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WAVELET REGRESSION IN RANDOM DESIGN WITH
HETEROSCEDASTIC DEPENDENT ERRORS

BY RAFAŁ KULIK1 AND MARC RAIMONDO

University of Ottawa and University of Sydney

We investigate function estimation in nonparametric regression models
with random design and heteroscedastic correlated noise. Adaptive properties
of warped wavelet nonlinear approximations are studied over a wide range of
Besov scales, f ∈ Bs

π,r , and for a variety of Lp error measures. We consider
error distributions with Long-Range-Dependence parameter α,0 < α ≤ 1;
heteroscedasticity is modeled with a design dependent function σ . We pre-
scribe a tuning paradigm, under which warped wavelet estimation achieves
partial or full adaptivity results with the rates that are shown to be the mini-
max rates of convergence. For p > 2, it is seen that there are three rate phases,
namely the dense, sparse and long range dependence phase, depending on the
relative values of s,p,π and α. Furthermore, we show that long range depen-
dence does not come into play for shape estimation f − ∫

f . The theory is
illustrated with some numerical examples.

1. Introduction.

1.1. Random design regression with LRD errors. Consider the random design
regression model

Yi = f (Xi) + σ(Xi)εi, i = 1, . . . , n,(1.1)

where Xi’s are independent identically distributed (i.i.d.) random variables with
a compactly supported density g, σ(·) is a deterministic function and (εi)i≥1 is
a stationary Gaussian sequence that is independent of the Xi’s. The long range
dependence (LRD) of the εi ’s is described by a linear structure

εi =
∞∑

m=0

amηi−m, a0 = 1,(1.2)

where (ηi)i∈Z is an i.i.d. Gaussian sequence and limm→∞ amm(α+1)/2 = 1, for α ∈
(0,1),

Var

(
n∑

i=1

εi

)
∼ cαn2−α,(1.3)
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where cα is a finite and positive constant. In view of (1.3), the limit case α = 1 can
be thought of as similar to weakly dependent errors case.

1.2. Prologue: linear regression. Consider the regression model (1.1) with
f (x) = a + bx and correlated errors (1.2). We refer to Chapter 9 of [1], where
the case σ(x) ≡ 1 is treated. The least squares (LS) estimator of b is

b̂ =
∑n

i=1 XiYi∑n
i=1 X2

i

,

the asymptotic properties of b̂ − b depend on
∑n

i=1 Xiσ(Xi)εi . Then,

Var

(
n∑

i=1

Xiσ(Xi)εi

)
= nE(X2

1σ
2(X1))E(ε2

1)

(1.4)

+ (E(σ (X1)X1))
2

n∑
i 	=l

Cov(εi, εl).

In this setting, the LS estimator is
√

n-consistent when the latter term is of order
O(n), which occurs if and only if

E(σ (X1)X1) = 0.(1.5)

For σ(·) ≡ 1, this is always true when E(X1) = 0, and, if E(X1) 	= 0, it is enough
to center shift the design variables Xi − X̄, where X̄ = 1

n

∑n
i=1 Xi . When σ(·) 	≡ 1,

condition (1.5) is not necessarily fulfilled, even if E(X1) = 0. This is illustrated in
the long range dependence literature. For example, [26] derived

√
n-consistency

of a generalized least squares estimator when σ(·) ≡ 1. Condition (1.5) appears in
assumption 1 and Theorems 2.1 and 2.2 of [13]. This example suggests that, even
in a simple parametric setting, statistical properties of LS estimators depend on
the behaviour of σ(·) with respect to the design distribution. For example, if the
design is uniformly distributed, X1 ∼ U[−1,1], then (1.5) is written as,∫ 1

−1
σ(u)udu = 0,(1.6)

which holds for any even function σ . Note, however, that, in practice, σ is not
observable.

1.3. Background: nonparametric regression. The model (1.2) with general er-
ror terms of the form σ(Xt , εt ) was considered in [5]. Asymptotic properties of the
Nadaraya–Watson kernel estimator are found in [8], where εi’s are assumed to be
a functional of LRD Gaussian random variables; in [9], with εi as an infinite order
moving average, and in [24], with the Xi’s possibly LRD, not necessarily indepen-
dent of the εi’s. Local linear estimation using kernel method was studied in [22]
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and [23] and in case of FARIMA–GARCH errors in [1] and [2]. The corresponding
results for density estimation were obtained in [4, 6, 15] and [28].

A general message from these papers is that the limiting behaviour of nonpara-
metric estimators depends on a delicate balance between the smoothing parameter
(e.g., bandwidth) and the long memory parameter α. To be more specific, we quote
the following result from [29], derived in (1.1) with σ ≡ 1:

Rn,2,g(B
s
π,r ) � n−min(2s/(2s+1),α),(1.7)

where Rn,p,g(B
s
π,r ) denotes the minimax weighted Lp-risk over a Besov space

Bs
π,r ,

Rn,p,g(B
s
π,r ) := inf

f̂

sup
f ∈Bs

π,r

E‖f − f̂ ‖p
Lp(g)(1.8)

with

‖f − h‖Lp(g) =
(∫ 1

0
|f (x) − h(x)|pg(x) dx

)1/p

.

We refer to Section 2.2 for the precise definition of Besov spaces in terms of
wavelet coefficients. Here, s is related to the smoothness of the target function f ,
whereas π and r are scale parameters. In (1.7) we see that there is an elbow in
the rate of convergence and, hence, that the best possible rate depends on the rel-
ative value of s and α. For small values of α, LRD has a detrimental effect on the
rates of convergence, whereas, for larger values of α, we obtain the same rate as if
the errors were independent. This is of importance in the development of adaptive
tuning procedures since, in practice, neither s nor α is known (note, however, that
α can be estimated). While, for α = 1, different data-driven methods (e.g., cross-
validation, plug-in) have been implemented for choosing the bandwidth (see, e.g.,
[30]), for α < 1, the effect of LRD may influence such procedures. We refer to [6]
and [15] for detailed studies in the density case. We are not aware about such con-
siderations in the random design regression setting, however, similar phenomena
are anticipated.

Indeed, not many adaptive methods for curve estimation in the presence of long
memory in errors are available. To the best of our knowledge, [12] is one of the
few papers in this direction, where an orthogonal series estimator with adaptive
stopping rule is shown to achieve the minimax rate, similar to that of (1.7), in the
model (1.2) with σ(·) ≡ 1. In [12], it was also noticed that the rate of convergence
for shape estimation f ∗ = f − ∫

f does not involve α and is the same as if the
errors were independent. This observation was later confirmed by the minimax
results of [29].
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1.4. Rates of convergence of wavelet estimators. In this paper, we study adap-
tive function estimation in the model (1.2), performances of estimators are given
with respect to various Lp , p ≥ 2, error measures. Introducing the maximal risk

Rn,p.g(f̂n,B
s
π,r ) := sup

f ∈Bs
π,r

E‖f − f̂n‖p
Lp(g),(1.9)

we consider nonlinear warped wavelet estimators of the form

f̂n(x) = ∑
(j,k)∈�1

β̂j,kI{|β̂j,k| ≥ λ}ψj,k(G(x)),

where G(x) = ∫ x
−∞ g(u)du is the design distribution function and (ψj,k) is a

wavelet family with enough regularity. We show the statistical parameters β̂j,k and
tuning parameters λ,�1 may be constructed independently of s and to achieve near
optimal results. Moreover, the tuning parameter λ can be chosen independently of
α as long as, for all j ≥ 0, k,

E(ψj,k(G(X1))σ (X1)) = 0.(1.10)

Note that, for σ(·) ≡ 1, the condition (1.10) is always satisfied, since wavelets are
orthogonal to constants (Haar family included). We note the similarity between
condition (1.5) in the parametric setting and condition (1.10) in the nonparametric
scenario.

Introducing rate exponents

αD := 2s

2s + 1
, αS := 2(s − (1/π − 1/p))

2(s − 1/π) + 1
,(1.11)

we will show that

Rn,p,g(f̂n,B
s
π,r ) ≤ Cn−p/2γ (logn)κ,

where

γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αD, if α > αD and s >
p − π

2π
(dense phase),

αS, if α > αS and
1

π
< s <

p − π

2π
(sparse phase),

α, if α ≤ min(αS,αD) (LRD phase),

(1.12)

and κ > 0. This shows that convergence rates depends on the relative value of α

with respect to s but also on the relative value of s with respect to p and π .
We show, also, that our rates are optimal (up to a log term) in the minimax sense.

Consequently, we generalize the result (1.7) to p ≥ 2 and heteroscedastic errors. In
particular, for p = 2 the rates agree with Yang’s optimal rate, with a multiplicative
log penalty, which is usual for adaptation. For p > 2 our results show that there are
two elbows and three phases in the convergence rates, namely the dense phase, the
sparse phase and the long range dependence phase. This is illustrated in Figure 1.
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FIG. 1. Illustration of the three rate phases (1.12) for Besov scales Bs
1,1. Curve depicts rate expo-

nent boundary, α(s) := min( 2s
2s+1 ,

2(s−1+1/p)
2s−1 ). Vertical line indicates the dense-sparse boundary

at s = p−1
2 , for p > 2, this line meets the LRD boundary at α = p−1

p .

Furthermore, we show that, in the case of estimating the shape f − ∫
f , there is

no LRD phase, which agrees with the previous findings in [12] and [29]. Finally,
we will also show that, in the nonlinear wavelet estimator, we may replace G(·)
with a corresponding empirical distribution function, and the resulting estimator
still achieves the minimax rates.

2. Preliminaries.

2.1. Warped wavelets. Consider an orthonormal wavelet basis on the interval
I = [0,1], [φj,k(x),ψj,k(x)], where φ denotes the scaling function and ψ de-
notes the wavelet. Here, j ≥ 0, k = 0, . . . ,2j − 1 and φj,k(x) = 2j/2ψ(2j x − k),
ψj,k(x) = 2j/2ψ(2j x − k). We refer to Chapter 7.5 of [21] for the construction of
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such a basis. For any function f ∈ L2[0,1], we have the following representation:

f (x) =
2j0−1∑
k=0

αj0,kφj0,k(x) +
∞∑

j=j0

2j−1∑
k=0

βj,kψj,k(x),(2.1)

where

βj,k =
∫ 1

0
f (x)ψj,k(x) dx(2.2)

denotes the wavelet coefficients associated to f , with the obvious correspond-
ing definition for the scaling coefficients αj0,k . The transformation (2.2) is called
the wavelet transform (WT), and the representation (2.1) is called the inverse
wavelet transform (IWT). In the case where f is observed on a regular grid
i/n, i = 1,2, . . . , n, both the WT and IWT can be computed in O(n(logn)) steps
using Mallat’s pyramid algorithm. In the case where the function f is observed
along a random grid, the implementation of the standard WT (2.2) and IWT (2.1)
requires some extra care.

A warped wavelet basis [19] is a modified wavelet basis representation specif-
ically designed to handle random design regression model (1.2). The modifica-
tion is suited to accommodate the design distribution function G(·). Provided that
f ◦ G−1 ∈ L2[0,1], we have the following representation:

f (x) =
2j0−1∑
k=0

αj0,kφj0,k(G(x)) +
∞∑

j=j0

2j−1∑
k=0

βj,kψj,k(G(x))(2.3)

with

βj,k =
∫ 1

0
f (x)g(x)ψj,k(G(x)) dx,(2.4)

where g(x) = G′(x), and αj,k is defined as in (2.4), with φ in place of ψ . By
analogy with the standard case, we will refer to (2.4) and (2.3) as the warped
wavelet transform (WWT) and the inverse warped wavelet transform (IWWT),
respectively. Note that, by changing the variable in (2.4),

βj,k =
∫ 1

0
f (G−1(x))ψj,k(x) dx.(2.5)

This shows that the WWT of f is equivalent to the WT of f ◦ G−1. In the case
where the function f is observed along a random sequence Xi with density g, the
WWT and IWWT can be implemented in practice using a modification of Mallat’s
pyramid algorithm. This is further detailed in Section 5.1.
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2.2. Besov scales. Throughout this paper, we will assume that ψ is a com-
pactly supported wavelet with q, q > s, vanishing moments and ψ ∈ Cq (see
Chapter 9 of [21]). We further assume that the corresponding wavelet basis
(ψj,k) satisfies the Temlyakov property as stated in [18]. Typical examples in-
clude the Daubechies wavelet family with q vanishing moments. Finally, we con-
sider wavelet basis on the interval [0,1] with appropriate boundary modifications
(see [7]). In the light of (2.5), it is natural to express smoothness condition, with re-
spect to f ◦G−1 rather than f , as in [19]. We assume that f ◦G−1 ∈ Bs

π,r ([0,1]),
where s > max{ 1

π
, 1

2}. The latter condition may be written as f ∈ Lπ([0,1]) and

f ◦ G−1 = ∑
j,k

βj,kψj,k ∈ Bs
π,r (I)

⇐⇒ ∑
j≥0

2j (s+1/2−1/π)r

[ ∑
0≤k<2j

|βj,k|π
]r/π

< ∞.

The parameter s can be thought of as being related to the number of derivatives
of f . With different values of π and r , the Besov spaces capture a variety of
smoothness features in a function, including spatially inhomogeneous behaviour.

3. Minimax lower bounds over Besov balls. In this section, we construct
minimax lower bounds for the Lp minimax risk, given in (1.8), for both dense and
sparse case. As mentioned in Section 1.3, for the L2-risk, homoscedastic errors
and the dense case, the lower bound was obtained in [29].

To state our result, let us recall (1.11).

THEOREM 3.1. Consider the model (1.2) and assume that f ◦ G−1 ∈ Bs
π,r .

Furthermore, assume that infx σ (x) > 0. Then, as n → ∞,

Rn,p,g(B
s
π,r ) ≥

⎧⎪⎪⎨
⎪⎪⎩

Cp(n−pαD/2 ∨ n−pα/2), if s >
p − π

2π
;

Cp

((
logn

n

)−pαS/2

∨ n−pα/2
)
, if

1

π
− 1

2
< s <

p − π

2π
,

where Cp is a finite and positive constant. Furthermore, if � = {f : E[f (X1)] =
0}, then

Rn,p,g(B
s
π,r ∩ �) ≥

⎧⎪⎪⎨
⎪⎪⎩

Cp(n−pαD/2), if s >
p − π

2π
;

Cp

((
logn

n

)−pαS/2)
, if

1

π
− 1

2
< s <

p − π

2π
.

The above theorem means that if f ∈ �, then the lower bounds are exactly the
same as in the case of i.i.d. random errors. If this is not the case, then the rates are
influenced by long memory. Furthermore, we can see that the dependence between



WAVELET REGRESSION WITH DEPENDENT ERRORS 3403

the predictors and errors have no influence as long as σ(·) is bounded from below.
Consequently, the theorem extends findings in [29] in several directions. First, it
deals with p ≥ 2; second, it identifies the elbow in the sparse case; third, it allows
dependence between errors and predictors.

4. Upper bounds for wavelets estimators.

4.1. Partial adaptivity. By partial adaptivity, we mean that our estimator does
not depend on s, but G is known. Let

�1 := {(j, k), j0 = −1 ≤ j ≤ j1, k = 0,1, . . . ,2j − 1}
be the set of resolution levels. Here, the lowest resolution level j0 = −1 corre-
sponds to scaling contributions at resolution level j = 0 (i.e., ψ−1,k := φ0,k and
β−1,k := α0,k). The fine resolution level j1 is set to be

2j1 ∼ n

logn
,(4.1)

which is a classical condition. In practice, for a sample size n, the maximal number
of resolution levels is set to be 2j1 ∼ n/2; hence, condition (4.1) typically means
that all resolution levels are used in (4.2).

The partially adaptive wavelet estimator we are going to consider is

f̂n(x) = ∑
(j,k)∈�1

β̂j,kI{|β̂j,k| ≥ λ}ψj,k(G(x)),(4.2)

β̂j,k := 1

n

n∑
i=1

ψj,k(G(Xi))Yi.(4.3)

The theoretical level-dependent threshold parameter is set to be

λ = τ0λn,j := τ0(λ̃n ∨ λ̃n,j )
(4.4)

:= τ0

(
logn√

n
∨ 1{E[ψj,k(G(X1))σ (X1)] 	= 0}(logn)1/2

nα/2

)
,

where τ0 is large enough. Note that, formally, the threshold depends on both j

and k; however, from theoretical point of view, k is irrelevant. Furthermore, in
simulation studies, we will average over all k to get threshold depending on j

only.
The following theorem gives the convergence rates for the nonlinear wavelet

estimator (4.2) according to the LRD index α; recalling elbows location (1.12).

THEOREM 4.1. Let f̂n be the wavelet estimator (4.2) with (4.1), (4.3) and
(4.4). Assume that f ◦ G−1 ∈ Bs

π,r ([0,1]), π ≥ 1, where s > max{ 1
π
, 1

2}, and that
σ(·) is bounded. Then,

E‖f − f̂n‖p
Lp(g) ≤ Cn−p/2γ (logn)κ,
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where

γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αD, if α > αD and s >
p − π

2π
(dense phase),

αS, if α > αS and
1

π
< s <

p − π

2π
(sparse phase),

α, if α ≤ min(αS,αD) (LRD phase),

and κ = pγ in the sparse and dense phase, κ = 1 in the LRD phase. If α = 1, the
LRD phase is not relevant.

REMARK 4.2. When α = 1, there is only one elbow on the convergence rate,
provided that p > 2, switching from rate exponent αD (dense phase) to rate ex-
ponent αS (sparse phase). This is consistent with results obtained in the case of
independent errors (see, e.g., [19]).

REMARK 4.3. For α < 1 and p > 2, our rate results seems to be new, and we
see that there is an additional elbow in the convergence rate switching from rate
exponent αD or αS to α (LRD phase), depending on the relative value of s and α.
This is illustrated in Figure 1. For p = 2, we note that there is only one elbow in
the convergence rate, as we are either in the dense phase when α > αD or in the
LRD phase when α ≤ αD . This is consistent with results of [12] and [29].

REMARK 4.4. Note that if, for all j ≥ 0, k = 0, . . . ,2j − 1, the condition
(1.10) holds, then the threshold (4.4) does not involve α (i.e., the estimator is con-
structed in the same way as if the errors were independent). The threshold (4.4) is
then similar to the universal used in wavelet shrinkage (see, e.g., [10]). There is an
additional multiplicative (logn)1/2 term, which is due to the martingale approxi-
mation of LRD sequences.

To gain some insight into condition (1.10), we note that, in the case of a uniform
design distribution, this condition is written as, for all j, k∫

ψj,k(u)σ (u)du = 0,

which typically holds if σ(u) is a polynomial function and ψ has enough vanish-
ing moments. Typically, this condition does not hold if σ has some irregularities
(jumps, cusps) or if σ is oscillating at medium and high frequencies.

REMARK 4.5. Our definition (4.1) of j1 is the same as the definition used in
standard (nonwarped) estimation with independent errors. We note that it is less
restrictive than the definition used in the warped wavelet estimation setting of [19].
Because of such choice of j1, the bias is of smaller order than the bias in [19].
Consequently, in the sparse phase we have the restriction s > 1/π , as compared to
s > 1

2 + 1
π

in Proposition 2 of [19]. See also Remark 4.9.
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REMARK 4.6. A comparison of our results with rate results obtained under a
regular grid design, [17, 20] and [27], shows that randomization of the design im-
proves rate performances. We illustrate this using the fixed design rate exponents,
but similar inequalities hold in the sparse region. In the fixed design scenario, the
dense region rate exponent is αs/(s + α/2), which is always smaller than the ex-
ponent min{(2s/(2s + 1)), α} achievable under a random design.

REMARK 4.7. Using the weighted norm approximation of Theorem 4.1, we
can conclude some results for the usual norm, even when g(x0) = 0 for some x0 ∈
[0,1]. To see this, let A = {x ∈ [0,1] :g(x) 	= 0} and assume that the Lebesgue
measure of [0,1] \A is zero. If, now, ‖ · ‖p = ‖ · ‖Lp(1) is the usual Lp-norm, then,
with 1/q1 + 1/q2 = 1, q1, q2 > 1, l ∈ R,

E‖f − f̂n‖p
p =

∫
A

E|f − f̂n|p =
∫
A

E|f − f̂n|p gl

gl

≤
(∫ 1

0
{E|f − f̂n|p}q1glq1

)1/q1(∫
A

g−lq2

)1/q2

≤
(∫ 1

0
E|f − f̂n|pq1glq1

)1/q1(∫
A

g−lq2

)1/q2

= (
E‖f − f̂n‖pq1

Lpq1 (g)

)1/q1

(∫
A

g−lq2

)1/q2

,

by choosing lq1 = 1. Take, now, as in [19], g(x) = (a + 1)xa , x ∈ [0,1]. Then, the
latter integral is finite as long as a < (q2 − 1)−1. On the other hand, we can apply
Theorem 4.1 to conclude that in the dense and LRD phase the rates of convergence
of E‖f − f̂n‖p

p are the same as of E‖f − f̂n‖p
Lp(g), as long as

s >
pq1 − π

2π
= p(1 + 1/(q2 − 1) − π)

2π
.(4.5)

Note, however, that, if a < (q2 − 1)−1 < (2 + π − p)/p, then

s >
1

π
>

p(1 + 1/(q2 − 1) − π)

2π
,

so that (4.5) becomes void. Consequently, for any a < (2 + π − p)/p, we can
obtain the optimal rates. Of course, this approach does not work in the sparse case,
because the resulting upper bound is not optimal (cf. Theorem 2 of [19]).

Furthermore, if 0 < m < g < M < ∞, then the norms ‖ · ‖p and ‖ · ‖Lp(g) are
equivalent.

4.2. Full adaptivity. By full adaptivity, we mean that our estimator does not
depend on s and G is unknown. In this case, the fine resolution level j1 in (4.1)
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has to be modified thusly:

2j1 ∼
√

n

logn
.(4.6)

In fact, in general (see Remark 7.6), we cannot use the same fine resolution level
as in (4.1).

Assume that we have 2n observations from the model (1.2) coded as follows:
the first n observations are denoted by X′

1, . . . ,X
′
n, the remaining as X1, . . . ,Xn.

The estimator that achieves the full adaptivity is

f̃n(x) = ∑
(j,k)∈�1

β̃j,kI{|β̃j,k| ≥ λ}ψj,k(Ĝn(x)),(4.7)

where, now, Ĝn is the empirical distribution function associated with X′
1, . . . ,X

′
n

and

β̃j,k := 1

n

n∑
i=1

ψj,k(Ĝn(Xi))Yi.(4.8)

THEOREM 4.8. Consider the estimator (4.7) with (4.4), (4.6) and (4.8). As-
sume that f ◦ G−1 ∈ Bs

π,r ([0,1]) ∩ Lip1/2, π ≥ 1, where s > max{ 1
π
, 1

2}, and that
σ(·) is bounded. Then, the rates of Theorem 4.1 remain valid with

γ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αD, if α > αD and s >
p − π

2π
(dense phase),

αS, if α > αS and
1

π
+ 1

2
< s <

p − π

2π
(sparse phase),

α, if α ≤ min(αS,αD) (LRD phase).

REMARK 4.9. Note that, in the sparse phase, there is the additional restriction
s > 1

π
+ 1

2 , as compared to Theorem 4.1. This is due to the larger bias, which, in
turn, is due to choosing lower highest resolution level.

4.3. Shape estimation. As first noticed in [12], the effect of LRD is concen-
trated on the zero Fourier frequency component of the target function f and cor-
responds to the scale

∫
f of f . Keeping this in mind, it is possible to avoid (or

reduce) the curse of LRD by considering the estimation of the shape of the func-
tion: f − ∫

f . Taking into account the design distribution in (2.4), we set

f ∗(x) := f (x) −
∫ 1

0
f (G−1(y)) dy =: f (x) − cf,G.

Note that the wavelet coefficient β∗
j,k of f ∗ ◦ G−1 is equal to βj,k . We set

f̂ ∗
n := ∑

(j,k)∈�1,j 	=−1

β̂j,kI{|β̂j,k| ≥ λ}ψj,k(4.9)
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and f̃ ∗
n , the corresponding fully adaptive estimator. The trick here is simply to

remove the scaling coefficient. This is allowed, since
∫ 1

0 f ∗(G−1(y)) dy = 0. In
this way, there will be no LRD effect on the convergence rates.

THEOREM 4.10. Let f̂ ∗
n be the wavelet estimator (4.9). Under assumptions of

Theorem 4.1,

E‖f ∗ − f̂ ∗
n ‖p

p ≤ Cn−p/2γ (logn)pγ .(4.10)

Under the assumptions of Theorem 4.8, the same bound is valid for f̃ ∗
n .

Note that
∫ 1

0 f ∗(G−1(y)) dy = E[f ∗(X1)] = 0. Therefore, by comparing (4.10)
with the second part of Theorem 3.1, we see that f ∗ is estimated (up to a log term)
with the optimal rates.

5. Finite sample properties.

5.1. Implementation. In our simulation studies, we focus on LRD effect. For
this purpose, we assume that U(1) ≤ U(2) ≤ · · · ≤ U(n) denotes the ordered design
sample from the uniform distribution, and Y(1), . . . , Y(n) the corresponding obser-
vations of Yi , not necessary ordered. If Ĝn is the empirical distribution function
associated with U(1), . . . ,U(n), we have

1

n

n∑
i=1

ψj,k

(
Ĝn

(
U(i)

))
Y(i) = 1

n

n∑
i=1

ψj,k(i/n)Y(i).(5.1)

As noted in [3], in the case of a uniform design distribution, the ordered sample
U(1), . . . ,U(n) may be used as a proxy for the regular grid ti = i/(n + 1). Thus,
in this case, (5.1) is computed by a simple application of Mallat’s algorithm using
the Y(i)’s as input variables. This algorithm is implemented in the wavethresh
R-package with various thresholding options, from which it is straightforward to
compute function and shape estimators. This is the software (appropriately modi-
fied) we have used in the examples below.

Data-based threshold. As mentioned in Remark 4.4, if (1.10) holds, then the
threshold is almost like in the usual fixed-design regression, with i.i.d. errors
τ0 logn/

√
n; here, with the additional log penalty. The parameter τ0 is estimated

by a standard deviation of wavelet coefficients on the finest resolution level (option
by.level=FALSE) or by computing standard deviation on each level separately
(option by.level=TRUE).

The LRD part of the threshold may be chosen in the following way. First, note
that E[ψj,k(G(X1))σ (X1)] is just the wavelet coefficient of σ(G−1(·)). Therefore,
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we may perform a preliminary estimation and compute residuals, which serve as
proxies for σ(Xi)εi . From this, we can estimate σ(·) and then the dependence
index α. If σ̂ (·) is the estimator of σ(·), then we may apply DWT to σ̂ (Ĝ−1

n (i/n)).
Extracting the resulting wavelet coefficients on level j , we obtained the estimates
of E[ψj,k(G(X1))σ (X1)]. For a given j , the level dependent threshold is obtained
as the average over k = 0, . . . ,2j − 1.

5.2. Examples. We generate Yi ’s data according to (1.1) with Lidar, Bumps
and Doppler target

f (x) = (
x(1 − x)

)1/2 sin
(

2π
1.05

x + 1.05

)
,(5.2)

a uniform design distribution Xi = Ui ∼ U[0,1] and the following three σ(·)
scenarios: (a) homoscedastic scenario with σ(x) ≡ 0.1 (constant noise level);

(b) heteroscedastic with σ(x) = 0.1
√

12
13(x + 0.5) (linear noise level); and (c) het-

eroscedastic with σ(x) = 0.1(sin(πx) − sign(x − 0.4)) (irregular noise level). For
calibration and comparison purposes, we quote, for scenario (a) with the Doppler
target, the signal-to-noise ratio (SNR)

SNR = 10 log10

(∫
f 2

σ 2

)
≈ 9.34 (dB).

All other target function (Bumps and Lidar) were standardized to obtain
the same SNR. Two different threshold parameters are considered, one given
by (4.4) and the standard Donoho–Johnstone threshold. The noise level is es-
timated either on each level (option by.level=TRUE) or globally (option
by.level=FALSE). For such threshold values, we apply two threshold policies,
Hard and Soft. Finally, Daubechies DB(6) and DB(2) wavelets are considered.
For each of those scenarios we study the effect of the LRD parameter α on the per-
formances of function estimator (4.2) and shape estimator (4.9) for sample sizes
n = 1024.

Monte Carlo results for Doppler and Bumps, with N = 1000 replications and
Daubechies DB(6) wavelet are summarized in Tables 1 and 2 on page 3409. No-
tation DJ thr and LTD thr stands for Donoho–Johnstone universal threshold
and the one given in (4.4), respectively.

The mean square error MSE := 1
n

∑n
i=1(f (i/n)− f̂n(i/n))2 is plotted as a func-

tion of the dependence parameter as d = (1 − α)/2 ∈ (0,1/2) in Figure 2. Here,
d corresponds to the fractional integration parameter as required to simulate LRD
noise using fracdiff R-package.

Analysis of the results.

1. Figure 2 describes MSE, for the homoscedastic scenario (a). We can observe
that the MSE seems to remain stable when the dependence is in the [0,0.35]
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TABLE 1
Monte Carlo approximations to MSE of function estimator (4.2) of the Doppler target,

with 1000 replications of the model (1.1), in scenario (a), (b) and (c) for some values
of the dependence parameter d

(a) (b) (c)

d DJ thr LRD thr DJ thr LRD thr DJ thr LRD thr

0.000 0.0277 0.0277 0.0276 0.0305 0.0280 0.0329
0.150 0.0276 0.0276 0.02745 0.0288 0.0279 0.0319
0.300 0.0284 0.0284 0.0282 0.0287 0.0289 0.0315
0.325 0.0280 0.0280 0.0278 0.0281 0.0284 0.0316
0.350 0.0282 0.0282 0.0281 0.0282 0.0288 0.0319

0.375 0.0299 0.0299 0.0297 0.0299 0.0306 0.0335
0.400 0.0320 0.0320 0.0317 0.0319 0.0326 0.0350
0.425 0.0350 0.0350 0.0347 0.0347 0.0358 0.0383
0.450 0.0449 0.0449 0.0445 0.0446 0.0466 0.0486

range. Then, a sudden increase occurs after 0.35 suggesting that, for this sim-
ulated example, the LRD phase becomes active for very dependent error terms
and confirming the detrimental effect of LRD in this region. This is also con-
firmed in Table 1. The similar effect is visible in the case of Bumps function,
in Table 2.

2. We compare Donoho–Jonstone classical threshold with the one introduced
in (4.4). Comparing left and right panels in Tables 1 and 2, we can see that
there is completely no difference in case of the heteroscedastic noise. However,

TABLE 2
Monte Carlo approximations to MSE of function estimator (4.2) of the Bumps target,
with 1000 replications of the model (1.1), in scenario (a), (b) and (c) for some values

of the dependence parameter d

(a) (b) (c)

d DJ thr LRD thr DJ thr LRD thr DJ thr LRD thr

0.000 0.1295 0.1295 0.1293 0.1273 0.1297 0.1239
0.150 0.1298 0.1298 0.1297 0.1288 0.1301 0.1256
0.300 0.1297 0.1297 0.1294 0.1295 0.1300 0.1263
0.325 0.1301 0.1301 0.1297 0.1296 0.1308 0.1281

0.350 0.1309 0.1309 0.1306 0.1306 0.1315 0.1289
0.375 0.1328 0.1328 0.1324 0.1324 0.1334 0.1308
0.400 0.1340 0.1340 0.1335 0.1335 0.1349 0.1327
0.425 0.1377 0.1377 0.1372 0.1372 0.1389 0.1367
0.450 0.1462 0.1462 0.1456 0.1456 0.1487 0.1460
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FIG. 2. Monte Carlo approximation to MSE, n = 1024. Doppler function with σ(x) = 0.1.

in case of the irregular noise [like scenario (c) above], the picture is not clear.
In Doppler case the classical threshold performs better, on the other hand the
level-dependent threshold (4.4) is preferable in case of Bumps target. This also
applies to Lidar function.

3. There is not too much difference between DB(2) and DB(6), as well as between
Hard and Soft policy. However, the BY.LEVEL noise estimation (i.e., esti-
mation of τ0 = τ0,j ) gives worse results in terms of MSE. The reason for this
could be the following: variance estimator in case of LRD has slower rates of
convergence then in the associated i.i.d. sequence. Consequently, on low fre-
quencies (this is where LRD comes into play), the noise level estimates may
not be very precise. The practical message is that, in LRD case, we should use
the noise level estimates based on the highest resolution level.

6. Proofs: lower bounds. To obtain the lower bounds, we follow closely the
ideas of [25]. Let us first introduce some notation. Denote Y = (Y1, . . . , Yn)

′, ε =
(ε1, . . . , εn)

′, 1 = (1, . . . ,1)′, and, for any function f , let

f (X) := (f (X1), . . . , f (Xn))

and f (X)/σ (X) and f (X) ∗ σ(X) be the coordinatewise division and multiplica-
tion, respectively, of two vectors. Furthermore, � is the covariance matrix of ε.
With a slight abuse of notation, let � = (ξil)i,l=1,...,n and �−1 = (ξ−1

il )i,l=1,...,n [of
course, (ξil)

−1 	= ξ−1
il , in general].

For two functions f,f0, denote by �n(f0, f ) the likelihood ratio

�n(f0, f ) = dPY (f0)/dPY (f ),
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where PY (f ) is the distribution of the process {Yi, i ≥ 1} when f is true.
Note that the model (1.2) can be written as Y′ = f (X)′ + (σ (X) ∗ ε)′. Then, we

have, under PY (f ) ,

2 ln�n(f0, f )

=
(

Y − f (X)

σ (X)

)′
�−1

(
Y − f (X)

σ (X)

)

−
(

Y − f0(X)

σ (X)

)′
�−1

(
Y − f0(X)

σ (X)

)
(6.1)

= −
(

f0(X) − f (X)

σ (X)

)′
�−1

(
(f0(X) − f (X))

σ (X)

)

+ 2
(

f0(X) − f (X)

σ (X)

)′
�−1ε.

In what follows, π0 and C1, . . . ,C4,Cp will be fixed and positive numbers.

Sparse case. This is the case when the hardest function to estimate is repre-
sented by one term in the wavelet expansion only. In this case, we use the result of
Korostelev and Tsybakov (see [16], Lemma 10.1).

LEMMA 6.1. Let V be a functional space, and let d(·, ·) be a distance on V .
Let V contain the functions f0, f1, . . . , fK , such that:

(a) d(fk, fk′) ≤ δ > 0 for k = 0,1, . . . ,K , k 	= k′,
(b) K ≥ exp(λn) for some λn > 0,
(c) ln�n(f0, fk) = unk − vnk , where vnk are constants and unk is a random vari-

able such that for some π0 > 0 we have Pfk
(unk > 0) ≥ π0,

(d) supk vnk ≤ λn.

Then, for an arbitrary estimator f̂n,

sup
f ∈V

P
Y

(f )
n

(
d(f̂n, f ) ≥ δ/2

) ≥ π0/2.

To use this lemma, let us now choose V = {fjk : 0 ≤ k ≤ 2j − 1}, where
fjk(x) = βj,kψj,k(G(x)) [i.e., fjk(G

−1(u)) = βj,kψj,k(u), f0 ≡ 0]. Since f ◦
G−1 ∈ Bs

π,r , we have βj,k ≤ A2−js′
, where s′ = s + 1

2 − 1
π

. Furthermore, for any
f,h ∈ V , let

d(f,h) = ‖f − h‖Lp(g)

be the weighted Lp-norm on V . Then,

d(fjk, fjk′) = βj,k2j (1/2−1/p)‖ψ‖p =: δ.
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Plugging-in f0 ≡ 0 and f = fjk in (6.1), we obtain

−2 ln�n(f0, fjk) =
(

fjk(X)

σ (X)

)′
�−1

(
fjk(X)

σ (X)

)
+ 2

(
fjk(X)

σ (X)

)′
�−1ε.(6.2)

Write

ln�n(f0, f ) = {ln�n(f0, fjk) + λn} − λn =: unk − vnk.

Note, also, that the first component (6.2) is nonnegative, since � (and so �−1) is
positive definite.

By the Cauchy–Schwarz inequality and Lemma 6.2 below, we obtain

E
[∣∣∣∣ε′�−1

(
fjk(X)

σ (X)

)∣∣∣∣
]

≤
{

E
[(

fjk(X)

σ (X)

)′
�−1

(
fjk(X)

σ (X)

)]}1/2

.(6.3)

Therefore, by (6.2), (6.3), Chebyshev inequality and the aforementioned positivity
of the component in (6.2), we obtain

P(unk > 0) = P
(
ln�n(f0, f ) > −λn

)
≥ 1 − λ−1

n E
[

1

2

(
fjk(X)

σ (X)

)′
�−1

(
f (X)

σ (X)

)
+

∣∣∣∣ε′�−1
(

fjk(X)

σ (X)

)∣∣∣∣
]

(6.4)

≥ 1 − A + √
2A

2λn

.

Now, 1′�1 = ∑
i,l ξil = Var(

∑n
i=1 εi) ∼ cαn2−α via (1.3). Also,

(1′�−11)(1′�1) = n2,

so that

1′�−11 ∼ c−1
α nα.(6.5)

Furthermore,

E
[(

fjk(X)

σ (X)

)′
�−1

(
fjk(X)

σ (X)

)]

= E[f 2
jk(X)/σ 2(X)]

n∑
i=1

ξ−1
ii + {E[fjk(X)/σ(X)]}2

∑
i 	=l

ξ−1
il

(6.6)
≤ ‖1/σ‖2∞‖ψ‖2

2β
2
j,k trace(�−1) + 2−jβ2

j,k(1
′�−11)‖1/σ‖2∞

= O(n)β2
j,k + O(2−jnα)β2

j,k = O(n)β2
j,k.

Summarizing, we obtain that the nominator in (6.4) is bounded by C1nβ
2
j,k . We

now choose j , according to

2j = C2

(
n

logn

)1/(2s′)
.(6.7)



WAVELET REGRESSION WITH DEPENDENT ERRORS 3413

Then,

j ln 2 ≥ 1

2(s + 1/2 − 1/π)
(logn − log logn) + logC >

logn

4(s + 1/2 − 1/π)
=: λn.

Therefore,

P(unk > 0) > 1 − 4C1C
−2s′
2 (s + 1/2 − 1/π) > π0 > 0

by the appropriate choice of C2 in (6.7). Consequently,

inf
f̂n

sup
f : f ◦G−1∈Bs

π,r

E‖f − f̂n‖p
Lp(g)

≥ inf
f̂n

sup
f : f ◦G−1∈Bs

π,r

P
(‖f − f̂n‖Lp(g) > δ/2

)
(6.8)

≥ Cpπ0δ
p = Cp2−jp(s−1/π+1/p) = Cp

(
logn

n

)−p/2αS

.

Dense case. Let η be the vector with components ηk = ±1, k = 0, . . . ,2j − 1.
Let ηi be the vector with components ηi

k = (−1)1{i=k}ηk . Let fjη(x) = γj ×∑2j−1
k=0 ηkψj,k(G(x)). To have fjη ◦G−1 ∈ Bs

π,r , we must have γj ≤ A2−j (s+1/2).
Note that fjη −fjηi = ±γjψji . Now, plug-in f = fjη and f0 = fjηi in (6.1) to

get

−2 ln�n(f0, f ) = γ 2
j

(
ψji(X)

σ (X)

)′
�−1ψji(X) ± 2γj

(
ψji(X)

σ (X)

)′
�−1ε.

As in (6.6), we have

Efjη
[| ln�n(f0, f )|] ≤ C3nγ 2

j ≤ π0,

if we choose

2j ∼ C4n
1/(2s+1)

with the appropriate C4. Now, as in [25],

inf
f̂n

max
η

Efjη
‖f̂n − fjη‖l1(g) ≥ C2j/2γj ,

which, by Cauchy–Schwarz inequality, yields

inf
f̂n

sup
f ∈Bs

π,r∩{0}
E‖f − f̂n‖p

Lp(g) ≥ Cpn−p/2αD .(6.9)

Therefore, via (6.9) and (6.8), we obtain the i.i.d. lower bounds in Theorem 3.1.
It finishes the proof in case of f ∈ Bs

π,r ∩ �. If f /∈ �, then its mean has to be
estimated. The lower bound follows in the very same way as on page 645 of [29].
This finishes the proof of Theorem 3.1.
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LEMMA 6.2. We have

E[|ε′�−1f (X)|2] ≤ E[f (X)′�−1f (X)].
PROOF. Bearing in mind the symmetry of �,

E[|ε′�−1f (X)|2]
= E

[∑
i,l

∑
i1,l1

εiεi1ξ
−1
il ξ−1

i1l1
f (Xl)f (Xl1)

]

= E[f 2(X)] ∑
i,l,i1

E[εiεi1]ξ−1
il ξ−1

i1l
+ {E[f (X)]}2

∑
i,l,i1l1 	=l

E[εiεi1]ξ−1
il ξ−1

i1l1

= E[f 2(X)]∑
i1,l

ξ−1
i1l

∑
i

ξi1iξ
−1
il + {E[f (X)]}2

∑
l,i1,l1 	=l

ξ−1
i1l1

∑
i

ξi1iξ
−1
il

= E[f 2(X)]∑
i1,l

ξ−1
i1l

(��−1)i1l + {E[f (X)]}2
∑

l,i1,ł1 	=l

ξi1l1(��−1)i1l

= E[f 2(X)] trace(�−1) + {E[f (X)]}2
∑

l,l1 	=l

ξ−1
ll1

= E[f (X)′�−1f (X)]. �

7. Proofs: upper bounds.

7.1. Decomposition of empirical wavelet coefficients. Here, we establish de-
composition of the form,

β̂j,k − βj,k = i.i.d. part + martingale part + wavelet LRD part.

From (4.3),

E[β̂j,k] = E[ψj,k(X1)f (X1)] =
∫

ψj,k(y)f (G−1(y)) dy = βj,k.(7.1)

We set Ui := G(Xi), i = 1, . . . , n, the Ui’s are uniformly distributed on [0,1], by
independence

E[ψj,k(U1)σ (X1)ε1] = E[ψj,k(U1)σ (X1)]E[ε1] = 0,

β̂j,k − βj,k = 1

n

n∑
i=1

(
ψj,k(Ui)Yi − E[ψj,k(Ui)Yi])

= 1

n

n∑
i=1

(
ψj,k(Ui)f (Xi) − E[ψj,k(U1)f (X1)])

(7.2)

+ 1

n

n∑
i=1

ψj,k(Ui)σ (Xi)εi

=: A0 + A1.
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Note that A0 is the sum of i.i.d. random variables, whereas the dependence
structure is included in A1 only. The part A1 is decomposed further. Let Fi =
σ(ηi,Xi, ηi−1,Xi−1, . . .). Let εi,i−1 = εi −ηi . Note that εi,i−1 is Fi−1-measurable
and (ηi,Xi) is independent of Fi−1. Thus,

E[ψj,k(Ui)σ (Xi)εi |Fi−1] = εi,i−1E[ψj,k(U1)σ (X1)].
We write

A1 = 1

n

n∑
i=1

ψj,k(Ui)σ (Xi)εi

= 1

n

n∑
i=1

(
ψj,k(Ui)σ (Xi)εi − E[ψj,k(Ui)σ (Xi)εi |Fi−1])

(7.3)

+ 1

n
E[ψj,k(U1)σ (X1)]

n∑
i=1

εi,i−1

=: A2 + A3

and

β̂j,k − βj,k = A0 + A2 + A3
(7.4)

=: i.i.d. part + martingale part + wavelet LRD part.

Consider, also, the following corresponding decomposition for the scaling coeffi-
cients αj,k :

α̂j,k − αj,k = B0 + B2 + B3
(7.5)

=: i.i.d. part + martingale part + scaling LRD part.

An important feature of this decomposition is that the LRD term involves the par-
tial sums of εi,i−1 only. Furthermore, if (1.10) holds, then A3 ≡ 0 and the LRD part
does not contribute. On the other hand, the scaling LRD part is always present.

As for the shape estimation, let α∗
j,k be the scaling coefficient of f ∗ ◦ G−1.

Clearly,

α∗
j,k = αj,k −

∫ 1

0
f (G−1(y)) dy

∫ 1

0
φj,k(y) dy =: αj,k − cf,GE[φj,k(U1)].

Let ĉf,G be an estimator of cf,G [e.g., ĉf,G = 1
n

∑n
i=1 f (Xi)]. Then, we decompose

α̂∗
j,k − α∗

j,k = B0 + B2 + B3

= i.i.d. part + martingale part + cf,GEφj,k(U1) − ĉf,GEφj,k(U1)

+ 1

n
E[φj,k(U1)σ (X1)]

n∑
i=1

εi,i−1 − 1

n
E[φj,k(U1)]

n∑
i=1

σ(Xi)εi .
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If σ(·) ≡ 1, then the last two terms equal

1

n
E[φj,k(U1)]

n∑
i=1

εi,i−1 − 1

n
E[φj,k(U1)]

n∑
i=1

εi = −1

n
E[φj,k(U1)]

n∑
i=1

ηi,

which is the just sum of i.i.d. random variables. Consequently, if (1.10) holds, then
the LRD effect is not present in the scaling coefficient estimation. Otherwise, the
LRD part is present and affects convergence rates. Therefore, by removing the
scaling coefficient φ0,0, we guarantee that LRD does not affect the shape estima-
tion.

7.2. Decomposition of the modified wavelet coefficients. In this section, we
decompose β̃j,k . Let us redefine

Fi = σ(ηi,Xi, ηi−1,Xi−1, . . .) ∨ σ(X′
1, . . . ,X

′
n).

Note that

E[ψj,k(Ĝn(Xi))σ (Xi)εi |Fi−1] = E[ψj,k(Ĝn(X1))σ (X1)]εi,i−1

and ψj,k(Ĝn(Xi))σ (Xi)εi is Fi -measurable. [This shows the importance of defin-
ing Ĝn(·) based on the first different of the sample, X′

1, . . . ,X
′
n.] Similarly to (7.2)

and (7.3), we decompose

β̃j,k − βj,k = 1

n

n∑
i=1

(
ψj,k(Ĝn(Xi))Yi − βj,k

)

= 1

n

n∑
i=1

(
ψj,k(Ĝn(Xi))f (Xi) − βj,k

)

+ 1

n

n∑
i=1

(
ψj,k(Ĝn(Xi))σ (Xi)εi

(7.6)
− E[ψj,k(Ĝn(Xi))σ (Xi)εi |Fi−1])

+ 1

n
E[ψj,k(Ĝn(X1))σ (X1)]

n∑
i=1

εi,i−1

=: Ã0 + Ã2 + Ã3.

7.3. Moment bounds.

LEMMA 7.1. For all j ≥ 0 and k = 0, . . . ,2j − 1 and p ≥ 2,

E[|β̂j,k − βj,k|p] = O(n−p/2) + O(2−jp/2n−pα/2)(7.7)
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as long as 2j ≤ n. The bound also applies to scaling coefficients |α̂j,k − αj,k|p .
Moreover, if (1.10) holds, then

E[|β̂j,k − βj,k|p] = O(n−p/2).

PROOF. I.i.d. part. By using Rosenthal’s inequality, [16], page 132,

E|A0|p = 1

n
E

∣∣∣∣∣
n∑

i=1

(
ψj,k(G(Xi))f (Xi) − E[ψj,k(G(Xi))f (Xi)])

∣∣∣∣∣
p

(7.8)
≤ Cn−p‖f ‖p∞

(
n2j (p/2−1) + np/2) = O(n−p/2)

as long as 2j ≤ n.

LRD part. If (1.10), then the LRD part vanishes. Otherwise, note that

E[|ψj,k(U1)σ (X1)|p] ≤ ‖σ‖p∞‖ψ‖p
p2j (p/2−1).(7.9)

Since
∑n

i=1 εi,i−1 is a centered normal random variable with variance

v2
n := Var

(
n∑

i=1

εi,i−1

)
∼ dαn2−α,(7.10)

we obtain

E|A3|p = O(2−jp/2n−pα/2).(7.11)

Martingale part. In the light of the decomposition (7.4), we see that nA2 =:∑n
i=1 di is a martingale, where

di = ψj,k(Ui)σ (Xi)εi − E[ψj,k(Ui)σ (Xi)εi |Fi−1]
= εi,i−1

(
ψj,k(Ui)σ (Xi) − E[ψj,k(U1)σ (X1)]) + ηiψj,k(Ui)σ (Xi).

Note that the first and the second term are uncorrelated, both unconditionally and
conditionally on Fi−1. By (7.9),

E[|di |p] ≤ 2p−1(E[|εi,i−1|p]E[|ψj,k(Ui)σ (Xi) − E[ψj,k(Ui)σ (Xi)]|p]
+ E[|ηi |p]E[|ψj,k(Ui)σ (Xi)|p])

≤ CE[|ψj,k(U1)σ (X1)|p] = C2j (p/2−1).

Now,

σ 2
i := E[d2

i |Fi−1]
(7.12)

= E[ψ2
j,k(U1)σ

2(X1)]E[η2
1] + ε2

i,i−1 Var[ψj,k(U1)σ (X1)].
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Using E[ψ2
j,k(U1)σ (X1)] = O(1),

E

[(
n∑

i=1

E(d2
i |Fi−1)

)p/2]

= E

(
nE[ψ2

j,k(U1)σ (X1)]Eη2
1 + Var[ψj,k(U1)σ (X1)]

n∑
i=1

ε2
i,i−1

)p/2

≤ Cpnp/2(Eψ2
j,k(U1))

p/2 + Cp(Varψj,k(U1))
p/2E

(
n∑

i=1

ε2
i,i−1

)p/2

≤ Cnp/2.

Using Rosenthal’s inequality for martingales [14], page 25,

E|A2|p ≤ Cn−pE

(
n∑

i=1

E(d2
i |Fi−1)

)p/2

+ Cn−p
n∑

i=1

E|di |p
(7.13)

≤ C
(
n−p/2 + n−pn2j (p/2−1)) ≤ Cn−p/2

as long as 2j ≤ n. Now, (7.7) follows from (7.8), (7.11) and (7.13). �

7.4. Large deviation estimates.

PROPOSITION 7.2. Let λn,j be as in (4.4). Assume that j is such that 2j <

(n/ logn). For any r > 0, there exist positive constants τ and C(r,p, τ ) such that

P(|β̂j,k − βj,k| > τλn,j /2) ≤ C(r,p, τ )n−rp.(7.14)

A similar bound is valid for α̂j,k − αj,k .

PROOF. We obtain (7.14) separately for A0,A3 and A2 and apply triangular
inequalities in (7.4) to complete the proof. A similar approach works for (7.5).

I.i.d. part. For A0, we have from the Bernstein inequality as long as 2j ≤
(n/ logn) (see, e.g., [19], Proposition 3)

P

(
|A0| > τ

2

√
logn

n

)
≤ 2 exp

(
− 3τ 2 logn

8‖f ‖∞ max{3, τ }
)

(7.15)

for all n. The bound in (7.14) is valid for the i.i.d. part with

τ ≥ max
{8

3‖f ‖∞rp,
√

8rp‖f ‖∞
}
.(7.16)



WAVELET REGRESSION WITH DEPENDENT ERRORS 3419

LRD part. First, if (1.10) holds, then LRD part vanishes. Otherwise, we recall
(7.9) and that

∑n
i=1 εi,i−1 is a centered normal r.v. with variance (7.10). For suffi-

ciently large n,

P

(
|A3| > τ

√
logn

n

/
2

)
≤ C exp

(
− τn logn2j

4dα‖σ‖2∞‖ψ‖2
1n

2−α

)
.

Therefore, for all j such that 2j > n1−α ,

P

(
|A3| > τ

√
logn

n

/
2

)
≤ C exp

(
− τ logn

4dα‖σ‖2∞‖ψ‖2
1

)
≤ Cn−rp

for all n, if

τ > 4dαrp‖σ‖2∞‖ψ‖2
1.(7.17)

If, now, 2j < n1−α , then

P(|A3| > τλ̃n,j /2) = P

(∣∣∣∣∣
n∑

i=1

εi,i−1

∣∣∣∣∣ > τnλ̃n,j

2|E[ψj,k(U1)σ (X1)]|
)

≤ C exp
(
− τ logn

4dα‖σ‖2∞‖ψ‖2
1

)
≤ Cn−rp

for the same choice of τ as in (7.17).

Martingale part. For A2, we will use a new Bernstein’s inequality for martin-
gales. We recall the following lemma from [11].

LEMMA 7.3. Let (di,Fi), i ≥ 1, be a martingale difference sequence. Denote
σ 2

i = E[d2
i |Fi−1]. For any x,L,a > 0,

P

(∣∣∣∣∣
n∑

i=1

di

∣∣∣∣∣ > x,

n∑
i=1

d2
i I{|di |>a} +

n∑
i=1

σ 2
i ≤ L

)
≤ 2 exp

(
− x2

2(L + ax/3)

)
.

We apply this lemma to our martingale sequence di and σ 2
i defined in (7.12),

with a very precise choice of truncation levels a and L (clearly, they cannot be too
big). Let

Hn = Hn(a) :=
n∑

i=1

d2
i I{|di |>a} +

n∑
i=1

σ 2
i ,

P

(
1

n

∣∣∣∣∣
n∑

i=1

di

∣∣∣∣∣ > x

)
≤ P

(
1

n

∣∣∣∣∣
n∑

i=1

di

∣∣∣∣∣ > x,Hn ≤ L

)
+ P(Hn ≥ L)

(7.18)

≤ 2 exp
(
− n2x2

2(L + anx/3)

)
+ P(Hn > L).
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We take

L := Ln = 2n
(
A logn + E[ψ2

j,k(U1)σ
2(X1)]E[η2

1]
) =: 2n(A logn + C1)(7.19)

with A > 0 to be specified below,

P

(
n∑

i=1

σ 2
i > L/2

)
= P

(
Var[ψj,k(U1)σ (X1)]

n∑
i=1

ε2
i,i−1

+ E[ψ2
j,k(U1)σ

2(X1)]E[η2
1]n > L/2

)

= P

(
Var[ψj,k(U1)σ (X1)]

n∑
i=1

ε2
i,i−1 > An logn

)

≤ P

(
n⋃

i=1

{
ε2
i,i−1 >

A logn

Var[ψj,k(U1)σ (X1)]
})

(7.20)

≤ nP

(
ε2

1,0 >
A logn

Var[ψj,k(U1)σ (X1)]
)

≤ Cn exp
(
− A logn

2 Var[ε1,0]Var[ψj,k(U1)σ (X1)]
)

= Cn−rp

by the choice

A = 2(rp + 1)Var[ε1,0]Var[ψj,k(U1)σ (X1)].(7.21)

Further, note that

d2
i ≤ 4

((
ψj,k(Ui)σ (Xi) − E[ψj,k(U1)σ (X1)])2

ε2
i,i−1 + η2

i ψ
2
j,k(Ui)σ

2(Xi)
)
.

Thus, for any a > (A logn)1/2,

P

(
n∑

i=1

d2
i I{|di |>a} > L/2

)
≤ P

(
n∑

i=1

d2
i I{|di |>a} > An logn

)

≤ nP
(
d2

1 I{|d1|>a} > A logn
)

≤ nP
(
d2

1 > (A logn) ∨ a2)
≤ nP (d2

1 > a2) = nP (d2
1 > a2)(7.22)

≤ nP
((

ψj,k(U1)σ (X1)

− E[ψj,k(U1)σ (X1)])2
ε2

1,0 > a2/2
)

+ nP
(
η2

1ψ
2
j,k(U1)σ

2(X1) > a2/2
)
.
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Since

|ψ2
j,k(U1)σ

2(X1)| ≤ 2j‖ψ‖2∞‖σ‖2∞ =: C02j ≤ C0
n

logn
,

we have

P
(
η2

1ψ
2
j,k(U1)σ

2(X1) > a2/2
) ≤ P

(
η2

i >
a2

2C02j

)
(7.23)

≤ C exp
(
−a2 logn

4C0n

)
≤ Cn−rp,

by choosing a = B
√

n with

B = 4C0rp.(7.24)

A similar bound applies to the first term in (7.22).
Combining (7.18), (7.20) and (7.23),

P

(
1

n

∣∣∣∣∣
n∑

i=1

di

∣∣∣∣∣ > x

)
≤ 2 exp

(
− n2x2

2(L + anx/3)

)
+ Cn−rp,(7.25)

where L as in (7.19). Take, now, x = τ
2

logn√
n

, and note that

n2x2

2(L + anx/3)
≤ n(logn)2τ 2/8

n logn(A + C1) + Bτ/6n logn
,

so that (7.14) follows for the martingale part by taking

τ ≥ max
{√

8(A + C1)rp,Brp 8
6

}
,

where A, C1 and B were defined in (7.21), (7.19) and (7.24), respectively. �

7.5. Bounds for the modified wavelet coefficients. Let us start with the follow-
ing bound:

LEMMA 7.4. For all 2j ≤ √
n, we have

E[|ψj,k(Ĝn(X1))σ (X1)|p] ≤ Cp‖σ‖p∞‖ψ‖p
p2j (p/2−1),(7.26)

where Cp is a constant depending only on p.

PROOF. Let �n(x) be a random element between Ĝn(x) and G(x). Then,

E
[∣∣(ψj,k(Ĝn(X1)) − ψj,k(G(Xi))

)
σ(X1)

∣∣p]
≤ EE[|ψ ′

j,k(G(X1))|p|�n(X1)|p|σ(X1)|p|X1]
≤ ‖σ‖p∞E

[
sup
x

|�n(x)|p
]
E[|ψ ′

j,k(G(X1))|p] = O(n−p/223jp/2−j ).
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In the above computation, we used independence of Ĝn(·) of X1 and the standard
bound on the supremum norm of the empirical process. Consequently,

E[|ψj,k(Ĝn(X1))σ (X1)|p] ≤ E[|ψj,k(G(X1))σ (X1)|p] + O(n−p/223jp/2−j )

and the bound is of order 2j (p/2−1) if and only if 2j ≤ √
n. �

With help of the above lemma, we conclude that the results for β̂j,k can be
rewritten for β̃j,k .

LEMMA 7.5. Assume that ‖f ◦ G−1‖Lip(1/2) < ∞. The bounds of Lemma 7.1
and Proposition 7.2 remain valid for β̃j,k and α̃j,k as long as 2j ≤ √

n.

PROOF. The bounds for the first part of the decomposition (7.6), Ã0, follow
from [19], Proposition 6. To deal with the LRD part, Ã3, we simply replace (7.9)
with (7.26) [see (7.11) and the computation leading to (7.17)]. Similarly, note that
the moment bounds and large deviations for the martingale part involve only the
behavior of E[|ψj,k(Ĝn(X1))σ (X1)|p] instead of E[|ψj,k(G(X1))σ (X1)|p]. �

7.6. Proof of Theorem 4.1. In what follows, Dj = {k, k = 0,1, . . . ,2j − 1},
we split f̂n − f into three parts,

E‖f − f̂n‖p
Lp(g)

≤ 3p−1

(
E
∥∥∥∥ ∑
k∈Dj0

(αj0,k − α̂j0,k)φj0,k(G(·))
∥∥∥∥
p

Lp(g)

+ E

∥∥∥∥∥
j1∑

j=j0

∑
k∈Dj

βj,kψj,k(G(·))

−
j1∑

j=j0

∑
k∈Dj

β̂j,kI{|β̂j,k |>τ0λn,j }ψj,k(G(·))
∥∥∥∥∥
p

Lp(g)

+
∥∥∥∥∑
j≥j1

∑
k∈Dj

βj,kψj,k(G(·))
∥∥∥∥
p

Lp(g)

)

:= linear term + nonlinear term + bias term.

Bias term. We use standard approximation results (see, e.g., [16], pages 123–
124), introducing

δ := s −
(

1

π
− 1

p

)
+

= s − max
(

1

π
− 1

p
,0

)
,(7.27)



WAVELET REGRESSION WITH DEPENDENT ERRORS 3423

if p ≤ π , δ = s and Bs
π,r ⊆ Bs

p,r , if π < p, δ = s − ( 1
π

− 1
p
) and Bs

π,r ⊆ Bδ
p,r ,∥∥∥∥∑

j>j1

∑
k∈Dj

βj,kψj,k(G(·))
∥∥∥∥
p

Lp(g)

=
∫ 1

0

∣∣∣∣∑
j>j1

∑
k∈Dj

βj,kψj,k(G(x))

∣∣∣∣
p

g(x) dx

(7.28)

=
∫ 1

0

∣∣∣∣∑
j>j1

∑
k∈Dj

βj,kψj,k(u)

∣∣∣∣
p

du

≤ C‖f ◦ G−1‖p

Bδ
p,r

2−j1δp = O
(
(logn/n)δp

)
,

where we have used the definition (4.1) of j1 for the last bound.

The linear part. Applying Lemma 7.1, the term E|α̂j0,k −αj0,k|p is proportional
to n−pα/2. Therefore,

E
∥∥∥∥∑

k

(αj0,k − α̂j0,k)φj0,k(G(·))
∥∥∥∥
p

Lp(g)

≤ 2j0(p/2−1)‖φ‖p
p

∑
k∈Dj0

E|αj0,k − αj0,k|p

≤ C2j0(p/2−1)2j0E|α̂j0,k − αj0,k|p = O(n−pα/2).

Nonlinear term. We follow the proof of Theorem 5.1 in [18], incorporating our
moments and large deviations bounds accordingly. We refer to Appendix for the
definition lq,∞ spaces. We use Temlyakov’s property and Minkowski’s inequality
repeatedly.

E
∥∥∥∥ ∑
(j,k)∈�1

βj,kψj,k(G(·)) − ∑
j,k∈�1

β̂(j,k)I{|β̂j,k |>τ0λn,j }ψj,k(G(·))
∥∥∥∥
p

Lp(g)

≤ 2p−1
(

E
∥∥∥∥ ∑
(j,k)∈�1

(βj,k − β̂j,k)I{|β̂j,k |>τ0λn,j }ψj,k(G(·))
∥∥∥∥
p

Lp(g)

+ E
∥∥∥∥ ∑
(j,k)∈�1

βj,kI{|β̂j,k |≤τ0λn,j }ψj,k(G(·))
∥∥∥∥
p

Lp(g)

)

=: A + B.

Let us introduce some notation. We define j2 to be such that 2j2 = n1−α . Further,
let

�2 = {(j, k), j2 ≤ j ≤ j1, k = 0,1, . . . ,2j − 1}, �3 = �1 \ �2.
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We start by the A-term. Changing variables u = G(x) we get

A ≤ E
∫ ( ∑

(j,k)∈�1

|β̂j,k − βj,k|2I{|β̂j,k−βj,k |>τλn,j /2}ψ
2
j,k(u)

)p/2

du

+ E
∫ ( ∑

(j,k)∈�1

|β̂j,k − βj,k|2I{|βj,k |>τλn,j /2}ψ2
j,k(u)

)p/2

du

≤
∫ { ∑

(j,k)∈�1

[(
E|β̂j,k − βj,k|2p

× P(|β̂j,k − βj,k| > τλn,j /2)
)1/2|ψj,k(u)|p]2/p

}p/2

du

+
∫ { ∑

(j,k)∈�1

I{|βj,k |>τλn,j /2}[E|β̂j,k − βj,k|p]2/pψ2
j,k(u)

}p/2

du

=: A1 + A2.

Using the bounds of Lemma 7.1 and (A.2) below,

A2 ≤ C

∫ { ∑
(j,k)∈�3

I{|βj,k |>τ0λn,j /2}(2−jp/2n−pα/2)2/pψ2
j,k(u)

}p/2

du

+ C

∫ { ∑
(j,k)∈�2

I{|βj,k |>τ0λn,j /2}(n−p/2)2/pψ2
j,k(u)

}p/2

du

≤ Cn−pα/2
j2∑

j=0

2j (p/2−1)2−jp/2|Dj |‖ψ‖p
p

+ Ccp
n

j1∑
j=j2

‖ψj,k‖p
p

∑
k∈Dj

I{|βj,k |>τ0λn,j /2}

≤ Cn−pα/2j2 + Ccp−q
n sup

λ>0
λq

j1∑
j=1

∑
k∈Dj

‖ψj,k‖p
pI{|βj,k |>τλ/2}

≤ Cn−pα/2 logn + Cλ̃p−q
n ‖f ‖q

lq,∞ .

In the second to last inequality, we used c
q
n ≤ λ̃

q
n and the fact that for j > j2 we

have λn,j = λ̃n.
As for A1, we split this into 2 parts, according to �2 and �3. On �2, using

Lemma 7.1 and Proposition 7.2, we get (recall that then λn,j = λ̃n)(
E|β̂j,k − βj,k|2pP (|β̂j,k − βj,k| > τ0λn,j /2)

)1/2 = O((c2p
n λ̃2p

n )1/2) = λ̃2p
n .
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On �3, we have (
E|β̂j,k − βj,k|2pP (|β̂j,k − βj,k| > τ0λn,j /2)

)1/2

= O(2−jpn−αp(logn)p/2),

so that

A1 ≤ Cn−αp(logn)p/2
∑

(j,k)∈�3

2−jp‖ψ‖p
j,k

+ Cλ̃2p
n

∫ ∑
(j,k)∈�2

|ψj,k(u)|p du(7.29)

≤ Cn−αp(logn)p/22−j2p/2 + Cλ̃2p
n

j1∑
j=j2

2j 2j (p/2−1) = O(λ̃p
n ).

For the B-term.

B ≤
∫ { ∑

(j,k)∈�1

I{|βj,k |>2τ0λn,j }P(|β̂j,k − βj,k| > τ0λn,j /2)2/pβ2
j,kψ

2
j,k(u)

}p/2

du

+
∫ { ∑

(j,k)∈�1

I{|βj,k |≤2τ0λn,j }β2
j,kψ

2
j,k(u)

}p/2

du =: B1 + B2

and both terms are treated in the similar way as A1 and A2, respectively.
Summarizing, the upper bound for the nonlinear term is

O(‖f ‖q
lq,∞ λ̃p−q

n + n−pα/2 logn).(7.30)

Rate results. The overall rate of convergence depends on the three main con-
tributing terms, the bias term, the linear term and the nonlinear term,

E‖f − f̂n‖p
Lp(g) = O(λ̃2δp

n ) + O(n−pα/2)
(7.31)

+ O(‖f ‖q
lq,∞ λ̃p−q

n ) + O(n−pα/2 logn).

The dense phase. This is the region where α > αD , δ = s and s > (p − π)/2π .
For α > αD , the linear term is negligible, since n−pα/2 = o(n−pαD/2). The bias
term is negligible too since λ̃

2ps
n = (logn)2spn−sp = o(n−pαD/2) for s ≥ 1/2. For

the nonlinear term we note that, for q = qD := p
2s+1 ,

λ̃p−q
n = λ̃2ps/(2s+1)

n = λ̃pαD
n = n−sp/(2s+1)(logn)2sp/(2s+1),

which is the convergence rate under the dense regime. To complete the proof, we
apply the Besov embedding 1 of Theorem A.1, noting that, in the dense region, we
always have π > qD .
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The sparse phase. Here, α > αS , δ = s − (1/π −1/p) and s < (p −π)/2π . For
α > αS , the linear term contribution is negligible since n−pα/2 = o(n−pαS/2). The
bias term is negligible, too, since, for s > 1/π , we have λ̃

2pδ
n = o(n−pαS/2). For

the nonlinear term we note that for q = qS = p/2−1
s+(1/2−1/π)

we have λ̃
p−q
n = λ̃

pαS
n =

n−pαS/2(logn)2pαS/2 which is the convergence rate under the sparse regime. To
complete the proof, we apply the Besov embedding 3 of Theorem A.1, noting that,
in the sparse region, we always have π < qD .

The LRD phase. This is the region where α ≤ min(αS,αD). In this case, we
have, for s in the dense setting, n−p/2αD = o(n−p/2α) and, for s in the sparse
setting, n−p/2αS = o(n−p/2α).

7.7. Proof of Theorem 4.8. Let us write

f̃n(x) − f (x)

=
{ ∑

(j,k)∈�1

βj,kψj,k(G(x)) − f (x)

}

+
{ ∑

(j,k)∈�1

β̃j,kI{|β̃j,k| ≥ τ0λn,j }ψj,k(G(x)) − ∑
(j,k)∈�1

βj,kψj,k(G(x))

}

+ ∑
(j,k)∈�1

(β̃j,kI{|β̃j,k| ≥ τ0λn,j } − βj,k){ψj,k(Ĝn(x)) − ψj,k(G(x))}

+ ∑
(j,k)∈�1

βj,k{ψj,k(Ĝn(x)) − ψj,k(G(x))}.

Now, replacing Lemma 7.1 and Proposition 7.2 with Lemma 7.5, we may pro-
ceed as in the proof of Theorem 4.1 to conclude that the second part of the above
decomposition is bounded with the desired rate. The third part is clearly of the
smaller order than the second one. Furthermore, for the bias term we have

∥∥∥∥∑
j>j1

∑
k∈Dj

βj,kψj,k(G(·))
∥∥∥∥
p

Lp(g)

≤ C‖f ◦ G−1‖p

Bδ
p,r

2−j1δp

= O
(
(logn/n)δp/2).

Note that we have a different bound than compared to (7.28), since, here, we
stopped earlier (i.e., 2j1 ∼ √

n/ logn). Nevertheless, comparing the bias term
with the rate in the dense phase, we see that, with the choice δ = s, we have
n−sp/2 < n−sp/(2s+1), if s > 1/2. Furthermore, in the sparse phase, by choosing
δ = s − (1/π − 1/p), we see that the bias is negligible as long as s > 1/π + 1/2.
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Therefore, to finish the proof of Theorem 4.8, it suffices to bound the last part.
We have, by using Hölder inequality,

E
∥∥∥∥ ∑
(j,k)∈�1

βj,k{ψj,k(Ĝn(x)) − ψj,k(G(x))}
∥∥∥∥
p

Lp(g)

≤ E‖Ĝn − G‖p∞
∑

(j,k)∈�1

‖βj,kψ
′
j,k(G(·))‖p

Lp(g)

= O(n−p/2)
∑

(j,k)∈�1

2j (3p/2−1)|βj,k|p

= O(n−p/2)
∑
j≤j1

2jp2−jδp

(
2jp(δ+1/2−1/p)

∑
k

|βj,k|p
)

= O
(
n−p/22j1p(1−δ))‖f ◦ G−1‖p

Bδ
p,∞

= O

(
n−p/2

(
n

logn

)p(1−δ)/2)
‖f ◦ G−1‖p

Bδ
p,∞

= O(max{n−p/2, n−δp/2})‖f ◦ G−1‖p

Bδ
p,∞

.

If p ≤ π , take δ = s, so that Bs
π,∞ ⊆ Bs

p,∞. The above rate is then O(n−sp/(2s+1))

for s ≥ 1/2. If p > π , take δ = s − (1/π − 1/p). The above rate is max{n−p/2,

n−(s−(1/π−1/p))p/2} and is smaller than n−pαS/2 as long as s > 1/2 + 1/π .

REMARK 7.6. Let us consider

F = {fj,k = βj,kψj,k, j ≥ 1, k = 0, . . . ,2j − 1},
where βj,k = 2−j (s+1/2−1/π), and we assume that βj,k are known. We recover the
function fj,k by using the estimator βj,kψj,k(Ĝn(·)). Its expected weighted mean
square loss, E‖ · ‖2

L2(g)
, is

β2
j,kE

[∫
|ψj,k(Ĝn(x)) − ψj,k(G(x))|2g(x) dx

]
.

By considering the first term in the Taylor expansion, the above expected value is
of the order

E
[∫ {

ψ ′
j,k(G(x))

(
Ĝn(x) − G(x)

)}2
g(x) dx

]

∼
∫

{ψ ′
j,k(u)}2u(1 − u)du

= 23j

n

∫
{ψ ′(2ju − k)}2u(1 − u)du

= 22j

n

∫
{ψ ′(v)}2

(
v + k

2j

)(
1 − v + k

2j

)
dv.
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Take k = 2j/2. Then, the above expression is of the order 23j/2/n. Now, if we
choose j ∼ n

logn
, then the expected weighted mean square loss is of the order

β2
j,k2j/2 2j

n
∼ 2−2j (s+1/2−1/π)2j/2 1

logn
∼ n−2(s+1/4−1/π) × log term.(7.32)

Choose, for simplicity, π = 1. Since also p = 2, there is no sparse phase and the
only restriction (in the Theorem 4.1) in the dense phase is s > 1. However, we
note that the rate in (7.32) is of the smaller order than n−2s/(2s+1) if and only
if s < 3

8 − 1
8

√
33 or s ≥ 3

8 + 1
8

√
33 > 1. Consequently, we cannot stop the fully

adaptive estimator at 2j1 ∼ n
logn

and keep the same restriction on s, as in the case
of the partially adaptive one.

APPENDIX: BESOV EMBEDDING IN lq,∞ SPACES

We give a simplified version of Theorem 6.2 [18], when the dimension d = 1
and σj = 1. Let μ will denote the measure such that for j ∈ N, k ∈ N,

μ{(j, k)} = ‖ψj,k‖p
p = 2j (p/2−1)‖ψ‖p

p,(A.1)

lq,∞ :=
{
f = ∑

j,k

βj,kψj,k,

(A.2)

‖f ‖lq,∞ := sup
λ>0

λqμ{(j, k) : |βj,k| > λ} < ∞
}

and

lq :=
{
f = ∑

j,k

βj,kψj,k ∈ Lp,‖f ‖lq :=
( ∑

j,k∈Aj

|βj,k|qμ{(j, k)}
)1/q

< ∞
}
,

where Aj is a set of cardinality proportional to 2j .

THEOREM A.1. Let 0 < p < ∞,0 ≤ s ≤ ∞ be fixed and let qD = p/

(2s + 1):

1. If π > qD , then for all r , 0 < r ≤ ∞, Bs
π,r ⊂ Bs

π,∞ ⊂ lqD,∞.

2. If π = qD , then for all r , 0 < r ≤ π , Bs
π,r ⊂ Bs

π,π ⊂ lπ . Moreover for r > π ,
we have:

- If p = 2 then Bs
π,r ⊂ lπ .

- If p > 2 then for all r > p, Bs
π,r ⊂ Bs

π,∞ ⊂ lr .

3. If 2/(2s + 1) < π < qD , for all 0 < r ≤ ∞, Bs
π,r ⊂ Bs

π,∞ ⊂ lqS,∞, where

qS = p/2−1
s+(1/2−1/π)

.
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