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We address the problem of parameter estimation for diffusion driven sto-
chastic volatility models through Markov chain Monte Carlo (MCMC). To
avoid degeneracy issues we introduce an innovative reparametrization de-
fined through transformations that operate on the time scale of the diffusion.
A novel MCMC scheme which overcomes the inherent difficulties of time
change transformations is also presented. The algorithm is fast to implement
and applies to models with stochastic volatility. The methodology is tested
through simulation based experiments and illustrated on data consisting of
US treasury bill rates.

1. Introduction. Diffusion processes provide natural models for continuous
time phenomena. They are used extensively in diverse areas such as finance, bi-
ology and physics. A diffusion process is defined through a stochastic differential
equation (SDE),

dXt = μ(t,Xt , θ) dt + σ(t,Xt , θ) dWt, 0 ≤ t ≤ T ,(1.1)

where W is standard Brownian motion. The drift μ(·) and volatility σ(·) reflect
the instantaneous mean and standard deviation, respectively. In this paper we as-
sume the existence of a unique weak solution to (1.1) which translates into some
regularity conditions (locally Lipschitz with a linear growth bound) on μ(·) and
σ(·) (see [31], Chapter 5 for more details).

The task of inference for diffusion processes is particularly challenging and
has received remarkable attention in the recent literature (see [32] for an exten-
sive review). The main difficulty is inherent in the nature of diffusions which are
infinite-dimensional objects. However, only a finite number of points may be ob-
served and the marginal likelihood of these observations is generally unavailable
in closed form. This has stimulated the development of various nonlikelihood ap-
proaches which use indirect inference [18], estimating functions [6], or the efficient
method of moments [14] (see also [13]).
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Most likelihood-based methods approach the likelihood function through the
transition density of (1.1). Denote the observations by Yk , k = 0, . . . , n, and with
tk their corresponding times. If the dimension of Yk equals that of X (for each k) we
can use the Markov property to write the likelihood, given the initial point Y0, as

L(Y, θ |Y0) =
n∏

k=1

pk(Yk|Yk−1; θ,�), � = tk − tk−1.(1.2)

The transition densities pk(·) are not available in closed form but several approxi-
mations are available. They may be analytical (see [1, 2]) or simulation based (see
[9, 28]). They usually approximate the likelihood in a way so that the discretiza-
tion error can become arbitrarily small, although the methodology developed in
[4] succeeds exact inference in the sense that it allows only for Monte Carlo error.
A potential downside of these methods may be their dependence on the Markov
property. In many interesting multidimensional diffusion models, the observation
regime is different and some of their components are not observed at all.

A famous such example is provided by stochastic volatility models, used ex-
tensively to model financial time series such as equity prices [19, 20, 33] or in-
terest rates [3, 8, 15]. A stochastic volatility model is usually represented by a
two-dimensional diffusion,(

dXt

dαt

)
=

(
μx(Xt ,αt , θ)

μα(αt , θ)

)
dt +

(
σx(αt , θ) 0

0 σα(αt , θ)

)(
dBt

dWt

)
,(1.3)

where X denotes the observed equity (stock) log-price or the short-term interest
rate with volatility σx(·) which is a function of a latent diffusion α. Note that the
observed process X in (1.3) is not Markov; the distribution of a future stock price
depends (besides the current price) on the current volatility which in turn depends
on the entire price history. Nevertheless, since the two-dimensional diffusion is
Markov, state space approaches are possible and may be implemented using se-
quential Monte Carlo techniques [12, 29]. While such approaches allow for online
estimation of the volatility, various implications arise regarding inference for the
diffusion parameters [25, 34].

An alternative approach to the problem adopts Bayesian inference utilizing
Markov chain Monte Carlo (MCMC) methods. Adhering to the Bayesian frame-
work, a prior p(θ) is first assigned on the parameter vector θ . Then, given the
observations Y , the posterior p(θ |Y) can be explored through data augmenta-
tion [35], treating the unobserved paths of X (paths between observations) as miss-
ing data. Note that the augmented diffusion satisfies the Markov property irrespec-
tively of the observation regime. Hence data augmentation approaches are more
general.

Initial MCMC schemes following this program were introduced by [21] (see
also [10, 11] and [22]). However, as noted in the simulation-based experiment
of [10] and established theoretically by [30], any such algorithm’s convergence
properties will degenerate as the number of imputed points increases. The problem
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may be overcome with the reparametrization of [30], and this scheme may be
applied in all one-dimensional and some multidimensional contexts. However, this
framework does not cover general multidimensional diffusion models. Chib, Pitt
and Shephard [7] and Kalogeropoulos [23] offer appropriate reparametrizations
but only for a class of stochastic volatility models. Alternative reparametrizations
were introduced in [17] (see also [16] for a sequential approach).

In this paper we introduce a novel reparametrization that, unlike previous
MCMC approaches, operates on the time scale of the observed diffusion rather
than its path. This facilitates the construction of irreducible and efficient MCMC
schemes designed appropriately to accommodate the time change of the diffusion
path. Being a data augmentation procedure, our approach does note rely on the
Markov property and can be applied to a much larger class of diffusions than those
considered in [1] and [4]. Moreover, it may be coupled with the approaches of [30]
and [7] to handle more general models, that is almost every stochastic volatility
model used in practice. The paper is organized as follows: Section 2 elaborates
on the need for a transformation of the diffusion to avoid problematic MCMC al-
gorithms. In Section 3 we introduce a class of transformations based on changing
the time scale of the diffusion process. Section 4 provides the details for the cor-
responding nontrivial MCMC implementation. The proposed methodology of the
paper is tested and illustrated through numerical experiments in Section 5, and on
US treasury bill rates in Section 6. Finally, Section 7 concludes and provides some
relevant discussion.

2. The necessity of reparametrization. A Bayesian data augmentation
scheme bypasses a problematic sampling from the posterior π(θ |Y) by introduc-
ing a latent variable X that simplifies the likelihood L(Y ; X , θ). It usually involves
the following two steps:

1. Simulate X conditional on Y and θ .
2. Simulate θ from the augmented conditional posterior which is proportional to

L(Y ; X , θ)π(θ).

It is not hard to adapt our problem to this setting. Y represents the observations
of the price process X. The latent variables X introduced to simplify the likeli-
hood evaluations are discrete skeletons of diffusion paths between observations or
entirely unobserved diffusions. In other words, X is a fine partition of multidimen-
sional diffusion with drift μX(t,Xt , θ) and diffusion matrix

�X(t,Xt , θ) = σ(t,Xt , θ) × σ(t,Xt , θ)′

and the augmented dataset is Xiδ, i = 0, . . . , T /δ, where δ specifies the amount of
augmentation. The likelihood can be approximated via the Euler scheme,

LE(Y ; X , θ) =
T/δ∏
i=1

p
(

Xiδ|X(i−1)δ

)
,

Xiδ|X(i−1)δ ∼ N
(

X(i−1)δ + δμX (·), δ�X (·)),
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which is known to converge to the true likelihood L(Y ; X , θ) for small δ [28].
Another property of diffusion processes relates �X (·) to the quadratic variation

process. Specifically we know that

lim
δ→0

T/δ∑
i=1

(
Xiδ − X(i−1)δ

)(
Xiδ − X(i−1)δ

)T =
∫ T

0
�X (s, Xs, θ) ds a.s.

The solution of the equation above determines the diffusion matrix parameters.
Hence, there exists perfect correlation between these parameters and X as δ → 0.
This has disastrous implications for the mixing and convergence of the MCMC
chain as it translates into reducibility for δ → 0. This issue was first noted by [30]
for scalar diffusions and also confirmed by the simulation experiment of [10]. In
fact the convergence time is of O(1

δ
). This problem is not MCMC specific as it

turns out that the convergence of its deterministic analogue, EM algorithm, is also
problematic when the amount of information in the augmented data X strongly
exceeds that of the observations. In our case, X contains an infinite amount of
information for δ → 0.

The problem may be resolved if we apply a transformation so that the algo-
rithm based on the transformed diffusion is no longer reducible as δ → 0. Roberts
and Stramer [30] provide appropriate diffusion transformations for scalar diffu-
sions. In a multivariate context this requires a transformation to a diffusion with
unit volatility matrix (see, for instance, [24]). Aït-Sahalia [2] terms such diffu-
sions as reducible and proves the nonreducibility of stochastic volatility models
that obey (1.3). The transformations introduced in this paper follow a slightly dif-
ferent route and target the time scale of the diffusion. Since the construction obeys
the same principles of [30] the convergence time of the algorithm is independent
of augmentation level controlled by δ. Another appealing feature of such a repara-
metrization is the generalisation to stochastic volatility models.

3. Time change transformations. For ease of illustration we first provide the
time change transformation and the relevant likelihood function for scalar diffusion
models with constant volatility. Nevertheless, one of the main advantages of this
technique is the applicability to general stochastic volatility models.

3.1. Scalar diffusions. Consider a diffusion X defined through the following
SDE:

dXt = μ(t,Xt , θ) dt + σ dWX
t , 0 < t < 1, σ > 0.(3.1)

Without loss of generality, we assume a pair of observations X0 = y0 and X1 = y1.
For more data, note that the same operations are possible for every pair of succes-
sive observations, and these pairs are linked together through the Markov property.
We introduce the latent “missing” path of X for 0 ≤ t ≤ 1, denoted by Xmis, so that
X = (y0,X

mis, y1). In the spirit of [30], the goal is to write the likelihood for θ , σ
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with respect to a parameter-free dominating measure. Using Girsanov’s theorem
we can get the Radon–Nikodym derivative between the law of the diffusion X,
denoted by P

X , and that of the driftless diffusion dMt = σ dWX
t which represents

Wiener measure and is denoted by W
X . We write

dP
X(X)

dWX
= G(t,X, θ, σ ) = exp

{∫ 1

0

μ(t,Xt , θ)

σ 2 dXt − 1

2

∫ 1

0

μ(t,Xt , θ)2

σ 2 dt

}
.

Consider the factorization,

W
X = W

X
y × Leb(y1) × f (y1|y0, σ

2),(3.2)

where y1 is a Gaussian random variable, y1|y0 ∼ N (y0, σ
2), and Leb(·) denotes

Lebesgue measure. This naturally factorizes the measure of X as the Lebesgue
density of y1 under the dominating measure multiplied by the conditional domi-
nating measure W

X
y . We can now write

dP
X(Xmis, y0, y1)

d{WX
y × Leb(y)} = G(t,X, θ, σ )f (y1|y0, σ ),

where clearly the dominating measure depends on σ since it contains W
X
y which

represents a Brownian bridge with volatility σ .
To remove this dependency on the parameter σ we consider the following time

change transformation. Let a new time scale be

s = η1(t, σ ) =
∫ t

0
σ 2 dω = tσ 2(3.3)

and then define the new transformed diffusion U as

Us =
⎧⎨
⎩

X
η−1

1 (s,σ )
, 0 ≤ s ≤ σ 2,

M
η−1

1 (s,σ )
, s > σ 2.

The definition for t > σ 2 is needed to ensure that U is well defined for different
values of σ 2 > 0 which is essential in the context of a MCMC algorithm. Using
standard time change properties (see, for example, [26]), the SDE for U is

dUs =
⎧⎨
⎩

1

σ 2 μ(s,Us, θ) dt + dWU
s , 0 ≤ s ≤ σ 2,

dWU
s , s > σ 2,

where WU is another Brownian motion at the time scale s. Applying Girsanov’s
theorem again, the law of U , denoted by P

U , is given through its Radon–Nikodym
derivative with respect to the law W

U of the Brownian motion WU at the time
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scale s:

dP
U(Umis, y0, y1)

dWU

= G(s,U, θ, σ )
(3.4)

= exp
{∫ +∞

0

μ(s,Us, θ)

σ 2 dUs − 1

2

∫ +∞
0

μ(s,Us, θ)2

σ 4 ds

}

= exp
{∫ σ 2

0

μ(s,Us, θ)

σ 2 dUs − 1

2

∫ σ 2

0

μ(s,Us, θ)2

σ 4 ds

}
.

By applying the factorization of (3.2) on W
U at the new time scale s, the likelihood

can be written as

dP
U(Umis, y0, y1)

d{WU
y × Leb(y)} = G(s,U, θ, σ )f (y1|y0, σ ).

The dominating measure still depends on σ as it contains W
U
y which reflects a

Brownian bridge with conditioning event Uσ 2 = y1. We therefore introduce a sec-
ond transformation which applies to both the path and the time scale of the diffu-
sion process U . Consider a new time scale

u = η2(s, σ ) = s

σ 2(σ 2 − s)
or s = η−1

2 (u, σ ) = uσ 4

1 + uσ 2

and define a new diffusion Z through

Us = (σ 2 − s)Zη2(s,σ ) +
(

1 − s

σ 2

)
y0 + s

σ 2 y1, 0 ≤ t < σ 2.(3.5)

Note that this transformation is a bijection. In the case of y0 = y1 = 0 its inverse is
given by

Zu = 1 + uσ 2

σ 2 U
η−1

2 (u,σ )
, 0 ≤ u < +∞.

Applying Itô’s formula and using time change properties we can also obtain the
SDE of Z based on another driving Brownian motion WZ operating at the time
scale u:

dZu =
{
μx(t, ν(Zu,σ ), θ)

1 + uσ 2 + ν(Zu,σ )

}
dt + dWZ

u , 0 ≤ u < +∞,(3.6)

where ν(Zu,σ ) = Us . This operation essentially transforms to a diffusion that runs
from 0 to +∞ preserving the unit volatility. A third attempt to write the likelihood,
now based on Z, again uses the Girsanov theorem and the factorization of (3.2) to
condition the dominating measure on y1. This writes

dP
Z(Z,y0, y1)

d{WZ
y × Leb(y)} = G(u,Z, θ, σ )f (y1|y0, σ ),(3.7)
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where P
Z denotes the law of Z and W

Z
y reflects the law of the driftless diffusion

Z conditioned on y1. The integrals in G(Z, θ, σ ) run up to +∞); however, the
expression is finite being a bijection of the Radon–Nikodym derivative between
P

U and W
U given by (3.4). Using the following lemma, we can prove that W

Z
y is

the law of the standard Brownian motion and hence the likelihood is written with
respect to a dominating measure that does not depend on any parameters.

LEMMA 3.1. Let W be a standard Brownian motion in [0,+∞). Consider
the process defined for 0 ≤ t ≤ T

Bt = (T − t)Wt/{T (T −t)} +
(

1 − t

T

)
y0 + t

T
y1, 0 ≤ t < T .

Then B is a Brownian bridge from y0 at time 0 to y1 at time T .

PROOF. See [31], Section IV.40.1, for the case y0 = 0, T = 1. The extension
for general y0 and T is trivial. �

COROLLARY 3.1. The process Z is standard Brownian motion under the
dominating measure. In other words W

Z
y is standard Wiener measure.

PROOF. Note that W
U
y reflects a Brownian bridge from y0 at time 0 to y1 at

time T and we obtained W
Z
y by using the transformation of Lemma 3.1. Since

this transformation is a bijection, U is a Brownian bridge (under the dominating
measure) if and only if Z is standard Brownian motion. �

The likelihood, given by (3.7), allows the construction of an irreducible
MCMC scheme that alternates between updating the parameters and the diffusion
process Z. For the path updates we may use the fact that

dP
Z
y

dWZ
y

(Z|y0, y1) = G(t,Z, θ, σ )
f (y1|y0, σ )

f P (y1|y0, θ, σ )
∝ G(t,Z, θ, σ ),(3.8)

where P
Z
y is the law of Z conditioned on y1 and f P (·) is the density of y1 un-

der P
Z . Both P

Z
y and f P (·) are generally unknown but their calculation may be

avoided in a MCMC algorithm which essentially only uses (3.7) and (3.8). Since
these expressions only require the evaluation of f (·) and G(·), which are either
known or may be approximated using the augmented diffusion path, the task of
Bayesian inference is feasible. Details are presented in Section 4.

3.2. Stochastic volatility models. We will first demonstrate how the case of
stochastic volatility models may be brought to a similar and equivalent form to that
of the previous section. Consider the general class of stochastic volatility models
with SDE given by (1.3) for 0 ≤ t ≤ t1. Without loss of generality, we may assume
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a pair of observations (X0 = y0, X1 = y1) due to the Markov property of the two-
dimensional diffusion (X,α). The likelihood can then be divided into two parts:
the first contains the marginal likelihood of the diffusion α, and the remaining part
corresponds to the diffusion X conditioned on the path of α

Pθ (X,α) = Pθ (α)Pθ (X|α).

Denote the marginal likelihood for α by Lα(α, θ). To overcome reducibility issues
arising from the paths of α one may use the reparametrizations of [7] or [23]. The
relevant transformations of the latter are

βt = h1(αt , θ),
∂h1(αt , θ)

∂αt

= {σα(αt , θ)}−1,

γt = βt − β0, βt = h2(γt ),

and the marginal likelihood for the transformed latent diffusion γ becomes

Lγ (γ, θ) = dP

dW
(γ ) = Gγ (t, γ, θ),(3.9)

where W denotes Wiener measure. By letting αt = g
θ,γ
t = h−1

1 (h2(γt ), θ), the
SDE of X conditional on γ becomes

dXt = μx(Xt , g
θ,γ
t , θ) dt + σx(g

θ,γ
t , θ) dBt , 0 ≤ t ≤ 1.

Given the paths of the diffusion γt , the volatility function σx(g
θ,γ
t , θ) may be

viewed as a deterministic function of time and θ . The situation is similar to that of
the previous section. We can now introduce a new time scale

s = η(t, γ, θ) =
∫ t

0
σ 2

x (gθ,γ
ω , θ) dω.

Let T be the transformation of the ending time t1, T = η(t1, γ, θ). We can then
define U on the new time scale s as in (3.3):

Us =
{

Xη−1(s,γ,θ), 0 ≤ s ≤ T ,
Mη−1(s,γ,θ), s > T .

(3.10)

The SDE for U now becomes

dUs =
{μx(Us, g

θ,γ

η−1(s,γ,θ)
, θ)

σ 2
x (g

θ,γ

η−1(s,γ,θ)
, θ)

}
dt + dWU

s , 0 ≤ s ≤ T .

We obtain the Radon–Nikodym derivative between the distribution of U with re-
spect to that of the Brownian motion WU ,

dP

dWU
= G(s,U,γ, θ)
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and introduce W
U
y as before. The density of y1 under W

U , denoted by f (y1|y0,

γ, θ), is just

f (y1|y0, γ, θ) ≡ N(y0, T ).

The dominating measure W
U
y reflects a Brownian motion conditioned to equal

y at a parameter depended time T = η(t1, γ, θ). To remove this dependency we
introduce another time scale,

u = η2(s) = s

T (T − s)
or s = η−1

2 (u) = uT 2

1 + uT
,

which defines a second time change similar to (3.5)

Ut = (T − s)Zs/{T (T −s)} +
(

1 − s

T

)
y0 + s

T
y1, 0 ≤ s < T .(3.11)

The SDE for Z, in the case of y0 = y1 = 0 is given by

dZu = T

1 + uT

{
μx(u, ν(Zu), γk(u,γ,θ), θ)

σ 2
x (γk(u,γ,θ), θ)

+ ν(Zu)

}
dt + dWZ

u ,

0 ≤ u < ∞,

where k(u, γ, θ) denotes the initial time scale of X, t , and ν(Zu) = Us .
Conditional on γ , the likelihood can be written in a similar manner as in (3.7)

dP

d{WZ
y × Leb(y)}(Z|y0, y1, γ ) = G(u,Z,γ, θ)f (y1|y0, γ, θ).(3.12)

By using the exact same arguments of Section 3.1, we can show that W
Z
y reflects a

standard Wiener measure and therefore the dominating measure is independent of
parameters. To obtain the full likelihood we need to multiply the two parts given
by (3.9) and (3.12).

3.3. Incorporating leverage effect. In the previous section we made the as-
sumption that the increments of X and γ are independent, in other words we as-
sumed no leverage effect. This assumption can be relaxed in the following way: in
the presence of a leverage effect ρ, the SDE of X conditional on γ can be written
as

dXt = μx(Xt , g
γ,θ
t , θ) dt + ρσx(g

γ,θ
t , θ) dWt

+
√

1 − ρ2σx(g
γ,θ
t , θ) dBt , 0 ≤ t ≤ t1,

where W is the driving Brownian motion of γ . Note that given γ , W can
be regarded as a function of γ and its parameters θ . Therefore, the term
ρσx(g

γ,θ
t , θ) dWt can be viewed as a deterministic function of time, and it can

be treated as part of the drift of Xt . However, this operation introduces additional
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problems as the assumptions ensuring a weakly unique solution to the SDE of X

are violated. To avoid this issue we introduce the infinitesimal transformation

Xt = H(Ht , ρ, γ, θ) = Ht +
∫ t

0
ρσx(g

γ,θ
ω , θ) dWω,

which leads us to the following SDE for H :

dHt = μx{H(Xt , ρ, γ, θ), g
γ,θ
t , θ}dt +

√
1 − ρ2σx(g

γ,θ
t , θ) dBt , 0 ≤ t ≤ t1.

We can now proceed as before, defining U and Z based on the SDE of H in a
similar manner as in (3.10) and (3.11), respectively.

3.4. State dependent volatility. Consider the family of state dependent sto-
chastic volatility models where conditional on γ , the SDE of X may be written
as

dXt = μx(Xt , g
γ,θ
t , θ) dt + σ1(g

γ,θ
t , θ)σ2(Xt , θ) dBt , 0 ≤ t ≤ t1.

This class contains, among others, the models of [3, 8, 11, 15]. In order to ap-
ply the time change transformations of Section 3.2, we should first transform X

to Ẋt , through Ẋt = l(Xt , θ) so that it takes the form of (1.3). Such a transforma-
tion, which may be viewed as the first transformation in [30], should satisfy the
following differential equation:

∂l(Xt , θ)

∂Xt

= 1

σ2(Xt , θ)
.

The time change transformations for U and Z may then be defined on the basis
of Ẋ that will now have volatility σ1(g

γ,θ
t , θ). The transformation l(·) also applies

to the observations ẏ0 = l(X0, θ) and ẏ1 = l(X1, θ) which may now be functions
of the parameters in σ2(·). These parameters enter the reparametrized likelihood in
two ways: through the density f (y1|γ, θ) which now should include the relevant
Jacobian term, and through the function ν(Zu) in the drift of Z which according
to (3.11) would depend on the transformed endpoints.

3.5. Multivariate stochastic volatility models. We may use the techniques of
Section 3.3 to define time change transformations for multidimensional diffusions.
Consider a d-dimensional version of the SDE in (3.1) where σ now is a 2 × 2
matrix ([σ ]ij = σij ). As noted in [24], the mapping between σ and the volatility
matrix σσT should be 1–1 in order to ensure identifiability of the σ parameters.
A way to achieve this is by allowing σ to be the lower triangular matrix that pro-
duces the Cholesky decomposition of σσT . For d = 2, the SDE of such a diffusion
is given by

dX
{1}
t = μ

(
X

{1}
t ,X

{2}
t , θ

)
dt + σ11 dBt ,

dX
{2}
t = μ

(
X

{1}
t ,X

{2}
t , θ

)
dt + σ21 dBt + σ22 dWt .
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The time change transformations for X{1} will be exactly as in Section 3.1. For
X{2} note that given X{1} the term σ21 dBt is now a deterministic function of time
and may be treated as part of the drift. Thus, we may proceed following the route
of the Section 3.3.

Similar transformations can be applied for diffusions that have, or may be trans-
formed to have, volatility functions independent of their paths. For example, we
may assume two correlated price processes with correlation ρx :

[σ ]11 = σ {1}
x (g

γ,θ
t , θ),

[σ ]21 = ρxσ
{2}
x (g

γ,θ
t , θ),

[σ ]22 =
√

1 − ρ2
xσ {2}

x (g
γ,θ
t , θ).

We may proceed in a similar manner for multivariate stochastic volatility models
of general dimension d .

4. MCMC implementation. The construction of an appropriate data aug-
mentation algorithm involves several issues. We focus on describing how to update
the latent diffusion paths and the parameters that drive the time change transfor-
mations. The updates of the remaining parameters include standard MCMC steps
and are thus omitted. The change in the time scale introduces three interesting fea-
tures: the presence of three time scales; the need to update diffusion paths that run
from 0 to +∞; and the fact that time scales depend on parameters. In this section
we present the details of a MCMC scheme that addresses the above. For ease of
illustration, we start with the simple case of a univariate diffusion with constant
volatility

dXt = μ(t,Xt , θ) dt + σ dBX
t , 0 ≤ t ≤ 1,X0 = y0,X1 = y1,

and build up to the case of stochastic volatility models (1.3). Note that such exten-
sions are not hard to implement since the time change transformations need only
be applied to the paths of the observed diffusion process X. The updates of the
transformed diffusion process γ , which drives the volatility, may be carried out
using an overlapping scheme as in [23].

4.1. Three time scales. We introduce m intermediate points of X at equidistant
times between 0 and 1, to give X = {Xi/(m+1), i = 0,1, . . . ,m+1}. In addition, we
make the assumption that m is large enough for accurate likelihood approximations
and any error induced by the time discretization is negligible for the purposes of
our analysis. This assumption introduces no implications as the value of m may be
set to an arbitrarily large value prior to the analysis.

Given a value of the time scale parameter σ , we can get the U -time points by
applying (3.3) to each one of the existing points X so that

Uσ 2i/(m+1) = Xi/(m+1), i = 0,1, . . . ,m + 1.
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Note that it is only the times that change, the values of the diffusion remain intact.
In a stochastic volatility model we would use the quantities∫ (i+1)/(m+1)

i/(m+1)
σ 2

x (·) ds

for each pair of consecutive imputed points.
The points of Z are multiplied by a time factor which corrects the deviations

from unit volatility. The times of the diffusion Z may be obtained by

tZi = σ 2i/(m + 1)

σ 2(σ 2 − σ 2i/(m + 1))
, i = 0,1, . . . ,m.

Clearly this does not apply to the last point which occurs at time +∞. The paths
of X or U are thus more convenient for likelihood evaluations as they only contain
finite time points. They may be used instead exploiting the fact that the relevant
transformations are bijections. However, the component of the relevant Gibbs sam-
pling scheme should be the diffusion process Z.

4.2. Updating the paths of Z. The paths of Z may be updated using an in-
dependence sampler with the reference measure as a proposal. Here W

Z
y reflects

a Brownian motion at the Z-time scale u which is fixed given the current values
of the time-scale parameters and the paths of γ in the case of stochastic volatility
models. An appropriate algorithm is given by the following steps:

• Step 1: Propose a Brownian motion on the Z-time, say Z∗. The value at the
endpoint (time +∞) is not needed.

• Step 2: Transform back to X∗ using (3.5).

• Step 3: Accept with probability min{1, G(X∗,θ,σ )
G(X,θ,σ )

}.

4.3. Updating time scale parameters. The updates of parameters that define
the time scale, such as σ , are of particular interest. In almost all cases, their con-
ditional posterior density is not available in closed form, and Metropolis steps are
inevitable. However, every proposed value of these parameters will imply a differ-
ent Z-time scale u. In other words, for each potential proposed value for σ there
exists a different set of Z-points needed for accurate approximations of the like-
lihood the Metropolis accept–reject probabilities. In theory, this would pose no
issues had we been able to store an infinitely thin partition of Z, but of course this
is not possible.

We use retrospective sampling ideas (see [27] and [5] for applications in differ-
ent contexts). Under the assumption of a sufficiently fine partition of the time scale
of Z, all the nonrecorded intermediate points contribute nothing to the likelihood
and they are irrelevant in that respect. The set of recorded points is sufficient for
likelihood approximation purposes. In other words, their distribution is given by
the likelihood dominating measure W

Z
y which reflects a Brownian motion. Hence,
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they can be drawn after the proposal of the candidate value of the time scale pa-
rameter. To ensure compatibility with the recorded partition of Z, it suffices to
condition on their neighboring points. This is easily done using standard Brown-
ian bridge properties. Suppose that we want to simulate the value of Z at time tb
which falls between the recorded values at times ta and tc, so that ta ≤ tb ≤ tc.
Denote by Zta and Ztc the corresponding Z values. Under the assumption that Z

is distributed according to W
Z
y between ta and tc we have that

Ztb |Zta ,Ztc ∼ N

{
(tb − ta)Ztc + (tc − tb)Zta

tc − ta
,
(tb − ta)(tc − tb)

tc − ta

}
.(4.1)

We describe the algorithm for the case of more than two observations; denote
by X0 = y0, Xt1 = y1, . . . ,Xtn = yn. The time change transformations should be
applied to each pair of successive observations thus giving n separate Z diffusion
processes. As mentioned earlier, the diffusion processes X and U are bijections
of this collection of Z diffusion processes and may be used instead in a MCMC
scheme. Our proposed algorithm for the σ -updates may be summarized through
the following steps:

• Step 1: Propose a candidate value for σ , say σ ∗.
• Step 2: Repeat for each pair of successive points:

– Use (3.3) and (3.5) to get the new times associated with it.
– Draw the values of Z retrospectively at the new times using (4.1).
– Transform back to X∗ (which corresponds to the time between the pair of

successive points), using (3.5).
• Step 3: Form the entire path X∗ by appropriately joining the bits between suc-

cessive observations.
• Step 4: Accept with probability

min
{

1,
G(t,X∗, θ, σ ∗)∏n

i=1 f (yi |yi−1, σ
∗)

G(t,X, θ, σ )
∏n

i=1 f (yi |yi−1, σ )

}
.

In a stochastic volatility model the updates of the paths of the transformed diffu-
sion γ may be implemented using overlapping blocks. Note that these paths drive
the time u, of the diffusion process Z, and therefore a similar algorithm as above
should be embedded in their updates. For simplicity consider blocks of γ paths
that correspond to times between nonsuccessive observations. Each block is then
further split into sub-blocks containing intervals between successive observations,
thus providing a number of separate Z diffusion processes. Details are presented
below:

• Step 1: Propose γ ∗ between the times of two nonsuccessive observations, yA

and yB , by a Brownian bridge connecting the relevant endpoints of γ .
• Step 2: Repeat for each pair of successive points between (and including) yA

and yB :



INFERENCE FOR SV MODELS USING TIME CHANGE 797

– Use (3.10) and (3.11) to get the new times associated with it.
– Draw the values of Z retrospectively at the new times using (4.1).
– Transform back to X∗ (which corresponds to the time between the pair of

successive points), using (3.11).
• Step 3: Join the bits of X∗ to form its path between yA and yB .
• Step 4: Accept with probability,

min
{

1,
Gγ (t, γ ∗, θ)G(t,X∗, γ ∗, θ)

∏n
i=1 f (yi |yi−1, γ

∗, θ)

Gγ (t, γ, θ)G(t,X,γ, θ)
∏n

i=1 f (yi |yi−1, γ, θ)

}
.

5. Simulations. As discussed in Section 2, appropriate reparametrizations are
necessary to avoid issues regarding the mixing and convergence of the MCMC
algorithm. In fact, the chain becomes reducible as the level of augmentation in-
creases. This is also verified by the numerical examples performed in [23] even
in very simple stochastic volatility models. In this section we present a simulation
based experiment to check the immunity of MCMC schemes to increasing levels
of augmentation, as well as the ability of our estimation procedure to retrieve the
correct values of the diffusion parameters despite the fact that the series is par-
tially observed and only at a finite number of points. We simulated data from the
following stochastic volatility model:

dXt = κx(μx − Xt) dt + ρ exp(αt/2) dWt +
√

1 − ρ2 exp(αt/2) dBt ,

dαt = κα(μα − αt) dt + σ dWt,

where B and W represent independent Brownian motions, and ρ reflects the corre-
lation between the increments of X and α (also termed as leverage effect). A high-
frequency Euler approximating scheme with a step of 0.001 was used for the sim-
ulation of the diffusion paths. Specifically, 500,001 points were drawn and one
value of X for every 1000 was recorded, thus forming a dataset of 501 observa-
tions of X at 0 ≤ t ≤ 500. The parameter values were set to ρ = −0.5, σ = 0.4,
κx = 0.2, μx = 0.1, κα = 0.3 and μα = −0.2.

The transformations required to construct an irreducible data augmentation
scheme are listed below. First α was transformed to γ through

γt = αt − α0

σ
, 0 ≤ t ≤ 500,

αt = g
γ,σ
t = α0 + σγt .

Given γ , and for each pair of consecutive observation times tk−1 and tk (k =
1,2, . . . ,500) on X, the following transformations were applied: first, we removed
the term introduced from the leverage effect

Ht = Xt −
∫ t

tk−1

ρ exp{gγ,σ
t /2}dWs, tk−1 ≤ t ≤ tk,
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and consequently we set

η1(t) =
∫ t

tk−1

(1 − ρ)2 exp{ν(γs, σ,α0)}ds.

Then, U and Z may be defined again from (3.10) and (3.11), respectively, but
based on H rather on X. The elements of the MCMC scheme are Z, γ , α0 and the
parameters (κx,μx, κα,μα,ρ,σ ).

Vague priors were assigned to all of the parameters, subject to positivity con-
straints for κx , κα , σ and for ρ to be in (−1,1). The chain was run several times
for 50,000 iterations on different levels of augmentation by setting the number of
imputed points to 2, 30, 40 and 50. As in [23], it was noted that a good choice
of length of the overlapping blocks, needed for the updates of γ , may improve
substantially the mixing of the chain. We used blocks with length corresponding
to 8 observations. The acceptance rate rate for each block of γ was around 75%
whereas the acceptance rate for each path of Z was around 95%. The time needed
for such a MCMC run with m = 40 was roughly 4 hours in a mid-specification PC.
We also noted a linear relationship between running times and m which confirms
the fact that the computational complexity of the algorithm is O(m) (see discussion
for more). Figure 1 shows autocorrelation plots for all parameters. There is no sign
of any increase in the autocorrelation to raise suspicions against the irreducibility
of the chain. This confirms the fact that convergence time of the algorithm is in-
dependent of m. Figure 2 shows density plots for all parameters and on all of m.
These plots may be used to monitor the deterioration of the discretization error.
In this example, a choice of m = 2 may have been suboptimal whereas any value
above 30 seems to perform well. Also, these plots reveal good agreement with the
true values of the parameters which is also supported by Table 1.

6. Application: US treasury bill rates. To illustrate the time change method-
ology we fit a stochastic volatility model to US treasury bill rates. The dataset con-
sists of 1809 weekly observations (Wednesday) of the 3-month US treasury bill
rate from the 5th of January 1962 up to the 30th of August 1996. The data are
plotted in Figure 3.

Previous analyses of these data include [3, 8, 9, 11, 15] and [16]. Apart from
some slight deviations the adopted stochastic volatility models consisted of the
following SDE:

drt = (θ0 − θ1rt ) dt + r
ψ
t exp(αt/2) dBt ,

(6.1)
dαt = κ(μ − αt) dt + σ dWt

with independent Brownian motions B and W . In some cases the following equiv-
alent model was used:

drt = (θ0 − θ1rt ) dt + σrr
ψ
t exp(αt/2) dBt ,

(6.2)
dαt = −καt dt + σ dWt .
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FIG. 1. Autocorrelation plots of the parameter posterior draws for different numbers of imputed
points m = 2,30,40,50. Simulation example of Section 5.
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FIG. 2. Kernel densities of the posterior draws of all the parameters for different numbers of im-
puted points m = 2,30,40,50. Simulation example of Section 5.
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TABLE 1
Summaries of the posterior draws for the simulation example of Section 5 for m = 50

Parameter True value Post. mean Post. SD Post. 2.5% Post. median Post. 97.5%

κx 0.2 0.244 0.038 0.173 0.243 0.321
μx 0.1 0.313 0.174 −0.046 0.317 0.641
κα 0.3 0.304 0.148 0.110 0.277 0.672
μα −0.2 −0.268 0.107 −0.484 −0.267 −0.059
σ 0.4 0.406 0.130 0.202 0.390 0.705
ρ −0.5 0.477 0.138 −0.657 −0.491 −0.066

The model in (6.1) was chosen, as posterior draws of its parameters exhibit sub-
stantially less autocorrelation. In line with [15] and [16], we also set ψ = 1. Refer-
ences [8, 9] and [11] assume general “elasticity of variance” ψ but their estimates
do not indicate a significant deviation from 1. By setting Xt = log(rt ), the volatility
of Xt becomes exp(αt/2). Therefore the U -time for two consecutive observation
times tk−1 and tk is defined as

η1(t) =
∫ t

tk−1

exp(αt ) ds,

and U and Z are given by (3.10) and (3.11), respectively. We also transformed α

to γ as in Section 5:

γt = αt − α0

σ
,

αt = g
γ,σ
t = α0 + σγt .

We constructed appropriate MCMC schemes based on Z and γ to sample from
the posterior of the parameters θ0, θ1, κ , μ and σ . The time was measured in years
setting the distance between successive Wednesdays to 5/252. Noninformative pri-
ors were assigned to all the parameters, restricting κ and σ to be positive to ensure
identifiability and eliminate the possibility of explosion. The algorithm was run for
50,000 iterations and for m equal to 2, 10 and 20. To optimize the efficiency of the
chain we set the length of the overlapping blocks of γ to 10 which produced an
acceptance rate of 51.9%. The corresponding acceptance rate for Z was 98.6%.

The kernel density plots of the posterior parameters and likelihood (Figure 4)
indicate that a discretization corresponding to an m of 10 or 20 provide reasonable
approximations. A choice of m = 2 produces similar parameter posterior draws
but the log-likelihood plot (bottom right) seems to be slightly off. The relevant
autocorrelation plots of Figure 5 do not provide evidence of increasing autocorre-
lation in m. Finally, summaries of the posterior draws for all the parameters are
provided in Table 2. The parameters κ , μ and σ are different from 0 verifying the
existence of stochastic volatility. On the other hand, there is no evidence to support
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FIG. 3. Weekly 3-month US treasury bill rate from the 5th of January 1962 up to the 30th of August
1996.

the existence of mean reversion on the interest rate process as θ0 and θ1 are not far
from 0. The results are in line with those of [8, 9] and [16].

7. Discussion. Data augmentation MCMC schemes constitute a very useful
tool for likelihood-based inference on diffusion models. They may not have the
appealing properties of complete elimination of the time discretization error [4],
or the closed form approximate likelihood expressions of [1], but nevertheless they
give a satisfactory and very general solution to the problem. However, data aug-
mentation schemes require careful construction to avoid the degeneracy issues de-
scribed at the beginning of this paper.

Here, we introduce an innovative transformation which operates by altering the
time axis of the diffusion. To accommodate the special features of time change
transformations, we also introduce a novel efficient MCMC scheme which mixes
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FIG. 4. Kernel densities of the posterior draws of all the parameters and the log-likelihood for
different values of imputed points m = 2,10,20. Example on weekly 3-month US treasury bill rates.
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FIG. 5. Autocorrelation plots for the posterior draws of the model parameters for different numbers
of imputed points m = 2,10,20 for the analysis of weekly 3-month US treasury bill rates.
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TABLE 2
Summaries of the posterior draws for the stochastic volatility model of weekly 3-month

US treasury bill rates

Parameter Post. mean Post. SD Post. 2.5% Post. median Post. 97.5%

θ0 0.130 0.238 −0.347 0.132 0.589
θ1 0.013 0.057 −0.096 0.013 0.125
κ 2.403 0.620 1.319 2.360 3.745
μ −3.966 0.211 −4.384 −3.964 −3.547
σ 2.764 0.311 2.199 2.750 3.420

rapidly and is not prohibitively computationally expensive. Our method is also
easy to implement and introduces no additional approximation error other than
that included in methodologies based on a discretization of the diffusion path.
Moreover, it has a broad range of applications which include general stochastic
volatility models.

One clear advantage of the time change methodology is that in its pure form
produces algorithms whose mixing time is bounded as m goes to infinity, as in [30].
In addition, the computing cost per iteration of our methods is O(m) as with other
competing methods. Thus the overall computing cost of our approach is O(m)

which compares favourably with competing methods that are typically O(m2).
In our experience mixing properties of the methods introduced in this paper are
good in comparison with competing methods for these types of models and data.
Furthermore we have found out that implementation can routinely be carried out
in a few hours on a mid-specification PC.

Further work will consider problems with state-dependent volatility and mod-
els which involve jump diffusions, to which the methodology introduced here can
be easily applied. Fundamental to our approach here has been the introduction
of a noncentered parametrization to decouple dependence inherent in the model
between missing data and volatility parameters. However, noncentered construc-
tions are not unique, as illustrated by the choice in the diffusion context between
the state rescaling approaches of [17, 30] and the time-stretching strategy adopted
here. Clearly, further work is required to investigate the relative merits of these
approaches in different situations.
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