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ASYMPTOTIC EFFICIENCY AND FINITE-SAMPLE PROPERTIES
OF THE GENERALIZED PROFILING ESTIMATION OF

PARAMETERS IN ORDINARY DIFFERENTIAL EQUATIONS1

BY XIN QI AND HONGYU ZHAO

Yale University

Ordinary differential equations (ODEs) are commonly used to model dy-
namic behavior of a system. Because many parameters are unknown and have
to be estimated from the observed data, there is growing interest in statistics to
develop efficient estimation procedures for these parameters. Among the pro-
posed methods in the literature, the generalized profiling estimation method
developed by Ramsay and colleagues is particularly promising for its compu-
tational efficiency and good performance. In this approach, the ODE solution
is approximated with a linear combination of basis functions. The coefficients
of the basis functions are estimated by a penalized smoothing procedure with
an ODE-defined penalty. However, the statistical properties of this procedure
are not known. In this paper, we first give an upper bound on the uniform
norm of the difference between the true solutions and their approximations.
Then we use this bound to prove the consistency and asymptotic normality of
this estimation procedure. We show that the asymptotic covariance matrix is
the same as that of the maximum likelihood estimation. Therefore, this proce-
dure is asymptotically efficient. For a fixed sample and fixed basis functions,
we study the limiting behavior of the approximation when the smoothing pa-
rameter tends to infinity. We propose an algorithm to choose the smoothing
parameters and a method to compute the deviation of the spline approxima-
tion from solution without solving the ODEs.

1. Introduction. Ordinary differential equations (ODEs) are often used to
model dynamic processes in engineering, biology and many other areas. For ex-
ample, the dynamic behavior of gene regulation networks can be modeled by a
set of ODEs (see Gardner et al. [9] and Cao and Zhao [5]). These ODEs usually
involve many unknown parameters. Ideally, we hope that we can estimate these un-
known parameters by some classical parametric estimators, such as least squares
estimators or maximum likelihood estimators (MLE). However, most nonlinear
ODE systems do not have analytical solutions whereas numerical solutions can be
time consuming and it is nontrivial to estimate their values from the observed data
that are often very noisy.
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Because of the importance of this problem, many methods have been proposed
to estimate parameters in ODEs that cannot be solved analytically. One method
is through nonlinear least squares (NLS). In this approach, a numerical method
is used to approximate the solution of the ODEs at a given trial set of parameter
values and initial conditions. The fitted values are input into the nonlinear least
squares procedure to update parameter estimates. This NLS approach is computa-
tionally intensive since a numerical approximation to the solutions is required for
each update of the parameters and initial conditions. In addition, the inaccuracy of
the numerical approximation can be a problem, especially for stiff systems.

Another approach, called collocation methods, approximates the solution by a
basis function expansion, such as the cubic spline function. Varah [27] suggested
a two-stage procedure where the first step fits the observed data by least squares
using cubic spline functions without considering the ODEs, and the second step
estimates the parameters by least squares solution of the differential equations
sampled at a set of points. This approach works well for the simple equations
considered, but considerable care is required in the smoothing step and all the
variables in the system need to be measured. Ramsay and Silverman [22] and Poy-
ton et al. [20] further developed Varah’s method by proposing an iterated principal
differential analysis, which converged quickly to the estimates of both the solution
and the parameters and had substantially improved bias and precision. However,
their approach is a joint estimation procedure in the sense that it optimizes a sin-
gle roughness-penalized fitting criterion with respect to both the coefficients of the
basis expansion and the parameters. The effect of the nuisance parameters on the
fit of the model cannot be controlled. For other collocation methods, see Tjoa and
Biegler [24], Arora and Biegler [2] and Bock [3].

Most recently, Ramsay et al. [21] proposed a new collocation method called
generalized profiling procedure. In this approach, the ODE solution is approxi-
mated by a linear combination of basis functions. However, the coefficients of the
basis functions are estimated by a penalized smoothing procedure with an ODE-
defined penalty. The smoothing parameter controls the trade off between fitting
the data with the basis functions and fidelity of the basis functions to the ODEs.
Their method has several unique aspects. The computation load is much lower
than other methods because it avoids numerically solving ODEs. It can estimate
some ODE components even if they are not observed. It is easy to estimate uncer-
tainties in parameter estimates and simulation experiments suggested that there is
good agreement between estimated uncertainties and actual estimation accuracies.
In addition, this approach does not require a formulation of the dynamic model as
an initial value problem in situations where initial values are not available.

Despite these attractive features, little is known about the statistical properties
of the estimates from this procedure, such as consistency and asymptotic normal-
ity. Furthermore, it is not clear how to choose the smoothing parameters auto-
matically. In this article, to study the asymptotic properties we firstly derive an
upper bound on the uniform norm of the difference between the ODE solutions
and their approximations in terms of the smoothing parameters and the distance
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between the approximation space and the solutions (the distance can be controlled
by the knots when the cubic spline functions are used as approximations). Then
this bound is used to prove the asymptotic consistency of the parameter estimation
if the smoothing parameter goes to infinity and the distance between the approx-
imation space and the space of the ODE solutions goes to zero. If the smoothing
parameter and the distance satisfy certain conditions on the convergence rate, we
prove the asymptotic normality for the parameter estimation and show that its as-
ymptotic covariance matrix is the same as that of the maximum likelihood esti-
mation. Therefore, the profiling procedure is asymptotically efficient. We note that
our asymptotic results are also true for partially observed systems (only parts of the
components are observed). According to these results, we propose an algorithm to
choose the smoothing parameters automatically.

One innovative feature of the profiling procedure is that it incorporates a penalty
term to estimate the coefficients in the first step. This penalty is the L2-norm of
the difference between the two sides of ODEs which are evaluated by plugging in
the approximation functions. From the theory of differential equations, for such
penalty (even the L∞-norm), the bound on the difference between the approxi-
mations and the solutions will grow exponentially however small the penalty is.
As a result, if the time interval is large, the bound will be too large to be useful.
However, the results in Ramsay et al. [21] and our simulation studies indicate that
when the smoothing parameter becomes large, the approximations to the solutions
are very good. There is no trend of exponentially growing. To explain this phe-
nomena, we fix the sample and the approximation space, and study the limiting
situation as the smoothing parameter goes to infinity. We show that any such se-
quence will have a subsequence converging to one of the minimum functions of
the penalty in the approximation space. We study the properties of these minimum
functions and give a bound on the uniform norms of the differences between these
functions and the solutions in the one-dimensional case and the B-spline bases.
The bound depends almost linearly on the length of the time interval or almost
does not depend on length of the time interval if we put stronger conditions. This
result explains the above noted phenomena and motivates us a method to com-
pute the deviation of the spline approximation from solutions without solving the
ODEs.

Olhede [19] outlined some asymptotic results for the profiling procedure pro-
posed by Ramsay and colleagues. In order to achieve asymptotic consistency, Ol-
hede [19] took the number of the B-spline basis functions to be of order O(n)

where n is the sample size. Then she imposted the conditions that the penalties
have order O(n−δ) for some δ > 0 and the sum of the scaled penalties by smooth-
ing parameters has order O(n). It was derived that the smoothing parameters have
order O(n1+δ). However, it is not easy to tune these parameters to ensure that the
penalties satisfy the imposed conditions, because only the number of the bases and
the smoothing parameters can be tuned and the values of the penalties depend on
these two sets of tuning parameters through complex relationships. Therefore, it is
better to impose conditions only on the tuning parameters. Furthermore, although
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we obtain the approximations to the solutions by choosing a set of basis functions
and computing the coefficients by solving a penalized optimization problem, the
approximations only depend on the linear space spanned by the bases. In fact, if
we choose another set of bases in the same space, we should get the same ap-
proximations. Hence, an appropriate theory should put conditions on the approxi-
mation space instead of the bases. In her discussion, Olhede [19] proposed to use
L∞-penalty instead of L2 or L1-penalty. Our asymptotic results hold for all these
penalties, although the smoothing parameters take different convergence rates for
different norms. Unfortunately, the bound that is exponentially increasing in time
in Theorem 3.1 will stay for all the penalties. The results for fixed sample where
the smoothing parameters converge to infinity can only be shown for L2-penalty
because there we use the special property of L2-norm that we can change the in-
tegrals for time and the differentiation with respect to the parameters under this
norm.

Lele [16] raised the question as to what kind of asymptotics is appropriate: in-
fill asymptotics, or increasing domain asymptotics, or both. Here we choose the
infill asymptotics for the following reasons. First, one key point in our proof is
the uniform boundedness of the solutions to ODEs on a finite time interval for all
the parameters in a compact subset of the parameter space. In order to do that, we
make assumptions about the existence of the solutions and the smoothness of the
functions in ODEs. However, the existence does not always hold or is not easy to
check for nonlinear ODEs [see Remark 2(1) after Assumption 2]. If we choose a
fixed time interval, for example, the largest sampled time as the endpoint of the
interval, there exists at least a neighborhood of the true parameters such that the
solutions exist for the parameters in this neighborhood. However, these conditions
and assumptions could be seriously violated for increasing domain asymptotics.
Second, the difference between the basis function approximations and the true so-
lutions could increase exponentially with time (see Theorem 3.1 and the remarks
after it). This will affect the accuracy of the estimate. Last, if we are only inter-
ested in estimating the parameters, it is adequate to sample an increasing number
of points in a finite interval under the assumptions that the model is correct, the
functions in ODEs are smooth, and the parameters are identifiable.

Now, we describe the model and the profiling procedure in detail. Let the para-
meter space � be an open and convex subset of R

d . We use θ0 to denote the true
parameter. Consider the following ODEs:

dx
dt

(t) = F(x(t), z(t), t, θ),

dz
dt

(t) = G(x(t), z(t), t, θ),(1.1)

x(0) = x0, z(0) = z0,

on time interval [0, T ] with x : [0, T ] → R
d1 , z : [0, T ] → R

d2 , F : Rd1 × R
d2 ×

[0, T ] × � → R
d1 , and G : Rd1 × R

d2 × [0, T ] × � → R
d2 . F and G have known
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functional forms with some unknown parameters, and x0 and z0 are the initial
values in R

d1 and R
d2 . Suppose that the initial values can be chosen from a convex

open region � ∈ R
d1 × R

d2 . We assume that for each θ , the initial value problem
(1.1) has a unique solution (x(θ, t), z(θ, t)) on [0, T ]. We use the bold face letters
to denote the functions on [0, T ].

The following is a concrete example from Ramsay et al. [21]. Consider the
FitzHugh–Nagumo equations which describe the behavior of spike potentials in
the giant axon of squid neurons:

dV
dt

(t) = c

(
V − V3

3
+ R

)
,

dR
dt

(t) = −1

c
(V − a + bR),

where V is the voltage across an axon membrane and R is a recovery variable sum-
marizing outward currents. The parameters are θ = (a, b, c), and the time interval
is [0,20].

Assuming the underlying model (1.1), suppose that (Y1, T1), . . . , (Yn, Tn) are
i.i.d. observations, where the Ti is the sample time and Yi is the observed data at
time Ti . Ti ’s are independent random variables distributed on interval [0, T ] with
distribution Q and Yi ’s take the values in R

d3 . To fit a model of form (1.1) to the
observed data suppose we have the following data fitting criterion

Hn(x(θ, ·)) = −1

n

n∑
i=1

g(Yi,x(θ, Ti)),

where g(y, x) is a function on R
d3 × R

d1 and Hn is a functional on the space of
the function on [0, T ] such that for any function x(t),

Hn(x) = −1

n

n∑
i=1

g(Yi,x(Ti)).

Here, we assume that only part of the systems are observable, e.g., Yi ’s only
depend on the first d1 components of the solution. The following are two such
examples.

EXAMPLE 1 (Nonlinear least squares). Suppose that d1 = 1 and

Yi = x(θ0, Ti) + εi,

where {εi, i = 1, . . . , n} are independent random variables with the same distribu-
tions N(0, σ 2). Here we take g(y, x) = (y − x)2.

EXAMPLE 2 (Logistic regression). Suppose that d1 = 1 and the conditional
distribution Yi |Ti = t is Bernoulli with success probability

p(θ0, t) = ex(θ0,t)

1 + ex(θ0,t)
.
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Hence,

g(y, x) = log(1 + ex) − xy.

For simplicity, we shall restrict ourselves to the case d1 = d2 = d3 = 1. First,
we introduce some function spaces and some norms in those spaces. Consider the
space of continuously differentiable functions

C1([0, T ]) = {f : both f and f ′ are continuous functions on [0, T ]}
and the space of square integrable functions

L2([0, T ]) =
{
f :f is a measurable function on [0, T ] and

∫ T

0
|f (t)|2 dt < ∞

}
.

We mainly consider the functions in the space C1[0, T ]. For any f ∈ C1[0, T ],
define

‖f ‖∞ = sup
t∈[0,T ]

{|f (t)|},

‖f ‖L2([0,T ]) =
[∫ T

0
|f (t)|2 dt

]1/2

.

We have two inequalities for these two norms which we will use below.

‖f ‖2
L2([0,T ]) ≤ T ‖f ‖2∞(1.2)

and by Hölder inequality,∣∣∣∣
∫ t

0
f (s) ds

∣∣∣∣
2

≤ t

∫ t

0
|f (s)|2 ds ≤ T

∫ T

0
|f (s)|2 ds ∀t ∈ [0, T ],

we have ∥∥∥∥
∫ t

0
f (s) ds

∥∥∥∥
2

∞
≤ T ‖f (s)‖2

L2([0,T ]),(1.3)

where ‖ ∫ t
0 f (s) ds‖∞ means the norm of the function h(t) = ∫ t

0 f (s) ds, 0 ≤
t ≤ T .

In this paper, we consider the following penalty, for any θ and x, z ∈ C1[0, T ],

J (x, z, θ) =
∫ T

0

[
dx
dt

(t) − F(x(t), z(t), t, θ)

]2

dt

+
∫ T

0

[
dz
dt

(t) − G(x(t), z(t), t, θ)

]2

dt(1.4)

=
∥∥∥∥dx
dt

− F(x, z, t, θ)

∥∥∥∥
2

L2[0,T ]
+

∥∥∥∥dz
dt

− G(x, z, t, θ)

∥∥∥∥
2

L2[0,T ]
.
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Note that J was used to denote the whole penalized log likelihood criterion in
Ramsay et al. [21] and this is different from our definition. We use Pn to denote
the empirical measure. For example,

Png(Y,x(·)) = 1

n

n∑
i=1

g(Yi,x(Ti)).

Suppose that {Ln, n ≥ 1} is a sequence of finite-dimensional subspaces of
C1[0, T ]. We will use the functions in Ln to approximate the solutions of ODEs.
For example, we can choose Ln to be the space of cubic spline functions with
knots τ (n) = (0 = t

(n)
1 < · · · < t

(n)
kn

= T ). Define∣∣τ (n)
∣∣ = max

2≤i≤kn

|ti − ti−1|.

Let |τ (n)| → 0 as n → ∞.
Sometimes the initial values of the systems are unknown. In this case, we have

to regard the initial values as nuisance parameters. Define θ∗ = (θ, x, z), the com-
bination of the parameters and the initial values. Let θ∗

0 be the combination of the
true parameters and the true initial values. We rewrite the solutions of (1.1) as

(x(θ∗, t), z(θ∗, t)).

In the next section, we describe the profiling procedure in details and propose
a method of the choice of the smoothing parameter. In Section 3, the consistency
and the asymptotic efficiency are given. In Section 4, we study the limit behavior
of the basis function approximations to the true solutions to ODEs as the smooth-
ing parameter goes to infinity. The proofs of these results are given in the last
section.

2. The generalized profiling procedure and the choice of the smoothing pa-
rameters. In the generalized profiling procedure proposed in Ramsay et al. [21],
a finite-dimensional space Ln of functions in [0, T ] is chosen firstly (this is equiva-
lent to choosing a set of basis functions). Approximations functions to the solutions
of the ODEs will be chosen from Ln (this is equivalent to choosing the coefficients
of the basis functions). One innovative feature of this procedure is that the approx-
imations are chosen by solving the following penalized optimization problem: for
any θ∗ = (θ, x, z) ∈ � × �,

maximize Hn(x̂) − λJ (x̂, ẑ, θ),
(2.1)

subject to x̂ ∈ Ln, ẑ ∈ Ln, x̂(0) = x, ẑ(0) = z,

where the penalty J regularizes the approximations by controlling the size of the
extent that the approximation functions fail to satisfy the ODEs and the λ is the
smoothing parameter which controls the amount of regularization. In this paper,
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to simplify notation, we choose the same λ for all the components in the penalty.
Ramsay et al. [21] allowed the different smoothing parameters for different com-
ponents. The asymptotic results in this paper can be easily extended to this latter
case that the smoothing parameters take different values if all the smoothing pa-
rameters have the same asymptotic orders. The existence of global solutions to
(2.1) will be discussed below in this section. Here, we assume that the global solu-
tions exist. Let (x̂(θ∗, λ, t), ẑ(θ∗, λ, t)) be solutions to (2.1). They depend on both
λ and θ∗. Then we plug them to the functional Hn. The estimates θ̂∗(λ) are ob-
tained by maximizing Hn(x̂(θ∗, λ, ·)) with respect to θ∗. Small λ makes both the
optimization problems of (2.1) and maximizing Hn(x̂(θ∗, λ, ·)) robust with respect
to the poor initial guesses, but gives bad approximations to the solutions. On the
other hand, large λ gives good approximations, but the optimization problems are
sensitive to the initial values.

In Theorem 3.1 below, the uniform norm of the differences between the exact
solutions and the basis function approximations are bounded by a sum of two
terms, Op(1/

√
λ) and O(rn), where rn is some kind of distance between Ln and

the solutions to ODEs. rn does not depend on λ. When λ becomes very large, the
bound will be dominated by the second term. In this case, it is useless to increase
the λ. We can use these to explain the patterns of Figure 6 in Ramsay et al. [21]
and Figure 15 in Huang [12]. Those pictures have different knots and observations.
But they have the similar patterns. When we increase the λ, at first the parameter
estimates become better (both of the bias and the variance). But after some point,
increasing the λ has little effect on the parameter estimates.

The above discussion suggests that we should initially choose a small λ, then
we increase the λ until the parameter estimates become stable. In Section 2.8.1 in
Ramsay et al. [21], the authors proposed to stop increasing λ when the norm of
the difference between the solutions to ODEs and the approximations begins in-
crease after obtaining a minimum. Because the penalties are nonlinear functionals
of the approximation functions, the approximation functions may depend on λ in a
complex way. There may exist many local minima before λ becomes large enough.
Hence, it may be better to design the stopping rule according to the performance of
the parameter estimates. One of the major advances of this paper is the fact that it
provides accurate estimations of the confidence intervals of the estimated parame-
ters. We can compare the confidence intervals for different λ to decide whether we
increase λ or stop. But computing confidence intervals is time consuming. We can
start calculating the confidence intervals when λ is moderately large. We propose
the following algorithm:

(1) Choose the space Ln, a moderately large positive number λ0 and a small num-
ber α.

(2) Choose a small initial value for λ, and a initial guess for θ∗.
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(3) Obtain the estimates θ̂∗(λ) by maximizing Hn(x̂(θ∗, λ, ·)) with respect to θ∗,
where for each θ∗ = (θ, x, z) ∈ � × �,

(x̂(θ∗, λ, t), ẑ(θ∗, λ, t)) ∈ arg max
x̂,ẑ∈Ln

x̂(0)=x,ẑ(0)=z

[Hn(x̂) − λJ (x̂, ẑ, θ)].

(4) If λ < λ0, set θ̂∗(λ) to be the initial value for next iteration and let λ = 10 ×λ.
Go to step (3).

If λ ≥ λ0, calculate the confidence intervals for the parameter estimations.
Compare the confidence intervals with those for previous value of λ (if they
exist).

– If the ratios of the overlaps to both of the intervals are larger than 1 − α,
stop and go to step (5).

– Otherwise, set θ̂∗(λ) to be the initial value for next iteration and let λ =
10 × λ, then go to step (3).

(5) Set λn = λ and θ̂∗
n = θ̂∗(λ). λn is the final choice of the smoothing parameter

and θ̂∗
n is the profiling estimators for the unknown parameters. Set x̂n(θ

∗, t) =
x̂(θ∗, λn, t) and ẑn(θ

∗, t) = ẑ(θ∗, λn, t).

Although the penalized optimization problem (2.1) is solved in the finite-
dimensional space Ln, the existence of global solutions to (2.1) cannot be easily
verified due to the nonlinearity of J . However, if we use the norm ‖ · ‖∞ in Ln,
then under our main assumptions, both J (x̂, ẑ, θ) and Hn(x̂) are continuous func-
tions of (x̂, ẑ). In this case, the local solutions always exist if we solve (2.1) in any
bounded and closed subset of (L,‖ · ‖∞). In this paper, one important assumption
is that the θ̂∗

n are uniformly tight, that is, given any probability arbitrarily close
to 1, one can find a compact subset of the parameter space such that all the θ̂∗

n be-
long to that compact subset with this high probability. The solutions to ODEs for
any parameter in that compact subset are uniformly bounded by a positive number,
say K . In this case, if we solve (2.1) in the subset of the functions with norms less
than or equal to K +1, then the solutions exist and all proofs of the main results are
still true by using these local solutions instead of the global solutions. In practice,
one can only search a bounded region of the parameter space, so the estimates are
uniformly compact. One can solve (2.1) in a large but bounded subset of Ln.

The above algorithm is based on the assumption that the dynamic models are
correctly specified. The algorithm in Section 2.8.2 in Ramsay et al. [21] may pro-
duce better approximations to the solutions to ODEs for misspecified models. In
this case, λ may play a slightly different role. Ionides [13] discussed the problem
of model misspecification, especially when there are noises in both measurement
and dynamics. In this case, it is difficult to define the true trajectories. There are
some alternative procedures to deal with this problem, for example, the iterated
filtering (see Ionides, Breto and King [14] and Breto et al. [4]) in the frequentist
domain or the Bayesian sequential Monte Carlo (see Liu and West [17]) in the
Bayesian domain.
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3. Consistency and asymptotic normality. We now state our main assump-
tions.

ASSUMPTION 1. Q has a density f (t) with respect to Lebesgue measure on
[0, T ] and c ≤ f (t) ≤ C for all t ∈ [0, T ], where c and C are two positive numbers.

REMARK 1. This assumption guarantees that the samples can be taken any-
where and will not be over concentrated on a subset of the time interval.

ASSUMPTION 2. F,G ∈ C3(R × R × [0, T ] × �). For each θ ∈ � and
each pair of initial values (x, z) ∈ � ⊂ R × R, there exists a unique solution
(x(θ∗, ·), z(θ∗, ·)) of the (1.1) on [0, T ] and for any θ∗ = (θ, x, z) = θ∗′ =
(θ ′, x′, z′), we have x(θ∗, ·) = x(θ∗′, ·)

REMARK 2.

(1) Here, for developing our theory, we assume that the solutions exist for all
the parameters in the parameter space in [0, T ]. One key point in our paper
is that for any compact subset in the parameter space, the solutions for the
parameters in this subset are uniformly bounded in [0, T ], so the existence of
the solutions for all parameters in [0, T ] is necessary for our analysis. But it
is not always true nor easy to check this assumption for nonlinear ordinary
differential equations. Here is a simple example, suppose that � = (0,∞) and
consider the ODE

dx

dt
= 1 + θx2, x(0) = 0.

For fixed θ , the solution only exists on [0, π

2
√

θ
] and

x(t) = tan
√

θt ∀t ∈
[
0,

π

2
√

θ

]
.

Hence, for any T , if θ ≥ ( π
2T

)2, there does not exist any solution in [0, T ] with
x(0) = 0.

In practice, we usually let T be equal to the largest sampled time point.
Hence, at least for the true parameter, the solutions exist in [0, T ]. Since here
we assume the smoothness of F and G, by Theorem 7.4 in Chapter 1 of Cod-
dington and Levinson [7], there are a neighborhood of the true initial value and
a neighborhood of the true parameter such that the solutions exist in [0, T ] for
the initial values and the parameters in those neighborhoods. If the estimates
belong to that neighborhood, all of our results still hold even without the as-
sumption about the existence of the solutions in the whole parameter space.
For any parameter for which the solutions do not exist, according to the ex-
tension theorem of the solutions to ODEs (see Theorem 3.1 in Hartman [11]
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or Theorem 1.186 in Chicone [6]), there is a 0 < T ′ ≤ T (T ′ is parameter de-
pendent) such that the solutions exist in [0, T ′) and the solutions will become
unbounded when t → T ′. So one can see that when the sample size and the
smoothing parameter λ are large enough, that parameter cannot be our esti-
mate. But our results may not be true in the situation that our estimates take
the values for which the solution do not exists on [0, T ] since the solutions are
unbounded.

(2) The uniqueness assumption is necessary in our theory. In general, it is not
easy to check this assumption for a given ODE and a time interval. However,
under the assumption of F,G ∈ C3(R × R × [0, T ] × �), the existence of the
solutions of the initial value problems (1.1) in [0, T ] is sufficient to guarantee
the uniqueness of the solutions in [0, T ].

(3) The latter requirement in Assumption 2 means that the parameter estimation
problem is identifiable. The model identifiability should be carefully studied
before any statistical inference can be made. There is a substantial literature
on this issue, for example, Xia [28], Xia and Moog [29], Jeffrey and Xia [15]
and Miao et al. [18] investigated the identifiability of HIV dynamic models.
There remain many unsolved problems in this area, but they are beyond the
scope of this paper.

LEMMA 1. Under Assumption 2, there exist a sequence of finite-dimensional
subspaces {Ln, n ≥ 1} of C1[0, T ] such that for any compact subset �0 of � and
any compact subset �0 of �, we have

lim
n→∞ sup

θ∗∈�0×�0

inf
w∈Ln,w(0)=x

[
‖x(θ∗, ·) − w‖∞ ∨

∥∥∥∥dx
dt

(θ∗, ·) − dw
dt

∥∥∥∥∞

]
= 0,

lim
n→∞ sup

θ∗∈�0×�0

inf
v∈Ln,v(0)=z

[
‖z(θ∗, ·) − v‖∞ ∨

∥∥∥∥dz
dt

(θ∗, ·) − dv
dt

∥∥∥∥∞

]
= 0,

where θ∗ = (θ, x, z) and a ∨ b denotes max(a, b) for any real numbers a and b.

PROOF. Note that in a Euclidean space, a compact subset is just a bounded
closed subset. Let Ln be the space of cubic spline functions with knots τ (n) = (0 =
t
(n)
1 < · · · < t

(n)
kn

= T ). Suppose that |τ (n)| → 0 as n → ∞. Under Assumption 2,

F,G have the continuous partial derivatives of third order. Hence, d4x
dt4 (θ∗, t) and

d4z
dt4 (θ∗, t) are continuous functions of (θ∗, t). Because �0 × �0 is a compact set,
we have

sup
θ∗∈�0×�0

∥∥∥∥d4x
dt4 (θ∗, ·)

∥∥∥∥∞
< ∞,

sup
θ∗∈�0×�0

∥∥∥∥d4z
dt4 (θ∗, ·)

∥∥∥∥∞
< ∞.
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By Theorems 2 and 4 in Hall and Meyer [10],

sup
θ∗∈�0×�0

inf
w∈Ln,w(0)=x

‖x(θ∗, ·) − w‖∞

≤ C0 sup
θ∗∈�0×�0

∥∥∥∥d4x
dt4 (θ∗, ·)

∥∥∥∥∞
∣∣τ (n)

∣∣4 → 0,

sup
θ∗∈�0×�0

inf
w∈Ln,w(0)=x

∥∥∥∥dx
dt

(θ∗, ·) − dw
dt

∥∥∥∥∞

≤ C1 sup
θ∗∈�0×�0

∥∥∥∥d4x
dt4 (θ∗, ·)

∥∥∥∥∞
∣∣τ (n)

∣∣3 → 0,

where C0 = 5
384 ,C1 = 9+√

3
216 . Similarly, we can prove the result for z(θ∗, ·). �

Let Pθ∗
0

be the joint distribution of {(Y1, T1), . . . , (Yn, Tn)}, which corresponds
to the true parameters and the true initial values. Define function

M(θ∗) = −Eθ∗
0
[g(Yi,x(θ∗, Ti))], θ∗ ∈ � × �,

where Eθ∗
0
[·] is the expectation with respect to Pθ∗

0
.

ASSUMPTION 3. In � × �, M(θ∗) is continuous and has a unique maximum
at θ∗

0 .

REMARK 3. Under Assumptions 1 and 2, both Examples 1 and 2 satisfy As-
sumption 3. Actually in Example 1,

M(θ∗) = −Eθ∗
0
[g(Yi,x(θ∗, Ti))]

= −Eθ∗
0

[(
Yi − x(θ∗, Ti)

)2] = −σ 2 −
∫ T

0

(
x(θ∗, t) − x(θ∗

0 , t)
)2

Q(dt)

= M(θ∗
0 ) −

∫ T

0

(
x(θ∗, t) − x(θ∗

0 , t)
)2

Q(dt)

≤ M(θ∗
0 ) − c

∫ T

0

(
x(θ∗, t) − x(θ∗

0 , t)
)2

dt.

By Assumption 2,
∫ T

0 (x(θ∗, t) − x(θ∗
0 , t))2 dt = 0 if and only if θ∗ = θ∗

0 , hence θ∗
0

is the unique maximizer of M(θ∗). For Example 2, the conditional probability

Eθ∗
0
[g(Yi,x(θ∗, Ti))|Ti]
= −p(θ∗

0 , Ti) logp(θ∗, Ti) − (
1 − p(θ∗

0 , Ti)
)

log
(
1 − p(θ∗, Ti)

)
,

where

p(θ∗, t) = ex(θ∗,t)

1 + ex(θ∗,t) .
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Because for any fixed number a ∈ (0,1), the function

a logx + (1 − a) log (1 − x)

obtains its unique maximum at a in (0,1),

M(θ∗) = −Eθ∗
0
[g(Yi,x(θ∗, Ti))]

=
∫ T

0

[
p(θ∗

0 , t) logp(θ∗, t) + (
1 − p(θ∗

0 , t)
)

log
(
1 − p(θ∗, t)

)]
Q(dt)

=
∫ T

0

[
p(θ∗

0 , t) logp(θ∗, t) + (
1 − p(θ∗

0 , t)
)

log
(
1 − p(θ∗, t)

)]
f (t) dt

obtains its maximum if and only if θ∗ = θ∗
0 .

ASSUMPTION 4. g(y, x) is a nonnegative function and belongs to C(R × R).
If the Yi is not a bounded random variable, we assume that for any compact set
� ⊂ R,

lim inf|y|→∞

[
1 + infx∈� g(y, x)

supx∈� g(y, x)

]
> 0.(3.1)

REMARK 4. The latter statement means that for any two fixed points x, x′
in a compact subset, g(y, x) and g(y, x′) are comparable as functions of y when
|y| → ∞. Usually if g(y, x) does not increase too fast as |y| → ∞, the above
condition is satisfied. For example, if g(y, x) is a polynomial function of y given
x and the coefficient of the highest order term is nonzero for all x, then (3.1) is
true. Hence, Example 1 satisfies this assumption. In Example 2, Yi is bounded.

Given a compact subset �0 of � and a compact subset �0 of �. Let

rn = max
{

sup
θ∗∈�0×�0

inf
w∈Ln,w(0)=x

[
‖x(θ∗, ·) − w‖∞

∨
∥∥∥∥dx
dt

(θ∗, ·) − dw
dt

∥∥∥∥∞

]
,(3.2)

sup
θ∗∈�0×�0

inf
v∈Ln,v(0)=z

[
‖z(θ∗, ·) − v‖∞ ∨

∥∥∥∥dz
dt

(θ∗, ·) − dv
dt

∥∥∥∥∞

]}
,

where θ∗ = (θ, x, z).

THEOREM 3.1. Under Assumptions 1–4, suppose that λn → ∞ and rn → 0
as n → ∞. Then for any compact subset �0 of � and any compact subset �0 of �,

sup
θ∗∈�0×�0

‖x̂n(θ
∗, ·) − x(θ∗, ·)‖∞

(3.3)

≤
[
Op

(
1√
λn

)√
T + 2T

√
8(8K2 + 2)rn

]
e2KT ,



448 X. QI AND H. ZHAO

where K is a constant depending only on �0 × �0, F and G.

REMARK 5.

(1) There is an exponential function of T in the above upper bound. This is be-
cause we use the penalty (1.4). According to the approximation theory for
ODEs (see Antosiewicz [1]), for general ODEs, however small the approxi-
mations make such penalty (even we use the L∞-norms in the penalty), the
difference between the approximations and the solutions could grow exponen-
tially with T increasing. Here is a simple example. Consider the equation,

dy

dt
= y, y(0) = y0.

The solution is y(t) = y0e
t . Now suppose we have an approximation ŷ(t) to

the solution satisfying

dŷ

dt
(t) − ŷ(t) = ε, t ≥ 0,

where ε is any fixed small number. Then we can get that

ŷ(t) = y0e
t + ε(et − 1), t ≥ 0,

so

|ŷ(t) − y(t)| = |ε|(et − 1), t ≥ 0.

The bound will increase very fast when T is increasing. In the simulated data
examples for FitzHugh–Nagumo equations in Ramsay et al. [21], they took
T = 20. In this case, the above bound is too large to be useful for their sample
size. However, the results in Ramsay et al. [21] and our simulation study in-
dicate that when the smoothing parameter becomes large, the approximations
to the solutions are very good. We will study this problem in the next section.
Since T is fixed, we can use this bound to get the asymptotic consistency and
normality.

(2) If Ln is the space of cubic spline functions with knots τ (n) by the proof of
Lemma 1, we have

rn = O
(∣∣τ (n)

∣∣3)
.(3.4)

(3) The upper bound is the sum of two terms. The second term is a function of the
distance between the approximation space and the true solutions. It does not
depend on the sample and λ. This error term is due to the imperfect approxi-
mations of the basis expansion. The first term is due to using finite λ. If λ is
finite, the solutions to the penalized optimization problem (2.1) are affected
by the sample, there are discrepancies between the solutions for finite λ and
the minimizer of J (the solutions to the penalized optimization problem for
λ → ∞).



GENERAL PROFILING ASYMPTOTICS 449

(4) In practice, numerical methods have to be used to calculate the penalties,
which may lead to an increase in deviation of the approximations from the
solutions. For example, Simpson’s rule is used to compute the penalties in
Ramsay et al. [21]. According to the error bound for Simpson’s rule and the
proof of Theorem 3.1, one more term should be added to the right-hand side
of (3.3), K̃|τ̃ |5/2

√
T e2KT , where K̃ is a positive number depending on the

derivatives of x̂n(θ
∗, t) up to order 5 and τ̃ is the partition of [0, T ] for Simp-

son’s rule. If the solutions are smooth enough and the knots for B-splines are
included in the partition points for Simpson’s method, the error can be well
controlled by adding enough partition points.

In order to prove the consistency of the estimation θ̂∗
n , we replace Assumption 4

by a stronger assumption.

ASSUMPTION 5. g(y, x) is a nonnegative function and belongs to C1(R×R)

with

Eθ∗
0

[∣∣∣∣∂g

∂x
(Yi,x(θ∗

0 , Ti))

∣∣∣∣
]

< ∞.

If Yi is not a bounded random variables, we assume that for any compact set
� ⊂ R,

lim inf|y|→∞

[
1 + infx∈� g(y, x)

supx∈� g(y, x)

]
> 0 and lim inf|y|→∞

[
1 + infx∈� |∂g/∂x(y, x)|

supx∈� |∂g/∂x(y, x)|
]

> 0.

REMARK 6. Both Examples 1 and 2 satisfy this assumption.

THEOREM 3.2. Suppose that Assumptions 1, 2, 3 and 5 hold and that θ̂∗
n is

uniformly tight. Suppose that λn → ∞ and rn → 0 as n → ∞, then θ̂∗
n is consis-

tent.

REMARK 7.

(1) If Ln is the space of cubic spline functions with knots τ (n). By (3.4), we only
need λn → ∞ and |τ (n)| → 0 to obtain the consistency result.

(2) We say θ̂∗
n is uniformly tight if for any ε > 0, there exists a compact set �∗

ε ⊂
� × � such that

sup
n

P (θ̂∗
n /∈ �∗

ε) < ε.

This is equivalent to stating that the probability of θ̂n going to the bound-
ary or infinity is zero. The tightness assumption is essential for our proofs of
the consistency and asymptotic normality. First, under this assumption, with a
probability arbitrarily close to 1, the solutions can be uniformly bounded for
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any n. The weak convergence of the estimates also needs this assumption. If
the parameter space � and the region � where the initial values of ODEs are
taken are bounded and closed, then θ̂∗

n is automatically uniformly tight. For
the general case, it is not easy to verify this assumption. Sometimes if F,G go
to infinity when θ goes to infinity or the boundary of �, θ̂∗

n is uniformly tight.
(3) The proofs of the consistency and the asymptotic normality are based on the

results for M-estimators. Because θ̂∗
n is the maximizer of Hn(x̂n(θ

∗, ·)), it is
natural to use Hn(x̂n(θ

∗, ·)) as our criterion function. But x̂n is the solution
of a penalized optimization problem, so it is an implicit function of θ∗. The
derivatives of x̂n with respect to θ∗ have complicated forms and are difficult to
analyze. Because we have obtained the upper bound for the difference between
x̂n and xn, we can choose the criterion function Hn(xn(θ

∗, ·)) which can be
more easily handled. Although θ̂∗

n is not the maximizer of Hn(xn(θ
∗, ·)), we

can control the difference between Hn(xn(θ̂
∗
n , ·)) and maxθ∗ Hn(xn(θ

∗, ·)). In
other words, θ̂∗

n nearly maximizes Hn(xn(θ
∗, ·)) (see Section 5.2 of van der

Vaart [25]), so we can apply the results for M-estimators.

In order to prove the asymptotic normality of the estimator θ̂∗
n , we replace As-

sumptions 4 and 5 by a stronger assumption.

ASSUMPTION 6. g(y, x) is a nonnegative function and belongs to C2(R×R)

with

Eθ∗
0

[∣∣∣∣∂g

∂x
(Yi,x(θ∗

0 , Ti))

∣∣∣∣
2]

< ∞ and Eθ∗
0

[∣∣∣∣∂
2g

∂x2 (Yi,x(θ∗
0 , Ti))

∣∣∣∣
]

< ∞.

If the Yi is not a bounded random variable, we assume that for any compact set
� ⊂ R,

lim inf|y|→∞

[
1 + infx∈� g(y, x)

supx∈� g(y, x)

]
> 0, lim inf|y|→∞

[
1 + infx∈� |∂g/∂x(y, x)|

supx∈� |∂g/∂x(y, x)|
]

> 0

and

lim inf|y|→∞

[
1 + infx∈� |∂2g/∂x2(y, x)|

supx∈� |∂2g/∂x2(y, x)|
]

> 0.

REMARK 8. Both Examples 1 and 2 satisfy this assumption.

Let the estimator θ∗
n be the maximizer of Hn(x(θ∗, t)). Note it is different

from θ̂∗
n . If g(y,x(θ, t)) is the log density function of (Yi, Ti), then θ∗

n is the max-
imum likelihood estimator.

THEOREM 3.3. Suppose that Assumptions 1, 2, 3 and 6 hold and that θ̂∗
n and

θ∗
n are uniformly tight. Suppose that

λn

n2 → ∞ and rn = op

(
1

n

)
as n → ∞,
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and that the matrix

Vθ∗
0

= −Eθ∗
0

[
∂g

∂x
(Yi,x(θ∗

0 , Ti))
∂2x

∂θ∗ ∂θ∗T
(θ∗

0 , Ti)

+ ∂2g

∂x2 (Yi,x(θ∗
0 , Ti))

∂x
∂θ∗ (θ∗

0 , Ti)
∂x
∂θ∗ (θ∗

0 , Ti)
T

]

is nonsingular. Then both
√

n(θ̂∗
n − θ∗

0 ) and
√

n(θ∗
n − θ∗

0 ) are asymptotically nor-
mal with mean zero and the same asymptotic covariance matrix.

REMARK 9.

(1) If Ln is the space of cubic spline functions with knots τ (n). By (3.4), let

λn

n2 → ∞ and
∣∣τ (n)

∣∣ = op

(
1

n1/3

)
as n → ∞.

Then the conditions on λn and rn in Theorem 3.3 are satisfied.
(2) If g(y,x(θ, t)) is the log density function of (Yi, Ti), then θ∗

n is just the maxi-
mum likelihood estimation. Therefore, θ̂∗

n is asymptotically efficient.
(3) The uniform tightness of θ∗

n is not needed in the proof of the asymptotic nor-
mality of θ̂∗

n .

4. The properties of the basis function approximations when λ → ∞. In
this section, we study the finite sample behavior of the approximations of the so-
lutions of (1.1) for a given sample and a given value of θ∗. In Theorem 3.1, we
provide a bound on the uniform norm of the difference between the approxima-
tions and the solutions. But this bound will grow exponentially with T increasing
due to the form of the penalty, which makes the bound useless in the finite-sample
situation. It seems that the bound cannot be improved for general ODEs when the
smoothing parameter is finite. However, the results in Ramsay et al. [21] and our
simulation study indicate that when the smoothing parameter becomes large, the
approximations to the solutions are quite good. Therefore, we let the smoothing
parameter λ go to infinity and study the limiting behavior of the approximations.

First we consider a simulated example. Consider the FitzHugh–Nagumo equa-
tions

dV
dt

(t) = c

(
V − V3

3
+ R

)
,

(4.1)
dR
dt

(t) = −1

c
(V − a + bR).

The parameters in the system are θ = (a, b, c) and the time interval is [0,20].
Suppose that the true parameter values are θ0 = (0.2,0.2,3) and the estimates are
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θ̂ = (0.8,−0.5,3.5). Let (V(θ, ·),R(θ, ·)) be the solutions of (4.1) with parameter
θ and initial value (1,−1). The data were simulated from the model

Y1i = V(θ0, Ti) + ε1i ,
(4.2)

Y2i = R(θ0, Ti) + ε2i ,

where the samples were taken at times 0.0,0.05,0.10, . . . ,20.0 and ε1i , ε2i were
independent random variables with the same distributions N(0,0.5). We firstly
plot the solutions for θ0 and θ̂ , and the simulated data in Figure 1. Now, we fix the
sample and let L be the cubic spline functions with knots at each sample point.
Let the smoothing parameter λ go to infinity. We plot the differences between
the spline approximations (X1(t),X2(t)) and the solutions (V(t),R(t)) for θ̂ =

FIG. 1. The solutions (V,R) of (4.1) for θ0 = (0.2,0.2,3) and θ = (0.8,−0.5,3.5), and the simu-
lated data (Y1, Y2) from (4.2).
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FIG. 2. The differences between the spline approximations (X1(t),X2(t)) and the solution
(V(t),R(t)) for θ̂ = (0.8,−0.5,3.5) for different values of λ. The graphs have different y-axis scales.

(0.8,−0.5,3.5) for different values of λ in Figure 2. From this figure, we can see
that the approximations to the solutions are quite good when λ is large and there is
no obvious time trend for the difference.

Fix the sample (Y1, T1), . . . , (Yn, Tn) and the parameter θ∗. Let L be a finite-
dimensional linear subspace of C1[0, T ]. Define

r = max
{

inf
w∈L,w(0)=x

[
‖x(θ∗, ·) − w‖∞ ∨

∥∥∥∥dx
dt

(θ∗, ·) − dw
dt

∥∥∥∥∞

]
,

(4.3)

inf
v∈L,v(0)=z

[
‖z(θ∗, ·) − v‖∞ ∨

∥∥∥∥dz
dt

(θ∗, ·) − dv
dt

∥∥∥∥∞

]}
.
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Let λ(m) be a sequence of positive smoothing parameters which is strictly in-
creasing and go to infinity. For each m, let(

x̂(m), ẑ(m)) ∈ arg max
x̂,ẑ∈L

x̂(0)=x,ẑ(0)=z

[
Hn(x̂) − λ(m)J (x̂, ẑ, θ)

]
.

Note that we suppress the subscript n on (x̂(m)(θ∗, t), ẑ(m)(θ∗, t)), r and L, which
may depend on the sample, because the sample is fixed.

LEMMA 2. For each m, we have

Hn

(
x̂(m)) − Hn

(
x̂(m+1)) ≤ λ(m+1)[J (

x̂(m), ẑ(m), θ
) − J

(
x̂(m+1), ẑ(m+1), θ

)]
,

Hn

(
x̂(m)) − Hn

(
x̂(m+1)) ≥ λ(m)[J (

x̂(m), ẑ(m), θ
) − J

(
x̂(m+1), ẑ(m+1), θ

)]
.

Therefore, both {Hn(x̂(m)) :m ≥ 1} and {J (x̂(m), ẑ(m), θ) :m ≥ 1} are decreasing
sequences.

PROOF. By the definitions of (x̂(m), ẑ(m)) and (x̂(m+1), ẑ(m+1)), we have

Hn

(
x̂(m)) − λ(m+1)J

(
x̂(m), ẑ(m), θ

) ≤ Hn

(
x̂(m+1)) − λ(m+1)J

(
x̂(m+1), ẑ(m+1), θ

)
,

Hn

(
x̂(m)) − λ(m)J

(
x̂(m), ẑ(m), θ

) ≥ Hn

(
x̂(m+1)) − λ(m)J

(
x̂(m+1), ẑ(m+1), θ

)
.

The two inequalities in lemma follow immediately. Note that λ(m+1) > λ(m), so we
have

J
(
x̂(m), ẑ(m), θ

) − J
(
x̂(m+1), ẑ(m+1), θ

) ≥ 0. �

LEMMA 3.

lim
m→∞J

(
x̂(m), ẑ(m), θ

) = inf
x̂,ẑ∈L

x̂(0)=x,ẑ(0)=z

J (x̂, ẑ, θ).

PROOF. By Lemma 2, {J (x̂(m), ẑ(m), θ) :m ≥ 1} is a decreasing sequence and
nonnegative, hence the limit exists. Now suppose that the equality is not true. Then
we can find (x̃, z̃) ∈ L with x̃(0) = x, z̃(0) = z, and a number η > 0 such that
x̃(0) = x

lim
m→∞J

(
x̂(m), ẑ(m), θ

)
> J(x̃, z̃, θ) + η.

For any m, we have

Hn

(
x̂(m)) − λ(m)J

(
x̂(m), ẑ(m), θ

) ≥ Hn(x̃) − λ(m)J (x̃, z̃, θ).

Then

Hn

(
x̂(m)) − Hn(x̃) ≥ λ(m)[J (

x̂(m), ẑ(m), θ
) − J (x̃, z̃, θ)

] ≥ λ(m)η.
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Note that Hn(·) is nonpositive, we have

−Hn(x̃) ≥ λ(m)η.

The left-hand side is a fixed number and the right-hand side goes to infinity as
m → ∞. This is a contradiction. Hence, the lemma is true. �

LEMMA 4. If both x̂(m) and ẑ(m) are bounded sequences in (L,‖ · ‖∞). Then
for any subsequence {(x̂(m′), ẑ(m′))} ⊂ {(x̂(m), ẑ(m))}, there exist a further subse-
quence {(x̂(m′′), ẑ(m′′))} ⊂ {(x̂(m′), ẑ(m′))} and(

x̂(∞), ẑ(∞)) ∈ arg min
x̂,ẑ∈L

x̂(0)=x,ẑ=z

J (x̂, ẑ, θ),

such that

lim
m′′→∞

∥∥x̂(m′′) − x̂(∞)
∥∥∞ = 0, lim

m′′→∞
∥∥ẑ(m′′) − ẑ(∞)

∥∥∞ = 0.

PROOF. Because (L,‖ · ‖∞) is a finite-dimensional subspace of (C1[0, T ],
‖ · ‖∞), any bounded and closed subset of (L,‖ · ‖∞) is compact. Then our con-
clusion follows from the fact that J (x̂, ẑ, θ) is a continuous function of (x̂, ẑ) in
(L,‖ · ‖∞) (note that it is not continuous in (C1[0, T ],‖ · ‖∞)). �

LEMMA 5. Suppose that the equations in (1.1) have unique solutions (x, z).
For any M > 0 and δ > 0, there exists a positive number ε depending on M and δ,
such that if r < ε, then for any(

x̂(∞), ẑ(∞)) ∈ arg min
x̂,ẑ∈L,x̂(0)=x,ẑ=z

‖x̂‖∞≤M,‖ẑ‖∞≤M

J(x̂, ẑ, θ),

we have ∥∥x̂(∞) − x
∥∥∞ < δ,

∥∥ẑ(∞) − z
∥∥∞ < δ.

Now, we study the minimum points of J in a neighborhood of the solutions. We
can only give the result for the one-dimensional case and we need some properties
of the basis functions. So we will assume in the next theorem that the subspace
L is the space of B-spline functions with order at least 4. Let τ = (0 = t1 < · · · <
tkn = T ) be the knots of L. Recall that

|τ | = max
2≤i≤k

|ti − ti−1|.
We define the mesh ratio

κ = max2≤i≤k|ti − ti−1|
min2≤i≤k|ti − ti−1| = |τ |

min2≤i≤k|ti − ti−1| .
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Suppose that x is the solution of the equation

dx
dt

(t) = F(x(t), t), x(0) = x,(4.4)

where F is a function on R × R. We use Fx,Ft to denote the partial derivatives of
F with respect to x, t , respectively. Define

J (x̂) =
∫ T

0

∣∣∣∣dx̂
dt

(t) − F(x̂(t), t)

∣∣∣∣
2

dt ∀x̂ ∈ L

and

r = inf
w∈L,w(0)=x

[
‖x − w‖∞ ∨

∥∥∥∥dx
dt

− dw
dt

∥∥∥∥∞

]
.(4.5)

THEOREM 4.1. Assume that x is the unique solution of (4.4), F has third-
order continuous partial derivatives and

Fx(x(t), t) < 0 ∀0 ≤ t ≤ T .

Suppose that L is the cubic spline space with knots τ and |τ | ≤ 1. Then there
exists a positive number δ2 depending only on x and F . For any

x̂0 ∈ arg min
x̂∈L,x̂(0)=x

‖x̂−x‖∞<δ2

J (x̂),

we have

‖x − x̂0‖∞ < β1κ

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |1/2 + β2κ|τ |

+ κ
(
4
√

6κ + β3
)
β4

√
T |τ |3/2(4.6)

+ β5
√

T |τ |3 + β6
√

T |τ |7/2,

where β1, β2, β3, β4, β5, β6 are constants depending only on x and F .

REMARK 10.

(1) Theorem 4.1 is true for any space of the B-spline functions with order larger
than 4. However, the order of the bound on the right-hand side of (4.6) may
be different for higher order B-spline functions. We conjecture that there are
similar results for high-dimensional cases and more general equations.

(2) If |τ | is small enough, the bound is dominated by the first term which depends

on T only through ‖d2x̂0
dt2 ‖L2[0,T ]. If d2x̂0

dt2 is bounded by some fixed constant,
then we can prove that the first term will be O(|τ |) and does not depend on T .
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(3) Now, we can explain the pattern in Figure 2. According to Lemma 5, when |τ |
is small enough, all the minimum points of J will be in the neighborhood of
the solution (x, z). By Theorem 4.1, all these minimum points will satisfy the
bound (4.6). By Lemma 4, for any subsequence of (x̂(m), ẑ(m)), there exist a
further subsequence converging to one of these minimum points. Hence, it is
easy to show that (x̂(m), ẑ(m)) will satisfy the bound (4.6) for all large m.

(4) Here we outline the proof of this theorem. The first step is to derive a bound
for ‖x(t0) − x̂0(t0)‖ at any stationary point t0 of the function x(t) − x̂0(t), that
is, any point t0 such that dx

dt
(t0)− dx̂0

dt
(t0) = 0. In this step, we use the property

of x̂0 as a local minimizer of J (x̂). One of the key points in this step is based
on the following observation: for any continuously differentiable function f

in [0, T ], if there is a zero point of f between a and b, then we have∫ b

a
f (t) dt = O(|b − a|2).

We apply this observation to dx
dt

− dx̂0
dt

. In high-dimensional cases, the sta-
tionary points for different components of x − x̂0 may not be the same. We
cannot extend the idea to high-dimensional cases. In this step, we just need
the condition that Fx(x(t), t) is nonzero and do not require that it be strictly
negative.

The next step is to give a bound for all the other points in [0, T ]. In
this step, we need the condition that Fx(x(t), t) is strictly negative to con-
trol the growth of ‖x(t) − x̂0(t)‖ when t gets away from a stationary
point.

(5) In the proof, we use some properties of the B-spline bases. For exam-
ple, the B-spline bases are stable bases and locally supported. Because
we need to change the order of the differentiation and the integral in the
proof, our proof cannot be applied to the penalty where L1- or L∞-norm is
used.

In Section 2, we prove the consistency and asymptotic normality based on the
following idea, the likelihood functions can be well approximated if we have
good approximations to the solutions of ODEs. Therefore, in practical applica-
tions, we should make the approximations close enough to the solutions. In some
cases, if we do not want to solve the ODEs, we can use Theorem 4.1 to esti-
mate the deviation of the spline approximations from solutions. We select a ba-
sis that is sufficiently rich to make the uniform norm in Theorem 4.1 very small.
For any given λ and θ∗, if we want to estimate ‖x̂(θ∗, λ, ·) − x(θ∗, ·)‖, pick a
sequence λn → ∞. According to Lemma 4, we can find a subsequence λn′ and
x̂(θ∗,∞, ·) such that limn′→∞ x̂(θ∗, λn′, ·) = x̂(θ∗,∞, ·). By Theorem 4.1, we can
use ‖x̂(θ∗, λ, ·) − x̂(θ∗,∞, ·)‖ to approximate ‖x̂(θ∗, λ, ·) − x(θ∗, ·)‖. In our sim-
ulation study, usually the sequence x̂(θ∗, λn, ·) converges, and there is no need to
find the subsequence.
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5. Proofs.

PROOF OF THEOREM 3.1. Given two compact sets �0 and �0. Without loss
of generality, we assume that �0 and �0 are convex and contain θ0 and (x0, z0),
otherwise we can prove the conclusion for their convex hulls generated by �0 ∪
{θ0} and �0 ∪ {(x0, z0)} which are still compact sets. Let rn be the number defined
in (3.2). Since rn → 0, without loss of generality, we assume that rn ≤ 1. By the
definition of rn, for each θ∗ ∈ �0 × �0, there exist wn(θ

∗, ·),vn(θ
∗, ·) ∈ Ln such

that

‖x(θ∗, ·) − wn(θ
∗, ·)‖∞ ∨

∥∥∥∥dx
dt

(θ∗, ·) − dwn

dt
(θ∗, ·)

∥∥∥∥∞
≤ 2rn,

(5.1)

‖z(θ∗, ·) − vn(θ
∗, ·)‖∞ ∨

∥∥∥∥dz
dt

(θ∗, ·) − dvn

dt
(θ∗, ·)

∥∥∥∥∞
≤ 2rn

and wn(θ
∗,0) = x(θ∗,0) = x, vn(θ

∗,0) = z(θ∗,0) = z, where θ∗ = (θ, x, z). Be-
cause (x(θ∗, t), z(θ∗, t)) are continuous functions of (θ∗, t) and �0 × �0 × [0, T ]
is a compact set, there exists a positive number R depending on F,G and �0,�0,
such that

|x(θ∗, t)| ≤ R, |z(θ∗, t)| ≤ R ∀(θ∗, t) ∈ �0 × �0 × [0, T ].(5.2)

By (5.1),

|wn(θ
∗, t)| ≤ R + 2rn ≤ R + 2, |vn(θ

∗, t)| ≤ R + 2rn ≤ R + 2,
(5.3)

∀(θ∗, t) ∈ �0 × �0 × [0, T ].
Since F , G have continuous partial derivatives, we can find a positive number

K depending on F,G and �0,�0, such that

|F(x, z, t, θ) − F(x′, z′, t, θ)| ≤ K|x − x′| + K|z − z′|,
|G(x, z, t, θ) − G(x′, z′, t, θ)| ≤ K|x − x′| + K|z − z′|(5.4)

∀|x| ≤ R + 3, |x′| ≤ R + 3, |z| ≤ R + 3, |z′| ≤ R + 3.

We first prove a technical lemma.

LEMMA 6. supθ∗∈�0×�0
Png(Y,wn(θ

∗, ·)) = Op(1).

PROOF. By (5.3), wn(θ
∗, t) are uniformly bounded by R + 2 for all (θ∗, t) ∈

�0 × �0 × [0, T ]. So if Yi is bounded, supθ∗∈�0×�0
Png(Y,wn(θ

∗, ·)) is bounded
since g is continuous, and hence the lemma is true. Otherwise, by Assumption 4,
we can find a positive number δ > 0 such that

δ sup
|x|≤R+2

g(y, x) ≤
(
1 + inf|x|≤R+2

g(y, x)
)

∀y ∈ R.
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Hence, we have

sup
θ∗∈�0×�0

Png(Y,wn(θ
∗, ·)) ≤ 1

δ

(
1 + Png(Y,x(θ∗

0 , ·)).
By the law of large numbers,

Png(Y,x(θ∗
0 , ·)) → Eθ∗

0
[g(Y,x(θ∗

0 , ·)] = M(θ∗
0 ) < ∞,

1

δ

(
1 + Png(Y,x(θ∗

0 , ·))) = Op(1). �

Now, we prove Theorem 3.1. For any θ∗ ∈ �0 × �0, by the definition of
(x̂n(θ

∗, ·), ẑn(θ
∗, ·)), we have

Hn(x̂n(θ
∗, ·)) − λnJ (x̂n(θ

∗, ·), ẑn(θ
∗, ·), θ)

≥ Hn(wn(θ
∗, ·)) − λnJ (wn(θ

∗, ·),vn(θ
∗, ·), θ).

Because Hn(x̂n(θ
∗, ·)) ≤ 0,

−λnJ (x̂n(θ
∗, ·), ẑn(θ

∗, ·), θ) ≥ Hn(wn(θ
∗, ·)) − λnJ (wn(θ

∗, ·),vn(θ
∗, ·), θ).

Then

J (x̂n(θ
∗, ·), ẑn(θ

∗, ·), θ)

≤ − 1

λn

Hn(wn(θ
∗, ·)) + J (wn(θ

∗, ·),vn(θ
∗, ·), θ)

≤ 1

λn

Png(Y,wn(θ
∗, ·)) +

∥∥∥∥dwn

dt
(θ∗, ·) − F(wn(θ

∗, ·),vn(θ
∗, ·), t, θ)

∥∥∥∥
2

L2[0,T ]

+
∥∥∥∥dvn

dt
(θ∗, ·) − G(wn(θ

∗, ·),vn(θ
∗, ·), t, θ)

∥∥∥∥
2

L2[0,T ]

= 1

λn

Png(Y,wn(θ
∗, ·))

+
∥∥∥∥dwn

dt
(θ∗, ·) − dx

dt
(θ∗, ·)

+ F(x(θ∗, ·), z(θ∗, ·), t, θ) − F(wn(θ
∗, ·),vn(θ

∗, ·), t, θ)

∥∥∥∥
2

L2[0,T ]

+
∥∥∥∥dvn

dt
(θ∗, ·) − dz

dt
(θ∗, ·)

+ G(x(θ∗, ·), z(θ∗, ·), t, θ) − G(wn(θ
∗, ·),vn(θ

∗, ·), t, θ)

∥∥∥∥
2

L2[0,T ]
(x, z are solutions)
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≤ 1

λn

Png(Y,wn(θ
∗, ·)) + 2

∥∥∥∥dwn

dt
(θ∗, ·) − dx

dt
(θ∗, ·)

∥∥∥∥
2

L2[0,T ]
+ 2‖F(x(θ∗, ·), z(θ∗, ·), t, θ) − F(wn(θ

∗, ·),vn(θ
∗, ·), t, θ)‖2

L2[0,T ]

+ 2
∥∥∥∥dvn

dt
(θ∗, ·) − dz

dt
(θ∗, ·)

∥∥∥∥
2

L2[0,T ]
+ 2‖G(x(θ∗, ·), z(θ∗, ·), t, θ) − G(wn(θ

∗, ·),vn(θ
∗, ·), t, θ)‖2

L2[0,T ]

≤ 1

λn

Png(Y,wn(θ
∗, ·)) + 2

∥∥∥∥dwn

dt
(θ∗, ·) − dx

dt
(θ∗, ·)

∥∥∥∥
2

L2[0,T ]

+ 2
∥∥∥∥dvn

dt
(θ∗, ·) − dz

dt
(θ∗, ·)

∥∥∥∥
2

L2[0,T ]
+ 8K2‖wn(θ

∗, ·) − x(θ∗, ·)‖2
L2[0,T ]

+ 8K2‖vn(θ
∗, ·) − z(θ∗, ·)‖2

L2[0,T ] by (5.4)

≤ 1

λn

Png(Y,wn(θ
∗, ·)) + 2T

∥∥∥∥dwn

dt
(θ∗, ·) − dx

dt
(θ∗, ·)

∥∥∥∥
2

∞

+ 2T

∥∥∥∥dvn

dt
(θ∗, ·) − dz

dt
(θ∗, ·)

∥∥∥∥
2

∞
+ 8K2T ‖wn(θ

∗, ·) − x(θ∗, ·)‖2∞

+ 8K2T ‖vn(θ
∗, ·) − z(θ∗, ·)‖2∞ by (1.2)

≤ 1

λn

Png(Y,wn(θ
∗, ·))

+ (8K2 + 2)T

[∥∥∥∥dwn

dt
(θ∗, ·) − dx

dt
(θ∗, ·)

∥∥∥∥∞
∨ ‖wn(θ

∗, ·) − x(θ∗, ·)‖∞
]2

+ (8K2 + 2)T

[∥∥∥∥dvn

dt
(θ∗, ·) − dz

dt
(θ∗, ·)

∥∥∥∥∞
∨ ‖vn(θ

∗, ·) − z(θ∗, ·)‖∞
]2

≤ 1

λn

Png(Y,wn(θ
∗, ·)) + 8T (8K2 + 2)r2

n by (5.1)

and hence

sup
θ∗∈�0×�0

J (x̂n(θ
∗, ·), ẑn(θ

∗, ·), θ)

= 1

λn

Op(1) + 8T (8K2 + 2)r2
n

= Op

(
1

λn

)
+ 8T (8K2 + 2)r2

n by Lemma 6.



GENERAL PROFILING ASYMPTOTICS 461

By definition of J , we have

sup
θ∗∈�0×�0

∥∥∥∥dx̂n

dt
(θ∗, ·) − F(x̂n(θ

∗, ·), ẑn(θ
∗, ·), t, θ)

∥∥∥∥
2

L2[0,T ]

≤ Op

(
1

λn

)
+ 8T (8K2 + 2)r2

n,

sup
θ∗∈�0×�0

∥∥∥∥d ẑn

dt
(θ∗, ·) − G(x̂n(θ

∗, ·), ẑn(θ
∗, ·), t, θ)

∥∥∥∥
2

L2[0,T ]

≤ Op

(
1

λn

)
+ 8T (8K2 + 2)r2

n.

Therefore, by (1.3),

sup
θ∗∈�0×�0

∥∥∥∥x̂n(θ
∗, t) − x −

∫ t

0
F(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) ds

∥∥∥∥∞

≤
√

Op

(
1

λn

)
T + 8T 2(8K2 + 2)r2

n(5.5)

≤ Op

(
1√
λn

)√
T + T

√
8(8K2 + 2)rn,

and similarly,

sup
θ∗∈�0×�0

∥∥∥∥ẑn(θ
∗, t) − z −

∫ t

0
G(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) ds

∥∥∥∥∞
(5.6)

≤ Op

(
1√
λn

)√
T + T

√
8(8K2 + 2)rn.

Define

An(θ
∗, t) = x̂n(θ

∗, t) − x −
∫ t

0
F(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) ds,

(5.7)

Bn(θ
∗, t) = ẑn(θ

∗, t) − z −
∫ t

0
G(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) ds.

We will show that if supθ∗∈�0×�0
‖An(θ

∗, ·)‖∞ and supθ∗∈�0×�0
‖Bn(θ

∗, ·)‖∞
are small enough, then |x̂n(θ

∗, t)| ≤ R+3 and |ẑn(θ
∗, t)| ≤ R+3 for all t ∈ [0, T ],

θ∗ ∈ �0 × �0. Because (x(θ∗, ·), z(θ∗, ·)) are solutions of (1.1) with initial values
(x, z), by integrating the equations (1.1), we have

x(θ∗, t) − x −
∫ t

0
F(x(θ∗, s), z(θ∗, s), s, θ) ds = 0,

z(θ∗, t) − z −
∫ t

0
G(x(θ∗, s), z(θ∗, s), s, θ) ds = 0.
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Then we subtract them from (5.7),

An(θ
∗, t) = [x̂n(θ

∗, t) − x(θ∗, t)]
−

∫ t

0
[F(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) − F(x(θ∗, s), z(θ∗, s), s, θ)]ds,

Bn(θ
∗, t) = [ẑn(θ

∗, t) − z(θ∗, t)]
−

∫ t

0
[G(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) − G(x(θ∗, s), z(θ∗, s), s, θ)]ds.

So

|x̂n(θ
∗, t) − x(θ∗, t)|
≤

∫ t

0
|F(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) − F(x(θ∗, s), z(θ∗, s), s, θ)|ds

+ |An(θ
∗, t)|,

|ẑn(θ
∗, t) − z(θ∗, t)|
≤

∫ t

0
|G(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) − G(x(θ∗, s), z(θ∗, s), s, θ)|ds

+ |Bn(θ
∗, t)|.

Define τθ∗ = [inf{t ≥ 0, |x̂n(θ
∗, t)| ≥ R + 3, or |ẑn(θ

∗, t)| ≥ R + 3}] ∧ T , where
for any a, b ∈ R, a ∧ b = min(a, b). Then for any 0 ≤ s ≤ τθ∗ , and θ∗ ∈ �0 × �0,
|x̂n(θ

∗, s)| ≤ R + 3, |ẑn(θ
∗, s)| ≤ R + 3. By applying (5.4), we have for any 0 ≤

t ≤ τθ∗ ,

|x̂n(θ
∗, t) − x(θ∗, t)|
≤

∫ t

0
|F(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) − F(x(θ∗, s), z(θ∗, s), s, θ)|ds

+ |An(θ
∗, t)|

≤
∫ t

0
|F(x̂n(θ

∗, s), ẑn(θ
∗, s), s, θ) − F(x(θ∗, s), z(θ∗, s), s, θ)|ds

+ sup
θ∗∈�0×�0

‖An(θ
∗, ·)‖∞

≤ K

∫ t

0
|x̂n(θ

∗, s) − x(θ∗, s)|ds

+ K

∫ t

0
|ẑn(θ

∗, s) − z(θ∗, s)|ds

+ sup
θ∗∈�0×�0

‖An(θ
∗, ·)‖∞.
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Similarly,

|ẑn(θ
∗, t) − z(θ∗, t)|
≤ K

∫ t

0
|x̂n(θ

∗, s) − x(θ∗, s)|ds + K

∫ t

0
|ẑn(θ

∗, s) − z(θ∗, s)|ds

+ sup
θ∗∈�0×�0

‖Bn(θ
∗, ·)‖∞.

We add the above two inequalities together

|x̂n(θ
∗, t) − x(θ∗, t)| + |ẑn(θ

∗, t) − z(θ∗, t)|
≤ 2K

∫ t

0
[|x̂n(θ

∗, s) − x(θ∗, s)| + |ẑn(θ
∗, s) − z(θ∗, s)|]ds

+ sup
θ∗∈�0×�0

‖An(θ
∗, ·)‖∞ + sup

θ∗∈�0×�0

‖Bn(θ
∗, ·)‖∞.

It follows from Gronwall’s inequality that

|x̂n(θ
∗, t) − x(θ∗, t)| + |ẑn(θ

∗, t) − z(θ∗, t)|
≤

[
sup

θ∗∈�0×�0

‖An(θ
∗, ·)‖∞ + sup

θ∗∈�0×�0

‖Bn(θ
∗, ·)‖∞

]
e2Kτθ∗

(5.8)
≤

[
sup

θ∗∈�0×�0

‖An(θ
∗, ·)‖∞ + sup

θ∗∈�0×�0

‖Bn(θ
∗, ·)‖∞

]
e2KT

∀0 ≤ t ≤ τθ∗, θ∗ ∈ �0 × �0.

By (5.5), (5.6) and (5.7), as n → ∞, we have

sup
θ∗∈�0×�0

‖An(θ
∗, ·)‖∞ + sup

θ∗∈�0×�0

‖Bn(θ
∗, ·)‖∞ → 0.

Hence, when n is large enough, we have

|x̂n(θ
∗, t) − x(θ∗, t)| + |ẑn(θ

∗, t) − z(θ∗, t)| ≤ 1.

By (5.2), |x̂n(θ
∗, t)| ≤ |x(θ∗, t)|+1 ≤ R +1 < R +3 and |ẑn(θ

∗, t)| ≤ |z(θ∗, t)|+
1 ≤ R + 1 < R + 3 for all t ∈ [0, τθ∗], θ∗ ∈ �0 × �0. By the definition of τθ∗ , we
must have τθ∗ = T for all θ∗ ∈ �0 × �0. By (5.5), (5.6), (5.7) and (5.8), we have

sup
θ∗∈�0×�0

‖x̂n(θ
∗, ·) − x(θ∗, ·)‖∞ ≤

[
Op

(
1√
λn

)√
T + 2T

√
8(8K2 + 2)rn

]
e2KT .

�

PROOF OF THEOREM 3.2. For any two given compact sets �0 ⊂ � and
�0 ⊂ �, first, we show

sup
θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(x(θ∗, ·))|

(5.9)

=
[
Op

(
1√
λn

)√
T + 2T

√
8(8K2 + 2)rn

]
e2KT Op(1) + op

(
1

n

)
.



464 X. QI AND H. ZHAO

Second, define

Mn(θ
∗) = Hn(xn(θ

∗, ·)) = −1

n

n∑
i=1

g(Yi,x(θ∗, Ti)), θ∗ ∈ � × �.

We show that

sup
θ∗∈�0×�0

|Mn(θ
∗) − M(θ∗)| = op(1).(5.10)

Note that M(θ∗) = −Eθ∗
0
[g(Yi,x(θ∗, Ti))]. Finally, we show that

θ̂∗
n → θ∗

0 in probability.

Now let us prove (5.9) and (5.10). Without loss of generality, we assume that
�0 and �0 are convex and contain θ0 and (x0, z0). According to Assumption 2,
(x(θ∗, t), z(θ∗, t)) are continuous functions of (θ∗, t). Because �0 × �0 × [0, T ]
is a compact set, there exists a positive number R depending on �0 and �0, such
that

|x(θ∗, t)| ≤ R, |z(θ∗, t)| ≤ R ∀(θ∗, t) ∈ �0 × �0 × [0, T ].
Define Vn = supθ∗∈�0×�0

‖x̂n(θ
∗, ·) − x(θ∗, ·)‖∞. From Theorem 3.1,

Vn ≤
[
Op

(
1√
λn

)√
T + 2T

√
8(8K2 + 2)rn

]
e2KT = op(1).(5.11)

By Assumption 5, there exists a positive number δ, such that

sup
|x|≤R+1

∣∣∣∣∂g

∂x
(y, x)

∣∣∣∣ ≤ 1

δ

(
1 + inf|x|≤R+1

∣∣∣∣∂g

∂x
(y, x)

∣∣∣∣
)

∀y ∈ R.(5.12)

Then we have

|Hn(x̂n(θ
∗, ·)) − Hn(x(θ∗, ·))|

≤ 1

n

n∑
i=1

|g(Yi, x̂n(θ
∗, Ti)) − g(Yi,x(θ∗, Ti))|

≤ 1

n

n∑
i=1

|g(Yi, x̂n(θ
∗, Ti)) − g(Yi,x(θ∗, Ti))|1[Vn≤1]

+ 1

n

n∑
i=1

|g(Yi, x̂n(θ
∗, Ti)) − g(Yi,x(θ∗, Ti))|1[Vn>1]

≤ 1

n

n∑
i=1

[
sup

|x|≤R+1

∣∣∣∣∂g

∂x
(Yi, x)

∣∣∣∣
]
‖x̂n(θ

∗, ·) − x(θ∗, ·)‖∞1[Vn≤1]

+ 1

n

n∑
i=1

|g(Yi, x̂n(θ
∗, Ti)) − g(Yi,x(θ∗, Ti))|1[Vn>1]
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≤ 1

n

n∑
i=1

1

δ

[
1 + inf|x|≤R+1

∣∣∣∣∂g

∂x
(Yi, x)

∣∣∣∣
]
Vn1[Vn≤1] by (5.12)

+ 1

n

n∑
i=1

|g(Yi, x̂n(θ
∗, Ti)) − g(Yi,x(θ∗, Ti))|1[Vn>1]

≤ 1

n

n∑
i=1

1

δ

[
1 +

∣∣∣∣∂g

∂x
(Yi,x(θ∗

0 , Ti))

∣∣∣∣
]
Vn

+ 1

n

n∑
i=1

|g(Yi, x̂n(θ
∗, Ti)) − g(Yi,x(θ∗, Ti))|1[Vn>1].

So

sup
θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(x(θ∗, ·))|

≤ 1

n

n∑
i=1

1

δ

[
1 +

∣∣∣∣∂g

∂x
(Yi,x(θ∗

0 , Ti))

∣∣∣∣
]
Vn(5.13)

+ sup
θ∗∈�0×�0

[
1

n

n∑
i=1

|g(Yi, x̂n(θ
∗, Ti)) − g(Yi,x(θ∗, Ti))|

]
1[Vn>1].

By the law of large numbers and Assumption 5,

1

n

n∑
i=1

[
1 +

∣∣∣∣∂g

∂x
(Yi,x(θ∗

0 , Ti))

∣∣∣∣
]

→ 1 + Eθ∗
0

∣∣∣∣∂g

∂x
(Yi,x(θ∗

0 , Ti))

∣∣∣∣ < ∞

in probability, so it is Op(1). From (5.11), the second term on the right-hand side
of (5.13) is not zero only in the event [Vn > 1] whose probability goes to zero, so
it is op( 1

n
). Equation (5.9) has been proved. The equality (5.10) follows from the

lemma below.

LEMMA 7. The two classes {x(θ∗, ·), θ∗ ∈ �0 × �0} and {g(·,x(θ∗, ·)), θ∗ ∈
�0 × �0} are both Pθ∗

0
-Glivenko–Cantelli.

PROOF. For any θ∗′, θ∗′′ ∈ �0 × �0, let θ∗′ = (θ ′, x′, z′) and θ∗′′ = (θ ′′, x′′,
z′′). Since �0 × �0 is convex, by Taylor expansion, we have

|x(θ∗′
, t) − x(θ∗′′

, t)| ≤
[

sup
θ∗∈�0×�0,0≤s≤T

∣∣∣∣∂x
∂θ

(θ∗, s)
∣∣∣∣
]
|θ ′ − θ ′′|

+
[

sup
θ∗∈�0×�0,0≤s≤T

∣∣∣∣ ∂x
∂x

(θ∗, s)
∣∣∣∣
]
|x′ − x′′|

+
[

sup
θ∗∈�0×�0,0≤s≤T

∣∣∣∣∂x
∂z

(θ∗, s)
∣∣∣∣
]
|z′ − z′′|.
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By Assumption 2, ∂x
∂θ

, ∂x
∂x

, ∂x
∂z

are all continuous functions of (θ∗, t). Therefore,
they are all bounded in the compact set �0 × �0 × [0, T ]. We can find a positive
constant C, such that

|x(θ∗′
, t) − x(θ∗′′

, t)| ≤ C|θ∗′ − θ∗′′|
∀θ∗ ∈ �0 × �0,0 ≤ t ≤ T .

That is, the class {x(θ∗, ·), θ∗ ∈ �0 × �0} is Lipschitz in �0 × �0. It follows from
the Theorem 2.7.11 in the book of van der Vaart and Wellner [26] that the L1(Pθ∗

0
)-

bracketing number is bounded by the covering number N(ε,�0 ×�0, | · |) of �0 ×
�0, where | · | is the Euclidean distance. Because �0 × �0 is a bounded subset in
R

d+2,

N(ε,�0 × �0, | · |) ≤ constant ×
(

1

ε

)d+2

.

Then our lemma follows from the Theorem 2.4.1 in the book of van der Vaart and
Wellner [26]. Similar to the derivation of (5.13), we can get

|g(y,x(θ∗′
, t)) − g(y,x(θ∗′′

, t))|
≤ 1

δ

[
1 +

∣∣∣∣∂g

∂x
(y,x(θ∗

0 , t))

∣∣∣∣
]
|x(θ∗′

, t) − x(θ∗′′
, t)|(5.14)

≤ C

δ

[
1 +

∣∣∣∣∂g

∂x
(y,x(θ∗

0 , t))

∣∣∣∣
]
|θ∗′ − θ∗′′|.

By Assumption 5, | ∂g
∂x

(y,x(θ∗
0 , t))| has a finite expectation. Hence, by the same

argument for x(θ∗, ·), we can get the conclusion for g(·,x(θ∗, ·)). �

Because θ̂∗
n is uniformly tight, for any ε > 0, there exist compact sets �0 and

�0 such that

Pθ∗
0
(�) ≥ 1 − ε,(5.15)

where

� = [θ̂∗
n ∈ �0 × �0 for all n].(5.16)

Without loss of generality, we assume that �0 and �0 contain θ0 and (x0, z0). Let
η be any positive number. By Assumption 3, θ∗

0 is the unique maximum point of
M(θ∗), hence

γ = M(θ∗
0 ) − sup

θ∗∈�0×�0,|θ∗−θ∗
0 |≥η

M(θ∗) > 0(5.17)
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due to the compactness of �0 × �0 and the continuity of M . Because for θ̂∗
n ∈

�0 × �0,

M(θ∗
0 ) − M(θ̂∗

n )

= Mn(θ
∗
0 ) − Mn(θ̂

∗
n ) + op(1) by (5.10)

= Hn(x(θ∗
0 , ·)) − Hn(x(θ̂∗

n , ·)) + op(1)

≤ Hn(x̂n(θ
∗
0 , ·)) + sup

θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(x(θ∗, ·))|

− Hn(x̂n(θ̂
∗
n , ·))

+ sup
θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(x(θ∗, ·))| + op(1)

≤ Hn(x̂n(θ
∗
0 , ·)) − Hn(x̂n(θ̂

∗
n , ·))

+ 2 sup
θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(x(θ∗, ·))| + op(1)

≤ Hn(x̂n(θ
∗
0 , ·)) − Hn(x̂n(θ̂

∗
n , ·)) + op(1) by (5.9).

By definition of θ̂∗
n , we have

Hn(x̂n(θ̂
∗
n , ·)) ≥ Hn(x̂n(θ

∗
0 , ·))

and then M(θ∗
0 ) − M(θ̂∗

n ) ≤ op(1). By (5.16) and (5.17), we have

[|θ̂∗
n − θ∗

0 | > η] ∩ � ⊂ [M(θ∗
0 ) − M(θ̂∗

n ) ≥ γ ] ∩ � ⊂ [op(1) ≥ γ ] ∩ �.

Now

Pθ∗
0
[|θ̂∗

n − θ∗
0 | > η]

≤ Pθ∗
0
([|θ̂∗

n − θ∗
0 | > η] ∩ �) + Pθ∗

0
(�c)

≤ Pθ∗
0

([op(1) ≥ γ ] ∩ �
) + Pθ∗

0
(�c) ≤ Pθ∗

0
[op(1) ≥ γ ] + ε by (5.15).

We have

lim sup
n→∞

Pθ∗
0
[|θ̂∗

n − θ∗
0 | > η] ≤ ε.

Since ε is arbitrary, we have Pθ∗
0
[|θ̂∗

n − θ∗
0 | > η] → 0. �

PROOF OF THEOREM 3.3. For any convex compact sets �0 ⊂ � and �0 ⊂ �

such that θ∗
0 is an interior point of �0 × �0, let θ̃∗

n be the maximizer of
Hn(x̂n(θ

∗, ·)) in �0 × �0. Then the event

[θ̃∗
n = θ̂∗

n ] = [θ̂∗
n /∈ �0 × �0].(5.18)
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We will prove the asymptotic normality for θ̃∗
n by using Theorem 5.23 in the

book of van der Vaart [25]. First, by (5.14), for any θ∗′, θ∗′′ ∈ �0 × �0.

|g(y,x(θ∗′
, t)) − g(y,x(θ∗′′

, t))|
(5.19)

≤ C

δ

[
1 +

∣∣∣∣∂g

∂x
(y,x(θ∗

0 , t))

∣∣∣∣
]
|θ∗′ − θ∗′′|,

where C is a constant depending on �0, �0 and T . δ is the constant in (5.12). By
Assumption 6, 1 + | ∂g

∂x
(y,x(θ∗

0 , t))| has a finite second moment.
Second, we will prove a Taylor expansion for

M(θ∗) = −Eθ∗
0
[g(Yi,x(θ∗, Ti))],

in the neighborhood of θ∗
0 . We expand

g(y,x(θ∗, t))
= g(y,x(θ∗

0 , t))(5.20)

+
[
∂g

∂x
(y,x(θ∗

0 , t))

](
∂x
∂θ∗ (θ∗

0 , t)

)T

(θ∗ − θ∗
0 )

+ 1

2
(θ∗ − θ∗

0 )T
[
∂g

∂x
(y,x(θ∗

0 , t))
∂2x

∂θ∗ ∂θ∗T
(θ∗

0 , t)(5.21)

+ ∂2g

∂x2 (y,x(θ∗
0 , t))

∂x
∂θ∗ (θ∗

0 , t)
∂x
∂θ∗ (θ∗

0 , t)T
]

× (θ∗ − θ∗
0 ) + R0,

where (θ∗ − θ∗
0 )T denotes the transpose of (θ∗ − θ∗

0 ) and R0 is the remainder term.
If define a continuous matrix

D(y, t, θ∗) = ∂g

∂x
(y,x(θ∗, t)) ∂2x

∂θ∗ ∂θ∗T
(θ∗, t)

+ ∂2g

∂x2 (y,x(θ∗, t)) ∂x
∂θ∗ (θ∗, t) ∂x

∂θ∗ (θ∗, t)T ,

we can express the remainder term by an integral

R0 = (θ∗ − θ∗
0 )T

[∫ 1

0

[
D

(
y, t, θ∗

0 + s(θ∗ − θ∗
0 )

) − D(y, t, θ∗
0 )

]
(1 − s) ds

]

× (θ∗ − θ∗
0 ).

By using the same argument in the proof of Lemma 6, we have

|D(y, t, θ∗)| ≤ C′

δ

[
1 +

∣∣∣∣∂g

∂x
(y,x(θ∗

0 , t))

∣∣∣∣ +
∣∣∣∣∂

2g

∂x2 (y,x(θ∗
0 , t))

∣∣∣∣
]

∀θ∗ ∈ �0 × �0,
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where C′ is a constant depending on �0, �0 and T . The right-hand side of the
last inequality has a finite expectation by Assumption 6. Hence, by the dominated
convergence theorem,

Eθ∗
0

[∫ 1

0

[
D

(
y, t, θ∗

0 + s(θ∗ − θ∗
0 )

) − D(y, t, θ∗
0 )

]
(1 − s) ds

]
→ 0

as θ∗ → θ∗
0 . From (5.20), we have

M(θ∗) = M(θ∗
0 ) + (θ∗ − θ∗

0 )T Vθ∗
0
(θ∗ − θ∗

0 ) + o(‖θ∗ − θ∗
0 ‖2),(5.22)

where

Vθ∗
0

= −Eθ∗
0
[D(y, t, θ∗

0 )]
and there is no linear term of θ∗ − θ∗

0 beacuse θ∗
0 is the maximum point of M .

Finally, we have

Hn(x(θ̃∗
n , ·))

≥ Hn(x̂n(θ̃
∗
n , ·)) − sup

θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(xn(θ

∗, ·))|

= sup
θ∗∈�0×�0

Hn(x̂n(θ
∗, ·))

− sup
θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(xn(θ

∗, ·))|
(5.23)

by definition of θ̃∗
n

≥ sup
θ∗∈�0×�0

[Hn(x(θ∗, ·)) − sup
θ∗∈�0×�0

|Hn(x(θ∗, ·)) − Hn(x̂n(θ
∗, ·))|]

− sup
θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(xn(θ

∗, ·))|

≥ sup
θ∗∈�0×�0

Hn(x(θ∗, ·)) − 2 sup
θ∗∈�0×�0

|Hn(x(θ∗, ·)) − Hn(x̂n(θ
∗, ·))|.

By (5.9) and

λn

n2 → ∞ and rn = op

(
1

n

)
as n → ∞,

we have

sup
θ∗∈�0×�0

|Hn(x̂n(θ
∗, ·)) − Hn(x(θ∗, ·))|

=
[
Op

(
1√
λn

)√
T + 2T

√
8(8K2 + 2)rn

]
e2KT Op(1) + op

(
1

n

)

= op

(
1

n

)
.
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Now if we look �0 × �0 as the parameter space, then by (5.19), (5.22) and (5.23),
it follows from Theorem 5.23 in book of van der Vaart [25] that

√
n(θ̃∗

n − θ∗
0 ) is

asymptotically normal with mean zero and covariance matrix

V −1
θ∗

0
Eθ∗

0

[(
∂g

∂x
(y,x(θ∗

0 , t))

)2(
∂x
∂θ∗ (θ∗

0 , t)

)T (
∂x
∂θ∗ (θ∗

0 , t)

)]
V −1

θ∗
0

.(5.24)

Note the asymptotic covariance matrix does not depend on �0 × �0. Because θ̂∗
n ’s

are tight and by (5.18), we can make

sup
n

Pθ∗
0
[θ̃∗

n = θ̂∗
n ] = sup

n
Pθ∗

0
[θ̂∗

n /∈ �0 × �0]

arbitrarily small by taking large �0 ×�0. It follows the lemma below that
√

n(θ̂∗
n −

θ∗
0 ) is asymptotically normal with mean zero and covariance matrix (5.24). Simi-

larly, we can prove the asymptotic normality of θ∗
n with the same asymptotic co-

variance matrix. �

LEMMA 8. Let {Xn :n = 1,2, . . .} be a sequence of random variables. For
each m = 1,2, . . . , there is a sequence of random variables {X(m)

n :n = 1,2, . . .}
such that for any ε > 0, we have

lim
m→∞ sup

n
P

(∣∣Xn − X(m)
n

∣∣ > ε
) = 0.

Suppose that for each m, the sequence {X(m)
n :n = 1,2, . . .} converges weakly to

the same random variable X which does not depend on m. Then {Xn :n = 1,2, . . .}
converges weakly to X.

PROOF. We calculate the characteristic function of {Xn :n = 1,2, . . .}. Fix
u ∈ R.∣∣E(eiuXn) − E

(
eiuX

(m)
n

)∣∣ ≤ E
∣∣eiuXn − eiuX

(m)
n

∣∣ = E
∣∣eiu(Xn−X

(m)
n ) − 1

∣∣.
Because eiut is a continuous function of t and bounded by 2, for any δ > 0, there
exists ε > 0 such that

|eiut − 1| ≤ δ ∀|t | ≤ ε.

We have∣∣E(eiuXn) − E
(
eiuX

(m)
n

)∣∣
≤ E

∣∣eiu(Xn−X
(m)
n ) − 1

∣∣
= E

[∣∣eiu(Xn−X
(m)
n ) − 1

∣∣1[|Xn−X
(m)
n |>ε]

] + E
[∣∣eiu(Xn−X

(m)
n ) − 1

∣∣1[|Xn−X
(m)
n |≤ε]

]
≤ 2P

(∣∣Xn − X(m)
n

∣∣ > ε
) + δ.
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Hence,

lim
m→∞ sup

n

∣∣E(eiuXn) − E
(
eiuX

(m)
n

)∣∣ ≤ δ.

Since δ is arbitrary, we have

lim
m→∞ sup

n

∣∣E(eiuXn) − E
(
eiuX

(m)
n

)∣∣ = 0.

Because for each m, the sequence {X(m)
n :n = 1,2, . . .} converges weakly to

X, E(eiuX
(m)
n ) → E(eiuX). So we have E(eiuXn) → E(eiuX), that is, {Xn :n =

1,2, . . .} converges weakly to X. �

PROOF OF LEMMA 5. If the lemma is wrong, then there exist M > 0, δ > 0
and a sequence {Lq :q ≥ 1} with rq → 0, such that for each q , there exist

(wq,vq) ∈ arg min
x̂,ẑ∈Lq ,x̂(0)=x,ẑ=z

‖x̂‖∞≤M,‖ẑ‖∞≤M

J(x̂, ẑ, θ)

with

‖wq − x‖∞ ≥ δ or ‖vq − z‖∞ ≥ δ.(5.25)

We will show that {(wq,vq) :q ≥ 1} are equicontinuous. Fix any η > 0. Let K be
a positive constant such that

|F(x, z, t, θ)| ≤ K, |G(x, z, t, θ)| ≤ K ∀|x|, |z| ≤ M, t ∈ [0, T ]
For any t0 ∈ [0, T ],

|wq(t) − wq(t0)| =
∣∣∣∣
∫ t

t0

dwq

dt
(s) ds

∣∣∣∣ ≤
∫ t

t0

∣∣∣∣dwq

dt
(s)

∣∣∣∣ds

=
∫ t

t0

∣∣∣∣dwq

dt
(s) − F(wq,vq, t, θ) + F(wq,vq, t, θ)

∣∣∣∣ds

≤
∫ t

t0

∣∣∣∣dwq

dt
(s) − F(wq,vq, t, θ)

∣∣∣∣ds + K|t − t0|

≤
√√√√∫ t

t0

∣∣∣∣dwq

dt
(s) − F(wq,vq, t, θ)

∣∣∣∣
2

ds + K|t − t0|

≤
√

J (wq,vq, θ) + K|t − t0|.
By the similar argument as in the proof of Theorem 3.1, we have

J (wq,vq, θ) → 0,
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because rq → 0. Therefore, there exists q0 such that if q ≥ q0, J (wq,vq, θ) ≤
(
η
2 )2. So for any q ≥ q0 and |t − t0| ≤ η

2K
, we have

|wq(t) − wq(t0)| ≤ η.

Hence, {wq :q ≥ 1} are equicontinuous. Similarly, {vq :q ≥ 1} are equicontinuous.
Then by Ascoli’s theorem there is a uniformly convergent subsequence. Without
loss of generality, we assume that wq → x0 and vq → z0 uniformly. We will show
that (x0, z0) are also the solutions of (1.1).∫ t

t0

∣∣∣∣dwq

dt
(s) − F(wq,vq, t, θ)

∣∣∣∣ds ≤
√

J (wq,vq, θ) → 0.

Hence, dwq

dt
→ F(x0, z0, t, θ) in L1[0, T ]. Then we have

wq → x +
∫ t

0
F(x0(s), z0(s), s, θ) ds

uniformly, that is,

x0(t) = x +
∫ t

0
F(x0(s), z0(s), s, θ) ds.

Similarly

z0(t) = z +
∫ t

0
G(x0(s), z0(s), s, θ) ds.

(x0, z0) are the solutions of (1.1). By the uniqueness, (x, z) = (x0, z0), so
(wq,vq) → (x0, z0) uniformly. This contradicts (5.25). �

PROOF OF THEOREM 4.1. Let τ = (0 = t1 < · · · < tl+1 = T ). Then the di-
mension of L is l + 3. Let {φj : j = −2,−1,0, . . . l} be the B-spline bases. For
each 1 ≤ j ≤ l − 3, φj is a piecewise polynomial of order 4 and vanishes outside
the interval (tj , tj+4). All the bases are bounded by 1. For any x̂ ∈ L, let

x̂ =
l+1∑

j=−2

cjφj ,

where (cj , j = −2, . . . , l + 1) are coefficients.
Because F has the third-order continuous partial derivatives, x has a continuous

fourth derivative. Let

R = ‖x‖∞, R1 =
∥∥∥∥dx
dt

∥∥∥∥∞
, K2 =

∥∥∥∥d2x
dt2

∥∥∥∥∞
and K4 =

∥∥∥∥d4x
dt4

∥∥∥∥∞
.

We can also find positive number K0, K and K1, such that

|F(x, z, t)| ≤ K0, |F(x, t) − F(x′, t)| ≤ K|x − x′|,
(5.26)

|Fx(x, t)| ≤ K1, |Ft(x, t)| ≤ K1 ∀|x| ≤ R + 1, |x′| ≤ R + 1.
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By definition of r and the proof of Lemma 1, we have

r ≤ max{C0K4|τ |4,C1K4|τ |3} = C1K4|τ |3,(5.27)

where C0 = 5
384 < C1 = 9+√

3
216 . Because Fx(x(t), t) < 0 for all 0 ≤ t ≤ T , we can

find positive numbers δ2 < 1 and γ such that

Fx(x, t) ≤ −γ ∀|x − x(t)| ≤ δ2,0 ≤ t ≤ T .(5.28)

Let

x̂0 ∈ arg min
x̂∈L,x̂(0)=x,‖x̂−x‖∞<δ2

J (x̂).

First, we show:

LEMMA 9. If 2r < δ2, we have

J (x̂0) ≤ 4(4K2 + 2)Tr2 .

PROOF. By the definition (4.5) of r , there exist w ∈ L with w(0) = x such that

‖w − x‖∞ ≤ 2r < δ2 < 1,

∥∥∥∥dw
dt

− dx
dt

∥∥∥∥∞
≤ 2r.

By (5.26), we have∫ T

0

∣∣∣∣dw
dt

− F(w, t)

∣∣∣∣
2

dt

=
∫ T

0

∣∣∣∣dw
dt

− dx
dt

+ F(x, t) − F(w, t)

∣∣∣∣
2

dt

≤ 2
∫ T

0

∣∣∣∣dw
dt

− dx
dt

∣∣∣∣
2

dt + 2
∫ T

0
|F(x, t) − F(w, t)|2 dt

≤ 2
∫ T

0

∣∣∣∣dw
dt

− dx
dt

∣∣∣∣
2

dt + 4K2
∫ T

0
|x − w|2 dt ≤ 4(4K2 + 2)Tr2 .

By the definition of x̂0, we have

J (x̂0) ≤ J (w) =
∫ T

0

∣∣∣∣dw
dt

− F(w, t)

∣∣∣∣
2

dt ≤ 4(4K2 + 2)Tr2 . �

LEMMA 10. For any t̄ ∈ {0 < s < T : dx̂0
dt

(s) − dx
dt

(s) = 0},

|x(t̄) − x̂0(t̄)| ≤ β1κ

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |1/2 + β2κ|τ |

+ κ
(
4
√

6κ + β3
)
β4

√
T |τ |3/2 + β6

√
T |τ |7/2,

where β1, β2, β3, β4, β6 are constants depending only on x and F .
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PROOF. Pick i such that t̄ ∈ (ti , ti+4) ⊂ [0, T ]. There exists a small positive
number η, such that for any |u| ≤ η, u ∈ R, we have

‖(x̂0 + uφi) − x‖∞ < δ2.

By the definition of x̂0, we have

J (x̂0) ≤ J (x̂0 + uφi),

that is, 0 is the minimum point of the function J (x̂0 + uφi) of u in the region
{u : |u| ≤ η,u ∈ R}. Therefore,

0 = ∂J

∂u
(x̂0 + uφi)

∣∣∣∣
u=0

=
∫ ti+4

ti

(
dφi

dt
− Fx(x̂0(t), t)φi(t)

)(
dx̂0

dt
− F(x̂0(t), t)

)
dt

=
∫ ti+4

ti

dφi

dt

(
dx̂0

dt
− F(x̂0(t), t)

)
dt

−
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)

(
dx̂0

dt
− dx

dt
+ F(x(t), t) − F(x̂0(t), t)

)
dt

=
∫ ti+4

ti

dφi

dt

(
dx̂0

dt
− F(x̂0(t), t)

)
dt(5.29)

−
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)

(
dx̂0

dt
− dx

dt

)

−
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)
(
F(x(t), t) − F(x(t̄), t̄)

+ F(x̂0(t̄), t̄) − F(x̂0(t), t)
)
dt

−
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)
(
F(x(t̄), t̄) − F(x̂0(t̄), t̄)

)
dt.

The integrals are from tj to tj+4 because φi and dφi

dt
vanish outside (tj , tj+4). We

will estimate every term on the right-hand sides of (5.29).
First, by the formula (see DeBoor [8])

dφi

dt
= 3

ti+3 − ti
φi,3 − 3

ti+4 − ti+1
φi+1,3,

where φi,3’s are the B-spline bases of order 3 with knots τ , we can calculate∣∣∣∣
∫ ti+4

ti

dφi

dt

(
dx̂0

dt
− F(x̂0, ẑ0, t)

)
dt

∣∣∣∣
≤

∥∥∥∥dφi

dt

∥∥∥∥
L2[0,T ]

∥∥∥∥dx̂0

dt
− F(x̂0, ẑ0, t)

∥∥∥∥
L2[0,T ]

(5.30)
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≤
(

3√
ti+3 − ti

+ 3√
ti+4 − ti+1

)√
J (x̂0, ẑ0, t)

≤ 6√
3minj |tj+1 − tj |

√
J (x̂0, ẑ0, t)

= 6√
3|τ |/κ

√
J (x̂0, ẑ0, t) ≤ 12√

3|τ |/κ
√

(4K2 + 2)T C1K4|τ |3

≤ 4
√

6(4K2 + 2)T κC1K4|τ |5/2.

Because dx̂0
dt

(t̄) − dx
dt

(t̄) = 0,

∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)

(
dx̂0

dt
(t) − dx

dt
(t)

)
dt

∣∣∣∣
=

∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)

(
dx̂0

dt
(t) − dx

dt
(t) − dx̂0

dt
(t̄) + dx

dt
(t̄)

)
dt

∣∣∣∣
≤ K1

∫ ti+4

ti

∣∣∣∣dx̂0

dt
(t) − dx̂0

dt
(t̄)

∣∣∣∣dt + K1

∫ ti+4

ti

∣∣∣∣dx
dt

(t) − dx
dt

(t̄)

∣∣∣∣dt

≤ K1

∫ ti+4

ti

∣∣∣∣
∫ t

t̄

d2x̂0

dt2 (s) ds

∣∣∣∣dt + K1

∫ ti+4

ti

∣∣∣∣
∫ t

t̄

d2x
dt2 (s) ds

∣∣∣∣dt

≤ K1

∫ ti+4

ti

∫ t

ti

∣∣∣∣d
2x̂0

dt2 (s)

∣∣∣∣ds dt + K1

∫ ti+4

ti

∫ t

ti

∣∣∣∣d
2x

dt2 (s)

∣∣∣∣ds dt

≤ K1

∫ ti+4

ti

∣∣∣∣d
2x̂0

dt2 (s)

∣∣∣∣
∫ ti+4

s
dt ds + K1

∫ ti+4

ti

∫ t

ti

K2 ds dt(5.31)

= K1

∫ ti+4

ti

∣∣∣∣d
2x̂0

dt2 (s)

∣∣∣∣(ti+4 − s) ds + K1K2

2
(ti+4 − ti)

2

≤ K1

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

[∫ ti+4

ti

(ti+4 − s)2 ds

]1/2

+ K1K2

2
(ti+4 − ti)

2

≤ K1√
3

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

(ti+4 − ti)
3/2 + K1K2

2
(ti+4 − ti)

2

≤ 8K1√
3

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |3/2 + 8K1K2|τ |2.
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For the second term from the last on the right-hand side of (5.29),∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)
(
F(x(t), t) − F(x(t̄), t̄)

)
dt

∣∣∣∣
≤ K1

∫ ti+4

ti

|F(x(t), t) − F(x(t̄), t̄)|dt

= K1

∫ ti+4

ti

∣∣∣∣
∫ t

t̄
(Fx(x(s), s)

dx
dt

+ Ft(x(s), s)) ds

∣∣∣∣dt(5.32)

≤ K1

∫ ti+4

ti

∫ t

ti

(K1R1 + K1) ds dt ≤ K1
K1R1 + K1

2
(ti+4 − ti)

2

≤ 8K2
1 (R1 + 1)|τ |2

and ∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)
(
F(x̂0(t̄), t̄) − F(x̂0(t), t)

)
dt

∣∣∣∣
≤ K1

∫ ti+4

ti

|F(x̂0(t), t) − F(x̂0(t̄), t̄)|dt

= K1

∫ ti+4

ti

∣∣∣∣
∫ t

t̄

(
Fx(x̂0(s), s)

dx̂0

dt
+ Ft(x̂0(s), s)

)
ds

∣∣∣∣dt

≤ K1

∫ ti+4

ti

∫ t

ti

(
K1

∣∣∣∣dx̂0

dt
(s)

∣∣∣∣ + K1

)
ds dt

≤ K2
1

∫ ti+4

ti

∫ t

ti

∣∣∣∣dx̂0

dt
(s)

∣∣∣∣ds dt + K2
1

2
(ti+4 − ti)

2

= K2
1

∫ ti+4

ti

∣∣∣∣dx̂0

dt
(s)

∣∣∣∣(ti+4 − s) ds dt + K2
1

2
(ti+4 − ti)

2

= K2
1

∫ ti+4

ti

∣∣∣∣dx̂0

dt
(s) − F(x̂0(s), s) + F(x̂0(s), s)

∣∣∣∣(ti+4 − s) ds dt

+ K2
1

2
(ti+4 − ti)

2

= K2
1

∫ ti+4

ti

∣∣∣∣dx̂0

dt
(s) − F(x̂0(s), s)

∣∣∣∣(ti+4 − s) ds dt

+ K2
1K0

2
(ti+4 − ti)

2 + K2
1

2
(ti+4 − ti)

2

≤ K2
1√
3

∥∥∥∥d2x̂0

dt2 − F(x̂0, ·)
∥∥∥∥
L2[0,T ]

(ti+4 − ti)
3/2(5.33)
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+ K2
1

2
(K0 + 1)(ti+4 − ti)

2

≤ 8K2
1√
3

∥∥∥∥d2x̂0

dt2 − F(x̂0, ·)
∥∥∥∥
L2[0,T ]

|τ |3/2 + 8K2
1 (K0 + 1)|τ |2

= 8K2
1√
3

√
J (x̂0, ẑ0, t)|τ |3/2 + 8K2

1 (K0 + 1)|τ |2

≤ 16K2
1√

3

√
(4K2 + 2)T C1K4|τ |9/2 + 8K2

1 (K0 + 1)|τ |2.

Now we calculate the last term,∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)
(
F(x(t̄), t̄) − F(x̂0(t̄), t̄)

)
dt

∣∣∣∣
=

∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t) dt

∣∣∣∣|F(x(t̄), t̄) − F(x̂0(t̄), t̄)|

=
∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t) dt

∣∣∣∣∣∣Fx(x
′, t̄)

(
x(t̄) − x̂0(t̄)

)∣∣
(5.34)

≥ γ

∣∣∣∣
∫ ti+4

ti

φi(t) dt

∣∣∣∣ · γ |x(t̄) − x̂0(t̄)|

= γ 2|ti+4 − ti |
4

|x(t̄) − x̂0(t̄)|

≥ γ 2|τ |
κ

|x(t̄) − x̂0(t̄)|,
where x′ is a number between x(t̄) and x̂0(t̄) and we use the formula (see equality
(4.29) in Schumaker [23] and Theorem 4.23 in Schumaker [23])∫ ti+4

ti

φi(t) dt = |ti+4 − ti |
4

.

From (5.29)–(5.34), we have

γ 2|τ |
κ

|x(t̄) − x̂0(t̄)|

≤
∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)
(
F(x(t̄), t̄) − F(x̂0(t̄), t̄)

)
dt

∣∣∣∣
≤

∣∣∣∣
∫ ti+4

ti

dφi

dt

(
dx̂0

dt
− F(x̂0(t), t)

)
dt

∣∣∣∣
+

∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)

(
d x̂0

dt
− dx

dt

)∣∣∣∣
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+
∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)
(
F(x(t), t) − F(x(t̄), t̄)

)
dt

∣∣∣∣
+

∣∣∣∣
∫ ti+4

ti

Fx(x̂0(t), t)φi(t)
(
F(x̂0(t̄), t̄) − F(x̂0(t), t)

)
dt

∣∣∣∣
≤ 4

√
6(4K2 + 2)T κC1K4|τ |5/2

+
(

8K1√
3

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |3/2 + 8K1K2|τ |2
)

+ 8K2
1 (R1 + 1)|τ |2

+
(

8K2
1√
3

√
(4K2 + 2)T C1K4|τ |9/2 + 8K2

1 (K0 + 1)|τ |2
)

≤ 8K1√
3

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |3/2

+ (
8K1K2 + 8K2

1 (R1 + 1) + 8K2
1 (K0 + 1)

)|τ |2

+
(

4
√

6κ + 16K2
1√

3

)√
(4K2 + 2)T C1K4|τ |5/2

+ 8K2
1√
3

√
(4K2 + 2)T C1K4|τ |9/2.

Therefore,

|x(t̄) − x̂0(t̄)| ≤ β1κ

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |1/2 + β2κ|τ |

+ κ
(
4
√

6κ + β3
)
β4

√
T |τ |3/2 + β6

√
T |τ |7/2,

where

β1 = 8K1√
3γ 2

,

β2 = 1

γ 2

(
8K1K2 + 8K2

1 (R1 + 1) + 8K2
1 (K0 + 1)

)
,

β3 = 16K2
1√

3
, β4 = 1

γ 2

√
(4K2 + 2)C1K4,

β6 = 8K2
1√
3

√
(4K2 + 2)C1K4. �

Let

t0 ∈ arg max
0≤s≤T

|x(s) − x̂0(s)|.
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Then either t0 ∈ (0, T ) or t0 = T . If t0 ∈ (0, T ), we have dx̂0
dt

(t0) − dx
dt

(t0) = 0. By
Lemma 10,

‖x − x̂0‖∞ = |x(t0) − x̂0(t0)|

≤ β1κ

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |1/2 + β2κ|τ |(5.35)

+ κ
(
4
√

6κ + β3
)
β4

√
T |τ |3/2 + β6

√
T |τ |7/2.

In the case t0 = T , let

s0 = inf
{

0 ≤ s ≤ T :
dx̂0

dt
(t) − dx

dt
(t) = 0,∀s < t < T

}
∧ T .

If s0 = T , there is an increasing sequence {sn, n ≥ 1} which converges to T and
dx̂0
dt

(sn) − dx
dt

(sn) = 0 for all n, hence we still have inequality (5.35). If s0 < T ,

then either s0 = 0 or dx̂0
dt

(s0) − dx
dt

(s0) = 0. In both cases, we have

|x(s0) − x̂0(s0)|

≤ β1κ

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |1/2 + β2κ|τ |

+ κ
(
4
√

6κ + β3
)
β4

√
T |τ |3/2 + β6

√
T |τ |7/2.

Without loss of generality, we assume that dx̂0
dt

(t) − dx
dt

(t) > 0 for all t ∈ (s0, T ).
Hence, x̂0(t) − x(t) is increasing in (s0, T ) and x̂0(T ) − x(T ) > 0. We have the
following two cases,

• If x̂0(s0) − x(s0) ≥ 0, then for any t ∈ (s0, T ),

F(x(t), t) − F(x̂0(t), t) = Fx(x
′, t)

(
x(t) − x̂0(t)

) ≥ 0.

Now we have

J (x̂0) ≥
∫ T

s0

(
dx̂0

dt
− F(x̂0(t), t)

)2

dt

=
∫ T

s0

(
dx̂0

dt
− dx

dt
+ F(x(t), t) − F(x̂0(t), t)

)2

dt

≥
∫ T

s0

(
dx̂0

dt
− dx

dt

)2

dt

≥
[∫ T

s0

(
dx̂0

dt
− dx

dt

)
dt

]2

= [(
x(T ) − x̂0(T )

) − (
x(s0) − x̂0(s0)

)]2
.
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So

‖x − x̂0‖∞ = |x(T ) − x̂0(T )|
≤ |x(s0) − x̂0(s0)| +

√
J (x̂0)

≤ β1κ

∥∥∥∥d2x̂0

dt2

∥∥∥∥
L2[0,T ]

|τ |1/2 + β2κ|τ |

+ κ
(
4
√

6κ + β3
)
β4

√
T |τ |3/2 + β5

√
T |τ |3 + β6|τ |7/2,

where

β5 =
√

(4K2 + 2)C1K4.

• If x̂0(s0) − x(s) < 0, then there exists a s ′ ∈ (s0, T ) such that x̂0(s
′) − x(s′) = 0.

So we can still use the same argument in the first case with the lower limits s0
of all the integrals replaced by s′. �
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