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SPECIFICATION TESTING IN NONLINEAR AND
NONSTATIONARY TIME SERIES AUTOREGRESSION1
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University of Adelaide, Monash University, Curtin University of Technology and
The University of Adelaide and University of Bergen

This paper considers a class of nonparametric autoregressive models with
nonstationarity. We propose a nonparametric kernel test for the conditional
mean and then establish an asymptotic distribution of the proposed test. Both
the setting and the results differ from earlier work on nonparametric autore-
gression with stationarity. In addition, we develop a new bootstrap simula-
tion scheme for the selection of a suitable bandwidth parameter involved in
the kernel test as well as the choice of a simulated critical value. The finite-
sample performance of the proposed test is assessed using one simulated ex-
ample and one real data example.

1. Introduction. Time series regression analysis has a long history. There
have been many studies in using parametric linear autoregressive moving average
models [Brockwell and Davis (1990)], parametric nonlinear time series models
[see, e.g., Tong (1990), Granger and Teräsvirta (1993)], and nonparametric and
semiparametric time series models [Tong (1990), Fan and Yao (2003) and Gao
(2007)]. In many existing studies, particularly in the nonparametric situation, the
focus of attention has been on the case where the observed time series satisfies
a type of stationarity. Such a stationarity assumption is quite restrictive in many
cases.

In the parametric time series case, estimation and specification testing methods
have been developed to deal with nonstationarity. In recent years, attempts have
also been devoted to the estimation of nonlinear and nonstationary time series
models using nonparametric methods. Existing studies include Phillips and Park
(1998) and Karlsen and Tjøstheim (1998, 2001) on nonparametric autoregression,
Park and Phillips (2001) on parametric nonlinear regression, Bandi and Phillips
(2003) on nonparametric estimation of nonstationary diffusion models, Wang and
Phillips (2009) on nonparametric kernel estimation of random walk processes, and
Karlsen, Myklebust and Tjøstheim (2007) on nonparametric cointegration. In the
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original version of this paper, Gao et al. (2006) discuss specification testing prob-
lems for both autoregression and conintegration cases with nonstationarity.

In the field of model specification testing with nonstationarity, there is a huge
literature on various unit root tests in the parametric linear autoregressive case. To
the best of our knowledge, there seems to be very little work on specification test-
ing in the nonparametric nonlinear autoregressive case. This paper aims to discuss
such issues. Consider a class of nonlinear autoregressive models of the form

Xt = g(Xt−1) + ut , t = 1,2, . . . , T ,(1.1)

where g(·) is an unknown function defined over R1 = (−∞,∞), {ut } is a se-
quence of independent and identically distributed i.i.d. errors with mean zero and
finite variance σ 2

u = E[u2
1], and T is the number of observations. The initial value

X0 of Xt may be any Op(1) random variable. However, we set X0 = 0 to avoid
some unnecessary complications in exposition.

When g(Xt−1) = Xt−1 + g1(Xt−1) with g1(·) being an identifiable nonlinear
function, model (1.1) becomes a nonlinear random walk model. Granger, Inoue
and Morin (1997) discuss some parametric cases for this model, and suggest sev-
eral estimation procedures. As g(·) usually represents some kind of nonlinear fluc-
tuation in the conditional mean, it would be both theoretically and practically use-
ful to test whether such a nonlinear term is significant before using model (1.1) in
practice. We therefore propose testing the following null hypothesis:

H0 :P
(
g(Xt−1) = Xt−1

) = 1 for all t ≥ 1.(1.2)

The main difference between our approach and existing ones is that we need not
prespecify g(x) parametrically as g(x) = θx and then test H ′

0 : θ = 1 as has been
done in the literature. Our approach is that we test H0 nonparametrically. In doing
so, we can avoid possibly misspecifying the true model before using a specification
testing procedure.

The main contributions of this paper are as follows:

(i) It proposes a nonparametric kernel test for nonlinear nonstationarity
against nonlinear stationarity in model (1.1). This test procedure corresponds to
the well-known test proposed by Dickey and Fuller (1979) for the parametric case.

(ii) It establishes an asymptotically normal test for testing the conditional mean
in model (1.1) under the null hypothesis. Theoretical properties for the proposed
test procedure are established.

(iii) This paper is then concerned with discussing the power function of the
proposed test under a stationary alternative. Some asymptotic consistency results
under both the null and alternative hypotheses are established.

(iv) In order to implement the proposed test in practice, we develop a new
simulation procedure based on the assessment of both the size and power functions
of the proposed test.
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The rest of the paper is organized as follows. Section 2 establishes a simple
nonparametric test and an asymptotic distribution under the null hypothesis. Dis-
cussion about the power function of the proposed test is given in Section 3. Sec-
tion 4 shows how to implement the proposed test in practice. Section 5 concludes
the paper with some remarks on extensions. Mathematical details are relegated to
the Appendix. Some additional derivations are given in Appendices B–E of Gao et
al. (2008).

2. Nonparametric unit root test. Consider model (1.1) and a general testing
problem of the form

H0 :P
(
g(Xt−1) = Xt−1

) = 1 against
(2.1)

H1 :P
(
g(Xt−1) = Xt−1 + �T (Xt−1)

) = 1,

where {�T (x)} is a sequence of unknown functions.
Before proposing our test statistic for (2.1), we consider the conventional

Nadaraya–Watson (NW) kernel estimate of the form

ĝ(x) =
T∑

s=1

WT (x,Xs−1)Xs =
∑T

s=1 Kh(Xs−1 − x)Xs∑T
t=1 Kh(Xt−1 − x)

,(2.2)

where WT (x,Xs−1) = Kh(Xs−1−x)∑T
t=1 Kh(Xt−1−x)

, in which Kh(·) = K(·/h), K(·) is a prob-

ability kernel function and h is a bandwidth parameter.
Let A(Xt−1,Xs−1) = 1

T

∑T
k=1 WT (Xk−1,Xt−1)WT (Xk−1,Xs−1) and X̂t−1 =∑T

s=1 WT (Xt−1,Xs−1)Xs−1. We then compare ĝ(Xt−1) with X̂t−1 by

NT (h) = NT (X1, . . . ,XT ;h) = 1

T

T∑
t=1

[ĝ(Xt−1) − X̂t−1]2

=
T∑

s=1

T∑
t=1

(
1

T

T∑
k=1

WT (Xk−1,Xt−1)WT (Xk−1,Xs−1)

)
utus

=
T∑

s=1

T∑
t=1

A(Xt−1,Xs−1)utus,

where ut = Xt − Xt−1 under H0. Similar forms have been used for the stationary
time series case [see, e.g., Hjellvik, Yao and Tjøstheim (1998)]. Other alternatives
to NT (h), including the introduction of MT (h) below, are discussed in Gao et al.
(2006).

In theory, we can derive a test statistic based on NT (h). As can be seen, NT (h)

involves both a triple summation and a kind of random denominator problem,
which may cause more difficulty and technicality than those for the stationary
case. Compared with MT (h) below, our experience with the stationary case also
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shows that a test statistic based on NT (h) has less attractive properties than those
based on MT (h) below [see, e.g., Li (1999), Gao and King (2004) and Chapter 3
of Gao (2007)].

We thus propose using a test statistic of the form

MT = MT (h) =
T∑

t=1

T∑
s=1,s �=t

ûsKh(Xs−1 − Xt−1)ût ,(2.3)

where ût = Xt − ĝ(Xt−1). We now introduce the following conditions.

ASSUMPTION 2.1. (i) Suppose that {ut } is a sequence of independent and
identically distributed i.i.d. errors with E[u1] = 0 and E[u2

1] = σ 2
u < ∞. Let 0 <

μ4 = E[u4
1] < ∞.

(ii) Suppose that {ut } has a symmetric density function f (u). Let f ′(u) be the
first derivative of f (u) and f ′(u) be continuous at u ∈ (−∞,∞). Let ψ(·) be the
characteristic function of {ut } satisfying

∫ ∞
−∞ |v||ψ(v)|dv < ∞.

(iii) Let K(·) be a symmetric probability density function. Suppose that there
are constants c1 > 0 and 0 < c2 < c3 < ∞ such that c2I (|u| ≤ c1) ≤ K(u) ≤
c3I (|u| ≤ c1). In addition, suppose that |K(x + y) − K(x)| ≤ �(x)|y| for all
x ∈ C(K) and any small y, where �(x) is nonnegative bounded function for all
x ∈ C(K) and C(K) denotes the compact support of K(·).

(iv) Assume that h satisfies limT →∞ T 3/10h = 0 and lim supT →∞ T 1/2−ε0h =
∞ for all 0 < ε0 < 1

5 .

REMARK 2.1. The i.i.d. assumption in Assumption 2.1(i) is needed to ensure
that the partial sum St = ∑t

s=1 us has independent increments, although, {St } itself
is nonstationary and dependent. Under this assumption, we are able to establish the
main results of this paper in Theorems 2.1, 2.2 and 3.1 below. Assumption 2.1(ii)
imposes some mild conditions on both the density function and the characteris-
tic function and it holds in many cases. The condition

∫ ∞
−∞ |v||ψ(v)|dv < ∞

is to ensure certain convergence results. Let φT (x) be the density function of
1√
T σu

∑T
t=1 ut . Then under Assumption 2.1(ii),

sup
x

|φT (x) − φ(x)| → 0 and sup
x

|φ′
T (x) − φ′(x)| → 0,(2.4)

where φ′
T (x) and φ′(x) are first derivatives, and φ(x) = 1√

2π
e−x2/2 is the density

function of the standard normal random variable N(0,1). The proof of (2.4) is
quite standard [Chapters 8 and 9 of Chow and Teicher (1988)].

Assumption 2.1(iii) also holds in many cases. For example, when K(x) =
1
2I[−1,1](x), Assumption 2.1(iii) holds automatically. In addition, Assump-
tion 2.1(iv) does not look unnatural in the nonstationary case, although it looks
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more restrictive than that required for the stationary case. In addition, the con-
ditions of Theorems 5.1 and 5.2 of Karlsen and Tjøstheim (2001) imposed on
h become simplified since we are interested in the special case of random walk
with a tail index of β = 1

2 involved in those conditions. Such conditions on the
bandwidth for nonparametric testing in the nonstationary case are equivalent to
the minimal conditions: limT →∞ h = 0, limT →∞ T h = ∞ and limT →∞ T h4 = 0
required in nonparametric kernel testing for the stationary time series cases [see,
e.g., Gao (2007)].

Let σ̂ 2
T = σ̂ 2

T (h) = 2
∑T

t=1
∑T

s=1,s �=t û
2
sK

2
h(Xs−1 − Xt−1)û

2
t . As can be seen

from the proof of Theorem 2.2 below, under H0 we have for the normalized test
statistic

L̂T (h) = MT (h)

σ̂T (h)
=

∑T
t=1

∑T
s=1,s �=t ûsK((Xt−1 − Xs−1)/h)ût√

2
∑T

t=1
∑T

s=1,s �=t û
2
sK

2((Xt−1 − Xs−1)/h)û2
t

(2.5)

=
∑T

t=2
∑t−1

s=1 usK((
∑t−1

j=s+1 uj + us)/h)ut√∑T
t=2

∑t−1
s=1 u2

sK
2((

∑t−1
j=s+1 uj + us)/h)u2

t

+ oP (1).

In comparison with existing forms for the stationary case [e.g., (34) of Arapis
and Gao (2006)], establishing an asymptotic distribution for L̂T (h) becomes non-
standard mainly due to the fact that {Xt } is now nonstationary and {us} is involved
in both the argument of K(·) and in a factor multiplying K(·).

Let

σ 2
T = E

(
T∑

t=1

T∑
s=1,s �=t

usK

(
Xt−1 − Xs−1

h

)
ut

)2

.

Before we study asymptotic properties of L̂T (h), we need to evaluate the asymp-
totic order of σ 2

T in Theorem 2.1 below. The proof is given in Lemma A.1 in
Appendix below.

THEOREM 2.1. Consider model (1.1). Assume that Assumption 2.1 holds.
Then under H0

σ 2
T = C10T

3/2h
(
1 + o(1)

)
,

where C10 = 16σ 4
u J02

3
√

2π
, in which σ 2

u = E[u2
1] and J02 = ∫

K2(x) dx.

Note that σ 2
T is proportional to T 3/2h. When {Xt } of model (1.1) is station-

ary, however, σ 2
T is proportional to T 2h as has been given in the literature [Gao

(2007)]. Theorem 2.2 below shows that standard normality can still be the limiting
distribution of a test statistic under nonstationarity.
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THEOREM 2.2. Consider model (1.1). Suppose that Assumption 2.1 holds.
Then under H0 and as T → ∞

L̂T (h) = MT (h)

σ̂T (h)
=

∑T
t=1

∑T
s=1,s �=t ûsKh(Xs−1 − Xt−1)ût√

2
∑T

t=1
∑T

s=1,s �=t û
2
sK

2
h(Xs−1 − Xt−1)û

2
t

(2.6)

=
∑T

t=2
∑t−1

s=1 ûsKh(Xs−1 − Xt−1)ût√∑T
t=2

∑t−1
s=1 û2

sK
2
h(Xs−1 − Xt−1)û

2
t

→D N(0,1).

PROOF. Observe that under H0

MT (h) =
T∑

t=1

T∑
s=1,s �=t

ûsKh(Xs−1 − Xt−1)ût

=
T∑

t=1

T∑
s=1,s �=t

usKh(Xs−1 − Xt−1)ut

+
T∑

t=1

T∑
s=1,s �=t

δ̂sKh(Xs−1 − Xt−1)̂δt(2.7)

+ 2
T∑

t=1

T∑
s=1,s �=t

usKh(Xs−1 − Xt−1)̂δt

≡ MT 1 + MT 2 + MT 3,

σ̂ 2
T = 2

T∑
t=1

T∑
s=1,s �=t

û2
sK

2
h(Xs−1 − Xt−1)û

2
t

= 2
T∑

t=1

T∑
s=1,s �=t

u2
sK

2
h(Xs−1 − Xt−1)u

2
t(2.8)

+ 2
T∑

t=1

T∑
s=1,s �=t

δ̂2
s K

2
h(Xs−1 − Xt−1)̂δ

2
t + R̂T ,

where δ̂t = Xt−1 − ĝ(Xt−1) and R̂T is the remainder term given by

R̂T = σ̂ 2
T − 2

T∑
t=1

T∑
s=1,s �=t

u2
sK

2
h(Xs−1 − Xt−1)u

2
t

− 2
T∑

t=1

T∑
s=1,s �=t

δ̂2
s K

2
h(Xs−1 − Xt−1)̂δ

2
t .
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In view of (2.7) and (2.8), to prove Theorem 2.2, it suffices to show that as
T → ∞

MT 1

σ̃T

→D N(0,1),(2.9)

MT i

σ̃T

→P 0 for i = 2,3,(2.10)

σ̂ 2
T − σ̃ 2

T

σ̃ 2
T

→P 0,(2.11)

where σ̃ 2
T = 2

∑T
t=1

∑T
s=1,s �=t u

2
sK

2
h(Xs−1 − Xt−1)u

2
t .

The proof of (2.9) is given in Lemma A.3 of the Appendix below. In view
of (2.9), to complete the proof of Theorem 2.2, it suffices to prove (2.10) and
(2.11). We now give the proof of (2.10) and then an outline of the proof of (2.11).

It follows from (2.9) that

1

σ̃T

T∑
t=1

T∑
s=1

usK

(
Xt−1 − Xs−1

h

)
ut = OP (1).(2.12)

In order to prove (2.10), we first need to show that

MT 2

σT

= oP (1).(2.13)

Observe that under H0 :Xt = Xt−1 + ut

δ̂t = Xt−1 − ĝ(Xt−1)

= Xt−1 −
T∑

s=1

WT (Xt−1,Xs−1)Xs

(2.14)

= Xt−1 −
T∑

s=1

WT (Xt−1,Xs−1)Xs−1 −
T∑

s=1

WT (Xt−1,Xs−1)us

= X̃t−1 − ut ,

where X̃t−1 = Xt−1 − ∑T
s=1 WT (Xt−1,Xs−1)Xs−1 and ut = ∑T

s=1 WT (Xt−1,

Xs−1)us .
Thus, in order to show (2.13), it suffices to show that

T∑
t=1

T∑
s=1,s �=t

X̃s−1K

(
Xt−1 − Xs−1

h

)
X̃t−1 = oP (σT ),(2.15)

T∑
t=1

T∑
s=1,s �=t

usK

(
Xt−1 − Xs−1

h

)
ut = oP (σT ).(2.16)
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The proof of (2.16) is quite technical and thus relegated to Lemma E.1 in Ap-
pendix E of Gao et al. (2008). Meanwhile, Assumption 2.1(iii) and a conventional
approach [see, e.g., the proof of Theorem 5.1 of Karlsen and Tjøstheim (2001)]
imply that uniformly in x,

g̃(x) = g(x) −
T∑

s=1

WT (x,Xs−1)g(Xs−1)

=
∑T

s=1 K((x − Xs−1)/h)(g(x) − g(Xs−1))∑T
l=1 K((x − Xl−1)/h)

(2.17)

= g′(x)h

∫
uK(u)du

(
1 + oP (1)

) = oP (h),

when g(·) is differentiable and the first derivative, g′(x), is continuous.
Using (2.17) for the case of g(x) = x, in order to prove (2.15), it suffices to

show that

h2
T∑

t=1

T∑
s=1,s �=t

K

(
Xt−1 − Xs−1

h

)
= oP (σT ),(2.18)

which follows from

T∑
t=1

T∑
s=1,s �=t

E

[
K

(
Xt−1 − Xs−1

h

)]
= O(T 3/2h)(2.19)

and Assumption 2.1(iv). The verification of (2.19) is similar to but simpler than
that of (A.3) below.

Hence, (2.13) and (A.50) in the Appendix below imply

MT 2

σ̃T

= MT 2

σT

σT

σ̃T

= oP (1).(2.20)

This proves (2.10) for i = 2. Furthermore, the proof of (2.10) for i = 3 follows
from (2.12)–(2.20) and∣∣∣∣∣

T∑
t=1

T∑
s=1,s �=t

us

√
K

(
Xt−1 − Xs−1

h

)√
K

(
Xt−1 − Xs−1

h

)
δ̂t

∣∣∣∣∣
2

≤
T∑

t=1

T∑
s=1,s �=t

usK

(
Xt−1 − Xs−1

h

)
ut

T∑
t=1

T∑
s=1,s �=t

δ̂sK

(
Xt−1 − Xs−1

h

)
δ̂t

= OP (σ̃T ) · oP (σ̃T ) = oP (σ̃ 2
T ),

where δ̂t = Xt−1 − ĝ(Xt−1).
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In view of the definitions of σ̂ 2
T , σ̃ 2

T , (2.17) above, (A.50) in the Appendix and

σ̂ 2
T − σ̃ 2

T

σ̃ 2
T

= σ̂ 2
T − σ̃ 2

T

σ 2
T

· σ 2
T

σ̃ 2
T

,

in order to prove (2.11), it suffices to show that

T∑
t=1

T∑
s=1,s �=t

u2
sK

2
(

Xs−1 − Xt−1

h

)
u2

t = oP (σ 2
T ).(2.21)

The verification of (2.21) is similar to that of (2.16). This completes the proof
of Theorem 2.2. �

Existing studies of test statistics analogous to L̂T (h) for the stationary time se-
ries case show that the size function of the test is not well approximated using
a normal limit distribution. The main reasons are as follows: (a) the rate of con-
vergence of each L̂T (h) to asymptotic normality is quite slow even when {ut } is
a sequence of independent and identically distributed errors; and (b) the use of a
single bandwidth based on an optimal estimation criterion may not be optimal for
testing purposes.

In order to improve the finite sample performance of L̂T (h), we propose using
a bootstrap simulation method. Such a method is known to work quite well in the
stationary case. For each given bandwidth satisfying certain theoretical conditions,
instead of using an asymptotic critical value of l0.05 = 1.645 at the 5% level for
example, we use a simulated critical value for computing the size function and
then the power function. An optimal bandwidth is chosen such that while the size
function is controlled by a significance level, the power function is maximized
at the optimal bandwidth. Our finite-sample studies show that there is little size
distortion when using such a simulated critical value. These issues are discussed
in Section 3 below.

3. Bootstrap simulation and asymptotic theory. In order to assess the per-
formance of both the size and power function, we need to discuss how to simulate
critical values for the implementation of L̂T (h) in each case. We then examine the
finite sample performance through using two examples in Section 4 below. Be-
fore we look at how to implement L̂T (h) in practice, we propose the following
simulation scheme.

Simulation scheme: the exact α-level critical value, lα(h) (0 < α < 1), is the
1 − α quantile of the exact finite-sample distribution of L̂T (h). Because there are
unknown quantities, such as unknown parameters and functions, we cannot evalu-
ate lα(h) in practice. We propose choosing an approximate α-level critical value,
l∗α(h), by using the following simulation procedure:
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• Let X0 = 0. For each t = 1,2, . . . , T , generate X∗
t = Xt−1 + σ̂uε

∗
t , where

σ̂ 2
u is a consistent estimator of σ 2

u = E[u2
1] based on the original sample

(X1,X2, . . . ,XT ), and {ε∗
t } is constructed using either a parametric bootstrap

method or a nonparametric bootstrap method.
• Use the data set {X∗

t : t = 1,2, . . . , T } to re-estimate g(·) by ĝ∗(x) = ∑T
s=1 WT ×

(x,Xs−1)X
∗
s . Let û∗

t = X∗
t − ĝ∗(Xt−1). Compute the test statistic L̂∗

T (h) that is
the corresponding version of L̂T (h) by replacing ût with û∗

t on the right-hand
side of L̂T (h).

• Repeat the above steps M times and produce M versions of L̂∗
T (h) denoted by

L̂∗
T m(h) for m = 1,2, . . . ,M . Use the M values of L̂∗

T m(h) to construct their em-
pirical bootstrap distribution function. The bootstrap distribution of L̂∗

T (h) given
XT = {Xt : 1 ≤ t ≤ T } is defined by P ∗(L̂∗

T (h) ≤ x) = P(L̂∗
T (h) ≤ x|XT ). Let

l∗α(h) satisfy

P ∗(
L̂∗

T (h) > l∗α(h)
) = α

and then estimate lα(h) by l∗α(h).
• Define the size and power functions by

α(h) = P
(
L̂T (h) ≥ l∗α(h)|H0

)
and β(h) = P

(
L̂T (h) ≥ l∗α(h)|H1

)
.

Let H = {h :α(h) ≤ α}. Choose an optimal bandwidth ĥtest such that

ĥtest = arg max
h∈H

β(h).

We then use l∗α(htest) in the computation of both the size and power values of
L̂T (ĥtest) for each case.

To study the power function of L̂T (h), we specify a sequence of alternatives of
the form:

H1 :P
(
g(Xt−1) = Xt−1 + �T (Xt−1)

) = 1,(3.1)

where �T (x) is a sequence of nonparametrically unknown functions satisfying
certain conditions in Assumption 3.2 below.

Under H1, model (1.1) becomes

Xt = g(Xt−1) + ut = Xt−1 + �T (Xt−1) + ut ,(3.2)

where �T (x) can be consistently estimated by

�̂T (x) =
∑T

t=1 Kĥcv
(Xt−1 − x)(Xt − Xt−1)∑T

t=1 Kĥcv
(Xt−1 − x)

(3.3)

with ĥcv being chosen by a conventional cross-validation selection method.
To establish Theorem 3.1 below, we need the following conditions.

ASSUMPTION 3.1. (i) Assumption 2.1 holds.
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(ii) Suppose that g(x) is differentiable in x ∈ R1 = (−∞,∞) and that the first
derivative g′(x) is continuous in x ∈ R1. In addition, g(x) is chosen such that {Xt }
of (1.1) under H1 is strictly stationary.

ASSUMPTION 3.2. Let f (x) be the marginal density function of {Xt } un-
der H1. Suppose that {�T (x)} is either an unknown function of the form �(x) or
a sequence of unknown functions satisfying

lim
T →∞T 5/4

√
hδ2(T ) = ∞ where δ2(T ) =

∫
�2

T (x)f 2(x) dx.(3.4)

Since g(x) is not necessarily identical to x under H1, Assumption 3.1(ii) re-
quires that the main interest of this paper is to test linear nonstationarity against
nonlinear stationarity. Some secondary conditions on the form of g(·) such that
{Xt } is strictly stationary under H1 are available from Masry and Tjøstheim (1995).

Assumption 3.2 basically requires that there is some “distance” between
g(Xt−1) and Xt−1 when H0 is not true. Obviously, there are many different ways
of choosing �T (x) for H1. For example, we may consider testing nonstationarity
against stationarity of the form

H0 :Xt = Xt−1 + ut versus
(3.5)

H1 :Xt = g(Xt−1) + ut = Xt−1 + �(Xt−1) + ut ,

where {ut } is a sequence of i.i.d. errors with E[u1] = 0 and E[u2
1] = σ 2

u < ∞, and
�(·) can be either a nonparametric or semiparametric function and is chosen such
that {Xt } is stationary under H1. In this case, we have

1

T 2h

T∑
t=1

T∑
s=1

E

[(
g(Xs−1) − Xs−1

)
K

(
Xs−1 − Xt−1

h

)(
g(Xt−1) − Xt−1

)]
(3.6)

= (
1 + o(1)

) ∫
�2(x)f 2(x) dx > 0,

since {Xt } under H1 is strictly stationary with f (·) being its marginal density func-
tion. This, along with Assumption 2.1(iv), implies that Assumption 3.2 holds when
�T (x) = �(x).

We now state the following results and their proofs are given below.

THEOREM 3.1. (i) Assume that Assumption 3.1 holds. Then under H0

lim
T →∞P

(
L̂T (h) > l∗α

) = α.

(ii) Assume that Assumptions 3.1 and 3.2 hold. Then under H1

lim
T →∞P

(
L̂T (h) > l∗α

) = 1.

Theorems 3.1(i) implies that each l∗α is an asymptotically correct α-level critical
value under H0, while Theorem 3.1(ii) shows that L̂T (h) is asymptotically con-
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sistent against alternatives of the form (3.1) whenever δ(T ) ≥ CT −5/8h−1/4 for
some finite C > 0 in this kind of nonparametric testing of nonstationarity against
stationarity.

PROOF OF THEOREM 3.1. Recall ĝ∗(x) = ∑T
s=1 WT (x,Xs−1)X

∗
s and û∗

t =
X∗

t − ĝ∗(Xt−1). Let δ̂∗
t = Xt−1 − ĝ∗(Xt−1). We now have

M∗
T (h) ≡

T∑
t=1

T∑
s=1,s �=t

û∗
sKh(Xs−1 − Xt−1)û

∗
t

=
T∑

t=1

T∑
s=1,s �=t

σ̂uε
∗
s Kh(Xs−1 − Xt−1)σ̂uε

∗
t

+
T∑

t=1

T∑
s=1,s �=t

δ̂∗
s Kh(Xs−1 − Xt−1)̂δ

∗
t(3.7)

+ 2
T∑

t=1

T∑
s=1,s �=t

σ̂uε
∗
s Kh(Xs−1 − Xt−1)̂δ

∗
t

≡ M∗
T 1 + M∗

T 2 + M∗
T 3.

Using Assumptions 2.1 and 3.1, in view of the notation of L̂∗
T (h) introduced in

the simulation scheme proposed just above Assumption 3.1 as well as the proof of
Theorem 2.2, we can show that as T → ∞

P ∗(
L̂∗

T (h) ≤ x
) → (x) for all x ∈ (−∞,∞)(3.8)

holds in probability with respect to the distribution of the original sample
{Xt−1 : 1 ≤ t ≤ T }, where (·) is the distribution function of the standard normal
random variable N(0,1). In order to prove (3.8), in view of the fact that {ε∗

s } and
{Xt } are independent for all s, t ≥ 1, we can show that the proofs of Lemmas A.1
and A.3–A.6 below all remain true by successive conditioning arguments.

Let zα be the 1 − α quantile of (·) such that (zα) = 1 − α. Then it follows
from (3.8) that as T → ∞

P ∗(
L̂∗

T (h) ≥ zα

) → 1 − (zα) = α.(3.9)

This, together with the construction that P ∗(L̂∗
T (h) > l∗α(h)) = α, implies that

as T → ∞
l∗α(h) − zα →P 0.(3.10)

Using the conclusion of Theorem 2.2 and (3.8) again, we have that as T → ∞
P ∗(

L̂∗
T (h) ≤ x

) − P
(
L̂T (h) ≤ x

) →P 0 for all x ∈ (−∞,∞).(3.11)

This, along with the construction that P ∗(L̂∗
T (h) > l∗α(h)) = α again, implies

lim
T →∞P

(
L̂T (h) > l∗α(h)

) = α.(3.12)
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Therefore, the conclusion of Theorem 3.1(i) is proved.
Recall ût = Xt − ĝ(Xt−1) and let λt = Xt−1 − g(Xt−1). To prove Theo-

rem 3.1(ii), we need to recall the decomposition of MT (h) in (2.7). Recalling
δ̂t = Xt−1 − ĝ(Xt−1) and λt = Xt−1 − g(Xt−1), we have

δ̂t = Xt−1 − ĝ(Xt−1) = Xt−1 − g(Xt−1) + g(Xt−1) − ĝ(Xt−1)

= Xt−1 − g(Xt−1) + g(Xt−1) −
T∑

s=1

WT (Xt−1,Xs−1)g(Xs−1)

−
T∑

s=1

WT (Xt−1,Xs−1)us = λt + g̃(Xt−1) − ut ,

where g̃(Xt−1) = g(Xt−1)−∑T
s=1 WT (Xt−1,Xs−1)g(Xs−1). In view of the proof

of Theorem 2.2, (2.15)–(2.17) in particular as well as (3.10), in order to prove
Theorem 3.1(ii), it suffices to show that under H1∑T

s=1
∑T

t=1 λsKh(Xs−1 − Xt−1)λt

σT

→P ∞.(3.13)

Similarly to (3.6), we have under H1

1

σT

T∑
t=1

T∑
s=1

E

[(
g(Xs−1) − Xs−1

)
K

(
Xs−1 − Xt−1

h

)(
g(Xt−1) − Xt−1

)]
(3.14)

= T 2h

σT

(
1 + o(1)

) ∫
�2

T (x)f 2(x) dx = CT 5/4
√

hδ2(T )
(
1 + o(1)

)
.

The verification of (3.13) follows from (3.14) and Assumption 3.2. This finishes
the proof of Theorem 3.1. �

Section 4 below shows how to illustrate Theorem 3.1 through using a simulated
example and then a real data application.

4. Examples of implementation. This section studies some finite-sample
properties of both the size and power functions of the proposed test through using
two examples. Example 4.1 assesses the finite-sample performance using simu-
lated data. A real data application is given in Example 4.2. Throughout Examples
4.1 and 4.2 below, we use K(x) = 1

2I[−1,1](x).

EXAMPLE 4.1. Consider a nonlinear time series model of the form

Xt = Xt−1 + �(Xt−1) + ut ,(4.1)

where X0 = 0, {ut } is a sequence of independent normal random errors with
E[u1] = 0 and E[u2

1] = σ 2
u < ∞, and �(x) is chosen as a known parametric func-

tion with some unknown parameters in the following data generating process.
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We then consider two different cases as follows:

H0 :Xt = Xt−1 + ut versus
(4.2)

H1 :Xt = Xt−1 + βXt−1 + ut

and

H0 :Xt = Xt−1 + ut versus
(4.3)

H1 :Xt = Xt−1 + βXt−1 + β

1 + |Xt−1|γ + ut ,

where 0 < γ < ∞, −2 < β < 0 and 0 < σu < ∞ are unknown parameters to be es-
timated using the conventional MLE method [see Granger and Teräsvirta (1993)].

Since we are interested in assessing the performance of the proposed test for
a number of different values for β , the fixed values of σ 2

u = 0.05 and γ = 1
2 are

used in generating the data. In addition to the case of σ 2
u = 0.05, we have also tried

some other values of σu. As our preliminary results show that the resulting finite
sample results are very similar, we focus on the case of σ 2

u = 0.05 in this example.
Note that {Xt } of (4.2) is nonstationary under H0, while it strictly stationary

and α-mixing under H1 with 0 < γ < ∞, and −2 < β < 0 in both cases. With
the choice of the values for β and γ , the time series {Xt } of (4.3) is also strictly
stationary under H1 [see, e.g., Masry and Tjøstheim (1995)]. In the simulation, we
consider various values of −2 < β < 0 when computing the power of L̂T (h).

As pointed out in the literature for the i.i.d. and stationary time series cases
[Hjellvik, Yao and Tjøstheim (1998), Li and Wang (1998), Fan and Linton (2003),
Gao (2007) and Gao and Gijbels (2008)], the choice of a kernel bandwidth for
testing purposes is quite critical and difficult. In the nonstationary case, however,
how to choose an optimal bandwidth parameter is still an open problem.

Thus, in the finite-sample study, we apply the first part of the simulation scheme
proposed in Section 3 to simulate a bootstrap critical function l∗α(h) for each given
h in each individual case. We then choose an optimal value for h in each case
such that the power function is maximized at such an optimal ĥtest. For each case
of T = 250, 500 or 750, the finite-sample assessment of the corresponding size
and power functions suggests choosing ĥtest = 0.160 when T = 250, 0.117 for
T = 500 and 0.097 when T = 750.

To assess the variability of both the size and power with respect to various band-
width values, we then consider a set of bandwidth values of the form

hi = 1

25−i
ĥtest

for 1 ≤ i ≤ 5 with L5 = L̂T (ĥtest). To simplify the notation, we introduce Li =
L̂T (hi) for 1 ≤ i ≤ 5. Since the alternative of model (4.2) is a linear form, we may
compare our test with a version of the Dickey–Fuller test of the form [Dickey and
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TABLE 1
Simulated sizes and power values at the 5% level

T = 250 T = 500 T = 750

β L0 L5 L0 L5 L0 L5

0.00 0.037 0.041 0.059 0.039 0.054 0.051
−0.05 0.718 0.464 1.000 0.679 1.000 0.804
−0.10 0.999 0.811 1.000 0.966 1.000 0.986
−0.20 1.000 0.993 1.000 1.000 1.000 1.000

Fuller (1979)]

L0 =
∑T

t=2(Xt − Xt−1)Xt−1

σ̂T

√∑T
t=2 X2

t−1

,(4.4)

where σ̂ 2
T = 1

T

∑T
t=1(Xt − Xt−1 − β̂T Xt−1)

2 with β̂T =
∑T

t=2(Xt−Xt−1)Xt−1∑T
t=2 X2

t−1
.

In the following tables, we consider cases where the number of replications of
each of the sample versions of the size and power functions was M = 1000, each
with B = 250 number of bootstrapping resamples {ε∗

t } (involved in the simulation
scheme in Section 3 above) from the standard normal distribution N(0,1), and the
simulations were done for the cases of T = 250, 500 and 750.

Table 1 shows that while the sizes are comparable, the conventional test L0 is
more powerful than the proposed test L5 as expected when the alternative model is
a linear autoregressive model. However, the biggest power reduction is only about
36% in the case of T = 250 and β = −0.05. This may suggest that we should
use the proposed test for nonstationarity in the conditional mean when there is no
priori information about the form of the conditional mean.

When the alternative is a nonlinear parametric form as in (4.3), our studies show
that L0 is basically inferior to our test in the sense that it is much less powerful than
the proposed test. We now give the corresponding simulated sizes and power values
with 1000 replications for model (4.3) for both of the tests in Tables 2–5 below.

The finite-sample results given in Tables 2–5 show that the proposed test and
the simulation scheme work well numerically. Table 2 lists the sizes for Li for

TABLE 2
Simulated sizes at the 5% level

T L1 L2 L3 L4 L5 L0

250 0.003 0.010 0.034 0.047 0.039 0.038
500 0.007 0.017 0.026 0.041 0.037 0.061
750 0.005 0.014 0.038 0.050 0.049 0.056
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TABLE 3
Power values for T = 250 at the 5% level

β L1 L2 L3 L4 L5 L0

−0.05 0.095 0.112 0.129 0.141 0.207 0.087
−0.10 0.206 0.268 0.350 0.438 0.647 0.127
−0.20 0.566 0.726 0.881 0.972 0.998 0.421
−0.40 0.984 0.999 1.000 1.000 1.000 0.678

1 ≤ i ≤ 5 and L0. While the sizes are relatively low for L5 in the cases of T =
250 and T = 500, the size function approaches 5% when T is as large as 750.
Most importantly, with such choices of the simulated critical values, Tables 3–5
show that the proposed test is powerful for nonstationarity versus stationarity. For
example, when the “distance” between nonstationarity and stationarity is as small
as for β = 0.05, the maximum of the power for T = 250 at the 5% level is already
over 20%. Comparing the power values of L0 with these values of Li , 1 ≤ i ≤ 5,
our observation is that the Dickey–Fuller test is inferior for the case where the
alternative is nonlinear. This further supports proposing a test for dealing with
such nonparametric nonstationarity.

As Tables 2–5 show, the corresponding power value of L4 in each case is only
the second best among Li for 1 ≤ i ≤ 5 if we choose an optimal bandwidth such
that the simulated size is the closest to 5%. Thus, our finite sample studies also
support the fact that there is a kind of trade-off between sizes and power values.

EXAMPLE 4.2. This example examines the three month Treasury Bill rate
data given in Figure 1 below sampled monthly over the period from January 1963
to December 1998, providing 432 observations.

Let {Xt : t = 1,2, . . . ,432} be the set of treasury Bill rate data. As Figure 1 does
not suggest that there is any significant trend for the data set, it is not unreasonable
to assume that {Xt } satisfies a nonlinear autoregressive model of the form

Xt = g(Xt−1) + et(4.5)

with the form of g(·) being unknown.

TABLE 4
Power values for T = 500 at the 5% level

β L1 L2 L3 L4 L5 L0

−0.05 0.160 0.202 0.249 0.323 0.477 0.097
−0.10 0.432 0.568 0.746 0.889 0.982 0.231
−0.20 0.923 0.993 1.000 1.000 1.000 0.519
−0.40 1.000 1.000 1.000 1.000 1.000 0.754
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TABLE 5
Power values for T = 750 at the 5% level

β L1 L2 L3 L4 L5 L0

−0.05 0.279 0.280 0.358 0.461 0.694 0.121
−0.10 0.663 0.753 0.905 0.977 0.999 0.398
−0.20 0.992 0.999 1.000 1.000 1.000 0.689
−0.40 1.000 1.000 1.000 1.000 1.000 0.842

To apply the test L̂T (ĥtest) to determine whether {Xt } follows a random walk
model of the form Xt = Xt−1 + ut , we need to propose the following procedure
for computing the p-value of L̂T (ĥtest):

• For the real data set, compute ĥtest and L̂T (ĥtest).
• Let X∗

1 = X1. Generate a sequence of bootstrap resamples {ε∗
t } from N(0,1)

and then X∗
t = Xt−1 + σ̂uε

∗
t for 2 ≤ t ≤ 432.

• Compute the corresponding version L̂∗
T (ĥtest) of L̂T based on {X∗

t }.• Repeat the above steps M times to find the bootstrap distribution of L̂∗
T (ĥtest)

and then compute the proportion that L̂T (ĥtest) < L̂∗
T (ĥtest). This proportion is

an approximate p-value of L̂T (ĥtest).

Our simulation results return the simulated p-values of p̂1 = 0.005 for L0 and
p̂2 = 0.011 for L̂T (ĥtest). While both of the simulated p-values suggest that there
is not enough evidence to accept the unit-root structure at the 5% significance level,
there is some evidence of accepting the unit-root structure based on L̂T (ĥtest) at
the 1% significance level. When we also generated {ε∗

t } from a non-Gaussian dis-

FIG. 1.
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tribution, the simulated p-values were quite close. By comparison, Jiang (1998)
rejects the null hypothesis of nonstationarity on the Fed data based on an applica-
tion of an augmented Dickey–Fuller unit-root test for H ′

0 : θ = 1 in a linear model
of the form Xt = θXt−1 + et .

5. Conclusion and extensions. We have proposed a nonparametric specifi-
cation test for testing whether there is a kind of unit root structure in a nonlinear
autoregressive mean function. An asymptotic normal distribution of the proposed
test has been established. In addition, we have also proposed a simulation scheme
to implement the proposed test in practice. The finite-sample results show that
both the proposed test and the simulation scheme are practically applicable and
implementable.

It is pointed out that we may also consider a generalized form of model (1.1)
with σu replaced by a stochastic volatility function σ(Xt−1). In this case, we
should be considering a test for

H01 :P
(
g(Xt−1) = Xt−1 and σ(Xt−1) = σu

) = 1.(5.1)

In this case, we may use a kernel-based test of the form

ST (h) =
T∑

t=1

T∑
s=1,s �=t

(
UsKh1(Xs − Xt)Ut + VsGh2(Xs − Xt)Vt

)
,(5.2)

where Gh2(·) = G(·/h2) with G(·) being a probability kernel function, h =
(h1, h2) is a pair of bandwidth parameters, Ut = Yt − ĝ(Xt−1) and Vt = U2

t − σ̂ 2
u

and σ̂u is an estimator of σu under H0. Similarly, to Theorems 2.2 and 3.1, we may
establish two corresponding theorems for ST (h). As the details for this case are
lengthy and technical, we leave this issue for future study.

Another possible extension will be on the multivariate case where a multivariate
autoregressive model is given as follows:

Xt = g(Xt−1, . . . ,Xt−p) + et .(5.3)

In this case, we are interested in testing a null hypothesis of the form

H02 :P

(
g(Xt−1, . . . ,Xt−p) =

p∑
j=1

θjXt−j

)
= 1,(5.4)

in which there is at least one unit root of the corresponding characteristic poly-
nomial. Detailed construction of such a test would involve some estimation proce-
dures for additive models as used in Gao, Lu and Tjøstheim (2006) in the stationary
spatial case and as proposed by Gao (2007) in the stationary time series case. Since
such an extension is not straightforward, we also leave it as a future topic.

APPENDIX

This appendix provides the proofs for some necessary technical lemmas that are
needed to complete the proofs of Theorems 2.1 and 2.2. Some additional details
are given in Appendices B–E of Gao et al. (2008).
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Let ast = Kh(
∑t−1

i=s ui) = K(
∑t−1

i=s ui

h
) and ηt = 2

∑t−1
s=1 astus for t > s. Note that

we assume without loss of generality that σ 2
u = E[u2

1] = 1 in this appendix.

LEMMA A.1. Under the conditions of Theorem 2.1, we have under H0

σ 2
T = C10T

3/2h
(
1 + o(1)

)
for T large enough, where C10 = 16J02

3
√

2π
with J02 = ∫

K2(x) dx.

PROOF. Recall ast = Kh(
∑t−1

i=s ui) = K(
∑t−1

i=s ui

h
) and ηt = 2

∑t−1
s=1 astus . It

follows under H0 that

σ 2
T = E

[
T∑

t=2

ηtut

]2

= 4
T∑

t=2

t−1∑
s=1

E[a2
stu

2
s u

2
t ] + 4

T∑
t=2

t−1∑
s1 �=s2=1

E[as1t as2tus1us2u
2
t ](A.1)

= 4
T∑

t=2

t−1∑
s=1

E[a2
stu

2
s ] + RT ,

where RT = 4
∑T

t=2
∑t−1

s1 �=s2=1 E[as1t as2tus1us2].
Let ust = ∑t−1

i=s+1 ui . Assumption 2.1(i), (ii) already assumes that {ui} is a se-
quence of independent and identically distributed random variables and has a sym-
metric probability density function.

Let f (x) and fst (x) be the density functions of ui and ust , respectively, and
gst (x) be the density functions of Vst = ust√

t−s−1
. Clearly, fst (x) = gst (

x√
t−s−1

) ×
1√

t−s−1
, and by utilizing the usual normal approximation of Vst →D N(0,1) as

t − s → ∞ under the conventional central limit theorem conditions, it follows
that as t − s → ∞, gst (x) → φ(x) and gst (

x√
t−s−1

) → C0 uniformly in x, where

φ(x) = 1√
2π

exp{−x2

2 }, and C0 = φ(0) = 1√
2π

.
Thus, for t − s large enough, we have

E[a2
stu

2
s ] =

∫ ∫
K2

h(ust + us)u
2
s f (us)fst (ust ) dus dust

= h

∫ ∫
K2(y)x2f (x)fst (hy − x)dx dy

= h
(
1 + o(1)

) ∫ ∫
K2(y)x2f (x)fst (x) dx dy

= h
(
1 + o(1)

) ∫ ∫
K2(y)x2f (x)

× gst

(
x√

t − s − 1

)
1√

t − s − 1
dx dy(A.2)



3912 GAO, KING, LU AND TJØSTHEIM

= h
(
1 + o(1)

)∫
K2(y) dy√
t − s − 1

∫
x2f (x)

[
gst

(
x√

t − s − 1

)]
dx

= h
(
1 + o(1)

)
C0

∫
K2(y) dy√
t − s − 1

,

where the fact that
∫

x2f (x) dx = E[u2
1] = 1 is used.

Choose some positive integer �T ≥ 1 such that �T → ∞ and �T√
T h

→ 0 as
T → ∞. Observe that

T∑
t=2

t−1∑
s=1

E[a2
stu

2
s ] =

T −1∑
s=1

T∑
t=s+1

E[a2
stu

2
s ] = A1T + A2T ,

where A1T = ∑T −1
s=1

∑
1≤(t−s)≤�T

E[a2
stu

2
s ] = O(T �T ) = o(T 3/2h) using the fact

that E[a2
stu

2
s ] ≤ k2

0E[u2
s ] = k2

0 due to the boundedness of the kernel K(·) by a
constant k0 > 0.

And it follows from (A.2) that

A2T =
T −1∑
s=1

∑
�T +1≤(t−s)≤T −1

E[a2
stu

2
s ]

= 4
∫

K2(y) dy

3
C0T

3/2h
(
1 + o(1)

)
.

It can then be seen that for T large enough

T∑
t=2

t−1∑
s=1

E[a2
stu

2
s ] = 4

∫
K2(y) dy

3
√

2π
T 3/2h

(
1 + o(1)

)
.(A.3)

To deal with RT , we need to introduce the following notation: for 1 ≤ i ≤ 2,

Zi = usi , Z11 =
t−1∑

i=s1+1

ui, Z22 =
s1−1∑

j=s2+1

uj ,(A.4)

ignoring the notational involvement of s, t and others.
Let fii(xii) and gii(xii) be the probability density functions of Zii and Zii

σii
,

respectively, with σ 2
11 = t − s1 − 1 and σ 2

22 = s1 − s2 − 1.
Clearly, fii(x) is symmetric due to the symmetry of f (x). Note that fii(x) =

gii(
x
σii

) 1
σii

and f ′
ii (x) = g′

ii(
x
σii

) 1
σ 2

ii

.

By utilizing the normal approximation of Zii

σii
→D N(0,1) as σii → ∞ un-

der the usual central limit theorem conditions, it follows that gii(x) → φ(x)

and gii(
x
σii

) → C0, with C0 = 1√
2π

, and 1
x
g′

ii(x) → 1
x
φ′(x) = −φ(x) leading to

σii

x
g′

ii(
x
σii

) → −φ(0) = −C0, as σii → ∞.
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Similarly to (A.2), we can derive that as σ 2
11 = t − s1 − 1 → ∞ and σ 2

22 =
s1 − s2 − 1 → ∞,

E[as1t as2tus1us2]

= E

[
Kh

(
t−1∑
i=s1

ui

)
Kh

(
t−1∑
j=s2

uj

)
us1us2

]

= E[Z1Z2Kh(Z1 + Z11)Kh(Z1 + Z2 + Z11 + Z22)]

= E

[ 2∏
i=1

ZiKh

(
i∑

j=1

(Zj + Zjj )

)]

=
∫

· · ·
∫

x1x2Kh(x1 + x2 + x11 + x22)Kh(x1 + x11)

× f (x1)f (x2)f11(x11)f22(x22) dx1 dx2 dx11 dx22

using yii = xi + xii

h

= h2
2∏

j=1

[(∫ ∫
K

( j∑
i=1

yii

)
xjf (xj )fjj (xj − hyjj ) dxj dyjj

)]
(A.5) (

using Taylor expansions and
∫

xjf (xj )fjj (xj ) dxj = 0

due to symmetry of f and gjj

)

= h4(
1 + o(1)

) 2∏
j=1

[∫ ∫
yjjK

( j∑
i=1

yii

)
xjf (xj )f

′
jj (xj ) dxj dyjj

]

= h4(
1 + o(1)

) 2∏
j=1

[∫
yjjK

( j∑
i=1

yii

)
dyjj ·

∫
xjf (xj )f

′
jj (xj ) dxj

]

= C11(K)h4(1 + o(1))∏2
j=1 σ 2

jj

2∏
j=1

[∫
xjf (xj )g

′
jj

(
xj

σjj

)
dxj

]

= C11(K)h4(1 + o(1))∏2
j=1 σ 2

jj

2∏
j=1

[∫ x2
j

σjj

f (xj )
σjj

xj

g′
jj

(
xj

σjj

)
dxj

]

= C11(K)h4(1 + o(1))

2π

2∏
j=1

1

(
√

1 + σ 2
jj )

3

= O(h4)
1

(
√

t − s1)3

1

(
√

s1 − s2)3 ,
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where the conventional notation
∏

defines
∏k

i=1 pi = p1p2 · · ·pk , and

C11(K) =
2∏

j=1

(∫
yjjK

( j∑
i=1

yii

)
dyjj

)

=
∫ ∫

y11y22K(y11)K(y11 + y22) dy11 dy22 = −
∫

y2K(y)dy.

Choose �T satisfying �T → ∞ and
�2

T√
T h

→ 0 as T → ∞. Note that

T∑
t=2

t−1∑
s1 �=s2=1

E[as1t as2tus1us2] = A3T + A4T + A5T + A6T ,

where A3T = ∑T −2
s2=1

∑s2+�T

s1=s2+1
∑s1+�T

t=s1+1 E[as1t as2tus1us2] = O(T �2
T ) = o(T 3/2h)

owing to E[as1t as2tus1us2] ≤ k2
0E|us1us2 | ≤ k2

0 by the assumption that K(·) is
bounded by k0:

A4T =
T −2∑
s2=1

s2+�T∑
s1=s2+1

T∑
t=s1+�T +1

E[as1t as2tus1us2]

≤
T −2∑
s2=1

s2+�T∑
s1=s2+1

T∑
t=s1+�T +1

(E[a2
s1t

u2
s1

])1/2(E[a2
s2t

u2
s2

])1/2

= O(1)

T −2∑
s2=1

s2+�T∑
s1=s2+1

T∑
t=s1+�T +1

[h(t − s1 − 1)1/2]1/2

= O(�T T 1+1/4h1/2) = o(T 3/2h).

Similarly to A4T , we have

A5T =
T −2∑
s2=1

T∑
s1=s2+�T +1

t=s1+�T∑
t=s1+1

E[as1t as2tus1us2] = o(T 3/2h).

Finally, owing to (A.5),

A5T =
T −2∑
s2=1

T∑
s1=s2+�T +1

t=T∑
t=s1+�T +1

E[as1t as2tus1us2]

= O(h4)

T −2∑
s2=1

T∑
s1=s2+�T +1

T −1∑
t=s1+�T +1

1

(
√

t − s1)3

1

(
√

s1 − s2)3

= O(T 2h4) = o(T 3/2h).
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Thus, for T large enough

T∑
t=2

t−1∑
s1 �=s2=1

E[as1t as2tus1us2] = 2
T −2∑
s2=1

T −1∑
s1=s2+1

T∑
t=s1+1

E[as1t as2tus1us2]
(A.6)

= o(T 3/2h)

using Assumption 2.1.
Therefore, (A.3) and (A.6) show that as T → ∞

σ 2
T = 16

∫
K2(y) dy

3
√

2π
T 3/2h

(
1 + o(1)

)
.(A.7)

The proof of Lemma A.1 is therefore finished. �

LEMMA A.2. Assume that the probability space (�n,Fn,Pn) supports square
integrable random variables Sn,1, Sn,2, . . . , Sn,kn , and that the Sn,t are adapted to
σ -algebras Fn,t , 1 ≤ t ≤ kn, where

Fn,1 ⊂ Fn,2 ⊂ · · · ⊂ Fn,kn ⊂ Fn.

Let Xn,t = Sn,t − Sn,t−1, Sn,0 = 0 and U2
n,t = ∑t

s=1 X2
n,s . If Gn is a sub-σ -algebra

of Fn, let Gn,t = Fn,t ∨ Gn (the σ -algebra generated by Fn,t ∪ Gn) and let Gn,0 =
{�n,φ} denote the trivial σ -algebra. Moreover, suppose that

n∑
t=1

E(X2
n,t I [|Xn,t | > δ]|Gn,t−1) →P 0(A.8)

for some δ > 0, and there exists a Gn-measurable random variable u2
n, such that

U2
n,kn

− u2
n →P 0,(A.9)

n∑
t=1

E(Xn,t |Gn,t−1) →P 0,(A.10)

n∑
t=1

|E(Xn,t |Gn,t−1)|2 →P 0.(A.11)

If

lim
δ→0

lim
n→∞ infP {Un,kn > δ} = 1,(A.12)

then as n → ∞
Sn,kn

Un,kn

→D N(0,1).

PROOF. The proof follows from Corollary 3.1 and Theorem 3.4 of Hall and
Heyde (1980). �
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LEMMA A.3. Under the conditions of Theorem 2.2, we have as T → ∞
MT 1

σ̃T

→D N(0,1).(A.13)

PROOF. We apply Lemma A.2 to prove Lemma A.3. Let YT t = ηtut

σT
, �T,s =

σ {YT t : 1 ≤ t ≤ s} be a σ -field generated by {YT t : 1 ≤ t ≤ s}, GT = �T,P (T ) and
GT ,s be defined by

GT ,s =
{

�T,P (T ), 1 ≤ s ≤ P(T ),
�T,s, P (T ) + 1 ≤ s ≤ T ,(A.14)

where P(T ) ≥ 1 is chosen such that P(T ) → ∞ and P(T )
T

→ 0 as T → ∞. Let

Ũ2
P(T ) = σ̃ 2

P (T )

σ 2
P (T )

, where σ̃ 2
S = 2

∑S
t=1

∑S
s=1,s �=t u

2
s a

2
stu

2
t and σ 2

S = var[∑S
t=2 ηtut ] for

all 1 ≤ S ≤ T as defined before.
In view of Lemma A.2 above, in order to prove that as T → ∞

MT 1

σ̃T

= 1

σ̃T

T∑
t=2

ηtut →D N(0,1),(A.15)

it suffices to show that for all δ > 0,

T∑
t=2

E
[
Y 2

T t I{[YT t |>δ]}|�T,t−1
] →P 0,(A.16)

σ̃ 2
T

σ 2
T

− Ũ2
P(T ) →P 0,(A.17)

T∑
t=2

E[YT t |GT ,t−1] =
P(T )∑
t=2

YT t +
T∑

t=P(T )+1

E[YT t |�T,t−1]
(A.18)

=
P(T )∑
t=2

YT t →P 0,

T∑
t=2

|E[YT t |GT ,t−1]|2 =
P(T )∑
t=2

Y 2
T t +

T∑
t=P(T )+1

|E[YT t |�T,t−1]|2

(A.19)

=
P(T )∑
t=2

Y 2
T t →P 0,

lim
δ→0

lim inf
T →∞P

(
σ̃T

σT

> δ

)
= 1.(A.20)



TESTING IN AUTOREGRESSION WITH NONSTATIONARITY 3917

The proof of (A.18) is similar to that of (A.19), which follows from
P(T )∑
t=2

E[Y 2
T t ] = O

((
P(T )

T

)3/2)
→ 0(A.21)

as T → ∞, in which Lemma A.1 has been used.
In order to prove (A.16), it suffices to show that

1

σ 4
T

T∑
t=2

E[η4
t ] → 0.(A.22)

The proof of (A.22) is given in Lemma A.4 below. The proof of (A.17) is given in
Lemma A.5 below.

The proof of (A.20) follows from

σ̃ 2
T

σ 2
T

→D ξ2 > 0(A.23)

for some random variable ξ2. The proof is given in Lemma A.6 below. �

LEMMA A.4. Under the conditions of Theorem 2.2, we have

lim
T →∞

1

σ 4
T

T∑
t=2

E[η4
t ] = 0.(A.24)

PROOF. Observe that

E[η4
t ] = 16

t−1∑
s1=1

t−1∑
s2=1

t−1∑
s3=1

t−1∑
s4=1

E[as1t as2t as3t as4tus1us2us3us4].(A.25)

We mainly consider the cases of si �= sj for all i �= j in the following proof.
Since the other terms involve at most triple summations, we may deal with such
terms similarly. Without loss of generality, we only look at the case of 1 ≤ s4 <

s3 < s2 < s1 ≤ t − 1 in the following evaluation. Let
t−1∑
i=s1

ui = us1 +
t−1∑

i=s1+1

ui,

t−1∑
i=s2

ui = us1 + us2 +
s1−1∑

i=s2+1

ui +
t−1∑

j=s1+1

uj ,

t−1∑
i=s3

ui = us1 + us2 + us3 +
s2−1∑

k=s3+1

uk +
s1−1∑

i=s2+1

ui +
t−1∑

j=s1+1

uj ,

t−1∑
i=s4

ui = us1 + us2 + us3 + us4 +
s3−1∑

l=s4+1

ul +
s2−1∑

k=s3+1

uk +
s1−1∑

i=s2+1

ui +
t−1∑

j=s1+1

uj .
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Similarly to (A.4), let again Zi = usi for 1 ≤ i ≤ 4,

Z11 =
t−1∑

i=s1+1

ui, Z22 =
s1−1∑

j=s2+1

uj ,

Z33 =
s2−1∑

k=s3+1

uk, Z44 =
s3−1∑

l=s4+1

ul.

By the same arguments as in the proof of (A.5), we have

E

[ 4∏
i=1

asi tusi

]
= E

[ 4∏
j=1

ZjKh

( j∑
i=1

[Zi + Zii]
)]

=
4∏

j=1

(∫
Kh

( j∑
i=1

[xi + xii]
)
xjf (xj )fjj (xjj ) dxj dxjj

)

using yii = xi + xii

h

+ h4
4∏

j=1

[∫
K

( j∑
i=1

yii

)
xjf (xj )fjj (xj − hyjj ) dxj dyjj

]

using Taylor expansions and
∫

xjf (xj )fjj (xj ) dxj = 0
(A.26)

= h8(
1 + o(1)

) 4∏
j=1

[∫
yjjK(ujj )xjf (xj )f

′
jj (xj ) dxj dyjj

]

= h8(
1 + o(1)

) 4∏
j=1

[∫
yjjK(ujj ) dyjj ·

∫
xjf (xj )f

′
jj (xj ) dxj

]

using f ′
ii(x) = g′

ii

(
x

σii

)
1

σ 2
ii

= C22(K)h8(1 + o(1))∏4
j=1 σ 2

jj

4∏
j=1

[∫ x2
j

σjj

f (xj )
σjj

xj

g′
jj

(
xj

σjj

)
dxj

]

= C22(K)h8(1 + o(1))

4π2

4∏
j=1

1

(1 + σ 2
jj )σjj

,

where ujj = ∑j
i=1 yii is used to shorten some expressions, and

C22(K) =
4∏

j=1

(∫
yjjK

( j∑
i=1

yii

)
dyjj

)
< ∞.
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Hence, similarly to (A.3), we have

T∑
t=2

∑
1≤s4<s3<s2<s1≤t−1

E[as1t as2t as3t as4tus1us2us3us4] = o(T 3h2)(A.27)

using Assumption 2.1.
Analogously, we can deal with the other terms of (A.25) as follows:

T∑
t=2

∑
1≤s2 �=s1≤t−1

E[a2
s1t

a2
s2t

u2
s1

u2
s2

] = o(T 3h2),(A.28)

T∑
t=2

∑
1≤s3 �=s2 �=s1≤t−1

E[a2
s1t

as2t as3tu
2
s1

us2us3] = o(T 3h2),(A.29)

T∑
t=2

∑
1≤s2 �=s1≤t−1

E[a3
s1t

as2tu
3
s1

us2] = o(T 3h2).(A.30)

Thus, we have finished the proof of (A.24) using (A.25)–(A.30). �

LEMMA A.5. Let the conditions of Theorem 2.2 hold. Then as T → ∞
σ̃ 2

T

σ 2
T

− Ũ2
P(T ) →P 0.(A.31)

PROOF. For 1 ≤ S ≤ T , recall Ũ2
S = σ̃ 2

S

σ 2
S

, where σ̃ 2
S = 2

∑S
t=1

∑S
s=1,s �=t u

2
s ×

a2
stu

2
t .

To use simplified notation in the proof of this lemma, we introduce the following
lower-case notation: m = T , n = P(T ), σ 2

m = σ 2
T , σ 2

n = σ 2
P(T ), and for 1 ≤ i ≤ n,

1 ≤ j ≤ i − 1,

eij = (u2
i − E[u2

1])K2
h

(
i−1∑
l=j

ul

)
u2

j and Xmi = 1

σ 2
m

i−1∑
j=1

eij ,(A.32)

v2
i =

i−1∑
j=1

K2
h

(
i−1∑
l=j

ul

)
u2

j =
i−1∑
j=1

K2
h

(
i−1∑

l=j+1

ul + uj

)
u2

j .(A.33)

Note that Xmi = 1
σ 2

m
(u2

i − E[u2
1])v2

i with E[Xmi] = 0.

Observe that

σ̃ 2
m

σ 2
m

− σ̃ 2
n

σ 2
n

=
m∑

i=1

Xmi −
n∑

j=1

Xnj + E[u2
i ]

(
1

σ 2
m

m∑
i=1

v2
i − 1

σ 2
n

n∑
j=1

v2
j

)
(A.34)

≡ Imn + E[u2
1]Jmn,
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where Imn = ∑m
i=1 Xmi − ∑n

j=1 Xnj and Jmn = 1
σ 2

m

∑m
i=1 v2

i − 1
σ 2

n

∑n
j=1 v2

j .

In view of (A.33), in order to prove (A.31), it suffices to show that as m,n → ∞
Imn →P 0 and Jmn →P 0.(A.35)

We now prove the first part of (A.35). In view of the fact that the independence
of {ui} implies for n + 1 ≤ i ≤ m and 1 ≤ j ≤ n,

E[Xmi(Xmj − Xnj )]

= σ 2
n − σ 2

m

σ 4
mσ 2

n

i−1∑
k=1

j−1∑
l=1

E
[
(u2

i − E[u2
1])

]

× E

[
(u2

j − E[u2
1])K2

h

(
i−1∑
p=k

up

)
u2

kK
2
h

(j−1∑
q=l

uq

)
u2

l

]
= 0,

we have

E[I 2
mn] = E

[
m∑

i=1

Xmi −
n∑

j=1

Xnj

]2

= E

[
m∑

i=n+1

Xmi +
n∑

j=1

(Xmj − Xnj )

]2

= E

[
m∑

i=n+1

Xmi

]2

+ E

[
n∑

j=1

(Xmj − Xnj )

]2

(A.36)

= 1

σ 4
m

m∑
i=n+1

E(u2
i − E[u2

i ])2E[v4
i ] + (σ 2

m − σ 2
n )2

σ 4
mσ 4

n

×
n∑

j=1

E(u2
j − E[u2

1])2E[v4
j ].

We start by looking at
∑m

i=n+1 E[v4
i ] and

∑n
j=1 E[v4

j ] in order to complete the
proof of the first part of (A.35). Before we compute the two terms, we have a look
at how to prove the second part of (A.35). Note that

E[J 2
mn] = E

[
1

σ 2
m

m∑
i=1

v2
i − 1

σ 2
n

n∑
j=1

v2
j

]2

= E

[
1

σ 2
m

m∑
i=n+1

v2
i + σ 2

n − σ 2
m

σ 2
mσ 2

n

n∑
j=1

v2
j

]2

(A.37)

= 1

σ 4
m

E

[
m∑

i=n+1

v2
i

]2

+ (σ 2
n − σ 2

m)2

σ 4
mσ 4

n

E

[
n∑

j=1

v2
j

]2

+ 2
σ 2

n − σ 2
m

σ 4
mσ 2

n

m∑
i=n+1

n∑
j=1

E[v2
i v

2
j ].
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We first deal with (A.37) term by term. Recalling aji = Kh(
∑i−1

l=j ul), we have

E

(
m∑

i=n+1

v2
i

)2

= E

[
m∑

i=n+1

m∑
j=n+1

v2
i v

2
j

]
(A.38)

=
m∑

i=n+1

E[v4
i ] +

m∑
i=n+1

m∑
j=n+1,j �=i

E[v2
i v

2
j ].

Observe that

E[v2
j v

2
i ] =

i−1∑
c=1

j−1∑
d=1

E[a2
ciu

2
ca

2
dju

2
d ]

=
j−1∑
c=1

j−1∑
d=1

E[a2
ciu

2
ca

2
dju

2
d ] +

i−1∑
c=j

j−1∑
d=1

E[a2
ciu

2
ca

2
dju

2
d ](A.39)

≡ Iij + Jij ,

where

Iij =
j−1∑
c=1

j−1∑
d=1

E[a2
ciu

2
ca

2
dju

2
d ]

=
j−1∑
c=1

E[a2
cia

2
cju

4
c] + 2

j−1∑
c=2

c−1∑
d=1

E[a2
ciu

2
ca

2
dju

2
d ](A.40)

≡ Iij (1) + Iij (2),

Jij =
i−1∑
c=j

j−1∑
d=1

E[a2
ciu

2
ca

2
dju

2
d ] =

i−1∑
c=j

j−1∑
d=1

E[a2
ciu

2
c]E[a2

dju
2
d ](A.41)

using the fact that {uk : j ≤ k ≤ i − 1} and {ul : 1 ≤ l ≤ j − 1} are all mutually
independent.

Thus, we need only to evaluate
∑n

i=2
∑i−1

j=1 Iij . To do so, we introduce another

set of simplified symbols: Z11 = ∑c−1
k=d+1 uk , Z22 = ∑j−1

k=c+1 uk , Z33 = ∑i−1
l=j ul ,

Z1 = ud and Z2 = uc. In this case, we have the following decompositions: for
1 ≤ d ≤ c − 1, 1 ≤ d ≤ j − 1 and 1 ≤ j ≤ i − 1,

i−1∑
l=c

ul = uc +
j−1∑

l=c+1

ul +
i−1∑
l=j

ul = Z2 + Z22 + Z33,

j−1∑
k=d

uk = ud +
c−1∑

k=d+1

uk + uc +
j−1∑

k=c+1

uk = Z1 + Z2 + Z11 + Z22.



3922 GAO, KING, LU AND TJØSTHEIM

By the same arguments as used in the proof of Lemma A.1, we have

E[a2
ciu

2
ca

2
cju

2
c] = E[K2

h(Z2 + Z22)K
2
h(Z2 + Z22 + Z33)Z

4
2]

=
∫

· · ·
∫

K2
h(x2 + x22)K

2
h(x2 + x22 + x33)

× x4
2f (x2)f22(x22)f33(x33) dx2 dx22 dx33

using y2 = x2, y22 = x2 + x22

h
,y33 = x33

h

= h2
∫

· · ·
∫

K2(y22)K
2(y22 + y33)y

4
2

× f (y2)f22(y2 − y22h)f33(hy33) dy2 dy22 dy33

= h2(
1 + o(1)

)(∫
K2(u) du

)2

×
(∫

x4
2f (x2)f22(x2) dx2

)
f33(0),

where fii(·) denotes the marginal density of Zii and f (·) denotes the density of Zi .
Similarly, we have

E[a2
ciu

2
ca

2
dju

2
d ] = E

[
K2

h

( 2∑
i=1

(Zi + Zii)

)
K2

h(Z2 + Z22 + Z33)Z
2
1Z2

2

]

=
∫

· · ·
∫

K2
h

( 2∑
i=1

(xi + xii)

)
K2

h(x2 + x22 + x33)

×
( 2∏

i=1

x2
i f (xi)fii(xii) dxi dxii

)
f33(x33) dx33

= h3(
1 + o(1)

) ∫
· · ·

∫
K2(y11 + y22)K

2(y22 + y33)y
2
1y2

2

× f (y1)f (y2)f11(y1 − y11h)

× f22(y2 − y22h)f33(0)

× dy1 dy2 dy11 dy22 dy33

= h3(
1 + o(1)

)(∫
K2(u) du

)2

f33(0)

×
(∫

x2
1f (x1)f11(x1) dx1

)(∫
x2

2f (x2)f22(x2) dx2

)
.
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Using the same arguments as used in the calculations of (A.2), (A.3) and (A.7),
we have

32
m∑

i=n+1

i−1∑
j=1

Iij (1) = C2
10(m − n)3h2(

1 + o(1)
)

(A.42)
= σ 4

m−n

(
1 + o(1)

)
,

32
m∑

i=n+1

i−1∑
j=1

Iij (2) = C(m − n)2h3(
1 + o(1)

)
(A.43)

= o(σ 4
m−n),

where C10 is as defined in Theorem 2.1 and C > 0 is a positive constant.
Similarly, by (A.41) we have

32
m∑

i=n+1

i−1∑
j=1

Jij (2) = 32
m∑

i=n+1

i−1∑
j=1

i−1∑
c=j

j−1∑
d=1

E[a2
ciu

2
c]E[a2

dju
2
d ]

(A.44)
= o(σ 4

m−n).

Hence, (A.39)–(A.44) imply for m and n large enough,

E

[
m∑

i=n+1

m∑
j=n+1,j �=i

v2
i v

2
j

]
=

m∑
i=n+1

m∑
j=n+1,j �=i

E[v2
i v

2
j ]

(A.45)
= σ 4

m−n

(
1 + o(1)

)
,

where σ 2
m is as defined above (A.32).

Analogously to (A.5), we can show that for m and n large enough,
m∑

i=n+1

E[v4
i ] =

m∑
i=n+1

i−1∑
s=1

i−1∑
t=1

E[a2
sia

2
t iu

2
s u

2
t ]

= O(h2)

m∑
i=n+1

i−1∑
s=2

s−1∑
t=1

1√
i − s

1√
s − t

(A.46)

= O
(
h2(m2 − n2)

) = o(σ 4
m−n).

Similarly to (A.45), we can show that for n large enough,
n∑

i=1

E[v4
i ] =

n∑
i=1

i−1∑
s=1

i−1∑
t=1

E[a2
sia

2
t iu

2
s u

2
t ]

= O(h2)

n∑
i=1

i−1∑
s=2

s−1∑
t=1

1√
i − s

1√
s − t

(A.47)

= O(h2n2) = o(σ 4
n ).
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Analogously to (A.45), we also have for m and n large enough,

m∑
i=n+1

n∑
j=1

E[v2
i v

2
j ] =

m∑
i=n+1

n∑
j=1

[C1(i, j) + C2(i, j)]
(A.48)

= σ 2
m−nσ

2
n

(
1 + o(1)

)
.

Therefore, (A.37)–(A.48) imply that as m,n → ∞

E[J 2
mn] = E

[
1

σ 2
m

m∑
i=1

v2
i − 1

σ 2
n

n∑
j=1

v2
j

]2

= E

[
1

σ 2
m

m∑
i=n+1

v2
i + σ 2

n − σ 2
m

σ 2
mσ 2

n

n∑
j=1

v2
j

]2

= 1

σ 4
m

E

[
m∑

i=n+1

v2
i

]2

+ (σ 2
n − σ 2

m)2

σ 4
mσ 4

n

E

[
n∑

j=1

v2
j

]2

− 2
σ 2

m − σ 2
n

σ 4
mσ 2

n

m∑
i=n+1

n∑
j=1

E[v2
i v

2
j ]

=
(

(m − n)3

m3 + (m3/2 − n3/2)2

m3 − 2
(m3/2 − n3/2)(m − n)3/2

m3

)
× (

1 + o(1)
)

→ (1 − r)3 + (1 − r3/2)2 − 2(1 − r3/2)(1 − r)3/2

= (
(1 − r)3/2 − (1 − r3/2)

)2 ≥ 0

using σ 2
m = 16J02

3
√

2π
m3/2h, σ 2

n = 16J02

3
√

2π
n3/2h and r = limm,n→∞ n

m
.

Since r = 0 from the construction in the beginning of the proof of Lemma A.3
above, we have therefore shown the second part of (A.35). We now turn to the first
part of (A.35). Using the results that

∑m
i=n+1 E[v4

i ] = o(σ 4
m−n) and

∑n
j=1 E[v4

j ] =
o(σ 4

n ), the proof of the first part of (A.35) follows from (A.36). We therefore have
completed the proof of Lemma A.5. �

Define a random variable N(T ) in the same way as T (n) that is defined in
Karlsen and Tjøstheim (2001) [see Appendix B of Gao et al. (2008) for more
details]. Recall

C10 = 16J02

3
√

2π
and σ 2

T = C10T
3/2h.(A.49)



TESTING IN AUTOREGRESSION WITH NONSTATIONARITY 3925

LEMMA A.6. Let the conditions of Theorem 2.2 hold. Then as T → ∞
σ̃ 2

T

σ 2
T

→D ξ2(A.50)

with ξ2 =
√

π

2 M1/2(1), where M1/2(·) is a special case of the Mittag–Leffer
process Mβ(·) for β = 1

2 as described by Karlsen and Tjøstheim (2001), page 388.

PROOF. Observe that

σ̃ 2
T = 2

T∑
t=1

(
T∑

s=1,s �=t

a2
stu

2
s

)
u2

t = 2
T∑

t=1

(
T∑

s=1

a2
stu

2
s

)
u2

t − 2
T∑

t=1

a2
t tu

4
t .

Similarly to computations made between (A.5) and (A.6), it can be shown that

E

[
T∑

t=1

(
T∑

s=1,s �=t

a2
st (u

2
s − 1)

)
u2

t

]2

= o(σ 4
T )(A.51)

using E[u2
1] = 1.

Let Q(u) = K2(u)
J02

. Then Q(·) is a probability kernel. Applying Lemma C.1 in
Appendix C of Gao et al. (2008), we may show that as T → ∞

1

T

T∑
t=1

(
1

N(T )h

T∑
s=1

Q

(
Xs−1 − Xt−1

h

))
u2

t

= 1

T

T∑
t=1

(
1

N(T )h

T∑
s=1

Q

(
Xs−1 − Xt−1

h

)
− 1

)
u2

t(A.52)

+ 1

T

T∑
t=1

u2
t →P 1,

where we have used the result that πs(Q) = ∫
Q(u)du ≡ 1 [see the discussion at

the end of Appendix B of Gao et al. (2008)].
Meanwhile, Theorem 3.2 of Karlsen and Tjøstheim (2001), page 389, is ap-

plicable to the current case of Xt = Xt−1 + ut under H0 to show that as T → ∞
N(T )

L0
√

T
→D M1/2(1),(A.53)

when the slowly varying function Ls(T ) in this case is Ls(T ) ≡ L0 = 2
√

2
3 .
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Thus, along with a strengthened version of Theorem 5.1 of Karlsen and Tjøs-
theim (2001), (A.51)–(A.53) imply as T → ∞

2

σ 2
T

T∑
t=1

(
T∑

s=1

a2
stu

2
s

)
u2

t

= 2

C10T
3
2 h

T∑
t=1

(
T∑

s=1

a2
stu

2
s

)
u2

t

= 2L0

C10

N(T )

L0
√

T

1

T

T∑
t=1

(
1

N(T )h

T∑
s=1

a2
stu

2
s

)
u2

t

(A.54)

= 2L0

C10

N(T )

L0
√

T

1

T

T∑
t=1

(
1

N(T )h

T∑
s=1

a2
st (u

2
s − 1)

)
u2

t

+ 2L0J02

C10

N(T )

L0
√

T

1

T

T∑
t=1

(
1

N(T )h

T∑
s=1

Q

(
Xs−1 − Xt−1

h

))
u2

t

→D

√
π

2
M1/2(1) ≡ ξ2,

where we have used the facts that {us} is a sequence of i.i.d. random errors with
E[u1] = 0 and E[u2

1] = 1 and that {a2
stu

2
s : 1 ≤ s ≤ t − 1} is independent of ut .

Therefore, (A.51)–(A.54) complete the proof of Lemma A.6. �
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