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DISCUSSION

BY YING WEI1

Columbia University

First I would like to congratulate the authors for developing a new concept of
directional quantile contours. The work will contribute well to the pursuit of mul-
tivariate quantiles. The multiple output regression provides a new way of estimat-
ing the conditional multivariate quantile functions, which will certainly facilitate a
large number of applications. I enjoy the paper for its mathematical rigor and com-
putational savvy. My discussion will focus on the modeling aspect of conditional
multivariate quantiles.

1. Choice of models. When one tries to incorporate covariate information
into multivariate quantiles, certain model assumptions have to be made. As in any
regression methods, there are various levels of modeling, for example, linear or
nonlinear, parametric or nonparametric. In any application, an appropriate choice
of the model matters. I will illustrate this point in my discussion using the same
data set as in Hallin, Paindaveine and Šiman (2010). I will later discuss a gener-
alization of the multiple output regression to nonparametric models, and comment
on the challenges in model adequacy assessment for the multiple output regression.

To illustrate the main point, let us apply the conditional reference quantiles of
Wei (2008) to the same data set in Hallin, Paindaveine and Šiman (2010). The re-
sponse variables are the calf maximal circumference, denoted as Y1, and the thigh
maximal circumference, denoted as Y2. The covariates include age, height, weight
and BMI. To make results comparable to those of Hallin, Paindaveine and Šiman
(2010), let us estimate the conditional bivariate reference quantile contours of calf
and thigh circumferences given the subject’s height, weight, age and BMI, sepa-
rately, as the authors did in their illustrative example. Men and women are ana-
lyzed separately. Following the two-step methods of Wei (2008), we first construct
stratified quantile regression models for the conditional joint distribution of calf
and thigh circumferences given a chosen covariate X. We consider two settings as
follows.

1. Setting 1: linear stratified quantile models:

Qτ |X(Y1) = ατ,1 + ατ,2X,

Qτ |X,Y1(Y2) = βτ,1 + βτ,2X + βτ,3Y1.
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2. Setting 2: nonparametric stratified quantile models:

Qτ |X(Y1) = ατ (X),

Qτ |X,Y1(Y2) = βτ,1(X) + βτ,2(X)Y1,

where Qτ |X(Y ) denotes the τ th conditional quantile of Y given X, and ατ (·),
βτ,1(·) and βτ,2(·) are smooth functions of X, and τ ∈ (0,1) is the quantile level.

In both settings, we have a marginal model for Y1, and a conditional model
for Y2. Take height, for example, as the covariate, the marginal model in Set-
ting 1 assumes that the τ th quantile of calf maximal circumference Y1 is a lin-
ear function of height X, while the marginal model in Setting 2 assumes that it
is a smooth function of height X. Similarly, the conditional model in Setting 1
assumes the quantile of thigh maximal circumference Y2 is linear with both calf
maximal circumference Y1 and height X, while Setting 2 allows a much more gen-
eral form. The stratified models in Setting 1 are comparable to the multiple output
regression defined in (6.1) of Hallin, Paindaveine and Šiman (2010), since both
assume linear structures. More specifically, the stratified models correspond to the
directional regression quantiles in Definition 6.1 with {bτy = 0,uy = (1,0)} and
{bτy = 0,uy = (1, βτ,3)}, respectively. In other words, the linear stratified quantile
models assume linearity in two specific spatial directions. If we switch the order
of Y1 and Y2, we can then obtain another set of stratified models that correspond to
another two spatial directions uy = (0,1) and uy = (βτ,3,1). The two sets of linear
models may lead to different approximations. We refer to Wei (2008) for a discus-
sion on the selection and combination of those two possible orders of variables.
The multiple output regression makes stronger model assumptions by assuming
linearity in all the spatial directions. Because of this stronger model assumption,
the multiple output regression is invariant with respect to the ordering of Y1 and Y2.

We fit the data with the stratified models at 200 evenly spaced quantile levels
under both settings, and then estimate the 0.2th, 0.5th, 0.8th, 0.94th and 0.98th con-
ditional quantile contours of calf and thigh circumference given the 0.1th, 0.3th,
0.5th, 0.7th, 0.9th quantiles of the covariate, using the model-based simulation ap-
proach of Wei (2008). The choice of quantile levels and covariate values match
those used in Hallin, Paindaveine and Šiman (2010).

2. Results. The resulting reference quantile contours of women’s calf and
thigh circumferences based on Setting 1 are comparable to Figure 7 of Hallin,
Paindaveine and Šiman (2010), but there are noticeable differences in the esti-
mated quantile contours between the linear models and the nonparametric models
when height is the covariate.

In Figure 1, we plot the estimated 0.5th, 0.8th and 0.98th reference quantile
contours of women’s calf and thigh circumferences, conditional on heights at the
0.5th quantile (solid contours) and the 0.9th quantile (dotted contours). Based on
linear models (Setting 1), the quantile contours of calf and thigh circumferences
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FIG. 1. Bivariate quantile contours of women’s calf and thigh circumferences given different
heights. At X = 164.5 cm and X = 174 cm, quantile contours with τ = 0.5,0.8 and 0.98 are shown.
The solid contours correspond to X = 164.5, and the dotted ones correspond to X = 174. Their
centers are shown as solid point and open circle, respectively.

of tall women (height = 174 cm) shift upward from those with median height
(height = 164.5 cm), which suggests that taller women tend to have larger calf
and thigh circumferences than the median-height women. However, that is not
true based on the quantile contours generated from the nonparametric models in
Setting 2, under which the 0.5th and 0.8th quantile contours of tall and median-
height women are fairly close with each other, and the upper part of the 0.98th
quantile contours of tall women is actually contained in that of the median-height
women. That means that taller women are actually less likely to have really large
calf and thigh circumferences relative to the median-height women. This phenom-
ena is even more evident when we analyze men’s data. As presented in Figure 2,
based on Setting 2, the 0.98th quantile contour of calf and thigh circumferences of
taller men (height = 188 cm) are much lower than that of the median height men
(height = 177.8 cm). In contrast, based on Setting 1, the distributions of calf and
thigh circumferences are comparable for the tall and median-height men. Based
on those results, we conjecture that the conditional joint distribution and quantiles
of calf and thigh circumference are not linear in height. Consequently, the linear
assumptions made in Setting 1, as well as (6.1) in Hallin, Paindaveine and Šiman
(2010), lead to biased conclusions.

To further support this conjecture, we evaluate the model fitness of the two sets
of stratified models, by comparing the model-estimated joint distribution of calf
and thigh circumference to the empirical one at the 0.9th quantile of height. The
empirical distribution is calculated based on a sub-sample, consisting of those men
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FIG. 2. Bivariate quantile contours of men’s calf and thigh circumferences given different heights.
At X = 177.8 cm and X = 188 cm, quantile contours with τ = 0.5,0.8 and 0.98 are shown. The
solid contours correspond to X = 177.8, and the dotted ones correspond to X = 188. Their centers
are shown as solid point and open circle, respectively.

whose heights are within a small window of 188 ± 3 cm, and the model-based
joint distribution is estimated following (2.9) of Wei (2008). The resulting P–P
plot is presented in Figure 3. The P–P plot depicts how close the model estimated
joint distribution is to the empirical one. If the models fit the data well, the two
distributions should be close to each other. Based on Figure 3, it is clear that,
conditional on height 188 cm, the model-estimated distribution under Setting 1
over-estimated the upper quantiles of calf and thigh circumferences, which in turn
indicates the lack-of-fit of the linear models. In the mean time, the nonparametric
models provide a good approximation to the conditional joint distributions given
height 188 cm, as shown in Figure 3(b). Based on the discussion above, we believe
that the linear models are not adequate for the conditional quantiles of calf and
thigh circumferences given height.

3. Nonparametric multiple output regression. Similar to the linear models
in Setting 1, the definition of multiple output regression in (6.1) also assumes lin-
earity between the response Y and the covariate X. Consequently, as shown in the
previous example, it may not be adequate to model the conditional quantile con-
tours in some applications. Therefore, it might worth the efforts to extend the linear
multiple output regression to more general cases. If there is only a single covariate
as illustrated in the example, one natural extension is to replace the covariate X by
its B-spline basis functions. That is, one can replace definition (6.1) by

(bτy, gτ (x)) = arg min
by,g(x)

E
[
ρτ

(
u′

yY − b′
y�

′
uY − g(X)

)]
,(1)
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FIG. 3. PP-plot for assessing the conditional model fitness for men’s calf and thigh circumferences
given height = 188 cm.

where gτ (X) is an unknown smooth function of the covariate X. The function
gτ (X) is to be approximated by gτ (x) ≈ b′

τxπ(X), with π(X) being q-dimensional
B-spline basis functions given certain internal knots and order of spline. The solu-
tion is then in the following form,

(b′
τy,b′

τx)
′ = arg min

by,bx
E

[
ρτ

(
u′

yY − b′
y�

′
uY − b′

xπ(X)
)]

,(2)

and the outlined linear programming algorithm in Hallin, Paindaveine and Šiman
(2010) can be applied directly. If there are more than one covariates, then an addi-
tive model can be considered.

4. Model assessment of multiple output regression. As various models of
different complexity can be considered for the multiple output regression, it is
helpful to evaluate model adequacy. Typical goodness-of-fit statistics for multi-
variate quantile contours may not be applicable to the quantile contours using the
multiple output regression, since the directional quantile contours do not have the
coverage property in the sense of Serfling (2002). Unlike other definitions of mul-
tivariate quantile functions, in which the τ th quantile contour usually has the cov-
erage probability τ , the probability mass of the τ th directional quantile contour,
however, is actually unknown. For the same reason, they do not have a direct map-
ping to the distribution functions. However, since those directional quantile con-
tours are generated from the regression quantiles at all the spatial direction uy, one
may assess the model adequacy of the specified models over all the spatial direc-
tions. Take the linear model, for example, and suppose that (xi ,yi ), i = 1, . . . ,m,
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is a subset where all the xi are equal to or close to a target value of x. If the speci-
fied model fit the data well at the direction u given the covariate x, then we expect
that

�(u, x) =
∑m

i=1 I {u′
yyi − â − b̂′

y�
′
uY − b̂′

xxi ≤ 0}
m

≈ τ,

where (â, b̂y, b̂x) are the estimated coefficient. An overall model adequacy mea-
sure can then be constructed by integrating �(u, x) over the entire spatial direc-
tions, that is,

�(x) =
∫
u
{�(u, x) − τ }du.

If the multiple output regression holds, then �(x) should be close to zero. Further
research is clearly needed to make this diagnostic tool broadly useful.

5. A final note. Hallin, Paindaveine and Šiman (2010) compared the direc-
tional quantile contour with the reference quantile contour of Wei (2008). The
authors are right in pointing out that the reference quantile contours would depend
strongly on the choice of the center, but it is also worth noting that Wei (2008)
uses the component-wise medians as a specific choice of centers for the reference
quantile contours. This way, the definition of reference quantile contours reduced
to the reference percentile charts [Cole and Green (1992)] for one dimensional Y .
Because no single approach to multivariate quantile contours is likely to be the best
in all applications, the ideas proposed by Hallin, Paindaveine and Šiman (2010) is
an exciting addition to an important area of multivariate quantiles.
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