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EXACT PROPERTIES OF EFRON’S BIASED COIN
RANDOMIZATION PROCEDURE

BY TIGRAN MARKARYAN AND WILLIAM F. ROSENBERGER1

George Mason University

Efron [Biometrika 58 (1971) 403–417] developed a restricted random-
ization procedure to promote balance between two treatment groups in a
sequential clinical trial. He called this the biased coin design. He also in-
troduced the concept of accidental bias, and investigated properties of the
procedure with respect to both accidental and selection bias, balance, and
randomization-based inference using the steady-state properties of the in-
duced Markov chain. In this paper we revisit this procedure, and derive
closed-form expressions for the exact properties of the measures derived as-
ymptotically in Efron’s paper. In particular, we derive the exact distribution
of the treatment imbalance and the variance-covariance matrix of the treat-
ment assignments. These results have application in the design and analysis
of clinical trials, by providing exact formulas to determine the role of the
coin’s bias probability in the context of selection and accidental bias, balanc-
ing properties and randomization-based inference.

1. Introduction. Efron (1971) introduced his famous biased coin design as
a method that “. . . tends to balance the experiment, but at the same time is not
over vulnerable to various common forms of experimental bias.” The primary ap-
plication is in sequential clinical trials where balance in the numbers randomly
assigned to two treatment groups is sometimes desirable for power considerations.
In such cases, it is also desirable to maintain near-balance at intermediate points
in the trial as heterogeneity or time trends in patient characteristics may lead to
less comparable treatment arms. Randomization protects from imbalances in un-
known covariates related to outcomes (which Efron referred to as accidental bias,
introduced for the first time in the 1971 paper), selection bias and provides a basis
for inference. Efron explored the balancing properties of the biased coin design,
as well as its susceptibility to selection and accidental bias, and discussed the im-
plications for randomization-based inference. All of these results were based on
studying the steady-state properties of the Markov chain induced by the imbalance
process of biased coin randomization.

Received June 2009; revised September 2009.
1Supported by NSF Grant DMS-09-04253 under the 2009 Recovery and Reinvestment Act.
AMS 2000 subject classifications. Primary 62E15, 62K99; secondary 62L05, 62J10.
Key words and phrases. Accidental bias, exact distribution theory, randomization test, restricted

randomization, selection bias.

1546

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/09-AOS758
http://www.imstat.org
http://www.ams.org/msc/


BIASED COIN RANDOMIZATION 1547

Let Tn = (T1, . . . , Tn)
′ be a randomization sequence, where Ti = 1 if treatment

A is assigned, and Ti = −1 if treatment B is assigned, i = 1, . . . , n. After j assign-
ments, let Dj be the difference in the number of patients assigned to treatments A

and B; that is, Dj = ∑j
i=1 Ti . The biased coin design with bias p ∈ [0.5,1], de-

noted BCD(p), is defined by

P(Tj = 1) =
⎧⎨
⎩

1/2, when Dj−1 = 0,
p, when Dj−1 < 0, j = 1,2,3, . . . ,

1 − p, when Dj−1 > 0.

Note that p = 0.5 results in complete randomization and p = 1 results in a per-
muted block design with block size of 2, in which case every alternate assignment
is deterministic. Efron notes that the {|Dn|}∞n=1 process forms a Markov chain of
period 2 with states 0,1,2, . . . and a reflecting barrier at the origin. He then proves
that the |Dn| process has stationary probabilities πj , given by

πj =

⎧⎪⎪⎨
⎪⎪⎩

r2 − 1

2rj+1 , when j ≥ 1,

r − 1

2r
, when j = 0,

(1.1)

where q = 1 − p, r = p/q ≥ 1. Efron uses the formulas obtained for stationary
probabilities to write the form of the limiting probabilities of perfect balance (n is
even) and imbalance of 1 (n is odd) as

lim
n→∞P(|D2m| = 0) = 2π0 = r − 1

r
,

lim
n→∞P(|D2m+1| = 1) = 2π1 = r2 − 1

r2 .

Most research on the theory of randomization in recent years has focused on
generalizations of Efron’s procedure [see, e.g., Wei (1978), Soares and Wu (1982),
Eisele (1994), Chen (1999), Baldi Antognini and Giovagnoli (2004) and Hu and
Zhang (2004)] rather than Efron’s procedure itself. In particular, Baldi Antognini
and Giovagnoli’s (2004) “adjustable biased coin design” is stochastically more
balanced, and therefore uniformly more powerful, than the other procedures [Baldi
Antognini (2008)].

The remainder of Efron’s article is devoted to selection bias, as defined by
Blackwell and Hodges (1957), accidental bias and randomization as a basis for
inference. Efron notes that the best guessing strategy against the BCD(p) is to al-
ways guess the group that has occurred least often up to that point. The probability
of correctly guessing at the j th step is

1
2P(Dj−1 = 0) + pP (|Dj−1| > 0),(1.2)
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which asymptotically approaches 1/2 + (r − 1)/4r and therefore has asymptotic
excess selection bias of

(r − 1)

4r
.(1.3)

Accidental bias refers to the squared bias of the treatment effect in a linear
regression when an unknown covariate z is left out of the model. Efron derives this
bias as

E(z′Tn)
2 = z′�Tn

z,

where �Tn
= Var(Tn). He suggests a minimax approach by noting that

z′�Tn
z ≤ maximum eigenvalue of �Tn

,(1.4)

where the inequality follows from the assumption that ‖z‖ = 1. Note that the min-
imum possible value for the maximum eigenvalue is 1 which corresponds to com-
plete randomization. Instead of directly examining �Tn

(which he acknowledges
is difficult), Efron looks at the much simpler process T1, T2, T3, . . . , Tn, assuming
that it is stationary, and aims at finding the asymptotic covariance structure of the
process. He then shows that the asymptotic maximum eigenvalue of the covariance
vector (Th+1, . . . , Th+N) as h → ∞, λN , is increasing in N and has a finite limit.
Based on numerical evidence, Efron conjectures that limN→∞ λN = 1 + (p − q)2.
This was later proved by Steele (1980). However, Smith (1984) shows by coun-
terexample that Efron’s solution may be unsatisfactory when there are short-term
dependencies in the data.

In this paper, we derive exact properties of Efron’s procedure. In particular, in
Section 2, we derive a closed-form expression for the distribution of Dn and give
the explicit form of �Tn

. These formulas are remarkably compact for the com-
plexity of the problems. We describe computational considerations in Section 3.
In Section 4, we apply these results to deriving an explicit form for the excess
selection bias, prove a result on the maximum eigenvalue of �Tn

and discuss ran-
domization as a basis for inference. We also compare the exact results with Efron’s
for various n and p. In Section 5, we draw conclusions. Finally, all proofs are given
in Appendices A–C.

2. Exact distribution of Dn and �Tn . We will assume the following conven-
tions throughout the mathematical developments.

1. For brevity, we adopt the convention to treat a combination
(x
y

)
as zero whenever

any of the following conditions is true: x < 0, y < 0, x < y,y is not an integer.
2. We treat summations as 0 if the upper limit of the summation is smaller than

the lower limit.
3. We treat conditional probabilities, conditional on zero-probability events to

be 0.
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The distribution of Dn requires determination of the exact distribution of a de-
numerable homogeneous random walk. The following result is given as the first
theorem:

THEOREM 2.1. Let n = 1,2,3, . . . ,0 ≤ k ≤ n and n and k have the same
parity. Then, the distribution of Dn of the BCD(p) is given by formulas (2.1) and
(2.2).

For k > 0,

P(Dn = ±k) = 1

2
p(n−k)/2

(n−k)/2∑
l=0

n + k − 2l

n + k + 2l

( n + k

2
+ l

l

)
qk+l−1.(2.1)

For k = 0,

P(Dn = 0) = pn/2
n/2−1∑
l=0

n − 2l

n + 2l

( n

2
+ l

l

)
ql.(2.2)

PROOF. See Appendix A. �

The compact form of these equations arises from patterns in polynomials of
p and q that can be seen developing for small n as n increments. The proof is
then by induction. Note that the distribution of NA(n) follows immediately, since
NA(n) = (Dn + n)/2.

Define tk = P(Tn = 1|Dn−1 = k). We now derive the covariance of (Tn, Tm).

THEOREM 2.2. Let 1 ≤ n < m. Then the joint distribution of (Tn, Tm) of the
BCD(p), p ∈ [1/2,1], is given by

P(Tn = 1, Tm = 1) =
n−1∑

k=−n+1

((
1

2
− tk+1

)
f̂

(m−n−1)
k+1,0 + tk+1

)
dn−1,ktk,(2.3)

where

dn,k = P(Dn = k) and is given in (2.1) and (2.2)

and

f̂
(u)
k,0 =

u∑
l=|k|

f
(l)
k,0 =

⎧⎪⎨
⎪⎩

u∑
l=|k|

|k|
l

(
l

l + |k|
2

)
p(l+|k|)/2q(l−|k|)/2, when k 	= 0;

1, when k = 0.

(2.4)

PROOF. See Appendix B. �

The form of �Tn
follows immediately:
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COROLLARY 2.1. Let �Tn
be the covariance matrix of Tn of the BCD(p),

p ∈ [1/2,1]. Then the (i, j)th entry of the matrix, σij , where 1 ≤ i ≤ j ≤ n, is
given by

σij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 ·
i−1∑

k=−i+1

((
1

2
− tk+1

)
f̂

(j−i−1)
k+1,0 + tk+1

)
× di−1,ktk − 1, when i < j ;

1, when i = j ;
(2.5)

where f̂
(u)
k,0 is defined in (2.4).

3. Computational considerations. This section contains some observations
on the computation of P(Dn = k) according to formulas (2.1) and (2.2) and the
computation of P(Tn = 1, Tm = 1) according to formulas (2.3) and (2.4). These
formulas involve terms that are products of large factorials and powers of numbers
that are between 0 and 1. The key is to calculate these products in such order that
the result does not get too large or too small too quickly. We focus on the compu-
tation of (2.1) here as the other formulas are similar. For n ≤ 100, calculating the
combination and multiplying by powers of p and q directly works well. However,
for larger values of n, precision may be lost if the intermediate products become
too large or too small.

Formula (2.1) involves (n−k)/2+1 terms, each of which is a product of powers
of p, powers of q , positive integers and reciprocals of positive integers. The generic
term of the right-hand side of (2.1) can be written as

1

2

n + k − 2l

n + k + 2l

(n−k)/2︷ ︸︸ ︷
p · · ·p ·

k+l−1︷ ︸︸ ︷
q · · ·q ·

l−1︷ ︸︸ ︷
1

2
· 1

3
· · · 1

l
·

l︷ ︸︸ ︷(
n + k

2
+ 1

)
· · ·

(
n + k

2
+ l

)
.(3.1)

There are (n + k)/2 + 2l factors less than 1 and l greater than 1. Denote these
two groups by {as}(n+k)/2+2l

s=1 and {bs}ls=1, respectively. Assume that the as are in-
dexed in decreasing order. The following simple algorithm ensures that the running
products for calculating (3.1) do not become too large or too small early on in the
calculation process.

1. Fix a number M that the running product cannot exceed. Any number that is
larger than 2n will work.

2. Fix a number m that is close to the machine epsilon. When the running product
gets close to m, the algorithm will know that further multiplication by small
numbers may result in loss of precision.

3. Start multiplication using numbers in {bs}ls=1 until the running product ex-
ceeds M .

4. Multiply the running product with numbers in {as}(n+k)/2+2l
s=1 until the running

product is less than M .
5. Iterate through Steps 3 and 4 until numbers in {bs}ls=1 are depleted.
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TABLE 1
Values of n starting at which, steady state probabilities are

within 10%, 5%, 1% and 0.1% of P(Dn = k), k = 0,1,2,3,4

Errors within

k p 10% 5% 1% 0.1%

0 0.6 20 34 74 146
0.7 6 8 18 34
0.8 2 4 8 14
0.9 2 2 4 6

1 0.6 19 33 73 145
0.7 5 7 17 33
0.8 1 3 7 13
0.9 1 1 3 5

2 0.6 14 28 68 140
0.7 4 4 8 22
0.8 4 4 8 14
0.9 2 4 6 8

25 0.6 183 211 279 379
0.7 85 93 113 141
0.8 53 57 65 77
0.9 37 39 43 49

50 0.6 342 380 464 >500
0.7 158 168 194 226
0.8 100 104 116 130
0.9 70 72 78 86

6. Continue multiplying the running product with the remaining numbers in
{as}(n+k)/2+2l

s=1 , from the largest to the smallest. Two cases are possible: the final
product is larger than m, in which case the algorithm is completed; at some
point, the running product becomes less than m, in which case one can save the
result as a product of two or more small numbers.

For example, we used the algorithm to compute Table 1, which gives the value
of n at which the steady state probabilities are within certain percentages of the
exact probability P(Dn = k), for various k and p. The same idea can be used for
calculating (2.4).

Finally, for the computation of �Tn
, the following proposition gives a property

of the matrix that can facilitate computation. The proof follows from Corollary 2.1
and Lemma B.1 and is omitted.

PROPOSITION 3.1. If �Tn
is partitioned into 2 × 2 submatrices, then all the

off-diagonal submatrices are constant (i.e., have the same elements in both rows
and columns).
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4. Applications to clinical trials. In this section we apply the results of Sec-
tion 2 to the study of balancing properties of the randomization procedure, se-
lection and accidental biases and randomization as a basis for inference. Each of
these is a consideration in the appropriate selection of a randomization procedure
in clinical trials [see Rosenberger and Lachin (2002)].

4.1. Balancing properties of the biased coin design. All finite balancing prop-
erties of the biased coin design can be investigated with the help of Theorem 2.1
which provides the means for exact calculations of the probabilities involving
P(Dn = k). In particular, the exact variance is given in the following proposition:

PROPOSITION 4.1. The exact variance of Dn is given by

Var(Dn) =
n∑

k=1
n−k even

k2p(n−k)/2
(n−k)/2∑

l=0

n + k − 2l

n + k + 2l

( n + k

2
+ l

l

)
qk+l−1.(4.1)

The variance of the imbalance of the biased coin design for different values of
n and p is provided in Table 2. Also given in the table is the limiting variance
based on the steady state distribution of the induced Markov chain. The formulas
for odd and even n are given in the following proposition which follows directly
from (1.1).

TABLE 2
Variance of the imbalance of the BCD(p) for different values of n and p

p

0.6 0.7 0.8 0.9

n even

10 5.19 2.55 1.18 0.46
20 7.65 2.91 1.21 0.46
50 10.78 3.04 1.21 0.46

100 12.10 3.04 1.21 0.46
200 12.45 3.04 1.21 0.46
∞ 12.48 3.04 1.21 0.46

n odd

5 3.30 2.15 1.45 1.10
15 6.63 2.95 1.56 1.10
25 8.52 3.13 1.57 1.10
75 11.73 3.20 1.57 1.10
∞ 12.52 3.21 1.57 1.11
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PROPOSITION 4.2. Under the limiting distribution of the BCD(p), p ∈
[1/2,1], the variance of the imbalance is given by

4r(r2 + 1)

(r2 − 1)2 when number of trials is even,

(4.2)
8r2

(r2 − 1)2 + 1 when number of trials is odd.

As can be seen in the table, odd and even n form different patterns. This is due
to the differences in the supports of the distributions; in particular, a significant
mass is concentrated at 0 when n is even and p is large. Note that both odd and
even n form an increasing series for each p. This is expected and follows from
Theorem 1 in Efron (1971) with h(j) = j2. It is also the case that Var(Dn) is
a decreasing function of p for each n. This is also expected and was proved by
Efron as Theorem 3 with h(j) = j2. It is clear that balancing properties stabilize
for moderate-sized trials of around 75 to 100. This contrasts to other randomiza-
tion procedures such as complete randomization and the urn design [Wei (1978)]
where the variance of Dn grows at a rate O(n) [Rosenberger and Lachin (2002),
Chapter 3)].

4.2. Selection bias. Theorem 2.1 allows us to calculate the selection bias for
the BCD(p) using (1.2). When n is even, P(Dn−1 = 0) = 0, and therefore the
selection bias is p. Obviously, the selection bias when n = 1 is 1/2. When n is
an odd number exceeding 1, n = 2m + 1 and m ∈ N, substituting the expression
for P(Dn−1 = 0) from Theorem 2.1, we obtain the following expression for the
selection bias for this case:

p −
(
p − 1

2

)
pm

m−1∑
l=0

m − l

m + l

(
m + l

l

)
ql.(4.3)

Now we can formulate a result on the total selection bias in n trials.

PROPOSITION 4.3. The total amount of selection bias in n, n ≥ 1, trials for
the BCD(p) is given by

1

2
+ (n − 1)p −

(
p − 1

2

) [(n−1)/2]∑
m=1

pm
m−1∑
l=0

m − l

m + l

(
m + l

l

)
ql,(4.4)

where [a] denotes the integer part of a and we use the adopted convention that the
sum is treated as zero when the upper limit of summation is smaller than the lower
limit.

One subtracts n/2 from (4.4) to obtain the excess selection bias in n trials. The
average excess selection bias in n trials (total excess selection bias divided by n)
of the BCD(p) for different values of n and p is provided in Table 3.
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TABLE 3
Average excess selection bias of the BCD for different values of n and p

p

n 0.6 0.7 0.8 0.9

5 0.058 0.107 0.146 0.177
10 0.070 0.129 0.178 0.217
15 0.072 0.129 0.173 0.207
20 0.075 0.136 0.183 0.220
25 0.076 0.135 0.179 0.213
50 0.080 0.140 0.186 0.221
75 0.081 0.140 0.185 0.219

100 0.081 0.141 0.187 0.222
200 0.082 0.142 0.187 0.222
∞ 0.083 0.143 0.188 0.222

As expected, the excess selection bias increases with p. Also, note that the av-
erage excess selection bias is not a monotonic function of n. Asymptotically, the
excess is given in (1.3) and is reported in the table under n = ∞. One can see that
the asymptotic formula is a good approximation even for sample sizes as small
as 50.

4.3. Accidental bias. With the help of Corollary 2.1, which provides the exact
form of the covariance matrix of the BCD(p), one can compute the accidental bias
due to failure to adjust for any covariate z, given by z′�Tn

z. However, the point
of the accidental bias is to control the bias of the treatment effect caused by an
unknown covariate. This leads to Efron’s minimax solution of using the maximum
eigenvalue of �Tn

, given in inequality (1.4). The maximum eigenvalue of �Tn

therefore represents maximum susceptibility to accidental bias. At this time we
are able to prove the following theorem.

THEOREM 4.1. One of the eigenvalues of �Tn
of the BCD(p) is 2p, for all

n ≥ 2 and p ∈ [1/2,1].

PROOF. See Appendix C. �

REMARK. The theorem affirms that the maximum eigenvalue of �Tn
exceeds

1 + (p − q)2. This shows that the maximum eigenvalue of the asymptotic covari-
ance structure studied by Efron (1971) and Steele (1980) is strictly less than the
maximum eigenvalue of �Tn

.
We conjecture, based on vast numeric evidence, that the maximum eigenvalue

of �Tn
of the BCD(p) does not depend on n and is equal to 2p for all n ≥ 2
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and p ∈ [1/2,1]. Note that this leads to a maximum eigenvalue of 1 for p = 0.5,
which is the maximum eigenvalue for complete randomization, and 2 for p = 1,
which is the maximum eigenvalue for the permuted block design with block size 2
[Rosenberger and Lachin (2002), Chapter 4].

4.4. Randomization tests. The final application of these results is to random-
ization-based inference procedures. Rosenberger and Lachin [(2002), Chapters 7,
11] discuss randomization tests in the context of linear rank statistics. Let Yn =
(Y1, Y2, . . . , Yn) be the responses based on some primary outcome variable, and let
yn be the realization. The responses, yn, are treated as fixed quantities, and under
the randomization null hypothesis, yn is assumed to be unaffected by treatment
assignments. The observed difference between Groups A and B then only depends
on the manner the n patients were randomized. The general form of linear rank
statistic is Wn = a′

nTn where an = (a1n, a2n, . . . , ann)
′ is a score function of the

ranks of yn. The scores (a1n, a2n, . . . , ann)
′ are usually centered by subtracting

the mean. Most standardly used test statistics in clinical trials have an analogous
formulation as a linear rank test.

Smythe and Wei (1983) and Hollander and Peña (1988) noted that, unlike for
most other restricted randomization procedures, the test Wn is not asymptotically
normal for the biased coin design. Therefore the computation of the test requires
either the exact distribution or a Monte Carlo approximation. While our results
do not give the exact distribution of the test statistic, we can compute its exact
variance as Var(Wn) = a′

n�Tn
an using Corollary 2.1. For example, using outcome

data from a diabetes trial given in Table 7.4 of Rosenberger and Lachin (2002), we
generate a sequence of 50 treatment assignments from Efron’s BCD(p = 2/3) and
obtain Wn = −31 with exact standard deviation 100.52. The latter computation
required computing a 50 × 50 matrix using Corollary 2.1.

5. Conclusions. Despite the favorable properties depicted in Efron’s original
paper, the biased coin design is sparsely used in clinical trials. The majority of
clinical trials use a permuted block design which forces balance at regular inter-
vals in the trial and achieves perfect balance unless there is an unfilled final block.
However, in permuted blocks, some patients are assigned to treatment with prob-
ability 1 which can contribute to a vulnerability to selection bias, particularly in
unmasked trials. We believe that Efron’s procedure should be used regularly in
clinical trials where balance in treatments is desirable, both for its simplicity and
for the reason that Efron suggested: it promotes balance with minimal suscepti-
bility to experimental biases. We now have quantified the distribution of balance
and the susceptibility to biases in closed-form formulas for any p and n, and this
should aid the clinical trialist in designing the trial appropriately.

The selection of p has always been an interesting question. Efron used p = 2/3
in some of his examples. At one extreme, p = 1/2, we have complete randomiza-
tion which has minimal selection and accidental biases, but maximum variability.
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At the other extreme, p = 1, we have a deterministic sequence with maximum
selection and accidental biases, but no variability. Formally, the selection should
be a trade-off between the degree of randomness desired (as reflected in selection
bias), accidental bias (which is linear) and Var(Dn) which are competing objec-
tives. Such multi-objective problems can be solved through a compound optimality
criterion with weights reflecting the relative importance of the criteria to the inves-
tigator. We now provide exact formulas for these criteria in (4.1) and (4.4).

We note that these results may have applicability beyond clinical trials, as they
form the basis of exact distribution theory for a general asymmetric random walk.
While the theorems are proved for p ≥ 0.5, they can be generalized for any p

[Markaryan (2009)].

APPENDIX A: PROOF OF THEOREM 2.1

The following proposition follows immediately from the definition of the
BCD(p) and is used without explicit mention in the proof of Theorem 2.1.

PROPOSITION A.1. Let n = 1,2,3, . . . , k ∈ Z and q = 1 − p. The following
hold for the BCD(p):

1. P(Dn = k) > 0 ⇐⇒ |k| ≤ n and n and k have the same parity;
2. P(Dn = k) = P(Dn = −k);
3. P(Dn+1 = 0) = 2pP (Dn = 1);
4. P(Dn+1 = 1) = 1

2P(Dn = 0) + pP (Dn = 2);
5. P(Dn+1 = k) = (1 − p)P (Dn = k − 1) + pP (Dn = k + 1), for 2 ≤ k ≤ n;
6. P(Dn+1 = n + 1) = (1 − p)P (Dn = n).

Next we formulate and prove two lemmas.

LEMMA A.1. Let n be a positive even integer, and let l be an integer satisfying
0 < l < n/2. Then the following holds:

n − 2l

n + 2l

( n

2
+ l

l

)
+ n − 2l + 4

n + 2l

( n

2
+ l

l − 1

)
= n + 2 − 2l

n + 2 + 2l

( n

2
+ 1 + l

l

)
.(A.1)

PROOF. First, we make a substitution, u = n/2 in (A.1), to obtain an equiva-
lent expression,

u − l

u + l

(
u + l

l

)
+ u − l + 2

u + l

(
u + l

l − 1

)
= u + 1 − l

u + 1 + l

(
u + 1 + l

l

)
.(A.2)

Using easily checked identities,(
u + l

l

)
= u + 1

u + 1 + l

(
u + 1 + l

l

)
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and (
u + l

l − 1

)
= l

u + 1 + l

(
u + 1 + l

l

)
,

the left-hand side of (A.2) can be re-written as

(u − l)(u + 1) + l(u − l + 2)

(u + l)(u + 1 + l)

(
u + 1 + l

l

)
and the lemma follows from noting that

(u − l)(u + 1) + l(u − l + 2)

(u + l)
= u + 1 − l. �

LEMMA A.2. Let n be a positive integer, k be an integer satisfying 2 ≤ k ≤ n,
l be an integer satisfying 1 ≤ l ≤ n−k+1

2 and n and k have opposite parities. Then
the following holds:

n + k − 2l + 3

n + k + 2l − 1

( n + k + 1

2
+ l − 1

l − 1

)
+ n + k − 2l − 1

n + k + 2l − 1

( n + k − 1

2
+ l

l

)
(A.3)

= n + k − 2l + 1

n + k + 2l + 1

( n + k + 1

2
+ l

l

)
.

PROOF. We first make a substitution, u = (n + k + 1)/2 in (A.3), and obtain
an equivalent expression,

u − l + 1

u + l − 1

(
u + l − 1

l − 1

)
+ u − l − 1

u + l − 1

(
u + l − 1

l

)
= u − l

u + l

(
u + l

l

)
.(A.4)

Using easily verified identities,(
u + l − 1

l − 1

)
= l

u + l

(
u + l

l

)
and

(
u + l − 1

l

)
= u

u + l

(
u + l

l

)
and dividing both sides of (A.4) by

1

(u + l − 1)(u + l)

(
u + l

l

)
,

the result follows. �

Before we prove the theorem, note that in the light of Proposition A.1, the as-
sumptions on n and k are for the purpose of identifying the nonzero probability
events. Also, due to symmetry, we can restrict the proof to the case of nonnega-
tive k. The proof is by induction and involves a series of straightforward calcula-
tions. The theorem is trivially true for the cases n = 1 and n = 2. We assume the
theorem is true for all positive integers up to and including n and prove that it is
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true for n+ 1. The proof is broken out into four cases: k = 0, k = 1, 2 ≤ k ≤ n and
k = n + 1.

PROOF OF THEOREM 2.1.
Case k = 0.

P(Dn+1 = 0) = 2pP (Dn = 1)

= 2p · 1

2
p(n−1)/2

(n−1)/2∑
l=0

n + 1 − 2l

n + 1 + 2l

( n + 1

2
+ l

l

)
q1+l−1

= p(n+1)/2
(n−1)/2∑

l=0

n + 1 − 2l

n + 1 + 2l

( n + 1

2
+ l

l

)
ql,

which is exactly (2.2) with n replaced by n + 1.
Case k = 1. We need to show that

P(Dn+1 = 1) = 1

2
pn/2

n/2∑
l=0

n + 2 − 2l

n + 2 + 2l

( n

2
+ 1 + l

l

)
ql.(A.5)

Then

P(Dn+1 = 1) = 1

2
P(Dn = 0) + pP (Dn = 2)

= 1

2
pn/2

n/2−1∑
l=0

n − 2l

n + 2l

( n

2
+ l

l

)
ql

+ p · 1

2
p(n−2)/2

(n−2)/2∑
l=0

n + 2 − 2l

n + 2 + 2l

( n + 2

2
+ l

l

)
q2+l−1.

Now we shift the summation index in the second term, l := l + 1, and then collect
the terms under a single summation,

P(Dn+1 = 1)

= 1

2
pn/2

n/2−1∑
l=0

n − 2l

n + 2l

( n

2
+ l

l

)
ql

+ 1

2
pn/2

n/2∑
l=1

n + 2 − 2(l − 1)

n + 2 + 2(l − 1)

( n + 2

2
+ l − 1

l − 1

)
ql(A.6)

= 1

2
pn/2

{n/2−1∑
l=1

[
n − 2l

n + 2l

( n

2
+ l

l

)
+ n − 2l + 4

n + 2l

( n

2
+ l

l − 1

)]
ql

}

+ 1

2
pn/2

{
1 + 2

n

(
n

n

2
− 1

)
qn/2

}
.
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Similar to the right-hand side of (A.5), the expression obtained in (A.6) is a product
of pn/2/2 and a (n/2)th order polynomial in q . Therefore it remains to show that
the polynomial inside the curly braces in (A.6) is the same as the polynomial in the
right-hand side of (A.5). We will show term by term equality. First, the constant
term in (A.6) is 1 which is the same as the constant term in (A.5). To show that the
coefficients of qn/2 are equal we need to show the following equality:

2

n

(
n

n

2
− 1

)
= 1

n + 1

(
n + 1

n

2

)
.

We transform the left-hand side to obtain the right-hand side as follows:

2

n

(
n

n

2
− 1

)
= 1

n/2
· n!
(n/2 − 1)!(n/2 + 1)! = n!

(n/2)!(n/2 + 1)!

= 1

n + 1
· (n + 1)!
(n/2)!(n/2 + 1)! = 1

n + 1

(
n + 1

n

2

)
.

To complete the proof for the case k = 1 it remains to show that the coefficients of
ql are equal for 0 < l < n/2. This is contained in Lemma A.1.

Case 2 ≤ k ≤ n. We need to show that

P(Dn+1 = k) = 1

2
p(n−k+1)/2

(A.7)

×
(n−k+1)/2∑

l=0

n + k − 2l + 1

n + k + 2l + 1

( n + k + 1

2
+ l

l

)
qk+l−1.

When k = n, n + 1 and k have opposite parities; therefore we can assume that
2 ≤ k ≤ n − 1. We have

P(Dn+1 = k) = pP (Dn = k + 1) + qP (Dn = k − 1)

= p · 1

2
p(n−k−1)/2

(n−k−1)/2∑
l=0

n + k − 2l + 1

n + k + 2l + 1

( n + k + 1

2
+ l

l

)
qk+l

+ q · 1

2
p(n−k+1)/2

×
(n−k+1)/2∑

l=0

n + k − 2l − 1

n + k + 2l − 1

( n + k − 1

2
+ l

l

)
qk+l−2.

Now we shift the summation index in the first term, l := l + 1, and then collect the
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terms under a single summation to obtain

P(Dn+1 = k)

= 1

2
p(n−k+1)/2qk−1

(n−k+1)/2∑
l=1

n + k − 2l + 3

n + k + 2l − 1

( n + k + 1

2
+ l − 1

l − 1

)
ql

+ 1

2
p(n−k+1)/2qk−1

(n−k+1)/2∑
l=0

n + k − 2l − 1

n + k + 2l − 1

( n + k − 1

2
+ l

l

)
ql(A.8)

= c

{(n−k+1)/2∑
l=1

[
n + k − 2l + 3

n + k + 2l − 1

( n + k + 1

2
+ l − 1

l − 1

)]}

+ c

{(n−k+1)/2∑
l=1

[
n + k − 2l − 1

n + k + 2l − 1

( n + k − 1

2
+ l

l

)]
ql + 1

}
,

where c = p(n−k+1)/2qk−1/2. Comparing (A.8) with (A.7) we immediately see
that the terms corresponding to l = 0 are equal to c. To complete the proof for the
case 2 ≤ k ≤ n all that remains is an application of Lemma A.2.

Case k = n + 1: This follows immediately from the fact that

P(Dn+1 = n + 1) = 1
2qn.

The theorem is proved. �

APPENDIX B: PROOF OF THEOREM 2.2

The following proposition follows immediately from the Markovian property
and time homogeneity of the BCD(p) process.

PROPOSITION B.1. Let n = 0,1,2,3, . . . , m = 1,2,3, . . . and m ≥ n. Define
σ(Tn) to be the sigma-algebra generated by T1, . . . , Tn. The following hold for the
BCD(p):

1. P(Tm = ±1|Dn,σ(Tn)) = P(Tm = ±1|Dn);
2. P(Tm = ±1|Dn = k) = P(Tm+l = ±1|Dn+l = k), for any l ≥ 0.

Next we state and prove three lemmas that are used in the proof of Theorem 2.2.

LEMMA B.1. Let 1 ≤ n < m. Then the following holds for the BCD(p), p ∈
[0,1]:

P(Tn = 1, Tm = 1) =
n−1∑

k=−n+1

P(Tm = 1|Dn = k + 1)dn−1,ktk.(B.1)
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PROOF. Before providing the proof, note that because Theorem 2.1 gives the
form of dn,k , the lemma reduces the finding of P(Tn = 1, Tm = 1) to finding con-
ditional probabilities of the form P(Tm = 1|Dn = k). By conditioning on Dn−1

we obtain

P(Tn = 1, Tm = 1) =
n−1∑

k=−n+1

P(Tn = 1, Tm = 1|Dn−1 = k)

(B.2)
× P(Dn−1 = k).

Note that (B.2) holds for n = 1 as well because we defined P(D0 = 0) = 1. Also,
instead of requiring n− k be odd so that P(Dn−1 = k) > 0, we follow the adopted
convention that the probabilities of events conditional on zero-probability event
are treated as 0.

Now we make use of an easily verified identity,

P(A ∩ B|C) = P(A|B ∩ C) · P(B|C),2

to transform the conditional probabilities in the right-hand side of (B.2),

P(Tn = 1, Tm = 1|Dn−1 = k)
(B.3)

= P(Tm = 1|Tn = 1,Dn−1 = k)P (Tn = 1|Dn−1 = k).

Now we use the fact that the following two events are equal:

{Dn−1 = k and Tn = 1} and {Dn = k + 1 and Tn = 1}
and that Tm is conditionally independent of Tn given Dn to write

P(Tm = 1|Tn = 1,Dn−1 = k) = P(Tm = 1|Tn = 1,Dn = k + 1)

= P(Tm = 1|Dn = k + 1).

Substituting this last expression into the right-hand side of (B.3) we obtain

P(Tn = 1, Tm = 1|Dn−1 = k) = P(Tm = 1|Dn = k + 1)P (Tn = 1|Dn−1 = k).

The result follows from substitution into (B.2). �

The next lemma is devoted to finding the first visit probabilities of the imbalance
process into the 0 state. We define τi to be the number of steps the imbalance
process makes to visit state 0 for the first time from the ith state.

2This identity still holds when either B or C have zero probability when used with the adopted
convention.
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LEMMA B.2. For the imbalance process of the BCD(p), p ∈ [0,1], the prob-
abilities of the first visits from state k, k = ±1,±2, . . . , into state 0 in exactly l

steps, l ≥ |k|, is given by the following formula:

f
(l)
k,0 = P(τk = l) = |k|

l

(
l

l + |k|
2

)
p(l+|k|)/2q(l−|k|)/2,(B.4)

where, according to the adopted convention, the combination is to be treated as 0
when (l + |k|)/2 is not an integer.

PROOF. First, due the symmetry, f
(l)
k,0 = f

(l)
−k,0, for any k ∈ N. Therefore with-

out loss of generality, we can assume that k is positive. Thus we are concerned
with finding first visit probabilities from state k, k ∈ N into state 0 in exactly l,
l ≥ k, steps.

We can treat this problem as a random walk on the nonnegative integers with
an absorbing barrier at 0 and use well-known results in the classical gambler’s
ruin problem where the gambler plays with infinitely reach adversary and at each
step wins one unit with probability q and loses one unit with probability p. The
question is equivalently formulated as: what is the probability that a gambler with
initial capital of k, k ∈ N, is ruined in exactly l, l ≥ k, steps? These probabilities
are well known and can be found in (4.14) of Feller (1968). One needs to reverse
the roles of p and q and replace z with k and n with l. �

Lemma B.2 provides all the nontrivial probabilities for f
(l)
k,0. To complete the

remaining cases, we note that f
(0)
k,0 = 0 when k 	= 0, and f

(0)
0,0 = 1.

The next lemma provides probabilities for the imbalance process to ultimately
reach the 0 state from any other state.

LEMMA B.3. For the imbalance process of the BCD(p), p ∈ [0.5,1], the
probability of ultimately reaching state 0 from state k, k = ±1,±2, . . . , is 1.

PROOF. The proof of the lemma is similar to that of Lemma B.2. Again, with-
out loss of generality, it can be assumed that k is positive. The problem is equiv-
alent to computing the probability of ultimate ruin in the classical gambler’s ruin
problem when the gambler, having an initial capital k, plays with infinitely reach
adversary and at each step wins one unit with probability q and loses one unit with
probability p. These probabilities can be found in (2.18) of Feller (1968). One
needs to reverse the roles of p and q and replace z with k. �

Note that Lemma B.3 implies that f
(l)
k,0 is a probability mass function when

p ∈ [0.5,1].
Before starting the proof of Theorem 2.2, note that only about half of the sum-

mands in the right-hand side of (2.3) will be nonzero because dn,k = 0 whenever
n − k is not even.
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PROOF OF THEOREM 2.2. The essence of the proof is in evaluating con-
ditional probabilities of the form P(Tm = 1|Dn = k). We will show that for
1 ≤ n < m, |k| ≤ n and n − k even, the following holds:

P(Tm = 1|Dn = k) = (1
2 − tk

)
f̂

(m−n−1)
k,0 + tk.(B.5)

This equation is of independent interest as it provides the form of probabilities of
treatment assignments conditional on a past value of imbalance. Note that when
k = 0, (B.5) simply states that P(Tm = 1|Dn = 0) = 1/2, as expected. The case
when m = n + 1 is the definition of the BCD(p).

To prove (B.5), we use a conditioning argument and condition on the first visit
events into the 0 state, as follows:

P(Tm = 1|Dn = k)

=
m−n−1∑

l=0

P(Tm = 1|Dn = k, τk = l)P (τk = l|Dn = k)

(B.6)
+ P(Tm = 1|Dn = k, τk /∈ [0,m − n − 1])

× P(τk /∈ [0,m − n − 1]|Dn = k).

We first evaluate P(Tm = 1|Dn = k, τk = l) for the case 0 ≤ l ≤ m − n − 1. We
only need to look at the cases when (l − |k|)/2 is a nonnegative integer because in
all other cases P(τk = l|Dn = k) = 0:

P(Tm = 1|Dn = k, τk = l)

= P(Tm = 1|Dn = k,Dn+1 	= 0,Dn+2 	= 0, . . . ,Dn+l−1 	= 0,Dn+l = 0)

= P(Tm = 1|Dn+l = 0) = P(Tm−n−l = 1) = 1/2.

The first equality, in the chain of equalities above, is a consequence of the follow-
ing equality of events:

{Dn = k, τk = l} = {Dn = k,Dn+1 	= 0,Dn+2 	= 0, . . . ,Dn+l−1 	= 0,Dn+l = 0}.
The second equality is just the Markovian property of the imbalance process [see
Proposition B.1(1)]. The third equality follows from time-homogeneity property
formulated in Proposition B.1(2). Thus we have proved that when 1 ≤ n < m,
|k| ≤ n, n − k is even, 0 ≤ l ≤ m − n − 1 and (l − |k|)/2 is a nonnegative integer,
then

P(Tm = 1|Dn = k, τk = l) = 1/2.(B.7)

Now we turn to the case when τk /∈ [0,m − n − 1]. As before, we have 1 ≤ n < m,
|k| ≤ n and n − k is even. We look at three sub-cases.
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Case k > 0.

P(Tm = 1|Dn = k, τk ≥ m − n)

= P(Tm = 1|Dn = k,Dm−1 > 0, τk /∈ [0,m − n − 1])
= P(Tm = 1|Dm−1 > 0) = q.

The first equality above follows from equality of {Dn = k, τk ≥ m − n)} and
{Dn = k,Dm−1 > 0, τk /∈ [0,m−n−1]}. The second equality follows from Propo-
sition B.1(1).

Case k < 0.

P(Tm = 1|Dn = k, τk ≥ m − n)

= P(Tm = 1|Dn = k,Dm−1 < 0, τk /∈ [0,m − n − 1])
= P(Tm = 1|Dm−1 < 0) = p.

The first equality above follows from equality of {Dn = k, τk ≥ m − n)} and
{Dn = k,Dm−1 < 0, τk /∈ [0,m−n−1]}. The second equality follows from Propo-
sition B.1(1).

Case k = 0.

P(Tm = 1|Dn = 0, τ0 /∈ [0,m − n − 1]) = 0,

because of impossibility of the event {τ0 ≥ 1}.
Substituting (B.7) and the expressions obtained in the above three cases into

(B.6), we obtain

P(Tm = 1|Dn = k) =
m−n−1∑

l=0

1

2
f

(l)
k,0 + tkP (τk /∈ [0,m − n − 1]|Dn = k).(B.8)

According to Lemma B.3, when p ∈ [1/2,1], we have

P(τk /∈ [0,m − n − 1]|Dn = k) = 1 − P(τk ∈ [0,m − n − 1]|Dn = k).(B.9)

Substituting (B.9) into (B.8), we obtain

P(Tm = 1|Dn = k) =
m−n−1∑

l=0

1

2
f

(l)
k,0 + tk

(
1 − f̂

(m−n−1)
k,0

)

= 1

2
f̂

(m−n−1)
k,0 + tk

(
1 − f̂

(m−n−1)
k,0

)
=

(
1

2
− tk

)
f̂

(m−n−1)
k,0 + tk.

Thus (B.5) is proved. To complete the proof of the theorem, it remains to use
Lemma B.1 and substitute (B.5) with k := k + 1 into (B.1). �
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APPENDIX C: PROOF OF THEOREM 4.1

We will show that 2p is an eigenvalue of �Tn
with the corresponding nor-

malized eigenvector an = (an
1 , an

2 , an
3 , . . . , an

n)′ = (
√

2/2,−√
2/2,0, . . . ,0)′. The

proof proceeds by induction. The theorem is trivially true for the case n = 2. For
the case n = 2, one can actually show that 2p is the maximum eigenvalue.3 The
two eigenvalues of �T2 are 2p and 2 − 2p and 2p ≥ 2 − 2p when p ≥ 1/2.

PROOF. We assume the theorem is true for all positive integers n ≥ 2, and
prove that it is true for n + 1. We partition �Tn+1 as follows:[

�Tn
b

b′ 1

]
,

where b = (σ1,n+1, σ2,n+1, . . . , σn,n+1)
′ with σij = Cov(Ti, Tj ). Denote

x = (x1,0)′,

where x1 is the n-dimensional vector,

x1 = (√
2/2,−√

2/2,0, . . . ,0
)′
.

We need to show that [
�Tn

b

b′ 1

][
x1

0

]
= 2p

[
x1

0

]
.(C.1)

By the induction assumption, we have that �Tn
x1 = 2px1. To prove (C.1), it re-

mains to show that b′x1 = 0. This is equivalent to
√

2/2(σ1,n+1 − σ2,n+1) = 0
which in turn is equivalent to (see Corollary 2.1)

P(T1 = 1, Tn+1 = 1) = P(T2 = 1, Tn+1 = 1).(C.2)

From Theorem 2.2 we have the forms of P(T1 = 1, Tn+1 = 1) and P(T2 =
1, Tn+1 = 1),

P(T1 = 1, Tn+1 = 1) = ((1
2 − q

)
f̂

(n−1)
1,0 + q

)1
2 = 1

2

(1
2 − q

)
f̂

(n−1)
1,0 + 1

2q,

P (T2 = 1, Tn+1 = 1) = ((1
2 − 1

2

)
f̂

(n−2)
0,0 + 1

2

)1
2p + ((1

2 − q
)
f̂

(n−2)
2,0 + q

)1
2q

= 1
4p + 1

2q
(1

2 − q
)
f̂

(n−2)
2,0 + 1

2q2.

Thus, in order to show (C.2), we need to show that

1
2

(1
2 − q

)
f̂

(n−1)
1,0 + 1

2q = 1
4p + 1

2q
(1

2 − q
)
f̂

(n−2)
2,0 + 1

2q2.(C.3)

3The same can be shown for n = 3 and n = 4 by solving for the zeroes of the characteristic
polynomials.
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Using an easily verified identity,

f̂
(n−1)
1,0 = p + qf̂

(n−2)
2,0

and substituting it into (C.3), we obtain

1
2

(1
2 − q

)(
p + qf̂

(n−2)
2,0

) + 1
2q

(C.4)
= 1

4p + 1
2q

(1
2 − q

)
f̂

(n−2)
2,0 + 1

2q2.

The term 1
2q(1

2 − q)f̂
(n−2)
2,0 appears in both sides of (C.4); subtracting it from both

sides we require

1
2p

(1
2 − q

) + 1
2q = 1

4p + 1
2q2.

This last equality is trivially checked. �
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