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Problem 2.1. Definition of iterated function system.

Pθ (ξj )h(x) =
∫
y∈X

pθ(y, x)f (ξj ; θ |x, ξj−1)h(y)m(dy).(2.6)

Define the composition of two random functions as

Pθ (ξj+1) ◦ Pθ (ξj )h(x)

=
∫
z∈X

pθ(z, x)f (ξj+1; θ |x, ξj )(2.7)

×
(∫

y∈X
pθ(y, z)f (ξj ; θ |z, ξj−1)h(y)m(dy)

)
m(dz).

Page 2042. C1. . . . for all s0, s1 ∈ Rd , and supx∈X
∫

pθ(y, x)m(dy) < ∞.
Since m is σ -finite, there exist pairwise disjoint Xn such that X = ⋃∞

n=1 Xn, and
0 < m(Xn) < ∞. Assume E[∑∞

n=1
1
2n supx∈Xn

f (ξ1; θ |x, s0)] < ∞ for all s0 ∈ Rd .
Denote gθ (ξ0, ξ1) = supx∈X

∫
pθ(y, x)f (ξ1; θ |x, ξ0)m(dy). Furthermore, we as-

sume that there exists p ≥ 1 as in K2 such that

sup
(x0,s0)∈X ×Rd

Eθ
(x0,s0)

{
log

(
gθ (s0, ξ1) · · ·gθ (ξp−1, ξp)

w(Xp, ξp)

w(x0, s0)

)}
< 0.(5.2)

The example on Page 2044, L12, holds if α �= 0. The original (5.6) was wrong; it
should be

Mn := Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π (page 2045).(5.6)
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Page 2046. LEMMA 3. . . . Furthermore, under conditions C1, C6–C9, the
function g defined in (5.7) belongs to L(Q × Q).

PROOF OF LEMMA 3. We consider only the case of P(ξ1), since the case of
P(ξ0) and P(ξj ), for j = 2, . . . , n, is a straightforward consequence. For any two
elements h1, h2 ∈ M, and two fixed elements s0, s1 ∈ Rd , by (5.8) we have

d(P(s1)h1,P(s1)h2)

= sup
x∈X

∣∣∣∣
∫

pθ(y, x)f (s1; θ |x, s0)h1(y)m(dy)

−
∫

pθ(y, x)f (s1; θ |x, s0)h2(y)m(dy)

∣∣∣∣
≤ d(h1, h2) sup

x∈X

∫
pθ(y, x)f (s1; θ |x, s0)m(dy)

≤ C

(
sup
x∈X

∫
pθ(y, x)m(dy)

)
d(h1, h2),

where 0 < C = supx∈X f (s1; θ |x, s0) < ∞, and by assumption C1, is a constant.
Note that supx∈X

∫
pθ(y, x)m(dy) < ∞ by assumption C1. The equality holds

only if h1 = h2 m-almost surely. This proves the condition of Lipschitz continuity
in the second argument.

Note that C1 implies that K1 holds. Recall that Mn = P(ξn)◦· · ·◦P(ξ1)◦P(ξ0)π

for π ∈ M in (5.6). To prove the weighted mean contraction property K2, we ob-
serve that for p ≥ 1,

sup
x0,s0

E(x0,s0)

{
log

(
Lp

w(Xp, ξp)

w(x0, s0)

)}

= sup
x0,s0

E(x0,s0)

{
log

(
sup

h1 �=h2

d(Mph1,Mph2)

d(h1, h2)

w(Xp, ξp)

w(x0, s0)

)}

< sup
x0,s0

E(x0,s0)

{
log

( p∏
j=1

[
sup
xj∈X

∫
pθ(xj−1, xj )(7.1)

× f (ξj ; θ |xj , sj−1)

× m(dxj−1)

]
w(Xp, ξp)

w(x0, s0)

)}
< 0.

The last inequality follows from (5.2) in condition C1.
To verify that assumption K3 holds, as m is σ -finite, we have X = ⋃∞

n=1 Xn

where the Xn are pairwise disjoint and 0 < m(Xn) < ∞. Set

h(x) =
∞∑

n=1

IXn(x)

2nm(Xn)
.(7.2)
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It is easy to see that
∫
x∈X h(x)m(dx) = 1 and hence belongs to M. Observe that

Ed2(P(ξ1)h,h)

= E
[

sup
x1∈X

∣∣∣∣
∫

pθ(x0, x1)f (ξ1; θ |x1, s0)h(x0)m(dx0) − h(x1)

∣∣∣∣
]

(7.3)

≤ E

[ ∞∑
n=1

1

2n
sup

x1∈Xn

f (ξ1; θ |x1, s0)

][
sup
x1∈X

∫
pθ(x0, x1)m(dx0)

]

+ sup
x1∈X

|h(x1)|.

Note that h(x) is piecewise constant by definition (7.2), E[∑∞
n=1

1
2n supx∈Xn

f (ξ1;
θ |x, s0)] < ∞ for all s0 ∈ Rn by assumption C1 and pθ(x0, x1) is integrable of x0
over the subset Xn by assumption C1. These imply that (7.3) is finite.

Finally, we observe

sup
x0,s0

E(x0,s0)

{
L1

w(X1, ξ1)

w(x0, s0)

}

= sup
x0,s0

E(x0,s0)

{
sup

h1 �=h2

d(P(ξ1)h1,P(ξ1)h2)

d(h1, h2)

w(X1, ξ1)

w(x0, s0)

}

< sup
x0,s0

E(x0,s0)

{(
sup
x1∈X

∫
pθ(x0, x1)f (ξ1; θ |x1, s0)m(dx0)

)
w(X1, ξ1)

w(x0, s0)

}

< ∞.

The last inequality follows from (5.3) in condition C1.
Note that C8 and C9 imply that g ∈ L(Q × Q). Hence, the proof is complete.

�

Problem 2.2. Harris recurrence of iterated function. This paper is an ex-
tension of Fuh (2003) for finite state space in which the likelihood function can be
expressed as the L1-norm of products of Markovian random matrices. Note that
Mn defined in (5.6) is an iterated random functions system governed by a Markov
chain Yn. And Yn = (Xn, ξn) in the state space models case. In Theorem 1 I only
assume Yn = (Xn, ξn) is Harris recurrent. The purpose of the statement, “Note that
under K1–K3, . . . a Markovian iterated random functions system in Theorem 2,”
is to relate Theorems 1 and 2, to which I can apply limiting theorems in Markov
chains to the law of large numbers and central limit theorem (and Edgeworth ex-
pansion) for (Yn,Mn).

In Lemma 4 I want to prove Zn = ((Xn, ξn),Mn) is Harris recurrent (Zn is
defined in lines 1 and 2 on page 2056). In the proof, I can use the results in The-
orem 1 since only Yn = (Xn, ξn) is assumed to be Harris recurrent in Theorem 1.
It is known that C1 implies that Yn = (Xn, ξn) is Harris recurrent. A new proof of
Lemma 3 was given on pages 1 and 2.
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Problem 2.3. Asymptotic properties of score function and observed infor-
mation. Page 2060, L12. In the proof of Lemma 6, (7.9) defined a new iterated
functions system; therefore Corollary 1 cannot be used directly. The same situation
happens for Theorems 5 and 7. The rigorous proofs of these results will be given
in a separate paper.

Problem 2.4. Generality of conditions. C5. For θ ∈ Nδ(θ0),

Eθ
x

(
∂ log

∫
y∈X π(x)p(x, y)f (s0; θ |x)f (ξ1; θ |y, s0)m(dy)

∂θi

)2

< w(x, s0)

for all i = 1, . . . , q.

Change C5 accordingly. It is straightforward to check that C5 holds for the
examples considered in Section 6. The proof of Lemma 5 can be done under C5.

Other typos and mistakes. Page 2032, L1. · · · pθ(y, x)f (ξj ; θ |x, ξj−1) · · ·
Xj−1 = y and Xj ∈ dx, . . .

π(y)P(Yn ∈ dz,Mn ∈ ·|Y0 = y) = π(z)P̃(Ỹn ∈ dy, M̃n ∈ ·|Ỹ0 = z).(3.7)

Page 2028, L5. (1 − α2). Page 2043, C7, θ → ϕx(θ) was a typo; delete it.
Page 2047, L1, then, “each component of” the Fisher information matrix. L5, re-
place “positive definite” by “finite.” Page 2048, Theorem 5, assume I(θ0) is in-
vertible. Page 2057, L3, the notation m × Q × Q may be confusing; change it to
m × Q × Q̄.
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