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STOCHASTIC KINETIC MODELS: DYNAMIC INDEPENDENCE,
MODULARITY AND GRAPHS1

BY CLIVE G. BOWSHER

University of Cambridge

The dynamic properties and independence structure of stochastic kinetic
models (SKMs) are analyzed. An SKM is a highly multivariate jump process
used to model chemical reaction networks, particularly those in biochemical
and cellular systems. We identify SKM subprocesses with the corresponding
counting processes and propose a directed, cyclic graph (the kinetic indepen-
dence graph or KIG) that encodes the local independence structure of their
conditional intensities. Given a partition [A,D,B] of the vertices, the graph-
ical separation A ⊥ B|D in the undirected KIG has an intuitive chemical in-
terpretation and implies that A is locally independent of B given A ∪ D. It is
proved that this separation also results in global independence of the internal
histories of A and B conditional on a history of the jumps in D which, under
conditions we derive, corresponds to the internal history of D. The results en-
able mathematical definition of a modularization of an SKM using its implied
dynamics. Graphical decomposition methods are developed for the identifi-
cation and efficient computation of nested modularizations. Application to
an SKM of the red blood cell advances understanding of this biochemical
system.

1. Introduction and summary. The dynamic properties and conditional in-
dependence structure of stochastic kinetic models are analyzed using a marked
point process framework. A stochastic kinetic model or SKM is a highly mul-
tivariate jump process used to describe chemical reaction networks. SKMs have
become particularly important as models of the network of interacting biomole-
cules in a cellular system. The necessity of a stochastic process approach to the
dynamics of such biochemical reaction systems is now clear [28, 30], with SKMs
providing continuous-time, mechanistic descriptions firmly grounded in chemical
kinetic theory and the underlying statistical physics. The Gillespie algorithm [9,
10] for simulation of SKMs is now an important tool in the science of systems bi-
ology. However, there are few analytical tools for study of the dynamic properties
of SKMs (although note [1, 12] and [8]), especially when the SKM is of modest
or high dimension.
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This paper develops what appear to be the first methods for analyzing the local
and global dynamic independence structure implied by a given SKM and shows
how these may be used to uncover the modular architecture of the network at
coarser or finer levels of resolution. The required information about the parameters
of the SKM is modest, and consistent with the partial information about these cur-
rently available for many biochemical reaction networks. SKMs are often thought
of as continuous-time, homogeneous Markov chains having nonfinite state space.
However, the fact that there are a finite number of possible types of jump of the
process—corresponding to the different types of possible biochemical reaction in
the system—allows formulation of both the SKM and its subprocesses as multi-
variate counting processes. This turns out to be a fruitful approach for the prob-
lems addressed here. In fact, the Markov property is not needed for the results and
methods of the paper. The main contributions may be summarized as follows.

Graphical models for SKMs and dynamic molecular networks are introduced.
These kinetic independence graphs (KIGs) are directed, cyclic graphs whose ver-
tices are the different types (or species) of biomolecule in the system. The KIG
encodes local independences that result from a lack of dependence of the condi-
tional intensity of a subprocess on the internal history of some of the species.

Given a partition [A,B,D] of the vertices, the graphical separation A ⊥ B|D
in the undirected version of the KIG has an intuitive chemical interpretation and
implies A is locally (or “instantaneously”) independent of B given A ∪ D (and
B locally independent of A given B ∪ D). It is proved that this separation also
results in conditional independence, over any finite time interval (0, t], of the in-
ternal histories of A and B conditional on a history of the jumps in D. Conditions
under which this history corresponds to the internal history of D are derived and
are easily checked computationally. Such a conditional independence is termed a
global (as opposed to local) dynamic independence here.

The new results enable mathematical definition of a modularization of an SKM
using its implied dynamics. Graphical decomposition methods are developed for
the identification of nested modularizations that allow the extent of coarse-graining
to be varied and provide computationally efficient algorithms for large SKMs.
Junction tree representations are shown to provide a useful tool for visualizing,
summarizing and manipulating the modularizations. Applying the techniques of
the paper to an SKM that represents detailed empirical knowledge of the metabolic
network of the human red blood cell yields new insight into the biological organi-
zation and dynamics of this cellular system.

Graphical models and their associated analytical and computational methods
allow the modularization of large, complex models into smaller components and
provide a particularly effective means of representing and analyzing conditional in-
dependence relationships [3, 21]. Certain graphical approaches are now used quite
extensively in computational biology and have also been readily assimilated by the
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wider biological scientific community, which has long found diagrammatic repre-
sentations of reaction schemes useful [15]. However, rigorous graphical represen-
tations of biochemical networks as dynamic processes—that is graphical models
in the statistical sense—do not appear to have been considered previously.

Indeed, graphical models for continuous time stochastic processes in general
are in an early stage of development. Didelez [5, 6] introduced graphs based on the
local independence structure of conditional intensities for finite state, composable
Markov processes and multivariate point processes, respectively; [22] is an earlier
contribution, also for finite state Markov processes. SKMs require new methods
since interest is in dynamic independences between groups of species rather than
the counting processes for the different types of reaction per se. Furthermore, the
Markov process for species concentrations implied by the SKM neither has finite
state space, nor is it composable for most SKMs of interest (see Section 3).

In practice, the SKM is constructed from a large list of the biochemical reac-
tions that comprise the network under study. This list, or “network reconstruction,”
is usually compiled using extensive experimental evidence in the literature on the
component parts of the system and their molecular interactions [26]. Indeed, the
approaches of molecular biology and genetics, including genome sequencing, have
already proved remarkably successful in providing life scientists with a very exten-
sive “parts list” for biology. Systems biology is an increasingly influential, inter-
disciplinary approach that aims to describe mathematically the stochastic dynamic
behavior of the whole system as an emergent property of the network of interacting
biomolecules [30].

A principal challenge is thus to map from fine level descriptions such as reaction
lists and their implied SKMs to higher level, coarse-grained descriptions of the dy-
namic properties. Related is the increasingly held view that biochemical reaction
networks are modular, that is their architecture can be decomposed into units that
perform “nearly independently” [18], and that identifying such modules is a crucial
step in the endeavor to understand and, ultimately, to selectively control cellular
systems. However, it is recognized that rigorous, mathematical definition and iden-
tification of modularizations for biochemical networks is difficult, especially from
a dynamic perspective (see [29], Chapter 3). As a result, such modularization tech-
niques have been slow to develop, and there seems to be no prior work allowing
for stochastic and non-steady state dynamics. The dynamic independence results
and associated graphical methods developed here provide an effective means of ad-
dressing these problems. Broadly speaking, the paper also illustrates the utility of a
statistical and probabilistic approach to the dynamics of biological systems which,
despite their stochastic nature, have hitherto more often received the attention of
physical scientists.

The structure of the paper is as follows. Section 2.1 introduces SKMs and re-
action networks in a manner requiring no previous background in systems biology
or biochemistry. Section 2.2 defines an SKM as a marked point process and pro-
vides a formal construction using the well-known Gillespie algorithm as a point of
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departure. Section 2.3 then shows how to accommodate subprocesses of the SKM
in a counting process framework and discusses their conditional intensities and in-
ternal histories (natural filtrations). Section 3 introduces the kinetic independence
graphs, or KIGs, and examines local independence and graphical separation in the
undirected KIG. Section 4 then relates these to global conditional independence
of species histories in Theorems 4.4 and 4.5, which are central to the paper. Rig-
orous proofs of these theorems are quite involved and are given as Appendix A.
Section 5 develops graphical decomposition methods and associated theory for the
identification of modularizations of SKMs, while Section 6 applies the techniques
of the paper to the SKM of the human red blood cell. Section 7 highlights some
directions for future research.

2. SKMs and counting processes.

2.1. Introducing the SKM and reaction networks. A stochastic kinetic model
is a continuous-time jump process modeling the state of a chemical system, X(t) =
[X1(t), . . . ,Xn(t)]′, where Xi(t) is interpreted as the nonnegative, integer number
of molecules of type i present at time t . The set of different types of molecule or
the species set is given by V := {1, . . . , n}. There are a finite number of possible
types of jump in X(t) that may take place, corresponding to the different types of
possible reaction, m ∈ M := {1, . . . ,M}. It is particularly useful for our purposes
to view an SKM as a marked point process or MPP in which the points or “events”
correspond to the jump times of the process X(t). Mathematically, a particular
reaction can then be identified with an element of the finite mark space and each
mark indicates the type of jump associated with the corresponding jump time.

An SKM is denoted here by {Ts,Zs}s≥1, where Ts is the sth jump time. The
mark Zs ∈ {Sm|m ∈ M} is the value of the jump and is interpreted as the changes
in the number of molecules of each species. The matrix S := [S1, S2, . . . , SM ] is
usually known as the stoichiometric matrix. Any two columns of S are taken to
be nonequal; hence, there is a bijection between the mark space and M. A formal
construction of an SKM is given below in Section 2.2 but it is helpful at this stage
to note the following linear equation determining the dynamic evolution of X(t):

X(t) = X(0) + SN(t), t ≥ 0,

where N(t) = [N1(t), . . . ,NM(t)]′ is the M-variate counting process associated
with the marked point process {Ts,Zs}s≥1. Thus, Nm(t) is interpreted as counting
the number of reactions of type m during (0, t]. Denote by F N

t := σ(N(s); 0 ≤
s ≤ t) the internal history of the entire process and by F m

t := σ(Nm(s); 0 ≤ s ≤
t) the internal history of the mth counting process. The probability law of N(t),
and hence that of X(t), is determined by what are known as the F N

t -conditional
intensities, [λm(t);m ∈ M].

The conditional intensity concept is important for an understanding of the pa-
per. At time t , each intensity λm(t) is interpreted as the local (or instantaneous)
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rate of reaction m, conditional on the internal history of the entire process F N
t .

Confining attention to a finite interval of time T , provided that N(t) has finite
expectation ∀t ∈ T (and that [λm(t); t ∈ T ] is bounded by an integrable random
variable), each intensity is a local rate of reaction in exactly the chemical sense—
that is, λm(t+) = limh↓0 E[h−1{Nm(t + h) − Nm(t)}|F N

t ], the conditionally ex-
pected number of reactions of type m per unit time in the limit as h goes to zero.
Of course, the intensities are themselves random variables (r.v.’s) since the evo-
lution of N up to time t is itself a stochastic process, hence the appearance of
the conditional expectation. A technical subtlety is that λm(t) is defined to have
sample paths that are left-continuous (with limits from the right), compared to the
right-continuous sample paths of X(t). A heuristic chemical interpretation is that
if a jump in X takes place at t , then future jumps are (locally) determined by the
intensity evaluated “immediately after” t .

A basic familiarity with the chemical representation and interpretation of reac-
tions is helpful in what follows (see also [30] for an accessible introduction). Each
reaction m ∈ M has the chemical representation∑

i∈R[m]
αiXi →m

∑
j∈P [m]

βjXj ,(2.1)

which is read as follows: when reaction m takes place, αi molecules of type i

are consumed for each i in the subset R[m] ⊂ V , and βj molecules of type j

are produced for each j in the subset P [m] ⊂ V . The species R[m] are called
the reactants (or inputs) of the reaction m, and the species P [m] are called the
products (or outputs) of m. The integer coefficients [{αi}, {βj }] are known as the
stoichiometries of the reaction. If a species k is a reactant but not a product, then
its corresponding entry in the stoichiometric matrix S (i.e., the change in the level
of k caused by reaction m) is given by Skm = −αk . Alternatively, if species k is
a product but not a reactant, then Skm = βk . There is no assumption that R[m] ∩
P [m] = ∅, and if k is both a product and a reactant then Skm = βk −αk . A common
situation in this case is βk = αk , that is k acts as a “catalyst,” increasing the rate of
the reaction but not itself being “changed” by the reaction—that is, not itself being
overall consumed or produced when m takes place. Formally, the sets R[m] and
P [m] are defined by allowing zero stoichiometries and writing the mth reaction
as

∑
i∈V αiXi →m ∑

j∈V βjXj . Then R[m] := {i ∈ V|αi > 0} and P [m] := {j ∈
V|βj > 0}.

In systems biology, a living cell is often viewed as a network of interacting
biomolecules of different types, with n and M both large (and often M > n). The
interaction is selective—only species that are reactants for some reaction m can
together react to give products. Each reaction involves only a few species, so the
cardinality of R[m] ∪ P [m] is small. Certain reactions are “coupled” in that a
product of one reaction is also a reactant of another reaction. From a stochastic
process perspective, the specification of the list of component reactions as in (2.1)
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for all m ∈ M implies dependences between the levels (or concentrations) of the
different biomolecules.

As a simple but nonetheless biochemically meaningful illustration, consider the
following example of an SKM.

EXAMPLE 2.1. Consider the SKM with the 5 different species V = {P , R, g,
P2, gP2} and the 6 reactions

g →trc g + R, R →trl R + P, 2P →d P2,

P2 →rd 2P, g + P2 →b gP2, gP2 →ub g + P2.

The gene (g) is responsible for the production of molecules of protein (P ) via
the intermediate (mRNA) species (R). In this simplified representation, g and R

act as simple catalysts in the reactions trc (“transcription”) and trl (“translation”),
respectively. The third reaction d consists of the binding of 2 molecules of P (the
sole reactant) to form the new molecule P2 (the sole product). The fourth reaction
rd is the reverse of the third. The fifth reaction sets up a “negative feedback cycle”
whereby the production of P is negatively self-regulated by the binding of P2 to
g to form the distinct species gP2. Genes bound in this way to P2 are not then
available to participate in the trc reaction, thus preventing over-production of the
protein. We shall return later to the same example.

2.2. Defining and constructing the SKM. The Gillespie stochastic simulation
algorithm [9, 10] has become an important tool in biological science for study-
ing biochemical and cellular systems. Given its familiarity in mathematical and
computational biology, the following construction of an SKM as a marked point
process takes as its point of departure the conditional distributions employed in
the Gillespie algorithm. For our purposes, the algorithm is usefully viewed as out-
putting a realization of the MPP {Ts,Zs}, from which the resultant process X(t)

is easily constructed as in (2.4) below. Readers less concerned with formal con-
structions and already familiar with stochastic kinetics may proceed safely to Sec-
tion 2.3 after noting Definition 2.1 of an SKM and (2.6) for the conditional reaction
intensities (or “hazards”).

Denote the numbers of molecules of all species at time Ts by ZX
s := ZX

s−1 + Zs

(s = 1,2, . . .). Let ZX
0 be the initial, deterministic state of the system, and define

T0 := 0. We write the σ -field generated by the first r points and marks as FTs :=
σ(Tr,Zr; r = 1, . . . , s). Also let FTs+1− := σ(Ts+1, Tr,Zr; r = 1, . . . , s), where
the (s + 1)th mark is excluded from the generating collection of random variables.

Now introduce the important propensity (or reaction rate) function for the mth
reaction, λm(ZX

s ), where λm : Nn
0 → [0,∞) is continuous. The conditional distri-

butions implied by stochastic kinetic theory [11] and employed in the Gillespie
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algorithm are given by

P(Ts+1 > t |FTs ) = exp

{
−(t − Ts)

M∑
m=1

λm(ZX
s )

}
,

(2.2)
t > Ts, s = 0,1, . . . ,

that is the waiting time to the next occurrence of a jump (reaction) is exponentially
distributed with parameter

∑M
m=1 λm(ZX

s ); and

P(Zs+1 = Sm|FTs+1− ) = λm(ZX
s )

/ M∑
m=1

λm(ZX
s ),(2.3)

which gives the mark (or jump) distribution. Note that both the waiting time and
mark distributions depend only on ZX

s , the levels of the species present following
the sth reaction. The pure jump process X(t) is given straightforwardly, for t ≥ 0,
by

X(t) := ZX
max{s : Ts≤t}, X(0) := ZX

0 ,(2.4)

it being well known that X(t) is a time-homogeneous Markov chain under P.
It turns out to offer significant advantages and simplification to adopt a MPP

framework for the problems addressed in the paper. An SKM is thus defined here
directly in terms of the MPP {Ts,Zs} and its corresponding counting processes. It
is implicit in our definition of a MPP that Ts < Ts+1 whenever Ts < ∞ (s ≥ 1).
Thus, reactions occur instantaneously and no two reactions ever have identical
occurrence times in continuous time. The physical interpretation is that reaction
durations are negligible and may be ignored. The random variables Ts are (0,∞]-
valued, with the interpretation that less than s reactions take place during the time
interval [0,∞) if Ts = ∞. The flexibility gained will not be needed routinely, but
may be useful for cellular systems that can enter an inactive or quiescent state.
The stability condition lims→∞ Ts = ∞ a.s. is imposed, which is equivalent to
the statement that only finitely many reactions occur in any finite time interval
(sometimes known as nonexplosivity).

DEFINITION 2.1. A stochastic kinetic model (SKM) is the MPP [{Ts,Zs}s≥1,
S,P] with mark space given by the columns of S, {Sm|m ∈ M}, where no 2
columns of S are equal; and where the probability measure P is such that (2.2)
holds P-a.s. on {Ts < ∞}, (2.3) holds P-a.s. on {Ts+1 < ∞}, and lims→∞ Ts = ∞
P-a.s.

Equivalently, the SKM may be denoted by the corresponding multivariate
counting process (MVCP), [N,S,P], where N := [Nm(t);m ∈ M]t≥0, and
Nm(t) = ∑

s≥1 1(Ts ≤ t)1(Zs = Sm) counts the number of reactions of type m

that occur during [0, t].
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Note that by definition the reaction counting processes {Nm(t);m ∈ M} have
no jump times in common. If the stability condition Ts → ∞ a.s. holds, there exists
for any propensity functions λm(Xt−)—see [16], Theorem 1.7, page 56—a unique
or canonical SKM satisfying Definition 2.1 on (�, F ), where � is the space of
M-variate counting process paths ([16], Definition 1.2, page 53), N is the identity
map from � → �, and F = σ(N(t); t ≥ 0).

It follows from (2.2) and (2.3) that the propensity functions give the F N
t -

conditional intensity process λ(t) in the MVCP sense (see [16], Definition 2.7),
that is, λ(t) = [λm(Xt−)]m∈M. When N(t) has finite expectation ∀t > 0, this
means that [Nm(t) − ∫ t

0 λm(s) ds] is an F N
t -martingale ∀m. That the intensities

satisfy

lim
h↓0

1

h
P
(
Nm(t + h) − Nm(t) = 1|F N

t

) = λm(Xt), m ∈ M,

(2.5)

lim
h↓0

1

h
P
(
N̄(t + h) − N̄(t) > 1|F N

t

) = 0,

where N̄(t) := ∑
m∈M Nm(t), is in fact a principle conclusion of the arguments

of stochastic kinetic theory [11]. The assumptions of the theory are that the sys-
tem is spatially homogeneous (or “well-stirred”), confined to a fixed volume and
held at constant temperature. Under these assumptions, (2.2) and (2.3) have a firm
physico-chemical basis [11].

It plays a significant role in what follows that the theory implies that the F N
t -

intensities, λm(t), have the form

λm(t) = cmgm

{
XR[m](t−)

}
,(2.6)

where cm > 0 is a deterministic (“rate”) constant, and gm{·} ≥ 0 is a continuous
function depending only on the levels of the reactants R[m].

2.3. SKM subprocesses—histories and intensities. For any subset of molec-
ular species A ⊆ V , let the vector process {XA(t)} := {Xi(t); i ∈ A} denote the
corresponding subprocess of X. We identify XA with its MVCP, analogously to
the treatment of X = XV above. For A ⊆ V , consider the subset of reactions
�(A) ⊆ M that change (the level of) A, that is, �(A) := {m ∈ M :SA

m �= 0}, where
SA

m is the subvector of Sm corresponding to the elements of A. One can identify XA

with the MPP, {T A
s ,ZA

s }, where each jump time T A
s corresponds to the occurrence

of some reaction in �(A); the mark ZA
s gives the resultant jumps in the elements

of A and takes its value in the mark space EA := {SA
m|m ∈ �(A)}. This results in

the following definition of an SKM subprocess.

DEFINITION 2.2. Let [N,S,P] be an SKM and for A ⊂ V , let �(A) be the
nonempty, finite subset {m ∈ M :SA

m �= 0}. Denote by M(�(A)) the partition of
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�(A) obtained by grouping reactions that change A identically, that is by applying
to �(A) the equivalence relation

m ∼A m′ ⇔ SA
m = SA

m′ .

Denote the eth element of M(�(A)) by Me(�(A)), e = 1, . . . , |M(�(A))|. The
subprocess of the SKM, NA(t), is the |M(�(A))|-variate counting process given
by

NA(t) :=
{ ∑

m∈Me(�(A))

Nm(t)

}
e=1,...,|M(�(A))|

.(2.7)

The internal history of NA(t) is denoted F A
t .

Note that since M(�(A)) is a partition of �(A), the components of NA(t)

have no jumps in common. Each element of the MVCP NA(t) thus counts the
number of times reactions in �(A) have occurred that result in a given change
in A. Intuitively, putting these elements together for all possible types of change
in A to form a sample path of NA(t) captures exactly the “information” given
by the corresponding sample path of XA(t). Indeed, there is a bijection between
the sample paths of NA(t) and those of XA(t). The following technical lemma
establishes that the internal history of the MVCP NA(t) is identical to that of
XA(t).

LEMMA 2.1. For A ⊆ V , let NA(t) be a subprocess of an SKM as in Defini-
tion 2.2 and let F XA

t := σ(XA(s); s ≤ t) be the internal history of the jump process
XA(t). Then F A

t = F XA

t ∀t ≥ 0. Furthermore, if [A,B,D] is a partition of V then
F N

t = F A
t ∨ F B

t ∨ F D
t = F X

t , ∀t ≥ 0.

PROOF. A proof that F A
t = F XA

t is given in Appendix B. For F N
t = F X

t , take

A = V . Finally, F X
t = F XA

t ∨ F XB

t ∨ F XD

t since X(t) = [XA(t)′,XB(t)′, XD(t)′]′.
�

One advantage of a counting process definition of the subprocess for the species
in A ⊂ V is that one may speak of the F N

t -intensity for the subprocess and interpret
this in the usual manner as determining the local or instantaneous dependence of
the subprocess on the full internal history of the SKM, F N

t .

PROPOSITION 2.2. For A ⊆ V , let NA(t) be a subprocess of an SKM as in
Definition 2.2. The F N

t -conditional intensity under P is given by

λA(t) :=
{ ∑

m∈Me(�(A))

λm(t)

}
e=1,...,|M(�(A))|

.(2.8)
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PROOF. Immediate from (2.7) on noting that the intensities of the superposi-
tions of the counting processes are the sums of the corresponding intensities. �

Notice that each element of the intensity, λA
e (t), is the sum of the intensities (or

stochastic rates) of all those reactions that result in the corresponding change in A.
It follows from the equations in (2.5) that, for any A ⊆ V , the probability

conditional on F N
t that, during (t, t + h], there is no change in XA is equal

to 1 − h
∑|M(�(A))|

e=1 λA
e (t) + o(h). Similarly, the probability conditional on F N

t

that, during (t, t + h], there is exactly one jump in XA equal to SA
m , for some

m ∈ Me(�(A)), and also that no other reaction m′ ∈ M occurs is equal to
hλA

e (t) + o(h) for e = 1, . . . , |M(�(A))|. Summing over all of the foregoing,
mutually exclusive events shows that these have conditional probability equal to
1 + o(h). Thus, in this infinitesimal sense, the F N

t -intensity λA(t) may be inter-
preted as determining the local dependence of NA(t) on F N

t .

3. Kinetic independence graphs. The identification of subprocesses of the
SKM with their corresponding MVCPs (see Section 2.3) greatly facilitates the con-
struction of a kinetic independence graph encoding the local independence struc-
ture of the SKM—see Definition 3.1 below. The use of the local independence con-
cept in constructing graphical models for continuous time processes owes much
to Didelez [5, 6]. However, SKMs require new methods since interest is in dy-
namic independences between groups of species rather than the reaction counting
processes [Nm(t)]m∈M per se. Thus, the vertex set of the graph will be V rather
than M.

It is worth noting that existing graphical models for continuous-time Markov
chains [5, 22] are not applicable to SKMs because the Markov process X(t) nei-
ther has finite state space, nor is it composable for most SKMs of interest. Roughly
speaking, composability [5] implies that any change of state in X(t) can be repre-
sented as a change in only one of several components. Consider the use of XA(t)

and XV\A(t) as components [since if X(t) is composable with more than 2 sub-
sets of species as components, it must be composable with just 2 components]—
either the paths of XA(t) and XV\A(t) have common jump times contradicting that
X(t) is composable, or they constitute 2 separate SKMs which then require a new
method for their individual analysis.

The kinetic independence graph of an SKM is defined as follows.

DEFINITION 3.1. The directed graph G with vertex set V is the kinetic inde-
pendence graph (KIG) of the SKM [N,S,P] if and only if

pa(k) = R[�(k)] \ {k} ∀k ∈ V,(3.1)

where pa(k) = {i ∈ V|i → k} is the set of parents of vertex k, and R[�(k)] :=⋃
m∈�(k) R[m] is the set of reactants of all reactions that change species k.
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Since only partial information about the SKM is required for construction of the
KIG, the necessary information is currently available for many biochemical reac-
tion networks. For each m ∈ M, it is required to know the reactants R[m], and the
species (reactants and products) changed by the reaction, that is, {i ∈ V|Sim �= 0}.
Full knowledge of the stoichiometric matrix S is neither necessary nor sufficient
for construction of the KIG. Note that the possible presence of a catalyst among
the reactants R[m] implies that R[m] cannot be reliably reconstructed from S. No
knowledge of the rate parameters cm is required for construction of the KIG, which
is important since their measurement is difficult experimentally.

A comment will be useful at this juncture on the treatment of measurability
considerations in the paper. While the treatment is fully rigorous, it is appreciated
that some readers will be more concerned with application of the paper’s results.
Proofs requiring a measure-theoretic approach have therefore been placed in Ap-
pendices A and B. Note that a statement such as the one that λm(t) is (as it must be)
measurable F R[m]

t implies that the realized value of the r.v. λm(t) may be “com-
puted” from the sample path of the subprocess for R[m] over the interval [0, t].

The motivation for Definition 3.1 of the KIG of an SKM is that the local evo-
lution of species k depends only on the stochastic rate of reactions that change
the number of molecules (the level) of k, which in turn depend only on the lev-
els of their reactants. To make this exact, the concept of local independence [6] is
needed. Let A,B ⊂ V . We will say that NB is locally independent of NA (given
N V\A) if and only if the F N

t -intensity, λB(t), is measurable F V\A
t for all t—that

is, the internal history of XA
t is irrelevant for the F N

t -intensity of the species in B .
Only intensities of subprocesses conditional on the history of the whole system,
F N

t , are considered here (as opposed to Gt -intensities where Gt ⊂ F N
t ).

As a consequence of Definition 3.1, one can read off from the KIG, for any
collection of vertices B , those subprocesses with respect to which NB is locally
independent, that is, which are irrelevant for the instantaneous evolution of B .
Denote the closure of B by cl(B) := pa(B) ∪ B .

PROPOSITION 3.1. Let G be the KIG of the SKM [N,S,P] and let A,B ⊂ V .
Then the F N

t -intensity λB(t) is measurable F cl(B)
t for all t , that is, NB is locally

independent of N V\cl(B) (given Ncl(B)). Suppose that A ∩ cl(B) = ∅. Then λB(t)

is measurable F V \A
t .

PROOF. By (2.8), each intensity λB
e (t) is measurable F R[�(B)]

t because

λm(t) = cmgm{XR[m](t−)} is measurable F XR[�(B)]
t = F R[�(B)]

t ∀m ∈ �(B), re-
calling that R[�(B)] = ⋃

m∈�(B) R[m]. Since pa(B) = {⋃k∈B pa(k)} \ {B} =
{⋃k∈B R[�(k)]} \ {B} = {R[�(B)]} \ {B}, it follows that R[�(B)] ⊆ cl(B), and
hence F R[�(B)]

t ⊆ F cl(B)
t by Lemma 2.1. Thus, each intensity λB

e (t) is measurable
F cl(B)

t , and the remainder of the proposition follows immediately. �
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Proposition 3.1 accords with chemical intuition. Given the internal history of
Xcl(B) at time t , the levels of the species R[�(B)] just prior to t are “known.”
These are exactly the species levels that determine the local dynamics of B since,
as reactants, they determine the rate of all reactions that change the concentra-
tions of B . Therefore, any further information about species histories, including
the internal history of N V\cl(B), is irrelevant for the local dynamics of B .

Notice that loops, that is edges of the type k → k are by definition not included
in the KIG, even though k may well be in R[�(k)]. For this reason, one can-
not assert in Proposition 3.1 that λB(t) is measurable F pa(B)

t , but rather that it
is measurable F cl(B)

t . More generally, a particular SKM may imply further local
independences of λB(t) than those encoded by the KIG—for example, due to a
deterministic relationship between two subsets of species arising from a chemical
conservation relation—but this level of knowledge about the SKM is not assumed
in constructing the KIG.

Graphical separations in the undirected version of the KIG, written G∼, are cen-
tral in what follows. Diagrammatically, G∼ is the undirected graph obtained from
G by substituting lines for arrows. Let A,B,D ⊂ V . The notation A ⊥G∼ B|D
stands for the graphical separation of A from B by D, that is, the property that
every sequence of edges (or path) in G∼ that begins with some a ∈ A and (with-
out any repetition of vertices) ends with some b ∈ B , includes a vertex in D. With
[A,B,D] a partition of V , such a separation in G∼ is equivalent to the nonex-
istence of (a ∈ A,b ∈ B) such that there is an edge a → b or an edge b → a

in G. This graphical separation implies the following mutual local independence
property.

PROPOSITION 3.2. Let G be the KIG of an SKM [N,S,P], and let [A,B,D]
be a partition of V . If A ⊥G∼ B|D, then NB is locally independent of NA (given
NB∪D) and NA is locally independent of NB (given NA∪D) or, equivalently, λB(t)

is measurable F B∪D
t and λA(t) is measurable F A∪D

t .

PROOF. A ⊥G∼ B|D, if and only if B ∩ cl(A) = A ∩ cl(B) = ∅. The result
then follows directly from Proposition 3.1. �

Note that it follows from the definition of the KIG that the graphical separa-
tion in Proposition 3.2 is equivalent to the chemical property A ∩ R[�(B)] =
B ∩ R[�(A)] = ∅. That is, A does not participate as a reactant in any reaction
that changes B , and vice versa. Therefore, for example, R[�(B)] ⊆ B ∪ D—
hence, given the levels of B and D (which fully determine the rate of reactions
that change B), the levels of A are irrelevant for the instantaneous evolution of B ,
and vice versa. Section 4 will establish that under weak regularity conditions on
the SKM, the separation A ⊥G∼ B|D in G∼ implies not only mutual local inde-
pendence but also global conditional independence of the internal histories of A

and B given a history of D.
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FIG. 1. Kinetic independence graph of the SKM in Example 2.1.

As an illustration of the concepts discussed so far, consider again the SKM of
Example 2.1. The corresponding KIG is shown in Figure 1. Note the presence of
cycles in the KIG, including g → R → P → P2 → g which might be termed the
“negative feedback cycle.” Clearly, {P,R} ⊥G∼ {gP2}|{g,P2}. Let D := {g,P2}.
Notice that, according to Definition 2.2, SKM subprocesses are given by NgP2 =
[Nb,Nub]′ and ND = [Nd,Nrd,Nb,Nub]′. Hence, F gP2

t ⊂ F D
t , and the global

independence F P,R
t ⊥⊥ F gP2

t |F D
t holds immediately in this case.

Anticipating the problem of how to modularize SKMs to be tackled in Sec-
tion 5, a modularization suggested for the SKM of Example 2.1 by its dynamic
independence properties is the modularization [{P,R,g,P2}, {gP2, g,P2}]. The
2 module “residuals” are given by {P,R} and {gP2}. Each module residual is lo-
cally independent of the other given that module’s internal history. Furthermore,
the 2 modules are conditionally independent given the history of their intersection,
F g,P2

t . In fact, these 2 modules correspond to the maximal prime subgraphs of G∼

for this example (see Definition 5.2). The graphical methods for identifying SKM
modularizations in Section 5 are, broadly speaking, also based around the maximal
prime decomposition of the undirected KIG.

4. Global dynamic independence. This section will present the theorems es-
tablishing that for a partition [A,B,D] of V , the separation of A from B by D

in the undirected version of the KIG implies the global dynamic independence
F A

t ⊥⊥ F B
t |F D∗

t for all t ≥ 0, under the probability measure of the SKM, P.
The history of XD given by F D∗

t is defined formally below. Heuristically,
F D∗

t includes at time t the internal history of the jump process for the species
in D (F D

t ⊆ F D∗
t ), and also for every jump time of XD always contains the “in-

formation” whether some species in A jumped, or some species in B jumped, or
some species in both A and B jumped, but not (necessarily) the particular species
involved. The main proofs of the theorems are quite involved and are given in Ap-
pendix A. Readers less concerned with technical details will find an outline of the
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argument and intuitions for important aspects of the proofs in this section of the
paper. It is worth defining here explicitly what is meant by the conditional inde-
pendence of σ -fields [4, 7].

DEFINITION 4.1. Let (�, F ,P) be an arbitrary probability space and suppose
we have 3 sub-σ -fields F 1, F 2, F 3 ⊆ F . We say that F 1 and F 2are independent
conditionally on F 3 and write F 1 ⊥⊥ F 2|F 3;P if and only if

E[Z1|F 2 ∨ F 3] = E[Z1|F 3]
for all nonnegative random variables Z1 that are measurable F 1. The notation F 2 ∨
F 3 stands for the smallest σ -field containing both F 2 and F 3. The relationship is
symmetric, that is, F 1 ⊥⊥ F 2|F 3;P ⇔ F 2 ⊥⊥ F 1|F 3;P.

Thus, the global dynamic independence statement F A
t ⊥⊥ F B

t |F D∗
t can be un-

derstood as follows: the expectation of (suitably measurable) mappings from sam-
ple paths of NA (resp., NB ) over (0, t] to R, conditional on the history F D∗

t , are
unchanged when the conditioning σ -field also includes the internal history of NB

(resp., NA). Roughly speaking, and over any time interval (0, t], all “information”
about the dynamic evolution of B is irrelevant for the dynamic evolution of A,
given the “information” in F D∗

t (and vice versa).
First, an outline of the logic of the argument of this section is presented, before

going on to state the main theorems.

4.1. Preliminaries and outline of argument. The following lemma is central
to the method used. Although closely related to a result in [7], I am not aware of
its statement and proof elsewhere.

LEMMA 4.1. Let P, P̃ be probability measures on an arbitrary measurable
space, (�, F ), such that P � P̃. Consider any 3 sub-σ -fields F 1, F 2, F 3 ⊆ F sat-
isfying the conditional independence F 1 ⊥⊥ F 2|F 3; P̃ under the dominating mea-
sure P̃. Denote by L123 a Radon–Nikodym derivative, (dPt /dP̃t )|F 1∨F 2∨F 3 .

Then the following condition implies that the conditional independence F 1 ⊥⊥
F 2|F 3 holds also under P:

L123 = ψ13ψ23,

where ψi3 is a nonnegative, F i ∨ F 3-measurable random variable for i ∈ {1,2}.
Proof of Lemma 4.1 is given in Appendix B.
Since F D∗

t is a history of ND (i.e., F D
t ⊆ F D∗

t ), it follows from Lemma 2.1
that F A

t ∨ F B
t ∨ F D∗

t = F X
t = F N

t . A likelihood process Lt := (dPt /dP̃t )|F N
t

is

thus required in order to apply Lemma 4.1 to the 3 σ -fields F A
t , F B

t , F D∗
t . Given

its importance here, we restate for an SKM the following likelihood result from
the counting process literature (see, e.g., [16], Theorem 4.1, page 74). The proof
is omitted since it is well known.
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LEMMA 4.2. Let [N,S,P] be an SKM as in Definition 2.1, and let [N, P̃] be
the M-variate Poisson process with intensities 1M = (1, . . . ,1)′. Then, for every
t ≥ 0, Pt � P̃t and a Radon–Nikodym derivative is given by

dPt

dP̃t

∣∣∣∣
F N

t

=
M∏

m=1

{ ∏
T m

s ≤t

λm(XT m
s −)

}
exp

{
t −

∫ t

0
λm(Xu−) du

}
.(4.1)

Note that the counting processes [Nm;m = 1, . . . ,M] are independent under P̃
(see, e.g., [17], Proposition 4.7.2), and hence the σ -fields [F m

t ;m = 1, . . . ,M] are
independent under P̃ and P̃t for all t ≥ 0.

Of considerable importance here will be the fact that, under the dominat-
ing measure P̃, the counting processes [Nm;m = 1, . . . ,M] are independent. Of
course, two or more of the subprocesses [NA,NB,ND] may have jump times
in common as the result of reactions that simultaneously change several of the
species sets [A,B,D]. However, denoting by �DD the reactions that change
D alone, the reaction set M can be partitioned as [�(A),�(B) \ �(A),�DD].
The independence of the reaction counting processes then implies that F �(A)

t ⊥⊥
F �(B)\�(A)

t |F �DD
t ; P̃t , which is a point of departure for proving Theorem 4.4 be-

low.
To apply Lemma 4.1, we first establish that if A ⊥G∼ B|D, then F A

t ⊥⊥ F B
t |F D∗

t

under the dominating measure P̃ (see Theorem 4.4). We then show that the fac-
torisation Lt = ψAD∗,tψBD∗,t holds with, for example, ψAD∗,t an F A

t ∨ F D∗
t -

measurable r.v. (see Theorem 4.5). We are thus able to conclude that if A ⊥G∼

B|D, then the SKM must satisfy F A
t ⊥⊥ F B

t |F D∗
t ;P (see Corollary 4.6).

Definition of the filtration {F D∗
t } is needed. This is best understood as the inter-

nal history of a particular MVCP, ND∗
(t), defined now below.

DEFINITION 4.2. Let [A,B,D] be a partition of V , the species set of an
SKM. Define �DA := {�(D) ∩ �(A)} \ �(B), the set of reactions that change
D and A, but not B . Similarly, define �DAB := �(D) ∩ �(A) ∩ �(B), �DB :=
{�(D) ∩ �(B)} \ �(A), and those that change D alone by �DD := �(D) \
{�(A) ∪ �(B)}. Then [�DA,�DAB,�DB,�DD] is a partition of �(D), the
reactions that change D.

The MVCP ND∗
(t) is constructed by taking each element, �D•, of this parti-

tion in turn and summing over counting processes for reactions in �D• alone that
result in identical changes to D—that is, by applying to each �D• the equivalence
relation

m ∼ m′ ⇔ SD
m = SD

m′, m,m′ ∈ �D•.
The resultant MVCP, denoted ND• (t), is given by

ND• (t) :=
{ ∑

m∈Me(�D•)
Nm(t)

}
e=1,...,|M(�D•)|

,
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which differs from the SKM subprocess ND(t) of Definition 2.2 in that the parti-
tion M(�D•) is used in place of M(�(D)). Then define

ND∗
(t) := [ND

A (t),ND
AB(t),ND

B (t),ND
D (t)].

Here �D• is empty, the relevant component of ND∗
(t) is set equal to zero ∀t ≥ 0.

The corresponding internal histories of ND• (t) are written {F D
A (t), F D

AB(t), F D
B (t),

F D
D (t)}.

Thus, as stated previously, at time t F D∗
t includes the internal history of the

jump process for the species in D, F D
t , and also for every jump time of XD always

contains the “information” whether some species in A jumped, or some species in
B jumped, or some species in both A and B jumped, but not (necessarily) the
particular species involved. An alternative formulation of F D∗

t would be as the
internal history at t of the marked point process {T D

s , Z̃D
s }, where the marks Z̃D

s

give not only the value of the jump in D but also an indicator of which element,
�D•, the reaction causing the jump in D belongs to.

In some applications, it may be more convenient or practical to use only internal
histories. Section 4.3 will thus provide a rigorous and intuitive means of comparing
ND∗

(t) and ND(t)—through comparison of the corresponding partitions of the
reactions in �(D)—and state a property that is easily checked for a given SKM
under which F D∗

t = F D
t .

The following conditions on the SKM are used in the statement of the results of
this section. Both Theorems 4.4 and 4.5 assume that the SKM is standard, which
imposes the following very weak regularity conditions.

DEFINITION 4.3. An SKM [N,S,P] is a standard SKM if it satisfies all of
the following: (i) every reaction changes at least 1 species, that is, Sm �= 0 ∀m ∈
{1, . . . ,M}; (ii) every species in V is changed by at least one reaction, that is, the
row Sk• �= 0 ∀k ∈ V; (iii) if a zeroth order reaction m̃ is included (i.e., R[m̃] = ∅)
then it has only 1 product; (iv) for all m, if |R[m]| = 1 then |R∗[m]| = 1 and if
|R[m]| > 1 then |{R[m]} \ {R∗[m]}| ≤ 1, where R∗[m] = {i ∈ R[m]|Sim �= 0} are
the reactants changed by m.

The first condition of Definition 4.3 is obvious. The second does not preclude
an effect of the concentration of species that are constant over time (via the func-
tions gm or the constants cm). The third is just a convention. The fourth ensures
that if R[m] �= ∅ then the reaction has at least 1 reactant that is changed and at
most 1 reactant that is not changed. It allows for the inclusion of a reaction with
an unchanged reactant where this simplifies the SKM, for example, where that re-
actant acts as a catalyst [although the reaction could be broken down into several
reactions not requiring condition (iv) if desired].
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Theorems 4.4 and 4.5 also require that the following condition holds for 	 =
�(A) ∩ �(B). If �(A) ∩ �(B) = ∅, as sometimes happens, then the condition is
trivial and always satisfied.

CONDITION 4.3. Let [N,S,P] be a standard SKM. A subset of reactions 	,
∅ ⊆ 	 ⊆ M, is said to be identified by consumption of reactants if and only if:

(i) For all m ∈ 	, Sim ≤ 0 ∀i ∈ R[m] (hence, Skm < 0 for some k ∈ R[m] pro-
vided that R[m] �= ∅), and Sim ≥ 0 ∀i ∈ P [m]; and (ii) �m,m̃ ∈ 	 (m �= m̃) such
that S−

m = S−
m̃

, where S−
m denotes the vector formed by setting all positive elements

of Sm to zero.

REMARK 4.1. Condition 4.3 implies that no 2 reactions in 	 change reactants
identically, hence the reactions in 	 are identified uniquely by their consumption
of reactants. Condition 4.3 will be satisfied with 	 = M by most SKMs of interest,
possibly after explicit inclusion of enzymes in reaction mechanisms. Although au-
tocatalytic reactions such as Xj +Xk →m 2Xk and its reverse violate condition (i),
these could be accommodated by instead including a more detailed mechanism, for
example, Xj + Xk →m1 XjXk and XjXk →m2 2Xk .

An alternative approach would be to work with G∼
f , the graph obtained from the

undirected version of the KIG by adding an edge j ∼ k whenever [Sjm > 0 and
Skm > 0 for some m ∈ M] and j � k in G∼. The graph G∼

f might be termed the
fraternized (as distinct from moralized) version of the KIG. The separation A ⊥G∼

f

B|D implies that �(A) ∩ �(B) = ∅ [since A ⊥G∼ B|D and hence R[m] ⊆ D

for any m ∈ �(A) ∩ �(B)]. Therefore, if A ⊥G∼ B|D is replaced by A ⊥G∼

f

B|D, Condition 4.3 for 	 = �(A) ∩ �(B) can be dropped from the statements
of Theorems 4.4 and 4.5, and from that of Corollary 4.6.

4.2. Global independence theorems. We are now in a position to state the
main results of Section 4 of the paper. Theorem 4.4 is concerned with global
dynamic independence under P̃, the law of the M-variate Poisson process (see
Lemma 4.2).

THEOREM 4.4. Let G be the KIG of a standard SKM, [N,S,P], and let
[A,B,D] be a partition of V . Suppose also that Condition 4.3 holds for 	 =
�(A) ∩ �(B) (where 	 is possibly empty, in which case the condition is trivial).
Then A ⊥G∼ B|D implies that F A

t ⊥⊥ F B
t |F D∗

t ; P̃t , where {F D∗
t } is the natural

filtration of ND∗
(t), ND∗

(t) is given by Definition 4.2, and P̃ is the law of the
M-variate Poisson process in Lemma 4.2.

We provide here a somewhat heuristic discussion of this result, a rigorous treat-
ment being given in Appendix A.1. The argument can be broken down into four
steps.
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First, the reaction counting processes [Nm;m = 1, . . . ,M] are independent un-
der P̃. Therefore,

F �(A)
t ⊥⊥ F �(B)\�(A)

t |F �DD
t ; P̃t ,(4.2)

since [�(A),�(B) \ �(A),�DD] is a partition of the reaction set M. Equation
(4.2) holds because the three MVCPs associated with each element of the partition
are (unconditionally) independent.

Second, consider again Definition 4.2 for ND∗
(t) = [{ND

A (t),ND
AB(t)},

{ND
B (t)}, {ND

D (t)}]. The internal history of the first component MVCP in curly
parentheses must be contained in the internal history of N�(A)(t). [All the reac-
tions involved in that component change A and hence the sample path of N�(A)(t)

implies that of the first component.] Similarly, the internal history of the sec-
ond component of ND∗

(t) in curly parentheses must be contained in that of
N�(B)\�(A)(t). The internal history of the third component is equal to F �DD

t .
Combining the internal histories of these 3 components making up ND∗

(t) must
give F D∗

t . Therefore, the internal histories of the first 2 components can be used
to expand the conditioning information in (4.2) to give

F �(A)
t ⊥⊥ F �(B)\�(A)

t |F D∗
t ; P̃t .(4.3)

Third, establishing the property F �(A)
t ⊥⊥ F �(B)

t |F D∗
t ; P̃t implies the global

dynamic independence in Theorem 4.4 since the internal history of the subprocess
for A must be contained in that of N�(A) [since the sample path of N�(A)(t)

obviously implies that of NA(t)], and similarly for B . This property in turn follows
by showing that the internal history of N�(A)∩�(B)(t) is contained in F D∗

t . The
second σ -field in (4.3) can then be expanded to include F �(A)∩�(B)

t . Combining
the internal histories F �(A)∩�(B)

t and F �(B)\�(A)
t in this way gives F �(B)

t .
Finally, F �(A)∩�(B)

t ⊆ F D∗
t is a direct consequence of the fact that �DAB =

�(A) ∩ �(B)—that is, all reactions that change A and B also change D—and
that the reactions in �DAB change D uniquely (among themselves). These prop-
erties of �DAB depend crucially on the graphical separation A ⊥G∼ B|D and also
on Condition 4.3 holding for �DAB (under the conditions of Theorem 4.4). The
separation ensures that for any m ∈ �(A) ∩ �(B), the reactants of m are all in D

(otherwise, we would have either A → B or B → A in the KIG) and hence also
m ∈ �(D). Condition 4.3 ensures that the members of �DAB are identified by
consumption of reactants, hence the reactions in �DAB must change D uniquely
(among themselves) and F �(A)∩�(B)

t = F D
AB(t). Therefore, F �(A)∩�(B)

t ⊆ F D∗
t ,

since ND
AB(t) is a component of ND∗

(t).
We now turn to consider global dynamic independence under P, the law of the

SKM.
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THEOREM 4.5. Let G be the KIG of a standard SKM, [N,S,P], and let
[A,B,D] be a partition of V . Suppose also that Condition 4.3 holds for 	 =
�(A) ∩ �(B) (where 	 is possibly empty, in which case the condition is trivial).
Then A ⊥G∼ B|D implies that

Lt := (dPt /dP̃t )|F N
t

= ψAD∗,t · ψBD∗,t , t ≥ 0,

where ψiD∗,t is a nonnegative, F i
t ∨ F D∗

t -measurable random variable for i ∈
{A,B}, and {F D∗

t } is the natural filtration of ND∗
(t).

Taking the logarithm of the likelihood in (4.1) yields

log Lt = ∑
m∈M

[
t −

∫ t

0
λm(u)du + ∑

s≥1

1(T m
s ≤ t) log(λm(T m

s ))

]
(4.4)

:= ∑
m∈M

lm(t).

Theorem 4.5 may be established by showing that, ∀m ∈ M, lm(t) is measurable
either F AD∗

t := F A
t ∨ F D∗

t or F BD∗
t := F B

t ∨ F D∗
t . We explain here how lm(t) may

be computed (∀m ∈ M) using either just the sample paths of NA(u) and ND∗
(u),

or just the sample paths of NB(u) and ND∗
(u). It is clear from (4.4) that lm(t)

may be computed when λm(u) may be computed for all u ∈ (0, t] and the sample
path of the counting process for that reaction, Nm(u), may be computed over the
same time interval (so that the jump times {T m

s ≤ t} are known). There are two
main elements involved in the argument.

First, the graphical separation A ⊥G∼ B|D again has an important implication
for reactants: for any reaction m, either R[m] ⊆ A ∪ D or R[m] ⊆ B ∪ D. Recall-
ing (2.6), only the sample path of the subprocess for the reactants R[m] is needed
to compute λm(u), hence the sample paths of the subprocesses for either [A,D]
or [B,D] suffice, according to whether R[m] ⊆ A ∪ D or R[m] ⊆ B ∪ D. [The
sample path of D can clearly be computed from that of ND∗

(u).]
Second, the sample path (Nm(u);u ≤ t) may be computed using just the sample

paths of [NA,ND∗] or [NB,ND∗], again according to whether R[m] ⊆ A ∪ D or
R[m] ⊆ B ∪ D. To see this, consider each group of reactions in the partition of M
given by [�DD,�DAB,�(A) \ �(B),�(B) \ �(A)], beginning with m ∈ �DD .
By definition the path of ND∗

(u), specifically of its subcomponent ND
D (u), allows

identification of the jump times corresponding to all reactions in �DD that change
D identically to m. But since such reactions in �DD change D alone, they must
do so uniquely (among reactions in �DD) since no 2 columns of S are equal
(Definition 2.1). Therefore, the path of ND∗

(u) suffices in this case to compute
(Nm(u);u ≤ t).

The argument for other groups in the partition is similar. For m ∈ �DAB , it
has already been noted that the reactions in �DAB change D uniquely (among
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themselves). The argument for the last 2 groups is essentially the same. The third
group is further partitioned as [�DA,�∗(A)], where �∗(A) are the reactions that
change A alone. Consider m ∈ �DA—again, by definition, the path of ND∗

(u)

[specifically, of ND
A (u)] allows identification of the jump times corresponding to

the subset of reactions in �DA that change D identically to m. This subset may
now contain more than 1 reaction, but inspection of the value of the jumps in the
sample path of the subprocess for [A ∪ D] corresponding to the jump times so
identified allows one to “isolate” just those caused by reaction m (since, again,
reactions in �DA change A ∪ D uniquely among themselves). The argument for
m ∈ �∗(A) is similar, after noting that the jump times of all reactions in �∗(A)

can be identified by eliminating all those of ND
A and of ND

AB .
The preceding two theorems allow the use of Lemma 4.1 to obtain the following

corollary, which summarizes the main results of Section 4.

COROLLARY 4.6. Let G be the KIG of a standard SKM, [N,S,P], and
let [A,B,D] be a partition of V . Suppose also that Condition 4.3 holds for
	 = �(A) ∩ �(B) (where 	 is possibly empty). Then the separation A ⊥G∼ B|D
in the undirected KIG implies that the global conditional independence F A

t ⊥⊥
F B

t |F D∗
t ;Pt holds ∀t ≥ 0, where {F D∗

t } is the natural filtration of ND∗
(t).

PROOF. Apply Lemma 4.1 to the 3 σ -fields F A
t , F B

t , F D∗
t ⊆ F N

t , recall-
ing from Lemma 4.2 that Pt � P̃t . Since A ⊥G∼ B|D, Theorem 4.4 im-
plies that F A

t ⊥⊥ F B
t |F D∗

t ; P̃t . Now F A
t ∨ F B

t ∨ F D∗
t = F N

t , whence (dPt /

dP̃t )|F A
t ∨F B

t ∨F D∗
t

= Lt , which is given by (4.1). Again since A ⊥G∼ B|D, The-
orem 4.5 implies that Lt = ψAD∗,t · ψBD∗,t , where ψiD∗,t is a nonnegative,
F i

t ∨ F D∗
t -measurable random variable for i ∈ {A,B}. Lemma 4.1 then implies

that F A
t ⊥⊥ F B

t |F D∗
t ;Pt , as required. �

Under the conditions of Corollary 4.6, the separation A ⊥G∼ B|D does not
imply in general that F A

t ⊥⊥ F B
t |F D

t ;Pt , where the conditioning is now on F D
t

rather than F D∗
t . Similarly, the separation in the moral graph, A ⊥Gm B|D, does

not imply that F A
t ⊥⊥ F B

t |F D
t ;Pt . The following theorem and proof establishes

both points. The procedure for constructing Gm is the usual one—edges are in-
serted in the KIG whenever 2 parent nodes of a common child are “unmarried”
(i.e., have no edge between them) and then the undirected version of the resulting
graph is formed.

THEOREM 4.7. Let G be the KIG of a standard SKM, [N,S,P], and let
[A,B,D] be a partition of V . Suppose also that Condition 4.3 holds for 	 =
�(A)∩�(B) and A ⊥G∼ B|D. Then it is possible that neither F A

t ⊥⊥ F B
t |F D

t ; P̃t

nor F A
t ⊥⊥ F B

t |F D
t ;Pt holds, where {F D

t } is as usual the internal history of the
subprocess ND(t).
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PROOF. The proof is by example. Consider the standard SKM with V =
{A,B,D} and reactions

A →f D, D →r A, D →irr B,

which has the KIG, G = A ←→ D → B . Note that G∼ = Gm. Clearly, 	 = ∅ and
A ⊥G∼ B|D. Note also that NA(t) = [Nf (t),Nr(t)]′, ND(t) = [Nf (t),Nr(t) +
Nirr(t)]′ and XB(t) − XB(0) = Nirr(t). It suffices to show that, under both P̃t

and Pt , E[XB(t) − XB(0)|F D
t ] is not a version of E[XB(t) − XB(0)|F A

t ∨ F D
t ].

First, show that F A
t ∨ F D

t = F N
t . Clearly, F A

t ∨ F D
t ⊆ F N

t , and since Nirr(s) =
[Nr(s) + Nirr(s)] − Nr(s), Nirr(s) is measurable F A

t ∨ F D
t , hence F N

t ⊆ F A
t ∨

F D
t . It follows that, under both P̃t and Pt , E[XB(t) − XB(0)|F A

t ∨ F D
t ] = Nirr(t)

since Nirr(t) is measurable F A
t ∨ F D

t . However, Nirr(t) is clearly not measurable
F D

t and so cannot be a version of E[XB(t) − XB(0)|F D
t ] under either probability

measure. In fact, it is possible to show that under P̃t , E[XB(t) − XB(0)|F D
t ] =

1
2 [Nr(t) + Nirr(t)]. �

4.3. Histories of the separator, D. It is of interest in applications to under-
stand, for a given partition [A,B,D] of V , how the histories {F D∗

t } and {F D
t }

differ. A comparison of ND∗
(t) and ND(t) is equivalent to a comparison of the

corresponding partitions of the reactions �(D).

PROPOSITION 4.8. The partition given by M∗(�(D)) := {M(�DA) ∪
M(�DAB) ∪ M(�DB) ∪ M(�DD)} is a refinement of the partition M(�(D)),
so that every element of M(�(D)) is a union of elements of M∗(�(D))

(see Definition 2.2 for the partition notation used). Hence, F D∗
t ⊇ F D

t and
F A

t ∨ F B
t ∨ F D∗

t = F N
t ∀t .

PROOF. Take an element of M(�(D)), Me(�(D)) say. Let m ∈ Me(�(D))

and denote the element of M∗(�(D)) to which m belongs as M∗
m(�(D)). Now

M∗
m(�(D)) ⊆ Me(�(D)) since all elements of M∗

m(�(D)) change D equiv-
alently (resulting in the same change to D as m does). Thus, Me(�(D)) =⋃

m∈Me(�(D)) M∗
m(�(D)), which establishes the first claim. It then follows from

Definition 2.2 that F D∗
t ⊇ F D

t since elements of ND(t) are obtained by summing
(where necessary) the appropriate elements of ND∗

(t). Lemma 2.1 established that
F A

t ∨ F B
t ∨ F D

t = F N
t . But F D

t ⊆ F D∗
t then implies F N

t ⊆ F A
t ∨ F B

t ∨ F D∗
t ⊆

F N
t . �

In computational work with SKMs, establishing if the partitions M∗(�(D))

and M(�(D)) are identical provides a straightforward means of checking whether
the processes ND∗

(t) and ND(t) are identical. The two partitions are iden-
tical if and only if there do not exist two reactions in different elements of
[�DA,�DAB,�DB,�DD] that result in the same change in D—that is, there



STOCHASTIC KINETIC MODELS 2263

do not exist 2 reactions in �(D) that change D identically but do not have the
same membership of both of the sets [�(A),�(B)].

PROPOSITION 4.9. Let [A,B,D] be a partition of V , the species set of an
SKM. Then ND∗

(t) = ND(t) ∀t,∀ω ∈ �, if and only if the following condition
holds: for any 2 reactions m,m̃ ∈ �(D) with SD

m = SD
m̃

, the reaction m has the
same membership of the two sets [�(A),�(B)] as does the reaction m̃.

Under this condition, {F D∗
t } = {F D

t }.
PROOF. If the condition holds both m and m̃ are members of an equivalence

class of some �D• Hence, any 2 members of an equivalence class of �(D)—
that is, of an element of M(�(D))—are also both members of an element of
M∗(�(D)). Therefore, by Proposition 4.8, M(�(D)) = M∗(�(D)), whence
ND∗

(t) = ND(t) ∀t,∀ω.
Conversely, suppose ND∗

(t) = ND(t) ∀t,∀ω. Then the vectors ND∗
(t) =

ND(t) have the same dimension and so M∗(�(D)) cannot be a strict refine-
ment of M(�(D)). Hence, by Proposition 4.8, M(�(D)) = M∗(�(D)). Sup-
pose the reactions (m, m̃) differ in their membership of the two sets �(A),�(B).
Then (m, m̃) are in different elements of M∗(�(D)) but the same element of

M(�(D)), which is a contradiction. �

In applications where it is more convenient or practical to include only internal
histories, checking the condition of Proposition 4.9—or equivalently, the equal-
ity of M(�(D)) and M∗(�(D))—often reveals that the processes ND∗

(t) and
ND(t) are similar or identical. This is in part because, in practice, many elements
of M(�(D)) are single reactions—that is, many of the reactions that change D

are uniquely identified by the corresponding change in D. Furthermore, where
F D

t ⊂ F D∗
t (strictly), the partition [A,B,D] can often be altered slightly to make

the processes ND∗
(t) and ND(t) identical. Examples of this are given in Section 6

in connection with the red blood cell SKM.

5. Independence and modularity. Rigorous mathematical definition and
identification of modularizations for biochemical reaction networks is recognized
as being a difficult problem, especially from a dynamic perspective [29]. A promi-
nent approach has been to construct a graph representing “interactions” between
species and to consider different partitions of the species between modules, maxi-
mizing an objective function based on the fraction of edges that are intra-modular
relative to the expected fraction in an “equivalent,” randomized graph when the
same partition of species is used [13, 18]. From a stochastic process perspective,
the graphs used often do not encode properly the dependence structure of the mole-
cular network—for example, in contrast to a KIG, metabolic network graphs typi-
cally omit the local dependence between reactants in the same reaction, only cap-
turing that between reactant and product. The approach is intended to operational-
ize the concept that modules function “near-independently.” However, the measure
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of modularity adopted for the objective function is rather distant from well-defined
notions of dynamic (in)dependence between species. The local and global condi-
tional independence results developed in Sections 3 and 4 make it possible to add
content to and make rigorous what is meant by near-independence of modules, and
to accommodate “overlapping” modules with nonempty intersection.

The term modularization is derived from the biological literature where “mod-
ularity” has been much discussed. A modularization here is a hypergraph of the
vertex set of the KIG (i.e., a collection of subsets of species) with the following
property—the internal history at time t of each subset (or module) is conditionally
independent of the internal history of all the other modules, given the history of its
intersection with those modules.

DEFINITION 5.1. Let V be the species set of an SKM [N,S,P]. The finite
collection of subsets of V , {Md |Md ⊆ V}, is a modularization of the SKM if and
only if

⋃
d Md = V and

F Md
t ⊥⊥ F

⋃
e �=d Me

t |F S∗
d

t ;P ∀d, t,(5.1)

where Sd = Md ∩ {⋃e �=d Me} and the history {F S∗
d

t } is the natural filtration of

NS∗
d (t). The latter is given as usual by Definition 4.2, applied to the partition [Md \

Sd, V \ Md,Sd ].

Note that since V \ Md = {⋃e �=d Me} \ Sd , (5.1) is equivalent to the statement

F Md\Sd
t ⊥⊥ F V\Md

t |F S∗
d

t ;P ∀d, t . Roughly speaking, the global evolution on [0, t]
of the species in Md \ Sd and the species in V \ Md (“the rest of the network”) are

conditionally independent given the history of the intersection, F S∗
d

t . We will say
that two modularizations are nested if each module of one of the modularizations
is contained in some module of the other modularization.

Of course some modularizations of an SKM will be more useful than others.
It will usually be desirable for the intersections Sd to contain a relatively small
number of species and to be able to move between nested modularizations, thus
considering finer and coarser levels of resolution. Computationally efficient meth-
ods are developed below for the identification of such modularizations that are
based around the maximal prime decomposition of the undirected version of the
KIG of the SKM, G∼. It will be proved below that applying such graphical de-
composition methods results in subgraphs whose vertex sets, {Md} say, satisfy the
graphical separation Md ⊥G∼

⋃
e �=d Me|Sd ∀d . Therefore, under the conditions of

Corollary 4.6, the required global dynamic independence of (5.1) holds for all d ,
and {Md} constitutes a modularization according to Definition 5.1.

5.1. Identifying modularizations by graph decomposition. Some definitions
from the graphical literature will prove useful (for further details, see [21]). An
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undirected graph is said to be complete if there is an edge between all pairs of
vertices in its vertex set. Let H be an undirected graph with vertex set V . The
subgraph induced by Md ⊂ V , H(Md), consists of the vertices in Md and exactly
the edges between those vertices that occur in H itself. A partition [A,B,D] of
V , A,B �= ∅, forms a decomposition of H into the subgraphs H(A ∪ D) and
H(B ∪D) if the separation A ⊥H B|D holds and the subgraph H(D) is complete.
The subgraph H(Md) is prime if there does not exist a decomposition of H(Md).

DEFINITION 5.2. Let H be an undirected graph with vertex set V , and
Md ⊆ V . The induced subgraph H(Md) is a maximal prime subgraph of H if
H(Md) is prime and there exists a decomposition of H(N) for all N satisfying
Md ⊂ N ⊆ V . The maximal prime subgraph decomposition (MPD) of H is given
by {H(Md)}, the unique collection of maximal prime subgraphs of H , and satisfies
that

⋃
d Md = V .

A junction tree representation of the MPD, TMPD, always exists and has the sub-
sets {Md} as its clusters (i.e., as the vertices of the junction tree) [24]. A junction
tree T is a connected, undirected graph without cycles in which the intersection
of any 2 clusters of the tree, Md ∩ Me (d �= e), is contained in every cluster on
the unique path in T between Md and Me. Such trees will prove very useful in
visualizing, representing and manipulating modularizations of SKMs. We say, for
reasons that will become apparent, that any 2 clusters adjacent in the tree are sep-
arated by their intersection, and call that intersection a separator of T .

The SKM modularization algorithm presented below contains as a special case
the method due to [24] for computation of TMPD, applied to the undirected version
of the KIG, G∼. The advantage of this version of Algorithm 5.1 is that it can be
fully automated to identify the MPD modularization of the SKM in a manner that
is computationally feasible even for very large SKMs. However, it will often be
informative to consider a range of nested modularizations in order to explore the
different levels of organization of the reaction network. To this end, the general
version of Algorithm 5.1 first obtains a junction tree of the clique decomposition
for G∼

T (a minimal triangulation of G∼)—this provides the finest, most detailed
modularization that is identified. The clique decomposition of G∼

T is unique (since
it corresponds to the MPD of G∼

T ). Coarser-grained modularizations, including
the MPD one, are obtained by successively aggregating adjacent clusters in the
junction tree.

ALGORITHM 5.1. Let G be the KIG of an SKM.

1. Construct G∼, the undirected version of G;
2. Construct G∼

T , a minimal triangulation of G∼;
3. Obtain the clique decomposition of G∼

T with the cliques, {C1,C2, . . . ,Cδ} say,
ordered to satisfy the running intersection property (i.e., for e = 2, . . . , δ,∃d∗ ∈
{1, . . . , e − 1} s.t. Ce ∩ {⋃e−1

i=1 Ci} ⊆ Cd∗);
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4. Organize the clique decomposition as a (rooted) junction tree TC in which, for
e = 2, . . . , δ, the parent of Ce is Cd∗; set T = TC ;

5. Either go to step 7 or, select a pair of adjacent clusters (Ci,Cj ) in T (i < j) and
aggregate them by updating T as follows: set P = pa(Ci) and C = {ch(Ci) ∪
ch(Cj )} \ Cj , replace cluster i by Ci ∪ Cj (retaining its numbering, i), set
pa(Ci) = P , and set ch(Ci) = C;

6. Go to step 5;
7. Return TMOD = T .

The property that G∼
T is triangulated is equivalent to saying that G∼

T can be de-
composed recursively until all the resulting subgraphs are complete [21]. Such a
recursive decomposition produces a collection of subgraphs containing the cliques
{G∼

T (Cd)}, that is, the maximally complete subgraphs of G∼
T . Triangulation refers

to the operation of adding edges to G∼ so that it becomes triangulated. The tri-
angulation G∼

T in step 2 must be minimal—that is, one for which removal of any
edge added during triangulation results in an untriangulated graph—otherwise, Re-
mark 5.1 below does not hold, in general.

Efficient algorithms have been developed in the graphical literature for both
minimal triangulation and clique decomposition (see [3, 24]) which can be ex-
ploited here to compute the SKM modularizations and associated junction trees.
The following special case of Algorithm 5.1 returns the junction tree representa-
tion of the maximal prime decomposition (MPD) of the undirected KIG, G∼ [24].

REMARK 5.1. Algorithm 5.1 returns TMPD for the undirected KIG, G∼, when
step 5 is replaced by:

5′. While [there exists a separator S of T such that G∼(S) is incomplete], ag-
gregate within T the 2 clusters separated by S; then go to step 7.

It is worth noting the time complexity of steps 2 and 4. The general problem
of finding an optimal triangulation of an undirected graph (i.e., one that adds least
edges among all triangulations) is NP-hard. The complexity of minimal triangula-
tion (step 2) is O(ne) where e is the number of edges in G∼, [24]. The complexity
of constructing the clique junction tree TC (steps 3 and 4 combined) is O(n2), [24].

5.2. Nested modularizations and junction trees. A concise proof that the clus-
ters of the tree TMOD returned by Algorithm 5.1 constitute a modularization of
the SKM—with any choice of aggregation scheme in stage 5—is made possible
by establishing that TMOD, like TC , is a junction tree, and that the intersections of
adjacent clusters of TMOD continue to correspond to separators in G∼

T , and hence
in G∼. The following proposition does just that.

PROPOSITION 5.2. Let TMOD be the undirected graph returned by applying
Algorithm 5.1 to the KIG, G, of an SKM. Denote the clusters (modules) of TMOD
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by {Md}. Then TMOD is a junction tree. Suppose that (Md,Me) are any 2 adjacent
clusters in TMOD with separator Sde := Md ∩Me, and that (as is conventional) the
edges Md ∼ Me are labeled by the corresponding separator Sde.

Then Sde = Vde ∩ Ved and the graphical separation Vde ⊥ Ved|Sde holds in G∼
T ,

and hence in G∼, where Vde (Ved) is the union of the clusters in T de
MOD (T ed

MOD),
the T •

MOD are the 2 subtrees obtained by cutting the edge Md ∼ Me in TMOD, and
Md ⊆ Vde (Me ⊆ Ved).

Proof of Proposition 5.2 is given in Appendix B.
We can now state and prove the result that establishes the validity of our modu-

larization identification methods.

THEOREM 5.3. Let G be the KIG of a standard SKM, [N,S,P], and let TMOD
be the junction tree of modules, {Md}, returned by Algorithm 5.1. Suppose also
that Condition 4.3 holds for 	d = �(Md \ Sd) ∩ �(V \ Md) ∀d . Then {Md} is a
modularization of the SKM in the sense of Definition 5.1; and each Sd is given by⋃

e∈ne(Md) Sde [where ne(Md) is the indices of those clusters that have edges with
Md in TMOD]. Furthermore, each module residual Md \ Sd is locally independent
of V \ Md given the internal history of Md .

PROOF. By Corollary 4.6, it suffices to show that the separation {Md \
Sd} ⊥G∼

T
{V \ Md}|Sd holds in G∼

T , for all d , since then {Md \ Sd} ⊥G∼ {V \
Md}|Sd holds in the undirected KIG G∼. This follows because every path in G∼

from Md \ Sd to V \ Md is also such a path in G∼
T . Recall that by definition

Sde := Md ∩ Me. Hence,

Sd =
{ ⋃

e∈ne(Md)

(Md ∩ Me)

}
∪

{ ⋃
e/∈ne(Md)

(Md ∩ Me)

}
(5.2)

= ⋃
e∈ne(Md)

(Md ∩ Me) = ⋃
e∈ne(Md)

Sde,

where the second line holds by the fact that TMOD is a junction tree (Proposi-
tion 5.2) since, for e /∈ ne(Md), (Md ∩ Me) is contained in Mẽ, and thus in Sdẽ for
some ẽ ∈ ne(Md) lying on the unique path between Md and Me in TMOD.

By Proposition 5.2, Md ⊥G∼

T
Ved|Sde ∀e ∈ ne(Md), since Md ⊆ Vde. Hence,

Md ⊥G∼

T
Ved|{⋃e∈ne(Md) Sde} and, since this holds for all e ∈ ne(Md), Md ⊥G∼

T{⋃e∈ne(Md) Ved}|{⋃e∈ne(Md) Sde}. Now {⋃e∈ne(Md) Ved} = {⋃e �=d Me}. To see this,
note that the latter is the union of those clusters reachable by paths in TMOD that
start with the edge Md ∼ Me for some e ∈ ne(Md) (since TMOD is connected); and
Ved is the union of those clusters reachable by paths in TMOD that start at the node
Me (since T ed

MOD is connected). Therefore, using (5.2), Md ⊥G∼

T
{⋃e �=d Me}|Sd , as

required. �
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6. SKM of red blood cell. We now apply the modularization techniques of
Section 5 and the underlying dynamic independence theory on which they are
based to identify biologically interesting modulariszations of an SKM of the hu-
man red blood cell. The study of this metabolic reaction network was an early
success of a systems biology approach [19, 27]. There now exists detailed knowl-
edge of the component reactions as a result of at least three decades of research
on both the biochemical and mathematical modeling fronts. The identification of
aggregates of metabolites (i.e., species) and regulatory structures in the red blood
cell has also received attention from a systems biology perspective [19, 25]. This
particular reaction network therefore constitutes a suitable test-bed to establish the
utility and applicability of our approach. In contrast to this work, [19] aims to
identify “pools” of metabolites in the red blood cell, that is “aggregate groups of
[species] which [. . . ] move together in a concerted manner,” rather than groups
that move independently given an appropriate conditioning set of species.

The SKM studied is the one implied by the metabolic network of the red blood
cell published in the open access Biomodels Database [23], which in turn is a
slightly extended version of the kinetic model of [27] and [14]. The SKM consists
of 38 reactions, with 45 different biochemical species in the species set V (the en-
zymes, i.e., catalysts, involved are omitted from V as they do not appear explicitly
in the reaction mechanisms). Full details are available from [23]. The direction
of the reactions is as for the kinetic model in Table 1 of [14], except for 8 addi-
tional reactions which are all included as dissociation reactions. It was verified that
the SKM, henceforth S K Mrbc, is a standard SKM (according to Definition 4.3).
The names of the biochemical species in V and the associated abbreviations used
are given in Appendix C. For details of the reactions in M, the reader is referred
to [23].

Figure 2 depicts the kinetic independence graph G for S K Mrbc. The graph is a
powerful visual aid to understanding the architecture of the molecular network and
can be preliminarily inspected for interesting local independences and separations
in the undirected version G∼. The clique decomposition, TC , from Algorithm 5.1
for S K Mrbc has many clusters (20 out of 38) for which Md \ Sd is the empty set.
It is therefore desirable to implement Algorithm 5.1 with a substantial degree of
pairwise cluster aggregation in step 5. On the other hand, TMPD for this SKM is
overly coarse-grained for most purposes. Figure 3 depicts a particular junction tree
TMOD,1 returned by Algorithm 5.1, with the choice of aggregations guided both by
the structure of TC itself and the goal of a modularisation that offers biological
insight. This approach relies on and takes advantage of the flexibility offered by
Algorithm 5.1—some exploration of alternative modularizations by the user is re-
quired, but no prior information about possible modularizations is needed.

The junction tree TMOD,1 in Figure 3 is labelled as follows. The dth module
(rectangle) is labeled with the species in the “residual module,” Md \ Sd , and each
edge, Md ∼ Me, is labeled with the species in the separator Sde, that is the in-
tersection of the modules connected by that edge. It was verified that, for all d ,
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FIG. 2. Kinetic independence graph (KIG) of S K Mrbc, the Metabolic Network of the Human Red
Blood Cell [23]. The KIG is constructed according to Definition 3.1. Full species names are given in
Appendix C.

Condition 4.3 holds for 	d = �(Md \ Sd) ∩ �(V \ Md) , as required by Theo-
rem 5.3. Recall that Proposition 5.2 implies Sde = Vde ∩ Ved and Vde ⊥G∼ Ved|Sde

in G∼. Such separations may be conveniently read off from any junction tree TMOD

since Sde,Vde and Ved are all immediately apparent from examination of the tree.
Similarly, the defining conditional independencies of the modularization, namely

F Md\Sd
t ⊥⊥ F {⋃e �=d Me}\Sd

t |F S∗
d

t ;P ∀d (5.1), may be read off the junction tree using
Theorem 5.3, Sd being given by the union of the labels of all edges that connect
with the dth module.

Having obtained a modularization such as TMOD,1, the next stage is to ask
what are the interesting features that emerge from a biochemical and systems bi-
ological perspective. Each of the main modules of TMOD,1 turns out to contain
like species, either in terms of their molecular structure (e.g., the groupings of
monosaccharide-phosphate sugar molecules and phosphoglycerate molecules) or
their function (e.g., the grouping of species involved in reduction–oxidation reac-
tions), or both.
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FIG. 3. Junction tree representation, TMOD,1, of a modularisation of S K Mrbc, the Metabolic Net-

work of the Human Red Blood Cell [23]. The global dynamic independences F Md
t ⊥⊥ F

⋃
e �=d Me

t |F S∗
d

t

hold for each module Md (see Definition 5.1). The modules (rectangles) are labeled with their resid-
uals and edges are labeled with the intersection of adjacent modules. Full species names are given
in Appendix C.

Specific modules and their residuals are denoted by their first constituent species
in the subsequent discussion. Consider first the central residual {NADPf , . . .} in
TMOD,1, the residual of what will be termed the Redox module (for Reduction-
oxidation). The red blood cell is subject to oxidative stress due to reactive oxygen
species, which if left unchecked leads to cell lysis (bursting) and consequent ane-
mia. All of this residual’s species can be seen to play a role in the control of such
oxidative stress. Glutathione (GSH) acts as an antioxidant, scavenging reactive
oxygen species and itself being oxidised as a result (giving rise to the reaction
2GSH → GSSG). The cell must maintain adequate levels of GSH, which it does
by producing large amounts of NADPH for use in the reduction of GSSG (by the
reaction GSSG+NADPH → 2GSH +NADP). Production of NADPH is via 2 reac-
tions (usually described as the oxidative phase of the pentose phosphate pathway),
both of which involve GlcA6P. Both NADP and NADPH are also found bound to
the proteins P 1 and P 2. Notice that the reduced forms NADPH and NADH are
both found in the module’s separator (edge) with {Lac,Pyrex,Lacex}, since both
influence the intensity of lactate (Lac) production and export as reactants for the
reduction of pyruvate (Pyr).
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The module {NADPf , . . .} clearly has an important function in oxidative stress
control and in reduction–oxidation reactions more generally within the red blood
cell. Of course, these functions of its individual species are well known. That their
dynamic evolution, together with that of lactate (Lac), is globally independent of
all the other species in the network conditional on the internal history of {Fru6P,
Glc6P, NADH, Pyr, Rul5P, Pyrex} is an insight provided by the modularizations
(see also the derivation of TMOD,2 below). Assigning function(s) where possible
to each module of a given modularization, TMOD, is likely to improve both un-
derstanding of a network and ultimately aid attempts to control it. For reasons of
space, comments related to the remaining two large residuals of TMOD,1 may be
found as part of the discussion of TMOD,2 below.

The structure of TMOD,1 encourages further aggregation in an obvious manner.
A second modularization, TMOD,2, of S K Mrbc is thus shown in Figure 4. [It was
verified that, in this case also, Condition 4.3 holds for 	d = �(Md \ Sd) ∩ �(V \
Md) ∀d .] TMOD,2 may be derived from TMOD,1in two steps. First, the modules
{AMPf ,ADPf }, {Lac,Pyrex,Lacex} and {Glcout} are aggregated with their adja-
cent modules in TMOD,1. Second, a small number of species in residuals are then

FIG. 4. Junction tree representation, TMOD,2, a coarser-grained modularization of S K Mrbc,
the Metabolic Network of the Human Red Blood Cell [23]. The global dynamic independences

F Md
t ⊥⊥ F

⋃
e �=d Me

t |F Sd
t hold for each module Md (see Definition 5.1). The rectangles contain mod-

ule residuals and edges are labeled with the intersection of adjacent modules. Full species names
are given in Appendix C.
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judiciously included also in an additional module so that they both fall instead in
the relevant separator and the condition of Proposition 4.9 is satisfied for each par-
tition [Md \Sd, V \Md,Sd ]. By Proposition 4.9, this ensures that NSd and NS∗

d are

the same subprocess, whence {F Sd
t } = {F S∗

d
t } for d = 1,2,3. Clearly, the second

step need only be performed if it is desired to be able to replace F S∗
d

t by F Sd
t in the

defining conditional independencies of the modularization (Definition 5.1). The
species involved in this case are {Fru6P,Fru16P2,Phi,ADPf ,Pyrex} and these
therefore now appear in the edge labels (separators) of TMOD,2 rather than in the
residuals. The proposition below establishes that the validity of the modularization
remains unchanged by such an operation.

PROPOSITION 6.1. Suppose that {Md |Md ⊆ V}, is a modularization accord-
ing to Definition 5.1 of a standard SKM [N,S,P], and that the modulariza-
tion satisfies, for all d , the separation {Md} ⊥G∼ {⋃e �=d Me}|Sd in the undi-

rected KIG G∼. Define a new collection of subsets {M̃d |M̃d ⊆ V} where M̃d =
Md ∪ {⋃e �=d ced} and, ∀e �= d , ced ⊂ Me and ced ∩ Md = ∅ (ced = ∅ being al-
lowed). The species ced are called those “copied from e to d .”

Then {M̃d} ⊥G∼ {⋃e �=d M̃e}|S̃d ∀d and, provided that Condition 4.3 continues

to hold for 	̃d = �(M̃d \ S̃d) ∩ �(V \ M̃d) ∀d , {M̃d |M̃d ⊆ V} is also a modular-
ization of the SKM [N,S,P].

PROOF. Clearly,
⋃

d M̃d = V . By Corollary 4.6, it suffices to show that
{M̃d} ⊥G∼ {⋃e �=d M̃e}|S̃d ∀d . Let td := ⋃

e �=d ced , the species copied to d ,
and fd := ⋃

e �=d cde, the species copied from d . The separation {Md} ⊥G∼

{⋃e �=d Me}|Sd implies that {Md ∪ td} ⊥G∼ {⋃e �=d Me} ∪ fd |{Sd ∪ td ∪ fd}, which

yields the required result since S̃d = {Md ∪ td} ∩ [{⋃e �=d Me} ∪ fd ] = Sd ∪ td ∪
fd ∪ ∅. �

There are 3 modules comprising TMOD,2 which together contain 45 differ-
ent species, of which 32 distinct species are found only in module residuals
(and hence are found in exactly 1 residual). The redox module {NADPHf , . . .}
has already been discussed above. The module {Glcin, . . .} has the largest in-
tersection with the rest of the network and acts as a linking module; it will be
termed the MPS (Monosaccharide-Phosphate Sugar module). The two modules
{NADPHf , . . .} and {Gri23P2f , . . .}, by contrast, have only 2 species in common,
namely (NADH,Pyr)—these are the only species common to all three modules.
The MPS residual contains species that all belong to a single chemical class of
molecule, namely monosaccharide sugar molecules (mostly with phosphate groups
attached), with a further 6 different monosaccharide-phosphates (MPs) found in
the rest of the module. Interestingly, the MPs of the module are those found in
two “pathways” traditionally discussed separately—the pentose phosphate and
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glycolytic pathways. Indeed, the MPs (Glc6P, Fru6P, GraP) all participate in re-
actions found in both “pathways.”

The third and final module {Gri23P2f , . . .} will be termed the PGA (Phos-
phoGlycerate-Adenosine) module, according to the chemical class of some of
its constituents. It contains all of the phosphoglycerate molecules in the species
set V , namely (Gri23P2f, MgGri23P2f, Gri13P2, Gri3P, Gri2P), together also
with all of the adenosine phosphate molecules (ATPf, ADPf, AMPf )—both free
and complexed with magnesium (Mg). The module also contains all of the species
involved in reactions of the so-called “pay-off phase” of glycolysis whose func-
tion is the production of the high-energy compounds ATP and NADH. That the
dynamic evolution of, for example, all phosphoglycerates together with PEP is
globally independent of all the other species in V conditional on the internal his-
tory of (Fru16P2, MgATP, MgADP, GraP, NADH, Pyr, Rib5P, ADPf, Phi) is again
an insight provided by the modularization.

The modularizations TMOD,1 and TMOD,2 identified using the theory and meth-
ods developed in the paper constitute parsimonious, coarse-grained views of the
metabolite network studied and provide important insight concerning the dynam-
ics of the biological system as a whole.

7. Directions for future research. Application of the methods developed
here to SKMs with large species sets and many component reactions is of consid-
erable interest. In ongoing research that examines biochemical signalling networks
with approximately 900 reactions and 750 species, the methods have been found
to work effectively and to provide scientifically interesting modularizations.

It would be useful to consider methods for testing the adequacy of an SKM
(perhaps augmented to allow for measurement error) as a statistical model of a
given cellular system. Testing conditional independence relationships implied by a
modularization of the SKM (such as the one in Figure 4 for the red blood cell) of-
fers a promising means of assessing model adequacy. Clearly, it is not necessary to
measure experimentally all species in the SKM, but all species in the relevant con-
ditioning set (separator) must be measured. Intuitively, with A ⊥G∼ B|D, changes
in B—perhaps resulting from direct intervention on the levels of B—should be
uninformative about changes in A over time intervals sufficiently short to ensure
that levels of D usually remain constant (and vice versa).

SKMs subject to interventions are likely to become an area of active research,
given their relevance both to medical and biotechnological applications. The pre-
dicted effect of interventions (e.g., gene knock-outs, RNA silencing, or receptor in-
hibition) could be derived by altering the specification of the SKM accordingly and
comparing with the original SKM. There are also interesting connections with the
causal inference literature more generally. Recently, Commenges and Gégout-Petit
[2] introduced a “general dynamical model as a framework for causal interpreta-
tion,” adopting an approach to causality based on “physical laws in sufficiently
large systems.” Local independence plays an important role in their analysis and
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definition of influence. One might imagine that a sufficiently large SKM would
be a candidate “perfect system” for a given smaller and observable cellular sys-
tem. However, the jump processes followed by biochemical species and hence also
SKMs do not belong to the class (D) of special semimartingales to which [2] con-
fines attention. Nevertheless, the approach seems relevant in broad terms. Finally,
the experimental design of interventions to test causal claims derived from SKMs
merits attention.

APPENDIX A: PROOFS FOR GLOBAL DYNAMIC INDEPENDENCE

A.1. Proof of Theorem 4.4. First we show that F �(A)∩�(B)
t = F D

AB(t) ⊆
F D∗

t , in order to establish (A.1) below—that is, the internal history of all reac-
tions that change A and B is contained in the internal history of ND∗

(t).
The separation A ⊥G∼ B|D implies that for any m ∈ �(A) ∩ �(B), R[m] ⊆ D

[suppose not—then in the KIG G, either pa(B) ∩ A �= ∅ or pa(A) ∩ B �= ∅
which contradicts the separation]. For any m ∈ �(A) ∩ �(B), R[m] �= ∅ and
R∗[m] �= ∅ by Definition 4.3(iii) and (iv); clearly R∗[m] ⊆ D. Hence m ∈ �(D)

and �DAB = �(A) ∩ �(B) (with the possibility �DAB = ∅ not excluded).
By Condition 4.3, any reaction in 	 = �(A) ∩ �(B) changes D differently—
that is, the partition M(�DAB) is either empty or consists of singletons—since
∀m,m̃ ∈ 	 (m �= m̃), S−

m �= S−
m̃

and (S−
m)A = (S−

m)B = 0 because R∗[m] ⊆ D (sim-

ilarly for m̃), hence (S−
m)D �= (S−

m̃
)D and SD

m �= SD
m̃

. Hence N
�(A)∩�(B)
t = ND

AB(t)

∀t and F �(A)∩�(B)
t = F D

AB(t) ⊆ F D∗
t , which implies immediately that

F �(A)
t ⊥⊥ F �(A)∩�(B)

t |F D∗
t ; P̃t .(A.1)

Together with

F �(A)
t ⊥⊥ F �(B)\�(A)

t |F D∗
t ; P̃t(A.2)

(which is proved below) it follows that

F �(A)
t ⊥⊥ F �(B)

t |F D∗
t ; P̃t ,

since F �(A)∩�(B)
t ∨ F D∗

t = F D∗
t and F �(B)\�(A)

t ∨ F �(A)∩�(B)
t = F �(B)

t . It then
follows that F A

t ⊥⊥ F B
t |F D∗

t ; P̃t as required since it is clear from the definition
of NA(t) and NB(t) that F A

t ⊆ F �(A)
t and F B

t ⊆ F �(B)
t . (The reader unfamiliar

with conditional independence of σ -fields and its properties is referred to [7]—see,
in the context of this proof, Theorem 2.2.1, Corollary 2.2.4, Theorem 2.2.10 and
Corollary 2.2.11 there.)

It remains to establish (A.2). Under P̃, and hence also under P̃t , {F m
t |m =

1, . . . ,M} are independent σ -fields (see Lemma 4.2). It follows that F �(A)
t ⊥⊥

F �(B)\�(A)
t |F �DD

t ; P̃t since [�(A),�(B) \ �(A),�DD] is a partition of {1,

. . . ,M}. It now suffices for (A.2) to show the existence of G�(A)
t ⊆ F �(A)

t
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and G�(B)\�(A)
t ⊆ F �(B)\�(A)

t , such that G�(A)
t ∨ G�(B)\�(A)

t ∨ F �DD
t = F D∗

t .
Heuristically, we want to identify “information” contained only in F �(A)

t and
F �(B)\�(A)

t , respectively, which when jointly combined with F �DD
t gives the

internal history of ND∗
t . But this corresponds exactly to the way ND∗

t =
[{ND

A (t),ND
AB(t)},ND

B (t),ND
D (t)] was constructed.

Recall Definition 4.2 for ND∗
(t); its history F D∗

t is given by [F D
A (t) ∨

F D
AB(t) ∨ F D

B (t) ∨ F D
D (t)]. Since �DA ⊆ �(A), F D

A (t) ⊆ F �DA
t ⊆ F �(A)

t ; simi-

larly �DAB ⊆ �(A) and hence F D
AB(t) = F �DAB

t ⊆ F �(A)
t ; and �DB ⊆ �(B) \

�(A) hence F D
B (t) ⊆ F �DB

t ⊆ F �(B)\�(A)
t . Note that F D

D (t) = F �DD
t since

M(�DD) is either empty or consists of singletons—any 2 reactions that change D

alone must do so differently since no 2 columns of S are equal (by Definition 2.1).
Finally, taking G�(A)

t = F D
A (t) ∨ F D

AB(t) ⊆ F �(A)
t and G�(B)\�(A)

t = F D
B (t) ⊆

F �(B)\�(A)
t completes the proof since then G�(A)

t ∨ G�(B)\�(A)
t ∨ F �DD

t = F D∗
t

as required.

A.2. Proof of Theorem 4.5. The proof is in 3 parts. (I) First show that
∀m ∈ M, either R[m] ⊆ A ∪ D in which case

∫ t
0 λm(u)du is adapted to F AD∗

t ,
or R[m] ⊆ B ∪ D in which case

∫ t
0 λm(u)du is adapted to F BD∗

t .
The separation A ⊥G∼ B|D implies that either R[m] ⊆ A ∪ D or R[m] ⊆

B ∪D. Suppose not, then B ∩R[m] �= ∅ and A∩R[m] �= ∅—arguing using (i) of
Definition 4.3, either m ∈ �(A) in which case B ∩ pa(A) �= ∅, which contradicts
the separation; or m ∈ �(B) in which case A ∩ pa(B) �= ∅, which also contra-
dicts the separation. If B ∩ R[m] �= ∅ and A ∩ R[m] �= ∅, then m ∈ �DD is not
possible—if m ∈ �DD then the reactants that are changed R∗[m] ⊆ D and hence,
by (iv) of Definition 4.3, either B ∩ R[m] �= ∅ orA ∩ R[m] �= ∅ but not both.

Therefore, if R[m] ⊆ A ∪ D (resp., R[m] ⊆ B ∪ D) then both λm(t) and
log(λm(t)) are measurable with respect to F R[m]

t ⊆ F A∪D
t ⊆ F AD∗

t (resp.,
F B∪D

t ⊆ F BD∗
t ) by (2.6), since XR[m](t−) is measurable F R[m]

t and F D
t ⊆ F D∗

t .
Since λm(t) is also càglàd, if R[m] ⊆ A ∪ D (resp., R[m] ⊆ B ∪ D) then λm(t) is
F AD∗

t -predictable and hence
∫ t

0 λm(u)du is F AD∗
t -adapted (resp., F BD∗

t -adapted).
(II) Second show that if R[m] ⊆ A ∪ D (resp., R[m] ⊆ B ∪ D), then {T m

s }s≥1

are F AD∗
t -stopping times (resp., F BD∗

t -stopping times). It will then follow that
1(T m

s ≤ t) log(λm(T m
s )) is F AD∗

t -measurable ∀s ≥ 1 (resp., F BD∗
t -measurable)

by the definition of F AD∗
T m

s
, because log(λm(t)) is left continuous and hence

log(λm(T m
s )) is F AD∗

T m
s

-measurable—see, for example, Theorem 2.1.10 of [20].

This in turn yields that
∑

s≥1 1(T m
s ≤ t) log(λm(T m

s )) is F AD∗
t -measurable (resp.,

F BD∗
t -measurable). To establish the required stopping time property for {T m

s }s≥1,
distinguish the following cases, exactly one of which must hold ∀m ∈ M:

(i) m ∈ �DD : recall that M(�DD) consists of singletons since any 2 reactions
that change D alone must do so differently (by Definition 2.1). Therefore Nm(t)
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is adapted to F �DD
t = F D

D (t) ⊆ F D∗
t , hence {T m

s }s≥1 are F D∗
t -stopping times.

Either R[m] ⊆ A ∪ D or R[m] ⊆ B ∪ D [by part (I) above]. If R[m] ⊆ A ∪ D

(resp., R[m] ⊆ B ∪ D), then {T m
s }s≥1 are necessarily F AD∗

t -stopping times (resp.,
F BD∗

t -stopping times), as required.
(ii) m ∈ �A ∩ �(B): recall from the proof of Theorem 4.4 that R[m] ⊆ D

and the partition M(�DAB) consists of singletons. Hence F m
t ⊆ F �A∩�(B)

t =
F D

AB(t) ⊆ F D∗
t , Nm(t) is adapted to F D∗

t and {T m
s }s≥1 are F D∗

t -stopping times.
(iii) m ∈ �(A) \ �(B): we have that R[m] ⊆ A ∪ D by part (I) above; consider

the cases (iiia) m ∈ �DA, and (iiib) m /∈ �DA in turn below to conclude that in
each case {T m

s }s≥1 are F AD∗
t -stopping times.

(iiia) Identify the element of M(�DA) corresponding to changes in D

equal to SD
m , Me(�DA) say. Denote the corresponding element of ND

A (t) by
ND

A,e(t), which is clearly measurable F D∗
t , and the jump times of this univariate

counting process by {T D
A,e(s)}s≥1. Thus {T D

A,e(s)}s≥1 are F AD∗
t -stopping times.

Now Me(�DA) may not be a singleton, but we can write

Nm(t) = ∑
s≥1

1{T D
A,e(s) ≤ t}1{XA∪D(T D

A,e(s)) − XA∪D(T D
A,e(s)−) = SA∪D

m },

since �m̃ ∈ Me(�DA) (m �= m̃) s.t. SA∪D
m = SA∪D

m̃
(by Definition 2.1 and

SB
m = SB

m̃
= 0). Since XA∪D(t) is right continuous and XA∪D(t−) left con-

tinuous, and both are F AD∗
t -adapted since F A∪D

t -adapted, [XA∪D(T D
A,e(s)) −

XA∪D(T D
A,e(s)−)] is F AD∗

(T D
A,e(s))-measurable (by, e.g., Theorem 2.1.10 of

[20]). Hence the summand is F AD∗
(t)-measurable ∀s ≥ 1, Nm(t) is adapted to

F AD∗
t and {T m

s }s≥1 are F AD∗
t -stopping times.

(iiib) Then m ∈ �∗(A) := �(A)\ (�(B)∪�(D)). Define for any p-variate
counting process N(t) (p ≥ 1), the “ground process” N̄(t) := 1′

p×1N(t). We may
then write

N̄�∗(A)(t) = N̄A(t) − N̄D
A (t) − N̄D

AB(t),

where N̄�∗(A)(t) is the number of reactions on [0, t] that change A alone [not-
ing that �(A) ∩ �(B) = �DAB ]. Hence N̄�∗(A)(t) is measurable F A

t ∨ F D
A (t) ∨

F D
AB(t) ⊆ F AD∗

t , and its jump times {T �∗(A)
s )}s≥1 are F AD∗

t -stopping times. Also,

Nm(t) = ∑
s≥1

1
{
T �∗(A)

s ≤ t
}
1
{
XA(

T �∗(A)
s

) − XA(
T �∗(A)

s −) = SA
m

}
,

since �m̃ ∈ �∗(A) (m �= m̃) s.t. SA
m = SA

m̃
(by Definition 2.1 and SB∪D

m =
SB∪D

m̃
= 0). Since XA(t) is right continuous and XA(t−) left continuous, and

both are F AD∗
t -adapted since F A

t -adapted, [XA(T
�∗(A)
s ) − XA(T

�∗(A)
s −)] is

F AD∗
(T

�∗(A)
s )-measurable. Hence the summand is F AD∗

(t)-measurable ∀s ≥ 1,
and {T m

s }s≥1 are F AD∗
t -stopping times.
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(iv) m ∈ �(B) \ �(A): we have that R[m] ⊆ B ∪ D by part (I) above; argue as
in (iii) with A in place of B and vice versa to conclude that {T m

s }s≥1 are F BD∗
t -

stopping times.
(III) Combining parts (I) and (II) above establishes that if R[m] ⊆ A∪D (resp.,

R[m] ⊆ B ∪D) then Lm,t := exp(lm(t)) is measurable F AD∗
t (resp., F BD∗

t ). Then,
in an obvious manner, grouping the Lm,t into 2 groups according to the foremen-
tioned measurability property and defining the ψiD∗,t as the product within each
group yields Lt = ψAD∗,t · ψBD∗,t , where ψiD∗,t is nonnegative and F i

t ∨ F D∗
t -

measurable for i ∈ {A,B}.
APPENDIX B: ADDITIONAL PROOFS

PROOF OF LEMMA 2.1. It remains to establish that F A
t = F XA

t . First show

that F A
t ⊇ F XA

t . We have that F A
t = σ(ZA

s 1(T A
s ≤ u);0 ≤ u ≤ t , s ≥ 1) and

XA(u) = XA(0) + ∑
s≥1 ZA

s 1(T A
s ≤ u), which is therefore measurable F A

t . Sec-

ond show that F A
t ⊆ F XA

t . We have also that F A
t = σ(1(ZA

s = SA
m)1(T A

s ≤ u);0 ≤
u ≤ t , s ≥ 1,m ∈ �A), hence it suffices to show that 1(ZA

s = SA
m)1(T A

s ≤ u)

is measurable F XA
t . By its construction, {T A

s } are the jump times of the right-
continuous jump process XA. The filtration {F XA

t } is right continuous. Hence, for
s ≥ 1, T A

s is an F XA
t -stopping time and XA(T A

s ) is F XA(T A
s )-measurable. Since

ZA
s = XA(T A

s ) − XA(T A
s−1) and F XA(T A

s−1) ⊆ F XA(T A
s ), ZA

s is also F XA(T A
s )-

measurable. Hence {1(ZA
s = SA

m) = 1} ∩ {1(T A
s ≤ u) = 1} ∈ F XA(u) ⊆ F XA(t) by

the definition of F XA(T A
s ), and therefore 1(ZA

s = SA
m)1(T A

s ≤ u) is measurable
F XA

t . �

PROOF OF LEMMA 4.1. Let Li3 := (dP/dP̃)|F i∨F 3 , and L3 := (dP/dP̃)|F 3 .
Then it is straightforward to show that Li3 = Ẽ[L123|F i ∨ F 3] and L3 =
Ẽ[L123|F 3], where Ẽ denotes expectation under P̃. Hence, L13 = ψ13Ẽ[ψ23|F 1 ∨
F 3] and L23 = ψ23Ẽ[ψ13|F 1 ∨ F 3] by the nonnegativity and measurability of the
ψi3. Since F 2 ∨ F 3 ⊥⊥ F 1|F 3; P̃, Ẽ[ψ23|F 1 ∨ F 3] = Ẽ[ψ23|F 3] by Definition 4.1
and hence L13 = ψ13Ẽ[ψ23|F 3]. Similarly, L23 = ψ23Ẽ[ψ13|F 3]. Furthermore,
L3 = Ẽ[ψ13|F 3]Ẽ[ψ23|F 3] by the nonnegativity and measurability of the ψi3 and
since F 1 ∨ F 3 ⊥⊥ F 2 ∨ F 3|F 3; P̃. Therefore,

L123L3 = L13L23(B.1)

and, in particular, L123L3 = L13L23 on the event {L3 = Ẽ[ψ13|F 3]Ẽ[ψ23|F 3] >

0}, whence F 1 ⊥⊥ F 2|F 3;P by Theorem 2.2.14 of [7]. �

PROOF OF PROPOSITION 5.2. The proof is in 3 steps, according to the number
of pairs of clusters aggregated under step 5 of Algorithm 5.1: (i) for the case where
no pair of clusters is aggregated, and hence TMOD = TC; (ii) for the case where
exactly 1 pair of clusters is aggregated; (iii) for the case where more than 1 pair of
clusters is aggregated.
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(i) TC is a junction tree representation of the clique decomposition of G∼
T . For

the proof of this case see the proof of Theorem 4.6 of [3].
(ii) TMOD is connected (as a consequence of TC being connected), and has

(δ − 1) nodes and (δ − 2) edges (one less edge than TC); TMOD is therefore a tree,
whence there is a unique path in TMOD between any pair (Md,Me) of its clusters.
It is straightforward (but somewhat tedious) to show that every cluster on this path
must contain Md ∩ Me since the corresponding path in TC possesses this junction
property [by (i) above]. Hence TMOD is a junction tree. It remains to prove that
for any 2 adjacent clusters (Md,Me) in TMOD, we have Md ∩ Me = Vde ∩ Ved and
Vde ⊥G∼

T
Ved|Sde.

We will show (iia) that edges “in common” between TC and TMOD—the (δ − 2)

edges not removed by the cluster aggregation—carry the same label, that is, the
intersection of the clusters joined by each such edge is unchanged; and (iib) that
cutting any such edge in both TC and TMOD results in pairs of subtrees whose
clusters have identical unions in the two cases. The result then follows from (i)
above.

(iia) If both clusters, (Md,Me), joined by such an edge, are in TC and
TMOD the claim is obviously true. Consider then the case where Md , say, is the
result of the aggregation of the cluster pair (Mα,Mβ). Suppose, without loss of
generality, that Mα ∼ Me in TC . Now Sde = (Me ∩ Mα) ∪ (Me ∩ Mβ). The edge
joining Md to Me in TMOD was formerly, in TC , the edge Mα ∼ Me, whence Sde =
(Me ∩ Mα) since Mα is on the path between Mβ and Me in TC and (Me ∩ Mβ) ⊆
Mα . Thus, the intersection of the clusters joined by the edge is always the same in
TMOD and TC , as claimed.

(iib) Let the edge that is cut in both cases be Md ∼ Me [where it is un-
derstood that Md , say, may be equal to Mα in TC and hence equal to (Mα ∪ Mβ)

in TMOD]. It is required to show, using an obvious notation, that V MOD
de = V C

de and
V MOD

ed = V C
ed . It is well known that cutting an edge in any tree results in 2 dis-

connected subtrees. One of the 2 pairs of subtrees generated here must contain
2 identical subtrees. Suppose then, without loss of generality, that T ed

MOD = T ed
C ,

whence V MOD
ed = V C

ed . The subtrees T de
MOD and T de

C have the same clusters, ex-
cept for the aggregation of the cluster pair (Mα,Mβ) to form Mαβ in T de

MOD. It is
straightforward (but tedious) to show that, for γ /∈ {α,β} and Mγ a cluster in T de

C ,

[Mγ ]T de
C

\ {Mα,Mβ} = [Mγ ]T de
MOD

\ {Mαβ},
where [M]T are the clusters that can be reached from cluster M by paths in a
tree T . The subtrees T de• are themselves connected graphs, but disconnected from
the corresponding T ed• . Therefore the clusters of T de• are given exactly by [Mγ ]T de• ,
where Mγ is any one of its clusters. It follows that

V C
de =

{⋃[Mγ ]T de
C

\ {Mα,Mβ}
}

∪ Mα ∪ Mβ

=
{⋃[Mγ ]T de

MOD
\ {Mαβ}

}
∪ Mαβ = V MOD

de
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as required.
(iii) The proof is by induction on the number of cluster pairs, n say, that are

aggregated. Parts (i) and (ii) above establish the proposition for n = 0 and n = 1.
Exactly the same mode of argument as the one used in (ii) above also establishes
that if the proposition holds for n ≥ 0, it must hold for (n + 1). This completes the
proof. �

APPENDIX C: SPECIES NAMES FOR RED BLOOD CELL SKM

AMPf = AMP (unbound); ADPf = ADP; ATPf = ATP; DHAP =
Dihydroxyacetone phosphate; E4P = Erythrose 4-phosphate; Fru6P = Fructose
6-phosphate; Fru16P2 = Fructose 1,6-phosphate; GlcA6P = Phospho-D-glucono-
1,5-lactone; Glcin = Glucose (cytoplasmic); Glcout = External Glucose; Glc6P =
Glucose 6-phosphate; GraP = Glyceraldehyde 3-phosphate; Gri13P2 = 1,3-
Bisphospho-D-glycerate; Gri3P = 3-Phospho-D-glycerate; Gri23P2 = 2,3-
Bisphospho-D-glycerate; Gri2P = 2-Phospho-D-glycerate; GSH = Reduced
Glutathione; GSSG = Oxidized Glutathione; Lac = Lactate; Lacex =
External Lactate; MgATP; MgADP; MgAMP; Mg; MgGri23P2; NADH;
NADPf = NADP (unbound); NADPHf = NADPH; P1f = Protein1;
P2 = Protein2; P1NADP = Protein1 bound NADP; P1NADPH = Protein1 bound
NADPH; P2NADP = Protein2 bound NADP; P2NADPH = Protein2 bound
NADPH; PEP = Phosphoenolpyruvate; Phi = Phosphate; NAD; PRPP =
Phosphoribosylpyrophosphate; Pyr = Pyruvate; Pyrex = External Pyruvate;
Rib5P = Ribose 5-phosphate; Rul5P = Ribulose 5-phosphate; Sed7P =
Sedoheptulose 7-phosphate; Xul5P = Xylulose 5-phosphate.
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