
The Annals of Statistics
2010, Vol. 38, No. 3, 1913–1935
DOI: 10.1214/09-AOS774
© Institute of Mathematical Statistics, 2010

CRAMÉR-TYPE MODERATE DEVIATION FOR THE MAXIMUM
OF THE PERIODOGRAM WITH APPLICATION TO

SIMULTANEOUS TESTS IN GENE EXPRESSION TIME SERIES1

BY WEIDONG LIU AND QI-MAN SHAO

Hong Kong University of Science and Technology

In this paper, Cramér-type moderate deviations for the maximum of the
periodogram and its studentized version are derived. The results are then ap-
plied to a simultaneous testing problem in gene expression time series. It is
shown that the level of the simultaneous tests is accurate provided that the
number of genes G and the sample size n satisfy G = exp(o(n1/3)).

1. Introduction. Let X1,X2, . . . be a sequence of random variables. Define
the periodogram ordinates for {Xn} at the standard frequencies ωj = 2πj/n by

In(ωj ) = 1

n

∣∣∣∣∣
n∑

k=1

Xke
ikωj

∣∣∣∣∣
2

,

where 1 ≤ j ≤ q and q = [(n − 1)/2].
The periodogram is a fundamental tool in spectral analysis and is often used to

detect periodic patterns in various real applications, such as the analysis of gene
expression data and the study of earthquake. Theoretical properties of the peri-
odogram have been extensively studied. An, Chen and Hannan (1983) obtained the
logarithm law for the maximum of the periodogram; Davis and Mikosch (1999),
Mikosch, Resnick and Samorodnitsky (2000), Lin and Liu (2009a) obtained the
asymptotic distribution for the maximum of the periodogram under the i.i.d. and
linear process cases, the heavy-tailed case and nonlinear time series case, respec-
tively; Fay and Soulier (2001) proved the central limit theorem for functionals of
the periodogram; Shao and Wu (2007) obtained asymptotic distributions for the
periodogram and the empirical distribution function of the periodogram for a wide
class of nonlinear processes. When {Xn} are independent and identically distrib-
uted (i.i.d.) random variables with Var(X1) = σ 2 and E|X1|2+δ < ∞ for some
δ > 0, Davis and Mikosch (1999) show that

lim
n→∞ P

(
max

1≤j≤q
In(ωj )/σ

2 − logq ≤ y
)

= exp(− exp(−y)).(1.1)
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The main purpose of this paper is to study the Cramér-type moderate deviations
for the maximum of the periodogram and its studentized version. That is, what is
the largest possible an so that

P(max1≤j≤q In(ωj )/σ
2 − logq ≥ y)

1 − exp(− exp(−y))
→ 1(1.2)

uniformly in y ∈ [− logq, an], or for the studentized periodogram, what is the
largest possible bn so that

P(max1≤j≤q In(ωj )/(q
−1 ∑q

j=1 In(ωj )) − logq ≥ y)

1 − exp(− exp(−y))
→ 1(1.3)

uniformly in y ∈ [− logq, bn]? We will show that an depends on the moment con-
dition of {Xn}. For example, if E|X1|2+δ < ∞, δ > 0, the largest possible value
of an is δ

2 logn, but an can be chosen o(n1/3) if the moment generating function
of X1 is finite. However, the situation becomes totally different for the studentized
periodogram. We will prove that bn = o(n1/3) provided that EX4

1 < ∞.
The paper is organized as follows. Our main results, Theorems 2.1–2.3, are

stated in Section 2, while proofs of the main results are postponed to Section 4. Our
moderate deviation results are motivated by simultaneous tests in gene expression
time series. Theoretical results for the simultaneous tests and simulation study are
discussed in Section 3.

2. Main results. Throughout this paper, we assume {Xn} are i.i.d. random
variables. Our first result is the moderate deviation for the maximum of the peri-
odogram for y ≤ c logn for some c > 0. Such type of moderate deviation for the
partial sums of {Xn} has been studied in literature, for example, by Michel (1976),
Amosova (1982), Petrov (2002) and Wu and Zhao (2008).

THEOREM 2.1. (i) Suppose that for some c > 0,

nc+1P
(|X1| ≥

√
n logn

) = o(1)(2.1)

as n → ∞. Then we have

lim
n→∞

P(max1≤j≤q In(ωj )/σ
2 − logq ≥ y)

1 − exp(− exp(−y))
= 1(2.2)

uniformly in y ∈ [− logq, c logn], where σ 2 = Var(X1).
(ii) If for some σ > 0 (2.2) holds uniformly in y ∈ [− logq, c logn] with some

c > 0, then we have

nc+1P
(|X1| ≥

√
n logn

) = O(1).(2.3)
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Theorem 2.1(ii) shows that condition (2.1) is nearly optimal and hence the range
depends on the moment assumption. On the other hand, when the moment gener-
ating function exists, the range can be extended to o(n1/3).

THEOREM 2.2. Assume Var(X1) = σ 2 and Eet0|X1| < ∞ for some t0 > 0.
Then

lim
n→∞

P(max1≤j≤q In(ωj )/σ
2 − logq ≥ y)

1 − exp(− exp(−y))
= 1

uniformly in y ∈ [− logq, o(n1/3)).

We next consider the maximum of the studentized periodogram. Theorem 2.3
below shows that the moment conditions in Theorems 2.1 and 2.2 can be signifi-
cantly reduced for the studentized version.

THEOREM 2.3. If EX4
1 < ∞, then

lim
n→∞

P(max1≤j≤q In(ωj )/(q
−1 ∑q

j=1 In(ωj )) − logq ≥ y)

1 − exp(− exp(−y))
= 1(2.4)

uniformly in y ∈ [− logq, o(n1/3)).

Since the variance σ 2 of X1 is typically unknown, what used in practice is actu-
ally the studentized periodogram. So the result in Theorem 2.3 is more appealing
and useful than Theorems 2.1 and 2.2. Theorem 2.3 also shares similar properties
with self-normalized partial sums of independent random variables, which usually
requires fewer moment assumptions; see Shao (1997, 1999) for self-normalized
large deviation without any moment assumption and Cramér moderate deviation
under finite third moment, and de la Peña, Lai and Shao (2009) for recent de-
velopments in the area of self-normalized limit theory. In view of the moderate
deviation for self-normalized partial sums [Shao (1999)], we conjecture that The-
orem 2.3 remains true if E|X1|3 < ∞. It would also be interesting to see whether
a similar result as Theorem 2.3 holds when {Xn} is a linear process or a nonlinear
process, however, this will be a very challenging question because the moderate
deviation result is not clear even for the self-normalized partial sums of this class
of {Xn}.

3. Application to simultaneous tests.

3.1. Theoretical results. Periodic phenomena are widely studied in biology.
Recently, there are quite a lot of interests in detecting periodic patterns in gene
expression time series; see Wichert, Fokianos and Strimer (2004), Ahdesmäki et
al. (2005), Chen (2005), Glynn, Chen and Mushegian (2006) and the references
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therein. Due to modern technology such as microarray experiments, the data are
usually high-dimensional and we often need to make many statistical inference
simultaneously. Let Yt,g denote the observed expression level of gene g at time t ,
1 ≤ g ≤ G and 1 ≤ t ≤ n, where G is the number of genes. The sample size n is
usually much smaller than the number of genes. Consider the following model of
periodic gene expression:

Yt,g = μg + βg cos(ωt + φ) + εt,g,(3.1)

where βg ≥ 0, ω ∈ (0, π), φ ∈ (−π,π ], μg is the mean expression level. For each
g, ε1,g, . . . , εn,g are i.i.d. noise sequence with mean zero. We wish to test the null
hypothesis H0,g :βg = 0 against the alternative hypothesis H1,g :βg �= 0. If H0,g

is rejected, then we identify gene g with a periodic pattern in its expression. Peri-
odogram is often used to detect periodically expressed gene. Let q = [(n − 1)/2]
and set

I (g)
n (ωj ) = 1

n

∣∣∣∣∣
n∑

k=1

Yk,ge
ikωj

∣∣∣∣∣
2

,(3.2)

where ωj = 2πj/n, 1 ≤ j ≤ q . Define the g-statistic

fg = max1≤j≤q I
(g)
n (ωj )∑q

j=1 I
(g)
n (ωj )

,

and its null distribution Fn,g(x) = P(fg ≤ x|H0,g). Under the null hypothesis and
the assumption that ε1,g, . . . , εn,g are i.i.d. normal random variables, the exact dis-
tribution for fg can be found in Fisher (1929):

P(fg > x|H0,g) =
[1/x]∑
j=1

(−1)j−1Cj
q (1 − jx)q−1 =: fn(x).(3.3)

Using (3.3), Wichert, Fokianos and Strimer (2004) proposed the following method
to identify periodically expressed genes:

Step 1. For each time series calculate Fisher’s statistic fg .
Step 2. For each of the test statistic calculate the corresponding p-value Pg =

fn(fg).
Step 3. Use the method of Benjamini and Hochberg (1995) to control the False

Discovery Rate (FDR) at θ . Let P(1) ≤ P(2) ≤ · · · ≤ P(G) be the ordered p-values
and put

iθ = max
{
i :P(i) ≤ iθ/G

}
.(3.4)

Reject the null hypothesis for the time series indexed by S = {i :Pi ≤ P(iθ )}.
In many applications such as those arising from bioinformatics, the noise can be

remarkably non-Gaussian [Ahdesmäki et al. (2005)]. Then the values P1, . . . ,PG

are only the estimators of the true p-values. It is natural to ask:
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How large G can be before the accuracy of simultaneous statistical inference becomes
poor?

Similar problems have been studied in Fan, Hall and Yao (2007), where they con-
sider Yt,g = μg + εt,g , the model in (3.1) without the periodic part, and focused on
testing H ′

0,g :μg = 0. Let the true p-value be P true
g = (1 − Fn,g(fg)). From (3.4),

P true
(iθ ) may be of the order O(1/G). Hence, max1≤g≤G|P true

g −Pg| = o(1), implied
by (1.1), is not enough. The required accuracy between the estimated p-value and
the true p-value is

|Pg − P true
g |I {Hg} = o(P true

g ) uniformly in 1 ≤ g ≤ G,(3.5)

that is,

max
1≤g≤G

∣∣∣∣ Pg

P true
g

− 1
∣∣∣∣I {Hg} = o(1),

where Hg = {Pg > θ/(2G) or P true
g > θ/(2G)}. (On Hc

g , the gene g is always
rejected.) Some similar requirements as (3.5) on simultaneous tests have been pro-
posed by Fan, Hall and Yao (2007) and Kosorok and Ma (2007), page 1460.

Recall that Fn,g(x) = P(fg ≤ x|H0,g). By examining the proof of Theorem 2.3,
we have the following corollary.

COROLLARY 3.1. Suppose that min1≤g≤G Var(ε1,g) ≥ κ for some κ > 0
which does not depend on G. Further assume that max1≤g≤G Eε4

1,g = O(1). Then
the null distribution Fn,g(x) satisfies

max
1≤g≤G

∣∣∣∣1 − Fn,g((y + logq)/q)

1 − exp(− exp(−y))
− 1

∣∣∣∣ = o(1)

uniformly in y ∈ [− logq, o(n1/3)).

In fact, by exactly the same proof as that of Theorem 2.3, it is easy to see that
for any M ≥ 0,

lim sup
n→∞

max
1≤g≤G

sup
y∈[M,o(n1/3))

∣∣∣∣1 − Fn,g((y + logq)/q)

1 − exp(− exp(−y))
− 1

∣∣∣∣ ≤ Ce−M.

Also, similarly to (1.1), following the proofs in Davis and Mikosch (1999), we
have for any fixed y ∈ R

lim sup
n→∞

max
1≤g≤G

∣∣Fn,g

(
(y + logq)/q

) − exp(− exp(−y))
∣∣ = 0,

which together with the standard discretized approximation argument gives

lim sup
n→∞

max
1≤g≤G

sup
y∈[− logq,M]

∣∣Fn,g

(
(y + logq)/q

) − exp(− exp(−y))
∣∣ = 0.

This proves Corollary 3.1.
The following lemma shows that we can replace 1 − exp(− exp(−y)) by

fn((y + logq)/q).
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LEMMA 3.1. Let fn be given in (3.3). We have

lim
n→∞

∣∣∣∣ fn((y + logq)/q)

1 − exp(− exp(−y))
− 1

∣∣∣∣ = 0

uniformly in y ∈ [− logq, o(n1/3)).

It follows from Corollary 3.1 and Lemma 3.1 the following theorem.

THEOREM 3.1. Suppose the conditions in Corollary 3.1 are satisfied and G =
exp(o(n1/3)). Then (3.5) holds.

Theorem 3.1 shows that the level of the simultaneous tests is accurate provided
that G = exp(o(n1/3)), which seems to be the correct order of asymptotics for
microarray experiments with a moderate number of samples.

Using the bootstrap and a refined expansion of t-statistic in Theorem 1.2 of
Wang (2005), Fan, Hall and Yao (2007) show that exp(o(n1/3)) can be replaced
by exp(o(n1/2)) for the tests H ′

0,g :μg = 0. It would be interesting to investigate
whether a similar expansion as Theorem 1.2 of Wang (2005) holds for the maxi-
mum of the studentized periodogram.

3.2. Simulation study. In this section, we carry out a simple simulation study
to assess the finite sample performance. We generate 2000 genes with 100 periodic
genes for different sample sizes n. Consider

Yt,g = β
(
cos

(
ω(g)t

) + sin
(
ω(g)t

)) + εt,g, 1 ≤ t ≤ n,1 ≤ g ≤ 100,

Yt,g = εt,g, 1 ≤ t ≤ n,101 ≤ g ≤ 2000.

εt,g will be taken as N(0,1), (
√

3/5)× t (5), EXP(1), 2−1 ×χ2(2), where t (5) has
the t distribution with freedom 5, EXP(1) is the exponential random variable with
parameter μ = 1, χ2(2) is chi square random variable with freedom 2. [The con-
stants on the left-hand side of random variables are chosen so that Var(εt,g) = 1.]
The FDR level θ is chosen as 0.15 and 0.05. The simulation results are based on
100 replicates.

We only give the simulation study when ω(g) is of the form of ωi for some
1 ≤ i ≤ q . To do this, we let ω(g) = 2π/10, n = 20,50 and β = 1. The results are
summarized in Table 1, where Tot. = total count identified using FDR; Pos. = the
number of true positives identified using FDR; Z = the number of true periodic
genes among the smallest 100 p-values genes. We note that when the tails of εt,g

are heavier than that of Gaussian random variable, the empirical FDR (EFDR)
are lower than the target FDR, while most of periodic genes can still be found.
There are no significant differences between Gaussian noise and other noises when
n is large moderately (n = 50). Powers increase as n increases. Overall Fisher’s
statistic is relatively robust to the noise, as indicated by Theorem 2.3. We refer to
Wichert, Fokianos and Strimer (2004) for some real data analysis.
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TABLE 1

Tot. (Pos.) EFDR Tot. (Pos.) EFDR

θ n = 20 n = 50

0.15 Normal 39.9 (33.7) 0.155 116.2 (99.6) 0.143
0.05 12.6 (11.9) 0.059 102.6 (99.2) 0.033

Z 62 97.1

0.15 EXP(1) 55.3 (49.5) 0.105 104.3 (97.3) 0.067
0.05 33.1 (31.9) 0.036 97.8 (95.8) 0.020

Z 69.5 96.9

0.15 χ2(2) 46.0 (43.2) 0.061 105.0 (97.6) 0.071
0.05 29.0 (28.2) 0.028 98.1 (95.6) 0.026

Z 69.7 96.5

0.15 t (5) 43.4 (39.7) 0.085 110.2 (98.2) 0.109
0.05 20.2 (19.6) 0.030 99.9 (96.6) 0.033

Z 67.6 96.6

4. Proofs. Throughout this section, let C denote a positive constant whose
value may be different at each appearance. For two real sequences {an} and {bn},
write an = O(bn) if there exists a constant C such that |an| ≤ C|bn| holds for large
n, an = o(bn) if limn→∞ an/bn = 0. Denote by | · | the d-dimensional Euclidean
norm in Rd , d ≥ 1.

PROOF OF THEOREM 2.1. (i) (Sufficiency). By
∑n

k=1 eikωj = 0 for 1 ≤ j ≤ q ,
we can assume that EX1 = 0. Also, for convenience, we assume σ 2 = 1. For y ∈
[− logq, c logn], set x = √

y + logq . We start with truncation of Xk at two levels.
Let εn = (logn)−1 and ε > 0 be a small number which will be specified later.
Define

X̃k = X′
k − EX′

k,

X′
k = XkI

{|Xk| ≤ ε
√

nx
}
,

X̂k = X′′
k − EX′′

k ,
(4.1)

X′′
k = XkI

{|Xk| ≤ εn

√
n/x

}
,

I ′
n(ωj ) = 1

n

∣∣∣∣∣
n∑

k=1

X′
ke

ikωj

∣∣∣∣∣
2

= 1

n

∣∣∣∣∣
n∑

k=1

X̃ke
ikωj

∣∣∣∣∣
2

,

I ′′
n (ωj ) = 1

n

∣∣∣∣∣
n∑

k=1

X′′
k eikωj

∣∣∣∣∣
2

= 1

n

∣∣∣∣∣
n∑

k=1

X̂ke
ikωj

∣∣∣∣∣
2

.
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Then we have ∣∣∣P(
max

1≤j≤q
In(ωj ) ≥ x2

)
− P

(
max

1≤j≤q
I ′
n(ωj ) ≥ x2

)∣∣∣
(4.2)

≤ nP
(|X1| ≥ ε

√
nx

)
.

The independence between Xl and {Xk, k �= l}, 1 ≤ l ≤ n, implies that

P
(

max
1≤j≤q

I ′
n(ωj ) ≥ x2

)
− P

(
max

1≤j≤q
I ′′
n (ωj ) ≥ x2

)

≤ P

(
max

1≤j≤q

∣∣∣∣∣
n∑

k=1

X′
ke

ikωj

∣∣∣∣∣ ≥ √
nx,

n⋃
l=1

{|Xl| > εn

√
n/x

})

≤
n∑

l=1

P

(
max

1≤j≤q

∣∣∣∣∣
n∑

k=1,k �=l

X′
ke

ikωj

∣∣∣∣∣ ≥ (1 − ε)
√

nx

)
P
(|Xl| > εn

√
n/x

)

≤ nP

(
max

1≤j≤q

∣∣∣∣∣
n∑

k=1

X′
ke

ikωj

∣∣∣∣∣ ≥ (1 − 2ε)
√

nx

)
P
(|X1| > εn

√
n/x

)
(4.3)

≤ nP

(
max

1≤j≤q

∣∣∣∣∣
n∑

k=1

X′′
k eikωj

∣∣∣∣∣ ≥ (1 − 2ε)
√

nx

)
P
(|X1| > εn

√
n/x

)
+ (

nP
(|X1| > εn

√
n/x

))2

=: Hn + (
nP

(|X1| > εn

√
n/x

))2
.

To estimate Hn, we need Lemma 4.2 of Lin and Liu (2009a). The proof and con-
stants n0, c1,1, c1,2, etc. are given in Lin and Liu (2009b), pages 23–25.

Let d ≥ 1 be a fixed integer. For z = (x1, y1, . . . , xd, yd) let ‖z‖d = min{(x2
k +

y2
k )1/2 : 1 ≤ k ≤ d}, let I2d denote a 2d × 2d identity matrix, and ‖ · ‖ denote the

spectral norm of a matrix.

LEMMA 4.1 [Lin and Liu (2009a, 2009b)]. Let ξn,1, . . . , ξn,kn be indepen-
dent random vectors in R2d with zero means, and let Sn = ∑kn

i=1 ξn,i . Assume that

|ξn,i | ≤ cnB
1/2
n , 1 ≤ i ≤ kn, for some cn → 0 and Bn → ∞, and that

‖B−1
n Cov(ξn,1 + · · · + ξn,kn) − I2d‖ ≤ C0c

2
n,

where C0 is a positive constant. If βn := B
−3/2
n

∑kn

k=1 E|ξn,k|3 → 0, then for all
n ≥ n0∣∣P(‖Sn‖d ≥ x) − P(‖N‖d ≥ x/B1/2

n )
∣∣

≤ o(1)P(‖N‖d ≥ x/B1/2
n )

+ C

(
exp

(
−δ2

n min(c−2
n ,β

−2/3
n )

16d

)
+ exp

(
− c2

n

Cβ2
n log(1/βn)

))
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uniformly for x ∈ [B1/2
n , δn min(c−1

n ,β
−1/3
n )B

1/2
n ], with any δn → 0 and δn ×

min(c−1
n ,β

−1/3
n ) → ∞, where N is a centered normal random vector with co-

variance matrix I2d , C is a positive constant which only depends on d , o(1) is
bounded by A(δn + βn + cn), A is a positive constant depending only on d ,

n0 = min
{
n :∀k ≥ n, c2

k ≤ min(C−1
0 ,8−1)

2
, δk ≤ c1,1 min(C−2

0 ,1), βk ≤ c1,2

}
,

while c1,1 and c1,2 are some positive constants depending only on d .

Let

Yk := Yk(ωi1, . . . ,ωid )

= X̂k(cos(kωi1), sin(kωi1), . . . , cos(kωid ), sin(kωid ))

for 1 ≤ k ≤ n,1 ≤ i1 < · · · < id ≤ q . By the facts that for 1 ≤ j, l ≤ q ,
n∑

k=1

cos2(ωjk) = n/2,

n∑
k=1

sin2(ωjk) = n/2,

(4.4)
n∑

k=1

cos(ωjk) sin(ωlk) = 0,

we have ∥∥∥∥∥n−1 Cov

(
n∑

k=1

Yk

)
− 1

2
I2d

∥∥∥∥∥ ≤ EX2
1I

{|X1| ≥ εn

√
n/x

}
.(4.5)

It is easy to see that (2.1) implies E|X1|p < ∞ for any 2 < p < 2c + 2. Thus, we
have

|Yk| ≤ 2dεn

√
n/x and

(4.6)

n−3/2
n∑

k=1

E|Yk|3 ≤ C max(n1−p/2x−3+p,n−1/2).

Letting Sn = ∑n
k=1 Yk , cn = 2εn(logq)−1/2, Bn = n in Lemma 4.1 and δn logn →

∞ with δn being defined in Lemma 4.1, and noting that ‖N‖d is the minimum of
d i.i.d. exponential r.v.’s, we have for any 0 ≤ η < 1,

P(‖∑n
k=1 Yk‖d ≥ (1 − η)x

√
n)

q−d(1−η)2 exp(−d(1 − η)2y)
→ 1,(4.7)

uniformly in x ∈ [√logq,
√

(c + 1) logn]. Observing that

I ′′
n (ωj ) = 1

n

∥∥∥∥∥
n∑

k=1

Yk(ωj )

∥∥∥∥∥
2

1

,
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by (4.7),

P
(

max
1≤j≤q

I ′′
n (ωj ) ≥ x2

)
≤

q∑
j=1

P

(∥∥∥∥∥
n∑

k=1

Yk(ωj )

∥∥∥∥∥
1

≥ x
√

n

)

≤ (
1 + o(1)

)
exp(−y)

uniformly in y ∈ [0, c logn]. Combining (4.2)–(4.7) yields

P
(

max
1≤j≤q

In(ωj ) ≥ x2
)

≤ (
1 + o(1)

)
exp(−y)

(4.8)
+ Cn1+4ε exp

(−(1 − 2ε)2y
)
P
(|X1| > εn

√
n/x

)
+ (

nP
(|X1| > εn

√
n/x

))2 + nP
(|X1| ≥ εx

√
n
)

uniformly in x ∈ [√logq,
√

(c + 1) logn]. To establish the lower bound, we ob-
serve that

P
(

max
1≤j≤q

In(ωj ) ≥ x2
)

≥ P

(
max

1≤j≤q
I ′′
n (ωj ) ≥ x2,

n⋂
k=1

{|Xk| ≤ εn

√
n/x

})
(4.9)

= P
(

max
1≤j≤q

I ′′
n (ωj ) ≥ x2

)

− P

(
max

1≤j≤q
I ′′
n (ωj ) ≥ x2,

n⋃
k=1

{|Xk| ≥ εn

√
n/x

})
.

Similarly to (4.3) and by (4.7) again, we have

P

(
max

1≤j≤q
I ′′
n (ωj ) ≥ x2,

n⋃
k=1

{|Xk| ≥ εn

√
n/x

})

≤ nP

(
max

1≤j≤q

∣∣∣∣∣
n∑

k=1

X′′
k eikωj

∣∣∣∣∣ ≥ (1 − 2ε)x
√

n

)
P
(|X1| ≥ εn

√
n/x

)
(4.10)

≤ Cn1+4ε exp
(−(1 − 2ε)2y

)
P
(|X1| > εn

√
n/x

)
uniformly in x ∈ [√logq,

√
(c + 1) logn]. For the first term in (4.9), we have

P
(

max
1≤j≤q

I ′′
n (ωj ) ≥ x2

)
≥

q∑
j=1

P(Aj ) − ∑
1≤i<j≤q

P(AiAj ),(4.11)
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where Aj = {I ′′
n (ωj ) ≥ x2}. Applying d = 1,2 in (4.7), respectively, we obtain

P(Ai) = (
1 + o(1)

)
q−1 exp(−y),

P(AiAj ) ≤ Cn−2 exp(−2y)

uniformly in 1 ≤ i �= j ≤ q and y ∈ [0, c logn]. These two inequalities together
with (4.9)–(4.11) yield that

P
(

max
1≤j≤q

In(ωj ) ≥ x2
)

≥ (
1 + o(1)

)
exp(−y) − C exp(−2y)(4.12)

− Cn1+4ε exp
(−(1 − 2ε)2y

)
P
(|X1| > εn

√
n/x

)
uniformly in y ∈ [0, c logn]. It is easy to see that (2.1) implies that

P
(|X1| > εn

√
n/x

) ≤ C
(logn)4c+4

nc+1

for εn = (logn)−1 and x ∈ [√logq,
√

(c + 1) logn]. Hence, by (4.8), (4.12) and
for ε sufficiently small, we have for any M > 0,

lim sup
n→∞

sup
M≤y≤c logn

∣∣∣∣P(max1≤j≤q In(ωj ) − logq ≥ y)

1 − exp(− exp(−y))
− 1

∣∣∣∣ ≤ Ce−M.(4.13)

By (1.1), we have for any fixed y ∈ R,

P
(

max
1≤j≤q

In(ωj ) − logq ≥ y
)

→ 1 − e−e−y

.

Since the function 1 − e−e−y
is uniformly continuous, the standard discretized

approximation argument shows that

lim
n→∞ sup

y∈R

∣∣∣P(
max

1≤j≤q
In(ωj ) − logq ≥ y

)
− (1 − e−e−y

)
∣∣∣ = 0.

Thus, it follows that

lim sup
n→∞

sup
− logq≤y≤M

∣∣∣∣P(max1≤j≤q In(ωj ) − logq ≥ y)

1 − exp(− exp(−y))
− 1

∣∣∣∣ = 0.(4.14)

This proves (i) by (4.13) and (4.14).
(ii) (Necessity). Applying (2.2) with y = c logq , we have

P

(
max

1≤j≤q

∣∣∣∣∣
n∑

k=1

Xke
ikωj

∣∣∣∣∣ ≥ σ
√

(1 + c)n logq

)
≤ Cn−c.
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This implies that

P

(
max

1≤j≤q

∣∣∣∣∣
n∑

k=1

Xs
ke

ikωj

∣∣∣∣∣ ≥ 2−1σ
√

(1 + c)n logq

)
≤ Cn−c,(4.15)

where Xs
n = Xn − Xc

n and {Xc
n} is an independent copy of {Xn}. For z = (z1,1,

z1,2, . . . , zq,1, zq,2) ∈ R2q , let

‖z‖max = max
1≤j≤q

√
z2
j,1 + z2

j,2.

For 1 ≤ k ≤ n, let

Dk = (Xs
k cos(kω1),X

s
k sin(kω1), . . . ,X

s
k cos(kωq),Xs

k sin(kωq)).

Then it is easy to see that max1≤j≤q |∑n
k=1 Xs

ke
ikωj | = ‖∑n

k=1 Dk‖max. By Lévy’s
inequality in a Banach space [cf. Ledoux and Talagrand (1991), page 47] and
(4.15), we have

P
(

max
1≤k≤n

‖Dk‖max ≥ 2−1σ
√

(1 + c)n logq
)

≤ Cn−c.(4.16)

Observing that ‖Dk‖max = |Xs
k|, we have by (4.16)

1 − (
1 − P

(|Xs
1| ≥ 2−1σ

√
(1 + c)n logq

))n ≤ Cn−c,

which implies that

1 − exp
(−nP

(|Xs
1| ≥ 2−1σ

√
(1 + c)n logq

)) ≤ Cn−c.(4.17)

By (4.17), we have

nc+1P
(|Xs

1| ≥ 2−1σ
√

(1 + c)n logq
) = O(1).(4.18)

Since X1 and Xc
1 are independent, we have for large n

1
2P

(|X1| ≥ σ
√

(1 + c)n logq
)

≤ P
(|Xc

1| ≤ 2−1σ
√

(1 + c)n logq
)
P
(|X1| ≥ σ

√
(1 + c)n logq

)
(4.19)

≤ P
(|Xs

1| ≥ 2−1σ
√

(1 + c)n logq
)
.

Now (2.3) follows from (4.18), (4.19) and some elementary calculations. �

To prove Theorems 2.2 and 2.3, we need the following notation and lemma. Let
λ := λn be a positive number which will be specified later. Let 0 ≤ l ≤ m = [x2/2]
and Nl = {j1, . . . , jl} ⊂ {1, . . . , n}. Define

X′
k = XkI {|Xk| ≤ λ}, 1 ≤ k ≤ n,

(4.20)
Y′

k = X′
k(cos(kωi1), sin(kωi1), . . . , cos(kωid ), sin(kωid ))
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for 1 ≤ k ≤ n,d ≥ 1,1 ≤ i1 < · · · < id ≤ q , and set

SNl
n =

n∑
k=1,k /∈Nl

Y′
k, SNl

n =
n∑

k=1,k /∈Nl

(Y′
k − EY′

k).

LEMMA 4.2. Suppose that σ 2 = 1, E|X1|3 < ∞ and 0 ≤ x ≤ ε′
nn

1/6, where

ε′
n → 0 is any sequence of constants. Let 0 < εn → 0 and εn ≥ ε

′1/4
n . (i) If λ =

εn

√
n/x, then we have

lim
n→∞

P(‖SNl
n ‖d ≥ x

√
n)

e−dx2 = 1(4.21)

uniformly in x ∈ [4, ε′
nn

1/6], 1 ≤ i1 < · · · < id ≤ q and 0 ≤ l ≤ m. (ii) If λ =
(εn

√
n/x)3/4 and EX4

1 < ∞, then (4.21) holds.

PROOF. Recall that
∑n

k=1 eikωj = 0 for 1 ≤ j ≤ q . We have for n large∣∣∣∣∣
n∑

k=1,k /∈Nl

EY′
k

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1,k∈Nl

EY′
k

∣∣∣∣∣ ≤ dx2/2 ≤ εn

√
n/x.

It follows that, for x ∈ [4, ε′
nn

1/6],
P
(‖SNl

n ‖d ≥ x
√

n + εn

√
n/x

) ≤ P
(‖SNl

n ‖d ≥ x
√

n
)

≤ P
(‖SNl

n ‖d ≥ x
√

n − εn

√
n/x

)
.

Since E|X1|3 < ∞, under the conditions of (i) or (ii), we have for large n

|Y′
k| ≤ 2dεn

√
n/x and n−3/2

n∑
k=1

E|Y′
k|3 ≤ Cn−1/2.

Also, under the conditions of (i) or (ii), simple calculations show that∥∥∥∥1

n
Cov(SNl

n ) − I2d

∥∥∥∥ ≤ EX2
1I {|X1| ≥ λ} + Cdn−1x2

≤ Cxn−1/2ε−1
n ≤ Cε2

n/x
2

for 4 ≤ x ≤ ε′
nn

1/6. By taking cn = 2dεn/x, Bn = √
n and δn/εn → ∞ in Lem-

ma 4.1, we have

P(‖SNl
n ‖d ≥ x

√
n ± εn

√
n/x)

e−dx2 → 1

uniformly in x ∈ [4, ε′
nn

1/6]. This proves Lemma 4.2. �
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PROOF OF THEOREM 2.2. For any ε′
n → 0, let x = √

y + logq ∈ [4, ε′
nn

1/6]
and εn = ε

′1/4
n . Recall X′

k in (4.20) and let λ = εn

√
n/x. Define

I ′
n(ωj ) = 1

n

∣∣∣∣∣
n∑

k=1

X′
ke

ikωj

∣∣∣∣∣
2

.

Then, by Lemma 4.2 (taking Nl = ∅ and d = 1), we have

P
(

max
1≤j≤q

I ′
n(ωj ) ≥ x2

)
≤

q∑
j=1

P

(∣∣∣∣∣
n∑

k=1

X′
ke

ikωj

∣∣∣∣∣ ≥ x
√

n

)

≤ (
1 + o(1)

)
e−y

uniformly in x ∈ [4, ε′
nn

1/6]. Since Eet0|X1| < ∞, we have nP(|X1| > εn

√
n/x) =

o(1)e−x2
. Therefore,

P
(

max
1≤j≤q

In(ωj ) ≥ x2
)

≤ P
(

max
1≤j≤q

I ′
n(ωj ) ≥ x2

)
+ nP

(|X1| > εn

√
n/x

)
≤ (

1 + o(1)
)
e−y

uniformly in x ∈ [4, ε′
nn

1/6]. Similarly, we have

P
(

max
1≤j≤q

In(ωj ) ≥ x2
)

≥ (
1 + o(1)

)
e−y − Ce−2y

uniformly in x ∈ [4, ε′
nn

1/6]. The remaining proof follows similar arguments as in
the proof of Theorem 2.1. �

PROOF OF THEOREM 2.3. Recall that
∑n

k=1 eikωj = 0 for 1 ≤ j ≤ q . Without
loss of generality, we can assume that EX1 = 0 and EX2

1 = 1. By the fact eikωj1 =
e−ikωj2 for j1 + j2 = n, we have∣∣∣∣∣

n∑
k=1

Xke
ikωj1

∣∣∣∣∣
2

=
∣∣∣∣∣

n∑
k=1

Xke
ikωj2

∣∣∣∣∣
2

for j1 + j2 = n. Hence, when n is odd,

q−1
q∑

j=1

In(ωj ) = (2q)−1
q∑

j=1

(
In(ωj ) + In(ωn−j )

)
(4.22)

= (2q)−1
n∑

j=1

In(ωj ) − n

n − 1
(X)2,

where X = n−1 ∑n
k=1 Xk . Moreover,

n∑
j=1

In(ωj ) =
n∑

k=1

X2
k + 2n−1

n∑
k=2

Xk

k−1∑
i=1

Xi

n∑
j=1

wk,i,j ,
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where wk,i,j = cos(ωjk) cos(ωj i) + sin(ωjk) sin(ωj i). Note that ωjk = ωkj and
ωj i = ωij . Since |∑n

l=1 eilλ| = |sin(λn/2)|/|sin(λ/2)| when λ/π is not an integer,
we get

∑n
j=1 wk,i,j = ∑n

j=1 cos((ωk − ωi)j) = 0. So, (4.22) implies that, when n

is odd,

q−1
q∑

j=1

In(ωj ) = (n − 1)−1

(
n∑

k=1

X2
k − n(X)2

)
.

Similarly, when n is even, we have

q−1
q∑

j=1

In(ωj ) = (n − 2)−1

(
n∑

k=1

X2
k − n(X)2 − n(X′)2

)
,(4.23)

where X′ = n−1 ∑n
k=1(−1)kXk . By the self-normalized moderate deviation Theo-

rem 3.1 in Shao (1997), we have

P

(∣∣∣∣∣
n∑

k=1

(−1)kXk

∣∣∣∣∣ ≥ n1/3Vn

)
≤ Ce−n2/3/4,

P

(∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣ ≥ n1/3Vn

)
≤ Ce−n2/3/4,

where V 2
n = ∑n

k=1 X2
k . In view of (4.22) and (4.23), it suffices to show that

lim
n→∞

P(max1≤j≤q |∑n
k=1 Xke

ikωj |2/∑n
k=1 X2

k − logq ≥ y)

1 − e−e−y = 1(4.24)

uniformly in y ∈ [− logq, o(n1/3)).
Recall X′

k = XkI {|Xk| ≤ λ} in (4.20). Let H be a subset of {1, . . . , n}. Put

Mn = max
1≤j≤q

∣∣∣∣∣
n∑

k=1

Xke
ikωj

∣∣∣∣∣, M̃n = max
1≤j≤q

∣∣∣∣∣
n∑

k=1

X′
ke

ikωj

∣∣∣∣∣,
M(H)

n = max
1≤j≤q

∣∣∣∣∣
n∑

k=1,k /∈H

Xke
ikωj

∣∣∣∣∣,
M̃(H)

n = max
1≤j≤q

∣∣∣∣∣
n∑

k=1,k /∈H

X′
ke

ikωj

∣∣∣∣∣,
Ṽn =

(
n∑

k=1

X′2
k

)1/2

, V (H)
n =

(
n∑

k=1,k /∈H

X2
k

)1/2

,

Ṽ (H)
n =

(
n∑

k=1,k /∈H

X′2
k

)1/2

.
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Noting that for any real numbers s and t and nonnegative number c and x ≥ 1,

{
s + t ≥ x

√
c + t2

} ⊂ {
s ≥

√
x2 − 1

√
c
}

(4.25)

[see page 2181 in Jing, Shao and Wang (2003)], we have

P(Mn ≥ xVn) ≤ P(M̃n ≥ xṼn) +
n∑

j=1

P(Mn ≥ xVn,Xj �= X′
j )

≤ P(M̃n ≥ xṼn) +
n∑

j=1

P
(
M(j)

n + |Xj | ≥ xVn,Xj �= X′
j

)
(4.26)

≤ P(M̃n ≥ xṼn) +
n∑

j=1

P
(
M(j)

n ≥
√

x2 − 1V (j)
n ,Xj �= X′

j

)

= P(M̃n ≥ xṼn) +
n∑

j=1

P(|Xj | ≥ λ)P
(
M(j)

n ≥
√

x2 − 1V (j)
n

)
.

Repeating the above arguments m times with m = [x2/2], we have for x > 4,

n∑
j1=1

P(|Xj1 | ≥ λ)P
(
M(j1)

n ≥
√

x2 − 1V (j1)
n

)

≤
n∑

j1=1

P(|Xj1 | ≥ λ)P
(
M̃(j1)

n ≥
√

x2 − 1Ṽ (j1)
n

)
(4.27)

+
n∑

j1=1

n∑
j2=1

P(|Xj1 | ≥ λ)P(|Xj2 | ≥ λ)P
(
M(j1,j2)

n ≥
√

x2 − 2V (j1,j2)
n

)

≤
m∑

l=1

Z̃l + Zm+1,

where

Z̃l =
n∑

j1=1

· · ·
n∑

jl=1

[
l∏

k=1

P(|Xjk
| ≥ λ)

]
× P

(
M̃(j1,...,jl )

n ≥
√

x2 − lṼ (j1,...,jl)
n

)
,

Zm+1 =
n∑

j1=1

· · ·
n∑

jm+1=1

{[
m+1∏
k=1

P(|Xjk
| ≥ λ)

]

× P
(
M

(j1,...,jm+1)
n ≥

√
x2 − m − 1V

(j1,...,jm+1)
n

)}
.
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For ε′
n → 0 and 4 ≤ x ≤ ε′

nn
1/6, let λ = εn

√
n/x, where εn = ε

′1/4
n . Then

Zm+1 ≤ (
nP(|X1| ≥ λ)

)m+1 ≤ e−m logqn = o(1)e−x2
,(4.28)

where

qn = (ε′3
n ε−3

n E|X1|3I {|X1| ≥ λ})−1 → ∞
as n → ∞. We next estimate Z̃l . From Lemma 4.2, we have for 0 ≤ l ≤ m =
[x2/2],

P
(
M̃(j1,...,jl)

n ≥
√

x2 − lṼ (j1,...,jl )
n

)
≤ P

(
M̃(j1,...,jl )

n ≥
√

x2 − l

√
n(1 − εnx−2)

)
(4.29)

+ P
(
Ṽ (j1,...,jl)

n ≤
√

n(1 − εnx−2)
)

≤ (
1 + o(1)

)
qe−x2+l + P

(
Ṽ (j1,...,jl)

n ≤
√

n(1 − εnx−2)
)
,

uniformly in x ∈ [4, ε′
nn

1/6]. By a similar argument as in Hu, Shao and Wang
[(2009), page 1193] if EX4

1 < ∞, we have

P
(
Ṽ (j1,...,jl )

n ≤
√

n(1 − εnx−2)
) ≤ P

(
n − ml − Ṽ (j1,...,jl )2

n ≥ εnnx−2/2
)

≤ o(1)e−x2
,

where ml is the cardinality of {j1, . . . , jl}, and hence

Z̃l ≤ Cn
(
nP(|X1| ≥ λ)

)l
e−(x2−l) ≤ Cne−x2+l−Cl logqn.(4.30)

This together with qn → ∞ shows that

m∑
l=1

Z̃l = o(1)ne−x2
(4.31)

uniformly in x ∈ [4, ε′
nn

1/6]. Combining (4.26)–(4.28), (4.29) and (4.31) yields

P(Mn ≥ xVn) ≤ (
1 + o(1)

)
qe−x2

(4.32)

uniformly in x ∈ [4, ε′
nn

1/6].
We next estimate the lower bound for P(Mn ≥ xVn). For ε′

n → 0 and 4 ≤ x ≤
ε′
nn

1/6, let εn = max((x/
√

n)1/8, ε
′1/4
n ) and λ = (εn

√
n/x)3/4. Then

P(Mn ≥ xVn) ≥ P(M̃n ≥ xṼn)
(4.33)

−
n∑

j=1

P
(
M̃(j)

n ≥
√

x2 − 1Ṽ (j)
n

)
P(|Xj | ≥ λ).



1930 W. LIU AND Q.-M. SHAO

Similarly to (4.30), we have

n∑
j=1

P
(
M̃(j)

n ≥
√

x2 − 1Ṽ (j)
n

)
P(|Xj | ≥ λ) = o(1)ne−x2

(4.34)

uniformly in x ∈ [4, ε′
nn

1/6]. For the first term on the right-hand side of (4.33), we
have

P(M̃n ≥ xṼn) ≥ P
(
M̃n ≥ xṼn, Ṽ

2
n ≤ n(1 + εn/x

2)
)

≥ P
(
M̃n ≥ x

√
n(1 + εn/x2)

)
− P

(
M̃n ≥ √

nx, Ṽ 2
n ≥ n(1 + εn/x

2)
)
.

Define A = {Ṽ 2
n ≥ n(1+εn/x

2)}. Set Yk,l(θ1, θ2) = X′
k(θ1 cos(kwl)+θ2 sin(kwl))

for any θ1, θ2 ∈ R. Let

�1 = {θ1 ≥ 0, θ2 ≥ 0; θ2
1 + θ2

2 = 1};
�2 = {θ1 ≥ 0, θ2 < 0; θ2

1 + θ2
2 = 1};

�3 = {θ1 < 0, θ2 ≥ 0; θ2
1 + θ2

2 = 1};
�4 = {θ1 < 0, θ2 < 0; θ2

1 + θ2
2 = 1}.

Then we have

P
(
M̃n ≥ x

√
n,A

)
≤

q∑
l=1

P

(
sup

(θ1,θ2)∈�1

∣∣∣∣∣
n∑

k=1

Yk,l(θ1, θ2)

∣∣∣∣∣ ≥ x
√

n,A

)

+
q∑

l=1

P

(
sup

(θ1,θ2)∈�2

∣∣∣∣∣
n∑

k=1

Yk,l(θ1, θ2)

∣∣∣∣∣ ≥ x
√

n,A

)
(4.35)

+
q∑

l=1

P

(
sup

(θ1,θ2)∈�3

∣∣∣∣∣
n∑

k=1

Yk,l(θ1, θ2)

∣∣∣∣∣ ≥ x
√

n,A

)

+
q∑

l=1

P

(
sup

(θ1,θ2)∈�4

∣∣∣∣∣
n∑

k=1

Yk,l(θ1, θ2)

∣∣∣∣∣ ≥ x
√

n,A

)
.

We only deal with the first term above, while other terms can be proved sim-
ilarly. For fixed (θ1, θ2) ∈ �1, following the proof of Theorem 2 in Shao
(1999) (see pages 393 and 394), we can obtain a desired exponential bound for
P(|∑n

k=1 Yk,l(θ1, θ2)| ≥ x
√

n,A). To this end, we split �1 into n6 parts so that we
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can discretize sup(θ1,θ2)∈�1
and then apply the proof of Theorem 2 in Shao (1999).

Let θ1,i = i/n6 for 1 ≤ i ≤ n6 and θ2,i =
√

1 − θ2
1,i . We have, for 1 ≤ l ≤ q ,

P

(
sup

(θ1,θ2)∈�1

∣∣∣∣∣
n∑

k=1

Yk,l(θ1, θ2)

∣∣∣∣∣ ≥ x
√

n,A

)

≤
n6∑
i=1

P

(∣∣∣∣∣
n∑

k=1

Yk,l(θ1,i , θ2,i)

∣∣∣∣∣ ≥ x
√

n − √
nεnx

−1,A

)

+
n6∑
i=1

P

(
sup

(θ1,θ2)∈�1,θ1,i−1≤θ1≤θ1,i

∣∣∣∣∣
n∑

k=1

[Yk,l(θ1, θ2)(4.36)

− Yk,l(θ1,i , θ2,i)]
∣∣∣∣∣ ≥ √

nεnx
−1

)

=:
n6∑
i=1

J1,i +
n6∑
i=1

J2,i .

It is easy to see that sup(θ1,θ2)∈�1,θ1,i−1≤θ1≤θ1,i
|Yk,l(θ1, θ2)−Yk,l(θ1,i , θ2,i)| ≤ n−1.

Hence, J2,i = 0 for x ∈ [4, ε′
nn

1/6]. Letting b = x/
√

n and τ = (
√

n/x)1/4, we
have

J1,i ≤ P

(
n∑

k=1

bYk,l(θ1,i , θ2,i) + τb2Ṽ 2
n ≥ x2 − εn + τ(x2 + εn)

)

+ P

(
n∑

k=1

−bYk,l(θ1,i , θ2,i) + τb2Ṽ 2
n ≥ x2 − εn + τ(x2 + εn)

)

≤ P

(
n∑

k=1

bY k,l(θ1,i , θ2,i) + τb2[Ṽ 2
n − EṼ 2

n ] ≥ x2 − εn + τ ε̃n

)
(4.37)

+ P

(
n∑

k=1

−bY k,l(θ1,i , θ2,i) + τb2[Ṽ 2
n − EṼ 2

n ] ≥ x2 − εn + τ ε̃n

)
=: J3,i ,

where

Y k,l(θ1,i , θ2,i) = Yk,l(θ1,i , θ2,i) − EYk,l(θ1,i , θ2,i),

ε̃n = εn + τb2(n − EṼ 2
n )

= εn + o(1)x3/
√

n.
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Let ηk = Y k,l(θ1,i , θ2,i) and ξk = X′2
k −EX′2

k . Using |es −1− s − s2/2| ≤ |s|3es∨0,
we get

Ee2bηk+2τb2ξk = 1 + 2E(bηk + τb2ξk)
2 + O(1)E|bηk + τb2ξk|3e3

= 1 + 2b2Eη2
k + 4τb3E(ηkξk) + 2τ 2b4Eξ2

k

+ O(1)e3(b3E|ηk|3 + τ 3b6E|ξk|3)
= 1 + 2b2(

EX′2
k − (EX′

k)
2)[θ2

1,i cos2(kwl) + θ2
2,i sin2(kwl)

+ 2θ1,iθ2,i cos(kwl) sin(kwl)]
+ O(1)(1 + τ)b3

= 1 + 2b2(
θ2

1,i cos2(kwl) + θ2
2,i sin2(kwl)

+ 2θ1,iθ2,i cos(kwl) sin(kwl)
)

+O(1)(1 + τ)b3

for x ∈ [4, ε′
nn

1/6]. This, together with (4.4), implies that

J3,i ≤ 2 exp
(−2x2 + 2εn − 2τ ε̃n + nb2 + O(1)(1 + τ)x3/

√
n
)

(4.38)
≤ C exp(−x2 − b−1/8).

Combining (4.35)–(4.38) gives

P
(
M̃n ≥ x

√
n,A

) = o(1)e−x2
.(4.39)

Define

Aj =
{∣∣∣∣∣

n∑
k=1

X′
ke

ikωj

∣∣∣∣∣ ≥ x

√
n(1 + εn/x2)

}
, 1 ≤ j ≤ q.

We have

P
(
M̃n ≥ x

√
n(1 + εn/x2)

) ≥
q∑

j=1

P(Aj ) − ∑
1≤i<j≤q

P(AiAj ).

By Lemma 4.2(ii), we have

P(Ai) = (
1 + o(1)

)
e−x2

, P(AiAj ) = 2−1(
1 + o(1)

)
e−2x2

uniformly in x ∈ [4, ε′
nn

1/6] and 1 ≤ i, j ≤ q . This shows that

P
(
M̃n ≥ x

√
n(1 + εn/x2)

) ≥ (
1 + o(1)

)
qe−x2

(1 − 2−1qe−x2
).(4.40)

It follows from (4.34), (4.39) and (4.40) that

P(Mn ≥ xVn) ≥ (
1 + o(1)

)
qe−x2

(1 − 2−1qe−x2
)(4.41)
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uniformly in x ∈ [4, ε′
nn

1/6]. Let x = √
y + logq . Combining (4.32) and (4.41),

we have for any fixed M > 0,

lim sup
n→∞

sup
M≤y≤ε′

nn1/3

∣∣∣∣P(M2
n/V 2

n − logq ≥ y)

1 − exp(− exp(−y))
− 1

∣∣∣∣ ≤ Ce−M.(4.42)

For − logq ≤ y ≤ M , by (1.1), (4.22) and (4.23),

lim sup
n→∞

sup
− logq≤y≤M

∣∣∣∣P(M2
n/V 2

n − logq ≥ y)

1 − exp(− exp(−y))
− 1

∣∣∣∣ = 0.(4.43)

This completes the proof of Theorem 2.3 by (4.42) and (4.43). �

PROOF OF LEMMA 3.1. This lemma follows immediately by Theorem 2.3
and

fn

(
(x + logq)/q

) = P
(

max1≤j≤q In(ωj )

q−1 ∑q
j=1 In(ωj )

− logq ≥ x

)
,

where {Xk} are i.i.d. N(0,1) random variables. �

PROOF OF THEOREM 3.1. Let Cg = {Pg < θ/(3G),P true
g > θ/(2G)} and de-

fine F(x) = exp(− exp(−x)). Let xn satisfy 1 − F(xn) = θ/(2.5G). So xn ∼
logG. Corollary 3.1 yields

max
1≤g≤G

∣∣∣∣ 1 − F(xn)

1 − Fn,g((xn + logq)/q)
− 1

∣∣∣∣ = o(1).(4.44)

By (4.44) and the definition of xn, we can see that on Cg , it holds P true
g > θ/(2G) >

1 −Fn,g((xn + logq)/q) for n large. By the monotonicity of distribution function,
we have qfg − logq ≤ xn. This together with Corollary 3.1 and Lemma 3.1 yields

max
1≤g≤G

∣∣∣∣ Pg

P true
g

− 1
∣∣∣∣I {Cg} = o(1).

Note that on Hg ∩ Cc
g we have Pg ≥ θ/(3G). We can show that qfg − logq ≤ yn,

where 1 − F(yn) = θ/(4G), so yn ∼ logG. In fact, by Lemma 3.1,

fn(q
−1(yn + logq))

1 − F(yn)
− 1 = o(1),

and hence, fn(fg) = Pg > fn(q
−1(yn + logq)) for n large, which implies qfg −

logq ≤ yn. It follows from Corollary 3.1 and Lemma 3.1 that

max
1≤g≤G

∣∣∣∣ Pg

P true
g

− 1
∣∣∣∣I {Hg}I {Cc

g} = o(1).

The theorem is now proved. �
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