1Dt1,...,tk

) :=∑k
i=1|si − ti |. Then Z̃n converges to a continuous Gaussian process. If Z̃n is as in

Example 4.1, then the covariance function of the process is

c̃((s1, . . . , sk), (t1, . . . , tk))

= P
{
(Wi)i≥1 ∈Cmax(s1,t1),...,max(sk,tk)

}
(4.3)

− P
{
(Wi)i≥2 ∈ Cmax(s1,t1),...,max(sk,tk)

}
,

and if Z̃n is as in Example 4.2, then the covariance function of the process is

c̃((s1, . . . , sk), (t1, . . . , tk))
(4.4)

= P

{
(Wi)i≥1 ∈

k⋂
j=1

Ej,max(sj ,tj )

}
− P

{
(Wi)i≥2 ∈

k⋂
j=1

Ej,max(sj ,tj )

}
.
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(ii) More specifically, assume that the r.v.’s Xn,i are standardized excesses of a
uniformly distributed univariate stationary time series (as in Example 3.1) and that
all finite-dimensional marginal distributions belong to the domain of attraction of
some extreme value distribution. Then the assertions of part (i) hold true if the
conditions (B1), (B2) and (B3) are satisfied.

In Example 4.1 we only considered the first k “extremes” in each cluster, where
k is a fixed number. Since for most time series the cluster size is not bounded, the
resulting empirical process does not give a full picture of the stochastic behavior
of the clusters. To overcome this drawback, in the final example we define and
analyze an empirical process of cluster functionals that takes all values of each
cluster into account. As the cluster length is random, this requires work with a
quite complex index set.

EXAMPLE 4.4 (Joint distribution of all cluster values). Recalling the notation
L(x) for the length, say, j , of the core xc = (xc

1, . . . , x
c
j ) of a vector x, we set

Cj,t1,...,tj := {x ∈E∪ | L(x)= j, xc
i ∈ [0, ti],∀1≤ i ≤ j}.

Then the empirical process Z̃n(j, t1, . . . , tj ) := Zn(1Cj,t1,...,tj
), j ∈ N, ti ≥ 0, de-

scribes the joint distribution of all the values in a cluster.
Like in Corollary 4.3(ii), for simplicity, we focus on the case that the clusters

are based on standardized exceedances Xn,i of a uniformly distributed stationary
time series (Xi)i∈N, such that all finite-dimensional marginal distributions belong
to the domain of attraction of some extreme value distribution. However, it is not
difficult to generalize this result to a slightly more general setting which is analog
to the one considered in Corollary 4.3(i).

Suppose that (B1), (B2) and (B3) hold, and that

E
(
L(Yn)

1+ζ | Yn �= 0
)=Op(1) some ζ > 0.(4.5)

Then Z̃n converges weakly to a continuous Gaussian process with covariance func-
tion

c((j, s1, . . . , sj ), (k, t1, . . . , tk))

= δj,k

(
P {L(W)= k,Wi ≤ si ∧ ti ,∀1≤ i ≤ k}(4.6)

− P
{
L
(
W(2;∞))= k,

((
W(2;∞))c)

i ≤ ti ,∀1≤ i ≤ k
})

,

where δj,k is one if j = k and zero otherwise.
The proof of this uniform central limit theorem is given in Section 5.
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5. Proofs. In this section we prove the results from Sections 2–4. We start
with fidi convergence, then consider asymptotic tightness and asymptotic equicon-
tinuity, and finally prove the corollaries from Sections 3 and 4.

The first step in the proof of fidi convergence is to use mixing to bring the prob-
lem back to classical limit theory for i.i.d. variables. Let Y ∗n,j denote i.i.d. copies
of the original blocks Yn,j (which are identically distributed, but are not assumed
to be independent—and which in interesting cases typically are dependent).

LEMMA 5.1. Suppose (B1), (B2) and (C1) are satisfied. Then the fidis of
(Zn(f ))f∈F converge weakly if and only if the fidis of the sums of independent
blocks

Z∗n(f ) := 1√
nvn

mn∑
j=1

(
f (Y ∗n,j )−Ef (Y ∗n,j )

)
, f ∈ F ,

converge weakly. In this case the limit distributions are the same.

PROOF. Let

�∗
n,j (f ) := f (Y ∗n,j )− f

(
(Y ∗n,j )

(rn−ln)), 1≤ j ≤mn,

and let �n,j (f ) be defined in the same way, but instead based on the original

(dependent) blocks, so that �∗
n,j (f )

d=�n,j (f )
d=�n(f ) for each j , with �n(f )

as in (C1). By Theorem 1 in Petrov [(1975), Section IX.1] applied to the i.i.d.
random variables Xnk := (nvn)

−1/2�∗
n,k(f ), condition (C1) implies that

1√
nvn

mn∑
j=1

(
�∗

n,j (f )−E�∗
n,j (f )

)= oP (1) ∀f ∈ F .(5.1)

We next prove the analogous convergence for the dependent random variables,
that is, that

1√
nvn

mn∑
j=1

(
�n,j (f )−E�n,j (f )

)= oP (1) ∀f ∈ F .(5.2)

Using Theorem 1 in Petrov [(1975), Section IX.1] again, it also follows from
(C1) that the convergence analogous to (5.1) holds for the sums of the even num-
bered blocks

1√
nvn

	mn/2
∑
j=1

(
�∗

n,2j (f )−E�∗
n,2j (f )

)= oP (1).(5.3)

Since the even numbered blocks Yn,j are separated by rn observations, a well-
known inequality for the total variation distance [cf. Eberlein (1984)] between the
joint distributions of dependent observations and independent copies yields∥∥P (Yn,2j )1≤j≤	mn/2
 − P

(Y ∗n,2j )1≤j≤	mn/2
∥∥
TV ≤ 	mn/2
βn,rn → 0(5.4)
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by (B2). Combining (5.3) with (5.4), we arrive at

1√
nvn

	mn/2
∑
j=1

(
�n,2j (f )−E�n,2j (f )

)= oP (1).

Together with the analogous convergence for the sum over the odd numbered
blocks, this proves (5.2).

Thus, the fidis of Zn converge if and only if the fidis of

Z̄n(f ) := Zn(f )− 1√
nvn

mn∑
j=1

(
�n,j (f )−E�n,j (f )

)

= 1√
nvn

mn∑
j=1

(
f
(
Y

(rn−�n)
n,j

)−Ef
(
Y

(rn−�n)
n,j

))
, f ∈ F ,

converge, and in this case the limiting distributions are the same. Similarly,
by (5.1), the corresponding assertion holds for the sums over the independent
blocks, and then the lemma follows from the inequality for the total variation dis-
tance, since it implies that

∥∥P (Y
(rn−�n)
n,j )1≤j≤mn − P

((Y ∗n,j )(rn−�n))1≤j≤mn
∥∥

TV ≤mnβn,ln → 0

by (B2), since the shortened blocks Y
(rn−�n)
n,j are separated by ln observations. �

PROOF OF THEOREM 2.3. The assertion follows from Lemma 5.1 and and the
multivariate central limit theorem for triangular arrays of row-wise independent
random vectors applied to (Z∗n(f1), . . . ,Z

∗
n(fk)). �

Next we present a useful technical lemma. It makes it possible to replace some
of the assumptions of Theorem 2.3 by sufficient conditions which are more restric-
tive but often simpler to verify.

LEMMA 5.2. (i) If Var(�n(f ))= o(rnvn), then (C1) holds.
(ii) If nvn →∞ and ‖f ‖∞ := supx∈E∪ |f (x)|<∞, then (C1) and (C2) hold.

(iii) If rnvn → 0 and

1

rnvn

E(f (Yn)g(Yn))→ c(f, g) ∀f,g ∈ F ,(5.5)

then (C3) holds.
(iv) If

E
(
f (Yn)

21{|f (Yn)|>ε
√

nvn}
)= o(rnvn) ∀ε > 0, f ∈ F ,(5.6)

then (C2) holds.
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(v) If nvn →∞ and (f (Yn)
2)n∈N is uniformly integrable under P(·)/(rnvn)

for all f ∈ F , then (C2) holds.
(vi) If E(f (Yn)

2+δ) = O(rnvn) for some δ > 0 and all f ∈ F , then
(f (Yn)

2)∞n=1 is uniformly integrable under P(·)/(rnvn) for all f ∈ F .
(vii) If (B1) and (B3) hold, then limk→∞ lim supn→∞ 1

rnvn
P {L(Yn) > k} = 0

and the cluster lengths (L(Yn))n∈N are tight under P(·|Yn �= 0).

PROOF. (i) The first equation in (C1) follows at once, and the second one by
using Chebyshev’s inequality.

(ii) Under these conditions, (C2) obviously holds. Moreover, (C1) follows
by (i), since |�n(f )| ≤ 2‖f ‖∞1{�n(f )�=0} implies

Var(�n(f )) ≤ E�2
n(f )

≤ 4‖f ‖2∞P {�n(f ) �= 0}
=O(P {Xn,i �= 0 for some rn − ln + 1≤ i ≤ rn})
=O(lnvn)

= o(rnvn).

(iii) By (5.5), P {Yn �= 0} ≤ rnvn → 0 and the Cauchy–Schwarz inequality, we
have that

1√
rnvn

E|f (Yn)| = 1√
rnvn

E
(|f (Yn)|1{Yn �=0}

)
(5.7)

≤
(

1

rnvn

E(f (Yn)
2)P {Yn �= 0}

)1/2

→ 0

for f ∈ F . (C3) then follows readily from (5.5).
(iv) By (5.6), for any ε > 0,

E

(( |f (Yn)|√
nvn

)2)
≤ ε2 + 1

nvn

E
(
f (Yn)

21{|f (Yn)|>ε
√

nvn}
)= ε2 + o

(
rnvn

nvn

)

= ε2 + o(1).

Hence, Ef (Yn)= o(
√

nvn), and (C2) then follows from (5.6) by standard reason-
ing.

(v) By uniform integrability, n/rn →∞ and Chebyshev’s inequality,

P
{|f (Yn)|> ε

√
nvn

}≤ E(f (Yn)
2)/(rnvn)

ε2n/rn
→ 0.

Using uniform integrability again, it follows that E(f (Yn)
21{|f (Yn)|>ε

√
nvn})/

(rnvn)→ 0, so that (5.6) is satisfied. The result then follows from part (iv).
(vi) This is a well-known fact.
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(vii) Let Mt
n,s :=

∑t
i=s+1 1{Xn,i �=0} be the number of nonvanishing observations

in the time interval from s + 1 to t and write Fn,i = {Xn,1 = · · · = Xn,i−1 = 0,
Xn,i �= 0}, i ≥ 2, and Fn,1 = {Xn,1 �= 0} for the events that the first nonzero value
in row n occurs at position i. Then

P {L(Yn) > k} =
rn−k∑
i=1

P
(
L(Yn) > k | Fn,i

)
P(Fn,i)

=
rn−k∑
i=1

P(M
rn
n,i+k �= 0 | Fn,i)P (Fn,i)

≤
rn−k∑
i=1

(βn,k + P {Mrn
n,i+k �= 0})P (Fn,i)

≤ (βn,k + rnvn)P {Yn �= 0}
≤ (βn,k + rnvn)rnvn.

The result then follows from (B3) and rnvn → 0. �

PROOF OF COROLLARY 2.4. The first assertion follows if we prove that (C3′)
implies (C3). However, using that |E(f (Yn)g(Yn)1{L(Yn)>k})| ≤ (E(f (Yn)

2 ×
1{L(Yn)>k})E(g(Yn)

21{L(Yn)>k}))1/2, it follows from (2.1) and (2.2) that

1

rnvn

E(f (Yn)g(Yn))= 1

rnvn

E
(
f (Yn)g(Yn)1{L(Yn)≤k}

)

+ 1

rnvn

E
(
f (Yn)g(Yn)1{L(Yn)>k}

)
= ck(f, g)+R′n,k

with limk→∞ lim supn→∞R′n,k = 0. A standard subsequence argument then shows
that c(f, g) := limk→∞ ck(f, g) exits, and that

lim
n→∞

1

rnvn

E(f (Yn)g(Yn))= c(f, g).

By Lemma 5.2(iii), it then follows that (C3) holds.
Now suppose instead that (B1), (B2), (B3), (C1) and (C3′′) hold. Assump-

tion (C2) then follows from Lemma 5.2(v), and, hence, only (C3) remains to
be established. By Lemma 2.5(ii) and (iii), θn = P {Yn �= 0}/(rnvn) → θ > 0
and P (fg)(Yn)|Yn �=0 converges weakly to μfg,W . Thus, the uniform integrability
of (fg)(Yn) under P(·)/(rnvn) is equivalent to the uniform integrability under
P(Yn �= 0) so that

1

rnvn

E(f (Yn)g(Yn))= P(Yn �= 0)

rnvn

E
(
f (Yn)g(Yn) | Yn �= 0

)→ θ

∫
xμfg,W (dx)

= E
(
(fg)(W)− (fg)

(
W(2;∞))).



2174 H. DREES AND H. ROOTZÉN

It then follows from Lemma 5.2(iii) that (C3) holds with c(f, g) given by (2.4).
�

PROOF OF LEMMA 2.5. Again let Mt
n,s :=

∑t
i=s+1 1{Xn,i �=0} denote the num-

ber of nonvanishing observations in the time interval from s + 1 to t . Then

lim sup
n→∞

P(M
rn
n,l �= 0 |Xn,1 �= 0)≤ lim sup

n→∞
(βn,l + rnvn)→ 0(5.8)

as l →∞, by (B3) and rnvn → 0. Hence, the analog to condition (2) of Segers
(2003) holds and one may conclude the assertions (i) and (ii) by essentially the
same arguments as given for the proofs of Theorem 1 (with tn = rn), Corollary 2
and Theorem 3(i) there.

The proof of (iii) also follows the ideas used in the proof of Theorem 3(ii) in
that paper. Nevertheless, we give more details, since we want to avoid working
with the space A of sequences with almost all terms equal to 0 that was introduced
by Segers (2003). Moreover, in this proof we replace assumption (2.3) in condition
(C3.1′′) by the weaker assumptions (2.7) and (2.8).

We first consider a bounded cluster functional g such that Dg,m,I ⊂Df,m,I for
all m ∈ N and I ⊂ {1, . . . ,m}. The result for f itself will then follow easily. Let
k ∈N be arbitrary and, as before, let ‖ · − · ‖TV denote the total variation distance
between two measures. By (5.8), for all ε > 0 there exists l > k such that for

sufficiently large n and X
(k)
n = (Xn,i)1≤i≤k∥∥P (X(k)

n ∈ ·,Mrn
n,k = 0 |Xn,1 �= 0

)− P
(
X(k)

n ∈ ·,Ml
n,k = 0 |Xn,1 �= 0

)∥∥
TV

≤ P(M
rn
n,l �= 0 |Xn,1 �= 0)(5.9)

≤ ε

and, by (2.6),∥∥P {W(k) ∈ ·,W(k+1;∞) = 0
}− P

{
W(k) ∈ ·,W(k+1;l) = 0

}∥∥
TV

≤ P {Wi �= 0 for some i > l}(5.10)

≤ ε.

Recall the definition of the sets Nk,I for I ⊂ {1, . . . , k} from Remark 2.6.
Since, according to assumption (C3.1′′), the substochastic measures P(X

(k)
n ∈ ·,

X
(k)
n ∈ Nk,I ,M

l
n,k = 0 | Xn,1 �= 0) converge weakly to the substochastic measure

P {W(k) ∈ ·,W(k) ∈ Nk,I ,W
(k+1;l) = 0}, it follows from (5.9) and (5.10) that, for

all k ∈N, and all subsets I ⊂ {1, . . . , k},
P
(
X(k)

n ∈ ·,X(k)
n ∈Nk,I ,M

rn
n,k = 0 |Xn,1 �= 0

)
(5.11)

→ P
{
W(k) ∈ ·,W(k) ∈Nk,I ,W

(k+1;∞) = 0
}

weakly.
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By assertion (i), we have

E
(
g(Yn) | Yn �= 0

)= 1

θn

E
(
g
(
X(rn)

n

)− g
(
X(2;rn)

n

) |Xn,1 �= 0
)+ o(1).(5.12)

Again by (5.9) and the definition of a cluster functional,∣∣E(g(X(rn)
n

)− g
(
X(2;rn)

n

) |Xn,1 �= 0
)

(5.13)
−E

((
g
(
X(l)

n

)− g
(
X(2;l)

n

))
1{Mrn

n,l=0} |Xn,1 �= 0
)∣∣≤ 2ε‖g‖∞.

In view of (5.11) (with k = l), for all I ⊂ {1, . . . , l}, the continuous mapping theo-
rem yields

E
(
g
(
X(l)

n

)
1{X(l)

n ∈Nl,I }1{Mrn
n,l=0} |Xn,1 �= 0

)→E
(
g
(
W(l))1{W(l)∈Nl,I }1{W(l+1;∞)=0}

)
,

because the function g|Nl,I
is bounded and continuous on the complement of the

set Df,l,I , which by (2.7) is a null set under the limit measure in (5.11). Sum up
these equations for all I ⊂ {1, . . . , l} and combine this with an analogous result for
g(X

(2;l)
n ) to obtain

E
((

g
(
X(l)

n

)− g
(
X(2;l)

n

))
1{Mrn

n,l=0} |Xn,1 �= 0
)

(5.14)
→E

((
g
(
W(l))− g

(
W(2;l)))1{W(l+1;∞)=0}

)
.

Combining (5.10), (5.12)–(5.14) and θn → θ > 0, one arrives at

E
(
g(Yn) | Yn �= 0

)→ 1

θ
E
(
g(W)− g

(
W(2;∞))).(5.15)

Now, if f is an arbitrary cluster functional satisfying the conditions of the propo-
sition and h : R→R is continuous and bounded, then an application of (5.15) with
g = h ◦ f yields assertion (iii). �

PROOF OF COROLLARY 2.7. This is immediate from Corollary 2.4 and
Lemma 5.2(ii). �

PROOF OF THEOREM 2.8. The processes Zn are asymptotically tight if the
analogous sums over the even numbered and over the odd numbered blocks

1√
nvn

	mn/2
∑
j=1

(
f (Yn,2j )−Ef (Yn,2j )

)
and

(5.16)
1√
nvn

�mn/2�∑
j=1

(
f (Yn,2j−1)−Ef (Yn,2j−1)

)
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are asymptotically tight. In view of (5.4), the first expression is asymptotically
tight if and only if the analogous expression with independent blocks, that is,

1√
nvn

	mn/2
∑
j=1

(
f (Y ∗n,2j )−Ef (Y ∗n,2j )

)
(5.17)

is asymptotically tight, which follows from Theorem 2.11.9 of van der Vaart
and Wellner (1996) applied with Zni(f ) = f (Yn,2i ) (and mn replaced with
	mn/2
). Observe that for a sequence of monotonically increasing positive func-
tions Tn(δ) the convergence of Tn(δn) to 0 for all sequences δn ↓ 0 is equivalent
to limδ↓0 lim supn→∞ Tn(δ)= 0, so that the last two displayed conditions in The-
orem 2.11.9 of van der Vaart and Wellner (1996) can be reformulated as (D3) and
(D4), respectively. The proof of tightness of the sum over the blocks with odd
numbers is the same. �

PROOF OF REMARK 2.9(ii). By the Cauchy–Schwarz inequality,

E∗(F(Yn)1{F(Yn)>ε
√

nvn}
)

≤ (E∗(F 2(Yn)1{F(Yn)>ε
√

nvn}
) ·E∗1{F(Yn)>ε

√
nvn}

)1/2

≤
(

(E∗(F 2(Yn)1{F(Yn)>ε
√

nvn}))2

ε2nvn

)1/2

= o

(
(rnvn)

2

nvn

)1/2

= o
(
rn
√

vn/n
)
,

so (D2) holds. Further, (D2′) implies (5.6), and, hence, (C2) follows from Lem-
ma 5.2(iv).

Next, suppose E∗F 2+δ(Yn)=O(rnvn) and nvn →∞. Then

E∗(F 2(Yn)1{F(Yn)>ε
√

nvn}
)

≤ (E∗F 2+δ(Yn))
2/(2+δ) · (E∗1{F(Yn)>ε

√
nvn}

)1−2/(2+δ)

=O
(
(rnvn)

2/(2+δ)) · (E∗F 2+δ(Yn)

(ε
√

nvn)2+δ

)1−2/(2+δ)

=O(rnvn(nvn)
−δ)

= o(rnvn),

so that (D2′) holds. �

PROOF OF THEOREM 2.10. First assume (D6) holds. Using the triangle in-
equality, it is easily seen that Zn is asymptotically equicontinuous if both terms
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given in (5.16) are asymptotically equicontinuous. Further, by (5.4), the first term
is asymptotically equicontinuous if and only if (5.17) is asymptotically equicontin-
uous. However, asymptotic equicontinuity of (5.17) follows from Theorem 2.11.1
of van der Vaart and Wellner (1996). To see this, note that (D6) implies the anal-
ogous random entropy condition for the sums over the even numbered blocks,
because the corresponding random semi-metric is smaller for these sums.

If mn is even, then the second term in (5.16) has the same distribution
as the first one, while for mn odd with probability greater than or equal to
1− rnvn → 1, the additional summand (nvn)

−1/2(f (Yn,mn)−Ef (Yn,mn)) equals
−(nvn)

−1/2Ef (Yn,mn), which tends to 0 uniformly for f ∈ F [cf. (5.7)]. This
proves the first assertion of the theorem. Theorem 2.3 then yields the conver-
gence of Zn, because the Lindeberg condition (C2) follows from (D2) [see Re-
mark 2.9(ii)].

Next, to see that (D6′) implies (D6), check that the random semi-metric dn can
be represented as dn = (mn/(nvn))

1/2 · dQ with the (random) probability mea-
sure Q=m−1

n

∑mn

j=1 εY ∗n,j
, and, hence, N(ε, F , dn)=N(ε(nvn/mn)

1/2, F , dQ). If∫
F 2 dQ= 0, then dn(f, g)= 0 for all f,g ∈ F and the integral in (D6′) vanishes.

Otherwise, for all η > 0 there exists a τ > 0 such that, for sufficiently large n,

P

{(∫
F 2 dQ

)1/2

> τ(nvn/mn)
1/2
}
≤ EF 2(Yn,1)

τ 2nvn/mn

≤ η,

since EF 2(Yn)=O(rnvn), and thus with probability larger than 1− η,∫ δ

0

√
logN(ε, F , dn) dε = τ

∫ δ/τ

0

√
logN(ετ, F , dn) dε

≤ τ

∫ δ/τ

0
sup
Q∈Q

√
logN

(
ε

(∫
F 2 dQ

)1/2

, F , dQ

)
dε

→ 0

as δ ↓ 0, under (D6′). �

PROOF OF COROLLARY 3.6. Condition (D1) is satisfied since F(x1, . . . ,

xk) ≤∑k
i=1 φmax(xi) and since φmax is assumed to be measurable and bounded.

Similarly, condition (D2′) follows from F(Yn)≤ rn‖φmax‖∞, since rn = o(
√

nvn)

by assumption.
By Lemma 5.2(i), assumption (C1) follows if we show that Var(�n(f )) =

o(rnvn). Now,

E

(
rn∑

i=1

1{Xn,i �=0}
)2

≥ E

	rn/ ln
∑
j=1

(
ln∑

i=1

1{Xn,(j−1)ln+i �=0}
)2

= 	rn/ ln
E
(

ln∑
i=1

1{Xn,i �=0}
)2
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by the row-wise stationarity, and, consequently, by (3.5) and ln = o(rn),

E(�2
n,1(f )) ≤ E

(
ln∑

i=1

φmax(Xn,i)

)2

≤ ‖φmax‖2∞E

(
ln∑

i=1

1{Xn,i �=0}
)2

=O

(
ln

rn
rnvn

)
= o(rnvn).

Further, (3.6) follows from

E∗
(

sup
φ∈�

1√
nvn

∣∣∣∣∣
n∑

i=rnmn+1

(
φ(Xn,i)−Eφ(Xn,i)

)∣∣∣∣∣
)2

≤E

(
2√
nvn

‖φmax‖∞
n∑

i=rnmn+1

1{Xn,i �=0}
)2

= 4‖φmax‖2∞
nvn

· rnvn → 0.

Therefore, the remaining assertions follow from Theorems 2.8 and 2.10 and
Remark 2.9(i) and (ii). �

PROOF OF REMARK 3.7(i). Since

1

rnvn

E
(
gφ(Yn)

21{L(Yn)>k}
)

≤ ‖φ‖∞ 1

rnvn

E

((
rn∑

i=1

1{Xn,i �=0}
)2

1{L(Yn)>k}
)

≤ ‖φ‖∞
(

1

rnvn

E

((
rn∑

i=1

1{Xn,i �=0}
)2+δ))2/(2+δ)(

1

rnvn

P {L(Yn) > k}
)δ/(2+δ)

,

the first part (2.1) of (C3′) follows from (3.7) and (3.9), since φ is assumed to be
bounded. Next,

1

rnvn

E
(
gφ(Yn)gψ(Yn)1{L(Yn)≤k}

)

= 1

rnvn

∑
i,j∈{1,...,rn},|i−j |≤k−1

E
(
φ(Xn,i)ψ(Xn,j )1{L(Yn)≤k}

)
(5.18)
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= 1

vn

E(φ(Xn,1)ψ(Xn,1))

+
k−1∑
i=1

rn − i

rn

1

vn

(
E(φ(Xn,1)ψ(Xn,i+1))

+E(ψ(Xn,1)φ(Xn,i+1))
)+Rn,k,

with

|Rn,k| = 1

rnvn

∣∣∣∣ ∑
i,j∈{1,...,rn},|i−j |≤k−1

E
(
φ(Xn,i)ψ(Xn,j )1{L(Yn)>k}

)∣∣∣∣

≤ ‖φ‖∞‖ψ‖∞ 1

rnvn

E

((
rn∑

i=1

1{Xn,i �=0}
)2

1{L(Yn)>k}
)
.

It then follows as above that limk→∞ lim supn→∞|Rn,k| = 0, and, hence, the as-
sumption (2.2) of (C3′) can be seen to be satisfied, with c given by (3.10). �

PROOF OF COROLLARY 3.9. Clearly, (3.15) implies (2.10) and hence also
(D2′). Moreover, (3.15) implies that

E

(
rn∑

i=1

φmax(Xn,i)

)2

≤ E

(
rn∑

i=1

φmax(Xn,i)

)2+δ

+ P

{
0 <

rn∑
i=1

φmax(Xn,i)≤ 1

}

=O(rnvn).

Hence, similar arguments as used in the proof of Corollary 3.6 show that
(Zn(gφ))φ∈� converges weakly to a Gaussian process. Finally, (3.6) and thus the
convergence of (Z̃n(φ))φ∈� follows from

E∗
(

sup
φ∈�

1√
nvn

∣∣∣∣∣
n∑

i=rnmn+1

(
φ(Xn,i)−Eφ(Xn,i)

)∣∣∣∣∣
)2

≤E

(
1√
nvn

rn∑
i=1

(
φmax(Xn,i)+Eφmax(Xn,i)

))2

≤ 4

nvn

E

(
rn∑

i=1

φmax(Xn,i)

)2

=O(rn/n)→ 0. �

PROOF OF COROLLARY 4.3. (i) The index set C := {Ct1,...,tk | t1, . . . , tk ∈[0,1]} equipped with the metric ρC (1Cs1,...,sk
,1Ct1,...,tk

) := max1≤l≤k |sl − tl| is to-
tally bounded. The same holds for D := {Dt1,...,tk | t1, . . . , tk ∈ [0,1]}.

In view of the discussion preceding Corollary 4.3, the assertions follow from
Theorem 2.10 combined with Corollary 2.7 if we verify condition (D5) and that the
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index sets C and D are VC-classes. Condition (D5) is satisfied since all processes
under consideration are separable.

That C is a VC-class may be established by observing that Ct1,...,tk =
ψ−1(×k

l=1(tl,∞)) with

ψ : R∪ →R
k, (x1, . . . , xm) �→

⎧⎪⎪⎨
⎪⎪⎩

(xj , . . . , xj+k−1),

if j =min{i | xi �= 0} ≤m− k+ 1,

(0, . . . ,0),

else.

Since {×k
l=1(tl,∞) | t1, . . . , tk ≥ 0} is known to be a VC-class [cf. van der Vaart

and Wellner (1996), Example 2.6.1], C is a VC-class, too [van der Vaart and Well-
ner (1996), Lemma 2.6.17(v)].

The sets Dj := {Ej,t | t ≥ 0} are linearly ordered (i.e., Ej,s ⊂Ej,t if s > t) and,
hence, they are VC-classes, and hence so is

D = D1 � D2 � · · · � Dk =
{

k⋂
j=1

Ej

∣∣∣Ej ∈ Dj

}

[van der Vaart and Wellner (1996), Lemma 2.6.17(ii)].
(ii) By the results of Segers (2003), condition (C3.1′′) is satisfied in the weaker

version discussed in Remark 2.6, because the limit r.v.’s are continuous on (0,∞)

and the discontinuity sets have Lebesgue measure 0. Hence, the assertions follow
by part (i), if the asymptotic equicontinuity condition (D3) can be shown.

For this, first note that Cs1,...,sk�Ct1,...,tk ⊂ {(x1, . . . , xm) ∈ E∪ | m ∈ N,∃0 ≤
j ≤ m − k,1 ≤ l ≤ k :xi = 0,∀1 ≤ i ≤ j, xj+l ∈ (min(sl, tl),max(sl, tl)]}. Thus,
Lemma 2.5(i) and (ii) yield that

1

rnvn

P {Yn ∈ Cs1,...,sk�Ct1,...,tk }

≤ 1

rnvnθn

P
(
X(rn)

n ∈ Cs1,...,sk�Ct1,...,tk |Xn,1 �= 0
) · P {Yn �= 0}

+ o

(
P {Yn �= 0}

rnvn

)

= P
(
X(rn)

n ∈ Cs1,...,sk�Ct1,...,tk |Xn,1 �= 0
)+ o(1)

≤
k∑

l=1

P
(
Xn,l ∈ (min(sl, tl),max(sl, tl)] |Xn,1 �= 0

)+ o(1)

≤
k∑

l=1

P
(
Xn,l ∈ (min(sl, tl),max(sl, tl)] |Xn,l �= 0

) · P {Xn,l �= 0}
P {Xn,1 �= 0} + o(1)

=
k∑

l=1

|tl − sl| + o(1),
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where the term o(1) tends to 0 uniformly for all s1, . . . , sk, t1, . . . , tk ∈ [0,1]. Now,
(D3) follows immediately from the definition of ρC .

To verify condition (D3) for the indicator functions describing the largest order
statistics in a cluster, note that

k⋂
j=1

Ej,sj�
k⋂

j=1

Ej,tj

⊂
{
(x1, . . . , xm) ∈E∪ |m ∈N,

m∑
i=1

1(min(sj ,tj ),1](xi)≥ j,

m∑
i=1

1(max(sj ,tj ),1](xi) < j for some 1≤ j ≤ k

}

⊂ {(x1, . . . , xm) ∈E∪ |m ∈N,

xi ∈ (min(sj , tj ),max(sj , tj )] for some 1≤ j ≤ k,1≤ i ≤m}.
This implies

1

rnvn

P

{
Yn ∈

k⋂
j=1

Ej,sj�
k⋂

j=1

Ej,tj

}

≤
k∑

j=1

P
(
Xn,1 ∈ (min(sj , tj ),max(sj , tj )] |Xn,1 �= 0

)

=
k∑

j=1

|tj − sj |

from which (D3) follows. �

PROOF OF THE RESULT IN EXAMPLE 4.4. The convergence of the fidis of
Z̃n to those of a Gaussian process with covariance function (4.6) follows from
Corollary 2.7 by the same arguments as in the proof of Corollary 4.3(ii).

In view of the discussion before Corollary 4.3, the proof will be completed
by showing that conditions (D3), (D5) and (D6) of the asymptotic equicontinuity
Theorem 2.10 also are satisfied. The measurability condition (D5) holds since, for
fixed k, the processes (1Ck,t1,...,tk

)(t1,...,tk)∈[0,1]k are separable and a supremum of
countably many suprema of separable processes are measurable.

We will use (4.2) to verify that (D3) is satisfied for the semi-metric

ρ(1Cj,s1,...,sj
,1Ck,t1,...,tk

)

:=
{

P
{
L(W) ∈ {j, k}}, if j �= k,

P {L(W)= k,Wi ∈ (si ∧ ti , si ∨ ti] for some 1≤ i ≤ k}, if j = k.
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Now, F = {1Ck,t1,...,tk
| k ≥ 1, t1, t2, . . . ∈ [0,1]} is totally bounded with respect

to ρ. To see this, for ε > 0 given, choose 0 = ai,0 < ai,1 < · · · < ai,mi
= 1 such

that P {Wi ∈ (ai,j−1, ai,j ]} ≤ ε/kε for 1≤ i ≤ kε and 1≤ j ≤mi , with kε chosen
large enough to make P {L(W)≥ kε}< ε/2. Then

{1Ck,t1,...,tk
| k ≥ kε}, {1Cj,t1,...,tj

| ti ∈ [ai,�i−1, ai,�i
],∀1≤ i ≤ j},

for 1≤ j ≤ kε,1≤ �i ≤mi , is a finite cover of F with diameter at most ε.
By Lemma 2.5,

P
(
L(Yn)= k | Yn �= 0

)→ 1

θ

(
P {L(W)= k} − P

{
L
(
W(2;∞))= k

})
,(5.19)

and, by Sheffe’s lemma, the convergence is uniform in k ∈N. (Note that, for k ≤ l,
the cluster functional 1{k} ◦ L is constant on all sets Nl,I defined in Remark 2.6.)
Similarly,

P
(
L(Yn)= k, (Y c

n )1 ≤ t1, . . . , (Y
c
n )k ≤ tk | Yn �= 0

)
→ 1

θ

(
P {L(W)= k,W1 ≤ t1, . . . ,Wk ≤ tk}(5.20)

− P
{
L
(
W(2;∞))= k,

((
W(2;∞))c)

i ≤ ti ,∀1≤ i ≤ k
})

,

and the convergence is uniform in t1, . . . , tk for each fixed k, because the right-
hand side defines a continuous function.

For ε > 0 let δ = ε/2 and consider j, t1, . . . , tj , k, t1, . . . , tk such that
ρ(1Cj,s1,...,sj

,1Ck,t1,...,tk
) < δ. Then for j �= k and n large,

1

rnvn

P {Yn ∈ Cj,s1,...,sj �Ck,t1,...,tk } ≤
1

rnvn

P
{
L(Yn) ∈ {j, k}}

= θnP
(
L(Yn) ∈ {j, k} | Yn �= 0

)≤ ε

by (5.19), Lemma 2.5(ii) and the definition of ρ.
If instead j = k ≤ kε , then using (5.20), for large n,

1

rnvn

P {Yn ∈Cj,s1,...,sj �Ck,t1,...,tk }

= θnP
(
L(Yn)= k, (Y c

n )i ∈ (si ∧ ti , si ∨ ti] for some 1≤ i ≤ k | Yn �= 0
)

≤ θn

(
1

θ
P {L(W)= k,Wi ∈ (si ∧ ti , si ∨ ti] for some 1≤ i ≤ k} + ε

4

)
≤ ε,

again by Lemma 2.5 and the definition of ρ.
Finally, if j = k > kε , then for large n

1

rnvn

P (Yn ∈ Cj,s1,...,sj �Ck,t1,...,tk )≤ P
(
L(Yn)= k | Yn �= 0

)
≤ 2P

(
L(W) > kε

)
< ε.
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This concludes the proof of (4.2), and hence also the proof of (D3).
For the proof of (D6), let Ck = {Cj,t1,...,tj | 1 ≤ j ≤ k, t1, . . . , tj ∈ [0,1]} and

Fk = {1C | C ∈ Ck} so that F =⋃∞
k=1 Fk . Define ψk as the function which maps

x ∈E∪ to the vector (1, . . . ,1) in R
2k if L(x) > k or L(x)= 0 and which maps x

to the vector

(1, . . . ,1,0,1, . . . ,1, xc
1, . . . , x

c
j ,0, . . . ,0) ∈R

2k,

if 1 ≤ L(x) := j ≤ k. Here the first row of ones has j − 1 entries and the second
row has k− j entries, and, hence, the vector ends with k− j zeros, so that the first
k components encode the length of the cluster core. With this definition, it follows
that

Cj,t1,...,tj =ψ−1
k

(
R

j−1 × (−∞,0] ×R
k−j ×

j×
i=1

(−∞, ti] ×R
k−j

)
.

The left orthants×2k
i=1(−∞, xi] form a VC-class with index bounded by 2k + 1

[van der Vaart and Wellner (1996), Example 2.6.1] and, hence, also Ck is a VC-
class with index bounded by 2k + 1 [Dudley (1999), Theorem 4.2.3]. By van der
Vaart and Wellner [(1996), Theorem 2.6.7] for all sufficiently small ε and all k ∈N,
Fk satisfies the metric entropy bound

N

(
ε

(∫
F 2 dQ

)1/2

, Fk, dQ

)
≤ C(2k + 1)(16e)2k+1ε−(4k+1)

(5.21)
≤ ε−(6k+2),

with C denoting a universal constant that does not depend on k or ε.
Let Ln,1 > Ln,2 > · · ·> Ln,mn be the order statistics in descending order of the

independent cluster lengths (L(Y ∗n,j ))
mn

j=1. Since the empirical L2-semi-metric dn

satisfies

sup
i,j>k

d2
n(1Ci,t1,...,ti

,1Cj,s1,...,sj
)≤ 1

nvn

mn∑
j=1

1{L(Y ∗n,j )>k},

it follows that the squared diameter of the set{
Cj,t1,...,tj | j > Ln,	ε2nvn
, t1, . . . , tj ∈ [0,1]}

w.r.t. dn is bounded by

1

nvn

mn∑
j=1

1{L(Y ∗n,j )>L
n,	ε2nvn
} ≤

	ε2nvn

nvn

≤ ε2.

Reasoning as in the last part of the proof of Theorem 2.10, this together with
(5.21) shows that (D6) follows if we prove that

lim
δ↓0

lim sup
n→∞

P

{∫ δ

0

√
log ε

−(6L
n,	ε2nvn
+2)

dε > τ

}
= 0(5.22)
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for all τ > 0. By a change of variables and Hölder’s inequality,∫ δ

0

√
log ε

−(6L
n,	ε2nvn
+2)

dε

≤
�δnvn�∑
j=1

√
8Ln,j

∫ ((j+1)/(nvn))1/2

(j/(nvn))1/2

√
|log ε|dε

≤ 2

nvn

�δnvn�∑
j=1

√
Ln,j · nvn

∫ (j+1)/(nvn)

j/(nvn)

√
logη−1/2η−1/2 dη

≤
(

1

nvn

�δnvn�∑
j=1

L
1+ζ
n,j

)1/(2+2ζ )

×
(

1

nvn

�δnvn�∑
j=1

(
nvn

∫ (j+1)/(nvn)

j/(nvn)

√
logη−1/2

× η−1/2 dη

)(2+2ζ )/(1+2ζ )
)(1+2ζ )/(2+2ζ )

.

Now,

E

(
1

nvn

�δnvn�∑
j=1

L
1+ζ
n,j

)
≤E

(
1

nvn

mn∑
j=1

Ln(Y
∗
n,j )

1+ζ

)
≤E

(
L(Yn)

1+ζ | Yn �= 0
)
,

which is bounded by (4.5). Furthermore, applying Liapunov’s inequality to the
individual summands,

1

nvn

�δnvn�∑
j=1

(
nvn

∫ (j+1)/(nvn)

j/(nvn)

√
logη−1/2η−1/2 dη

)(2+2ζ )/(1+2ζ )

≤ 1

nvn

�δnvn�∑
j=1

nvn

∫ (j+1)/(nvn)

j/(nvn)

( |logη|
η

)(1+ζ )/(1+2ζ )

dη

≤
∫ 2δ

0

( | logη|
η

)(1+ζ )/(1+2ζ )

dη→ 0

as δ→ 0. Hence, we have verified (5.22). This concludes the proof of (D6). �
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