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GIBBSIANNESS AND NON-GIBBSIANNESS IN DIVIDE
AND COLOR MODELS

BY ANDRÁS BÁLINT

VU University Amsterdam

For parameters p ∈ [0,1] and q > 0 such that the Fortuin–Kasteleyn

(FK) random-cluster measure �Z
d

p,q for Zd with parameters p and q is unique,

the q-divide and color [DaC(q)] model on Zd is defined as follows. First, we

draw a bond configuration with distribution �Z
d

p,q . Then, to each (FK) cluster
(i.e., to every vertex in the FK cluster), independently for different FK clus-
ters, we assign a spin value from the set {1,2, . . . , s} in such a way that spin
i has probability ai .

In this paper, we prove that the resulting measure on spin configurations is
a Gibbs measure for small values of p and is not a Gibbs measure for large p,
except in the special case of q ∈ {2,3, . . .}, a1 = a2 = · · · = as = 1/q, when
the DaC(q) model coincides with the q-state Potts model.

1. Introduction. The random-cluster representations of various models have
played an important role in the study of physical systems and phase transitions.
They provide a different viewpoint for physical models and many problems in
the Ising and Potts models can indeed be solved by using their random-cluster
representations (see, e.g., [10, 11, 15]).

For β ≥ 0 and an integer q ≥ 2, a spin configuration in the q-state Potts model
at inverse temperature β can be obtained as follows. Draw a bond configuration
according to a random-cluster measure with parameters p = 1 − e−2β and q (for
definitions, see Section 2), then assign to each vertex a spin value from the set
{1,2, . . . , q} in such a way that all spins have equal probability and that vertices
that are connected in the bond configuration get the same spin. If the spin is chosen
from a set {1,2, . . . , s} with an integer 1 < s < q and the probability of spin i is
ki/q with positive integers k1, k2, . . . , ks such that

∑s
i=1 ki = q , then we get the

so-called fuzzy Potts model [18, 25]. Recent papers (see [1, 2, 9, 12, 16, 17, 21])
have shown that generalizations of the above constructions with different values of
q and s, as well as more general rules of spin assignment, are also of interest. From
a mathematical viewpoint, such models are natural examples of a dependent site
percolation model with a simple definition but nontrivial behavior. The study of
such models may also lead to a better understanding of models of primary physical
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importance, as was the case in [2], where an informative, new perspective on the
high temperature Ising model on the triangular lattice was given.

The model treated here is defined as follows. Let G = (V, E ) be a (finite or
infinite) locally finite graph. Fix parameters p ∈ [0,1], q > 0 in such a way that
there exists exactly one random-cluster measure for G with parameters p and q .
We denote this measure by �G

p,q . Also, fix an integer s ≥ 2 and a1, a2, . . . , as ∈
(0,1) such that

∑s
i=1 ai = 1, and define the single-spin space S = {1,2, . . . , s}

and the state space �G = �G
C × �G

D with �G
C = SV and �G

D = {0,1}E . Let Y be
a random bond configuration taking values in �G

D with distribution �G
p,q . Given

Y = η for some η ∈ �G
D , we construct a random �G

C -valued spin configuration
X by assigning spin i ∈ S with probability ai to each connected component in η

(i.e., the same spin i to each vertex in the component), independently for different
components. We write PG

p,q,(a1,a2,...,as )
for the joint distribution of (X,Y ) on �G

and μG
p,q,(a1,a2,...,as )

for the marginal of PG
p,q,(a1,a2,...,as)

on �G
C . This definition is a

slight generalization of the fractional fuzzy Potts model defined in [16], page 1156
(see also [1], Section 1.2). However, we shall call this model the q-divide and
color [DaC(q)] model to emphasize that we look at it as a generalization of the
model introduced in [17] by Häggström [which is the DaC(1) model in the present
terminology], rather than of the fuzzy Potts model of [18, 25].

Let us now consider the (hypercubic) lattice with vertex set Zd and edge set E d

with edges between vertices at Euclidean distance 1. With an abuse of notation,
we shall denote this graph by Zd and the sets �Zd

D ,�Zd

C and �Zd
by �D,�C

and �, respectively. The present work is focused on the Gibbs properties and k-
Markovianness of the measure μZd

p,q,(a1,a2,...,as )
in d ≥ 2 dimensions. Since the

cases p = 0 and p = 1 are trivial, we henceforth assume that p ∈ (0,1). We only
give results for q ≥ 1 since much more is known about random-cluster measures
with q ≥ 1 than with q < 1.

We shall prove that, except in the special case of q = s and a1 = a2 = · · · = as

[when the DaC(q) model coincides with the q-state Potts model on Zd at inverse
temperature β = −1/2 log(1 − p)], the DaC(q) model is not k-Markovian for
any k. For large values of p, μZd

p,q,(a1,a2,...,as)
is not even quasilocal and is therefore

not a Gibbs measure, again with the exception of the Potts case. This shows that
the Gibbsianness of the Potts model at low temperatures is very sensitive with re-
spect to perturbations in the assignment of the spin probabilities; even the smallest
change makes the model nonquasilocal. By demonstrating the special role of the
q-state Potts Gibbs measure among DaC(q) models, our result supports the view
expressed in [5, 6] that, especially at low temperatures, Gibbsianness of measures
is the exception rather than the rule. For a related general result, see [20], where
Israel proved that in the set of all translation invariant measures, Gibbsianness is
exceptional in a topological sense. However, if p is small enough, then Gibbsian-
ness does hold. The proof of this fact uses the idea that at small values of p [which
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correspond to high temperatures in the (fuzzy) Potts model], the DaC(q) model is
close in spirit to independent site percolation on Zd .

These results are in line with those in [18] (see also [25] and [19]) concerning
the fuzzy Potts model and, in some cases, essentially the same proofs work in the
current, more general situation. Therefore, in some instances, only a sketch of the
proof is given and the reader is referred to [18] for the details. Note, however,
that such similarities are not immediate from the definitions of the models. More
importantly, in the DaC(q) model, a distinction must be made between the case
when ai ≥ 1/q for all i and when there exists some j with aj < 1/q . In the former
(of which the fuzzy Potts model is a special case), a rather complete picture can be
given, whereas in the latter, there is an interval in p where we do not know whether
μZd

p,q,(a1,a2,...,as)
is a Gibbs measure.

Finally, we give a sufficient (but not necessary) condition for the almost sure
quasilocality of μZd

p,q,(a1,a2,...,as)
and, as an application, we obtain this weak form

of Gibbsianness in the two-dimensional case for a large range of parameters. Some
intuition underlying our main results will be described after Remark 3.8.

2. Definitions and main results.

2.1. Random-cluster measures. In this section, we recall the definition of
Fortuin–Kasteleyn (FK) random-cluster measures and those properties of these
measures that will be important throughout the rest of the paper. For the proofs
and much more on random-cluster measures, see, for example, [14].

DEFINITION 2.1. For a finite graph G = (V, E ) and parameters p ∈ [0,1] and
q > 0, the random-cluster measure �G

p,q is the measure on �G
D which assigns to a

bond configuration η ∈ �G
D the probability

�G
p,q(η) = qk(η)

ZG
p,q

∏
e∈E

pη(e)(1 − p)1−η(e),(1)

where k(η) is the number of connected components in the graph with vertex set V
and edge set {e ∈ E :η(e) = 1} (we call such components FK clusters throughout,
edges with state 1 open and edges with state 0 closed), and ZG

p,q is the appropriate
normalizing factor.

This definition is not suitable for infinite graphs. In that case, we shall require
that certain conditional probabilities are the same as in the finite case. The relevant
definition, given below, will formally contain conditioning on an event with proba-
bility 0, which should be understood as conditioning on the appropriate σ -algebra.
We shall frequently use this simplification in order to keep the notation as simple
as possible.
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A graph is called locally finite if every vertex has a bounded degree. We shall
denote bond configurations throughout by η and ζ . For the restriction of a bond
configuration η to an edge set H , we write ηH . For vertices v and w, we denote the
edge between v and w by 〈v,w〉. The following definition is taken from [18] and
its equivalence with a more common definition (where arbitrary finite edge sets
and not only single edges are considered) is stated, for example, in Lemma 6.18
of [11].

DEFINITION 2.2. For an infinite, locally finite graph G = (V, E ) and parame-
ters p ∈ [0,1], q > 0, a measure φ on �G

D is called a random-cluster measure for
G with parameters p and q if, for each edge e = 〈x, y〉 ∈ E and edge configuration
ζ ∈ {0,1}E\{e} outside e, we have that

φ
({η ∈ �G

D :η(e) = 1} | {
η ∈ �G

D :ηE\{e} = ζ
}) =

⎧⎪⎨
⎪⎩

p, if
ζ

x ↔ y,
p

p + (1 − p)q
, otherwise,

where
ζ

x ↔ y denotes that there exists a path of edges between x and y in which
every edge has ζ -value 1.

It is not difficult to prove that one gets the same conditional probabilities for
random-cluster measures on finite graphs, so Definition 2.2 is a reasonable exten-
sion of Definition 2.1 to infinite graphs.

It is not clear from the definition that such measures exist. However, for Zd and
q ≥ 1, two random-cluster measures can be constructed as follows. For a vertex
set H ⊂ Zd , let ∂H denote the vertex boundary of the set, that is, ∂H = {v ∈
Zd \ H :∃w ∈ H such that 〈v,w〉 ∈ E d}. Define, for n ∈ {1,2, . . .}, the set 
n =
{−n, . . . , n}d and the graph Gn = (Vn, En) with vertex set Vn = 
n ∪ ∂
n and
edge set En = {e ∈ E d : both endvertices of e are in Vn}. For n ∈ {1,2, . . .}, let Wn

be the event that all edges with both endvertices in ∂
n are open and let �
Gn,1
p,q be

the measure �
Gn
p,q conditioned on Wn. Then both �

Gn
p,q and �

Gn,1
p,q converge weakly

as n → ∞; we denote the limiting measures by �Zd ,0
p,q and �Zd ,1

p,q , respectively.

�Zd ,0
p,q is called the free, and �Zd ,1

p,q the wired, random-cluster measure for Zd with
parameters p and q . These measures are indeed random-cluster measures in the
sense of Definition 2.2, moreover, they are extremal among such measures in the
following sense.

A natural partial order on the set �D = {0,1}E d
of edge configurations is given

by defining η′ ≥ η for η,η′ ∈ �D if, for all e ∈ E d , η′(e) ≥ η(e). We call a function
f :�D → R increasing if η′ ≥ η implies that f (η′) ≥ f (η). For probability mea-
sures φ,φ′ on �D , we say that φ′ is stochastically larger than φ if, for all bounded
increasing measurable functions f :�D → R, we have that∫

�D

f (η)dφ′(η) ≥
∫
�D

f (η) dφ(η).
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For later purposes, we remark that by Strassen’s theorem [28], this is equivalent
to the existence of an appropriate coupling of the measures φ′ and φ, that is, the
existence of a probability measure Q on �D × �D such that the marginals of Q

on the first and second coordinates are φ′ and φ, respectively, and Q({(η′, η) ∈
�D × �D :η′ ≥ η}) = 1.

It is well known that �Zd ,0
p,q is the stochastically smallest, and �Zd ,1

p,q the stochas-
tically largest, random-cluster measure for Zd with parameters p and q . Therefore,
there exists a unique random-cluster measure for Zd with parameters p and q if
and only if

�Zd ,0
p,q = �Zd ,1

p,q .(2)

This is the case for any fixed q ≥ 1, except (possibly) for at most countably many
values of p. It is widely believed that for any q ≥ 1, there is at most one excep-
tional p, which can only be the critical value pc(q, d) = sup{p :�Zd ,0

p,q ({η ∈ �D : 0
is in an infinite FK cluster in η}) = 0}, where 0 denotes the origin in Zd . It is not
difficult to show that the choice of �Zd ,0

p,q in the definition is not crucial. That is,
for any random-cluster measure φ for Zd with parameters p and q , we have that

φ({η ∈ �D : 0 is in an infinite FK cluster in η})
{= 0, if p < pc(q, d),

> 0, if p > pc(q, d).

For the rest of the paper, we will assume, without further mention, that the para-
meters d,p, q for the DaC(q) model on Zd are always chosen in such a way that
(2) holds, and we will denote the unique random-cluster measure by �Zd

p,q .

Another important feature of the random-cluster measures �Zd ,0
p,q and �Zd ,1

p,q

with q ≥ 1 is that they satisfy the FKG inequality for increasing events [8] (an
event A ⊂ �D is called increasing if its indicator function is increasing, that is, if
η ∈ A and η′ ≥ η implies that η′ ∈ A). This, in particular, means that for d ≥ 2,
p ∈ [0,1], q ≥ 1, any edge set E ⊂ E d , configuration ζ ∈ {0,1}E on E and in-
creasing events A1,A2 ⊂ �D , we have, letting B = {η ∈ �D :ηE = ζ }, that

�Zd ,0
p,q (A1 ∩ A2 | B) ≥ �Zd ,0

p,q (A1 | B)�Zd ,0
p,q (A2 | B).(3)

Finally, for our main result, we also need to consider the critical value in half-
spaces. Let H+ = H+

d denote the subset of Zd which consists of those vertices
whose first coordinate is strictly positive, let Ẽ ⊂ E d denote the set of edges that are
incident to at least one vertex in Zd \ H+ and denote the vertex (1,0,0, . . . ,0) ∈ Zd

by u1. Also, consider the event AH+ = {η ∈ �D :u1 is in an infinite open path in η

which is contained in H+}. For q ≥ 1, we define pH
c (q, d) = sup{p :�Zd ,0

p,q (AH+ |
{η ∈ �D :η

Ẽ
≡ 0}) = 0}.

Using (3), it is easy to see that pH
c (q, d) ≥ pc(q, d). Equality of the two critical

values for q = 1 was proven by Barsky, Grimmett and Newman [3], for q = 2
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by Bodineau [4] and for very large values of q , it follows from the Pirogov–Sinai
theory (see the last paragraph of Section 2.3 in [4]). For general q ≥ 1, equality has
been conjectured [4, 18, 27, 29], but no definite result has been established thus far.
However, an upper bound pH

c (q, d) ≤ pc(1,d)q
pc(1,d)q+1−pc(1,d)

can easily be given, using

the fact that for q ≥ 1, �Zd ,0
p,q conditioned on {η ∈ �D :η

Ẽ
≡ 0} is stochastically

larger on E d \ Ẽ than �
Zd ,0
p/(p+(1−p)q),1, and the fact that pH

c (1, d) = pc(1, d). Note

that pc(1, d) is the critical value for Bernoulli bond percolation on Zd . It is well
known (see, e.g., [13]) that for all d ≥ 2, 0 < pc(1, d) < 1. This implies that the
above upper bound for pH

c (q, d) is nontrivial.

2.2. Main results. Before stating the main results, let us give the relevant def-
initions. In this section, μ denotes a probability measure on �C = SZd

. Spin con-
figurations will be denoted throughout by ξ, σ and κ , and the restriction of a spin
configuration ξ to a vertex set W by ξW . For a set W ⊂ Zd and a spin configura-
tion σ ∈ SW on W , we define Kσ

W = {ξ ∈ �C : ξW = σ }. We shall use A ⊂⊂ B to
denote that “A is a finite subset of B” throughout. We denote the graph theoretic
distance on Zd by dist and define the distance between a vertex v ∈ Zd to a vertex
set H ⊂ Zd by dist(v,H) = min{dist(v,w) :w ∈ H }. For k ∈ {1,2, . . .}, let ∂kH

denote the k-neighborhood of H , that is, ∂kH = {v ∈ Zd : 1 ≤ dist(H,v) ≤ k}.
Note that ∂1H = ∂H .

We usually want to view the DaC(q) model as a dependent spin model on Zd , in
which the only role of the edge configuration is to introduce the dependence. One
of the first questions which naturally arises concerning a spin model is whether the
finite energy property of [26] holds. This turns out to be the case; moreover, we
can even prove a stronger form of it, called uniform nonnullness. The proofs of all
statements in this section will be given in Section 4.

DEFINITION 2.3. μ is called uniformly nonnull if there exists an ε > 0 such
that for all v ∈ Zd , m ∈ S and σ ∈ SZd\{v}, we have that

μ
(
Km{v} | Kσ

Zd\{v}
) ≥ ε.

PROPOSITION 2.4. For all d ∈ {1,2, . . .}, q ≥ 1, p ∈ [0,1) and arbitrary val-
ues of the other parameters, the measure μZd

p,q,(a1,...,as)
is uniformly nonnull.

The concept of k-Markovianness is concerned with the following question: con-
ditioning on a spin configuration outside a set W , do vertices farther than k from
W have any influence on the spin configuration in W ?

DEFINITION 2.5. For k ∈ {1,2, . . .}, μ is called k-Markovian if, for all W ⊂⊂
Zd , κ ∈ SW and σ,σ ′ ∈ SZd\W such that σ∂kW = σ ′

∂kW
, we have that

μ(Kκ
W | Kσ

Zd\W) = μ(Kκ
W | Kσ ′

Zd\W).
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A weaker notion is that of quasilocality, where the above conditional probabili-
ties do not need to be equal for any k; the only requirement is that their difference
tends to 0 as k → ∞. Due to the compactness of SZd

in the product topology, this
amounts to the following definition.

DEFINITION 2.6. μ is called quasilocal if, for all W ⊂⊂ Zd , κ ∈ SW and
σ ∈ SZd\W , we have that

lim
k→∞ sup

σ ′∈Zd\W
σ ′

∂kW =σ∂kW

|μ(Kκ
W | Kσ

Zd\W) − μ(Kκ
W | Kσ ′

Zd\W)| = 0.

If the above equation holds for μ-almost all σ ∈ SZd\W , then μ is called almost
surely quasilocal.

Finally, we need to say what we mean by Gibbsianness. Instead of the usual
definition with absolutely summable interaction potentials (see, e.g., [6, 10]), we
shall use a well-known characterization (see [6], Theorem 2.12), namely that μ is
a Gibbs measure if and only if it is quasilocal and uniformly nonnull.

We are now ready to state our main result concerning k-Markovianness and
Gibbsianness of the DaC(q) model. The cases p = 0,1 are trivial, so we as-
sume that p ∈ (0,1). For fixed q , s and a1, . . . , as , recall that S = {1,2, . . . , s}
and define S1/q = {i ∈ S :ai = 1/q}. The case S = S1/q is well understood since
S = S1/q implies that s = q and a1 = a2 = · · · = as , in which case the procedure
defining the DaC(q) model gives the random-cluster representation of the Potts
model. Therefore, for all p ∈ (0,1), μZd

p,q,(1/q,1/q,...,1/q) equals a Gibbs measure

for the q-state Potts model on Zd [at inverse temperature β = −1/2 log(1 − p)].
It follows immediately from the standard definition of Potts Gibbs measures
with a Hamiltonian (see, e.g., [11] for the definition) that all such measures are
Markovian (i.e., 1-Markovian). For an alternative proof of the Markovianness of
μZd

p,q,(1/q,1/q,...,1/q), see Remark 3.8. If S �= S1/q , let � ∈ S be an (for concreteness,
the smallest) index such that a� = min{ai : i ∈ S \ S1/q}.

THEOREM 2.7. Assume that d ≥ 2, q ≥ 1 and S �= S1/q . We then have the
following.

1. For any values of p,a1, . . . , as ∈ (0,1), the measure μZd

p,q,(a1,...,as)
is not k-

Markovian for any k ∈ {1,2, . . .}.
2. If a� > 1/q , then:

(a) for p < pc(qa�, d), μZd

p,q,(a1,...,as)
is quasilocal; but,

(b) for p > pH
c (qa�, d), it is not quasilocal.

3. If a� < 1/q , then:
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(a) if p <
pc(1,d)qa�

pc(1,d)qa�+1−pc(1,d)
, then μZd

p,q,(a1,...,as)
is quasilocal; whereas,

(b) if p > pc(1, d), it is not.

Combining Theorem 2.7 with Theorem 2.4 and the characterization of Gibbs
measures mentioned earlier, we arrive at the following result.

COROLLARY 2.8. For S = S1/q and in cases 2(a) and 3(a) of Theorem 2.7,

the measure μZd

p,q,(a1,...,as)
is a Gibbs measure. However, in cases 2(b) and 3(b) of

Theorem 2.7, μZd

p,q,(a1,...,as)
is not a Gibbs measure.

To demonstrate the fundamental difference between the q-state Potts model and
other DaC(q) models, let us consider the case with s = q − 1 and a1 = a2 =
· · · = as = 1

q−1 . Intuitively, for very large values of q , the difference between
this scenario and the case where S = S1/q should vanish. Nevertheless, while

μZd

p,q,(1/q,1/q,...,1/q) is a Gibbs measure for any p and q , Corollary 2.8 gives that
there exists a constant c = c(d) ∈ (0,1) such that for all q ∈ {3,4, . . .} and p > c,
μZd

p,q,(1/(q−1),1/(q−1),...,1/(q−1)) is not a Gibbs measure. This result might seem to
contradict Theorem 2.9 in [24], which implies that any sufficiently fine local coarse
graining preserves the Gibbs property of the q-state Potts model. Note, however,
that an arbitrarily fine coarse graining is available only when the local state space
is continuous, which is not the case here.

The question of whether quasilocality is “seriously” violated in cases where
μZd

p,q,(a1,...,as )
is not a Gibbs measure (i.e., whether “bad” configurations are ex-

ceptional or they actually occur) is related to that of percolation by the following
statement, which is a generalization of Proposition 3.7 in [17].

PROPOSITION 2.9. Consider the event E∞ = {ξ ∈ �C : ξ contains an infinite
connected component of equal spins}. If the parameters p ∈ [0,1], q ≥ 1, s ∈
{2,3, . . .} and a1, . . . , as ∈ (0,1) of the DaC(q) model are chosen in such a way
that

μZd

p,q,(a1,...,as )
(E∞) = 0,(4)

then μZd

p,q,(a1,...,as)
satisfies almost sure quasilocality.

It is easy to see that (4) is not a necessary condition for almost sure quasilocal-
ity. For instance, one can take d ≥ 2, q ≥ 1, p = 0, s = 2 and an a1 < 1 which is
greater than the critical value for Bernoulli site percolation on Zd . Then, although
(4) fails, μZd

0,q,(a1,a2)
is Markovian (and therefore obviously almost surely quasilo-

cal). Despite this, Proposition 2.9 is not useless. We shall demonstrate this below
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by giving an application in the two-dimensional case. Häggström’s results in Sec-
tion 3 of [16] imply that for d = 2, q ≥ 2 and p < pc(q, d), if ai ≤ 1/2 for all
i ∈ S, then (4) holds. Using the main result in [21], this can be extended to d = 2,
q ≥ 1 and p < pc(q, d) with the same proof. Combining this with Proposition 2.9,
we obtain almost sure quasilocality when d = 2 for these parameters.

COROLLARY 2.10. If q ≥ 1,p < pc(q,2) and ai ≤ 1/2 for all i ∈ S, then
μZ2

p,q,(a1,...,as)
is almost surely quasilocal.

3. Useful tools. Here, we collect the lemmas needed for the proofs of the
results in Section 2.2. The statements of the most important ones, Lemma 3.3 and
Corollary 3.7, are proved for finite graphs first, then a limit is taken. We will have
an appropriate limiting procedure only for q ≥ 1 and this is the reason why we
need to restrict our attention to this case in all our results. Throughout this section
and the next, we will use the following notation. For a set W ⊂ Zd and a spin
configuration σ ∈ SW on W , we define Cσ

W = {(ξ, η) ∈ � : ξW = σ }. Analogously,

for E ⊂ E d and a bond configuration ζ ∈ {0,1}E on E, we define D
ζ
E = {(ξ, η) ∈

� :ηE = ζ }.
For fixed parameters s ∈ {2,3, . . .}, p, a1, a2, . . . , as and q ≥ 1, the measure

PZd

p,q,(a1,...,as)
can be obtained as a limit as follows. Let Gn = (Vn, En) be as in Sec-

tion 2.1. Consider the DaC(q) model on Gn with the given parameters as defined
in the Introduction. The corresponding sequence of measures P

Gn

p,q,(a1,...,as )
then

converges to PZd

p,q,(a1,...,as)
as n → ∞, in the sense that probabilities of cylinder

sets converge. Note that q ≥ 1 is needed to ensure the convergence of �
Gn
p,q to the

(unique) random-cluster measure �Zd

p,q ; see Section 2.1.
The next two lemmas, which give the conditional edge distribution in the

DaC(q) model given any spin configuration, are of crucial importance for the
rest of this paper. The statements (and the proofs) are analogs of Proposition 5.1
and Theorem 6.2 in [18]. For a graph G = (V, E ) (where V and E are finite or
V = Zd , E = E d ) and a spin configuration σ ∈ �G

C , we define, for all i ∈ S, the
vertex sets V σ,i = {v ∈ V :σ(v) = i}, edge sets E σ,i = {e = 〈x, y〉 :x, y ∈ V σ,i},
E σ,diff = E \ ⋃s

i=1 E σ,i and graphs Gσ,i = (V σ,i, E σ,i).

LEMMA 3.1. Let G = (V, E ) be a finite graph. Fix parameters p ∈ [0,1],
q > 0, s ∈ {2,3, . . .}, a1, a2, . . . , as ∈ (0,1) such that

∑s
i=1 ai = 1 and an arbitrary

spin configuration σ ∈ SV , and define the event A = {(ξ, η) ∈ �G : ξ = σ }. We then
have have that:

(a) for all e ∈ E σ,diff, PG
p,q,(a1,...,as)

({(ξ, η) ∈ �G :η(e) = 0} | A) = 1;

(b) for all i ∈ S, independently for different values of i, on the set {0,1}E σ,i
, the

conditional distribution of PG
p,q,(a1,...,as)

given A is the random-cluster measure

�Gσ,i

p,qai
.
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PROOF. Statement (a) is immediate from the definition of the model. Now, let
η ∈ �G

D be such that η(e) = 0 for all e ∈ E σ,diff. Denote by kσ,i(η) the number of
connected components in η that have spin i in σ and note that k(η) = ∑s

i=1 kσ,i(η).
Using this observation, (1) and a rearrangement of the factors, we obtain that

P((σ, η)) = �G
p,q(η)

s∏
i=1

a
kσ,i (η)
i

= (1 − p)|E σ,diff|

ZG
p,q

s∏
i=1

(
(qai)

kσ,i (η)
∏

e∈E σ,i

pη(e)(1 − p)1−η(e)

)
,

where we have written P for PG
p,q,(a1,...,as)

and | · | for cardinality. It follows that

PG
p,q,(a1,...,as)

((σ, η) | A) =
s∏

i=1

�Gσ,i

p,qai
(ηE σ,i )

since the factor
(1−p)|E σ,diff| ∏s

i=1 ZGσ,i

p,qai

ZG
p,qμG

p,q,(a1,...,as )(σ )
is constant in η and, thus, it must be 1 to give

a probability measure. This proves statement (b). �

REMARK 3.2. Let σ ∈ SV and A ⊂ �G be as in Lemma 3.1. The fact that
random-cluster measures factorize on disconnected graphs provides a simple way
of drawing a random bond configuration Y with distribution PG

p,q,(a1,...,as )
given A.

First, set Y(e) = 0 for all e ∈ E σ,diff. Then choose any component C = (VC, EC) in
the graph (V, E \ E σ,diff). Note that C is a maximal monochromatic component in
G (with respect to σ ); suppose that for all v ∈ VC , σ(v) = i. Then, independently
of everything else, draw YEC

according to the random-cluster measure �C
p,qai

. Re-
peat this procedure with a new component in (V, E \ E σ,diff) until there are no
more such components. Lemma 3.1 and the observation at the beginning of this
paragraph ensure that we get the correct (conditional) distribution.

By using Lemma 3.1 and the limiting procedure for PZd

p,q,(a1,...,as)
, one obtains

analogous statements for Zd in the case q ≥ 1.

LEMMA 3.3. Fix parameters d , p, q ≥ 1, s, (a1, a2, . . . , as) of the DaC(q)

model on Zd and a spin configuration σ ∈ �C . The conditional distribution of P =
PZd

p,q,(a1,...,as)
given Cσ

Zd then assigns value 0 to all edges in E σ,diff and is a random-

cluster measure for Gσ,i with parameters p and qai on E σ,i , independently for
each i. Moreover, for each edge e ∈ E σ,i and almost every edge configuration ζ ∈
{0,1}E d\{e}, we have that

P
({(ξ, η) ∈ � :η(e) = 1} | Cσ

Zd ∩ D
ζ

E d\{e}
) =

⎧⎪⎨
⎪⎩

p, if
ζ

x ↔ y,
p

p + (1 − p)qai

, otherwise.
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PROOF SKETCH. Unless the edge configuration ζ ∈ {0,1}E d\{e} is special, in
the sense that it contains at least two infinite FK clusters or there exists an edge
f ∈ E d \{e} such that changing the state of f in ζ would create at least two infinite
FK clusters, we see, after a certain stage of the limiting construction described at

the beginning of this section, whether or not
ζ

x ↔ y occurs; therefore, an equality
corresponding to the “moreover” part of Lemma 3.3 can be verified by Lemma 3.1
for all further stages of the limiting construction. Since the aforementioned special
edge configurations have �Zd

p,q -measure 0, we are done. For the details, see the
proof of Theorem 6.2 in [18]. �

The next lemma, which is a more general form of Lemma 7.3 in [18], and which
can be proven in the same way, shows that, given edge and spin configurations of
a certain type [such as the ones that we shall use in the proof of Theorem 2.7
parts 1, 2(b), and 3(b); see Figure 2 before Lemma 4.1], the “price of changing
a spin” depends only on the existence or nonexistence of connections in the edge
configuration. Since it appears somewhat specialized and will not be used until
Section 4, the reader might choose to skip it for now.

LEMMA 3.4. Fix parameters d ≥ 2, q ≥ 1, p ∈ [0,1), s and (a1, a2, . . . , as) of
the DaC(q) model and let i, j ∈ S be different spin values. There then exist positive
constants c

i,j
1 = c

i,j
1 (p, q, ai, aj ) and c

i,j
2 = c

i,j
2 (p, q, ai, aj ) such that for any v ∈

Zd with nearest neighbors u1, u2, . . . , u2d and the edges between v and ui denoted
by ei (i ∈ {1,2, . . . ,2d}), we have, for all σ ∈ SZd\{v} and ζ ∈ {0,1}E d\{e1,e2,...,e2d }
satisfying:

1. σ(u1) = σ(u2) = i and σ(u3) = σ(u4) = · · · = σ(u2d) = j , and
2. no two of u3, u4, . . . , u2d are connected in ζ ,

that

PZd

p,q,(a1,...,as)
(Ci{v} | Cσ

Zd\{v} ∩ D
ζ

E d\{e1,...,e2d })

PZd

p,q,(a1,...,as)
(C

j
{v} | Cσ

Zd\{v} ∩ D
ζ

E d\{e1,...,e2d })
=

⎧⎨
⎩ c

i,j
1 , if

ζ
u1 ↔ u2,

c
i,j
2 , otherwise.

The exact values of c
i,j
1 and c

i,j
2 are

c
i,j
1 = p2qai + 2p(1 − p)qai + (1 − p)2(qai)

2

(1 − p)2(qai)2 · ai

aj

·
(

(1 − p)qaj

p + (1 − p)qaj

)2d−2

and

c
i,j
2 = p2 + 2p(1 − p)qai + (1 − p)2(qai)

2

(1 − p)2(qai)2 · ai

aj

·
(

(1 − p)qaj

p + (1 − p)qaj

)2d−2
,
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and this shows that ⎧⎪⎪⎨
⎪⎪⎩

c
i,j
1 > c

i,j
2 if and only if qai > 1,

c
i,j
1 = c

i,j
2 if and only if qai = 1,

c
i,j
1 < c

i,j
2 if and only if qai < 1.

Lemma 3.4 will play a role in proving parts 1, 2(b), and 3(b) of Theorem 2.7.
For the proof of parts 2(a) and 3(a), we will need Lemma 3.10, which is preceded
by a few definitions and another lemma. The next definition is motivated by Corol-
lary 3.7.

DEFINITION 3.5. We call an edge set E = {e1, e2, . . . , ek} a barrier if re-
moving e1, e2, . . . , ek (but not their endvertices) separates the graph Zd into two
or more disjoint connected subgraphs. Note that exactly one of the resulting sub-
graphs is infinite; we call this the exterior of E and denote it by ext(E). We de-
note the vertex set of ext(E) by Vext(E) and the edge set of ext(E) by Eext(E).
We call the union of the finite subgraphs the interior of E and denote it by
int(E). We use Vint(E) and Eint(E) to denote its vertex and edge set, respectively.
E = {e1, e2, . . . , ek} is called a closed barrier in a configuration (ξ, η) ∈ � if E

is a barrier and η(ei) = 0 holds for all i ∈ {1,2, . . . , k} and it is called a quasi-
closed barrier if, for all edges e = 〈x, y〉 ∈ E such that η(e) = 1, it holds that
ξ(x) = ξ(y) ∈ S1/q .

For a vertex set W ⊂ Zd , we define the edge boundary �W of W by �W =
{〈x, y〉 ∈ E d :x ∈ W,y ∈ Zd \ W }. Note that the edge boundary of a union of finite
spin clusters is a closed barrier and that all closed barriers are quasi-closed.

According to Lemma 3.3, the states of edges in spin i clusters where ai = 1/q

are chosen independently of everything else, hence they should play no role in
issues of dependence. We prove a formal statement concerning this in the following
lemma and in Corollary 3.7, we show a way to make use of this feature of the
model. For an event A, we denote the indicator random variable of A by IA.

LEMMA 3.6. Let G = (V, E ) be a finite graph, let V1,V2 ⊂ V be a partition
of V and, for i ∈ {1,2}, define edge sets Ei = {e ∈ E : both endvertices of e are
in Vi} and graphs Gi = (Vi,Ei). Also, define the edge set B = {e ∈ E : e has one
endvertex in V1 and one in V2}, a subset B0 ⊂ B and, for i ∈ {1,2}, Wi as the
set of endvertices of edges in B \ B0 that are in Vi ; see Figure 1. Fix parameters
p,q > 0, s, (a1, a2, . . . , as) of the DaC(q) model on G and a spin configuration
σ ∈ S

W1∪W2
1/q such that for all e = 〈x, y〉 ∈ B \ B0, we have that σ(x) = σ(y).

Considering the events C(B,σ) = {(ξ, η) ∈ �G :ηB0 ≡ 0, ξW1∪W2 = σ }, K1 =
{(ξ, η) ∈ �G1 : ξW1 = σW1}, K2 = {(ξ, η) ∈ �G2 : ξW2 = σW2} and Z(B0) = {η ∈
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FIG. 1. Illustration of the situation considered in Lemma 3.6. The circles represent the vertices in
V1 and the squares represent the vertices in V2. The union of the dotted and dashed edges makes
up B , with the dotted ones being in B0. Accordingly, the black circles represent the vertices in W1
and the black squares represent the vertices in W2.

{0,1}B0
:η ≡ 0}, we have, for each (ξ, η) ∈ �G, that

PG
p,q,(a1,a2,...,as)

((ξ, η) | C(B,σ))

= P
G1
p,q,(a1,a2,...,as)

((ξV1, ηE1) | K1) × P
G2
p,q,(a1,a2,...,as)

((ξV2, ηE2) | K2)

× IZ(B0)(ηB0)
∏

e∈B\B0

pη(e)(1 − p)1−η(e).

This implies, in particular, the conditional independence given C(B,σ) of the ran-
dom configurations on G1 and on G2.

PROOF. Let us fix (ξ, η) ∈ �G. Note that

IC(B,σ)(ξ, η) = IK1(ξV1, ηE1)IK2(ξV2, ηE2)IZ(B0)(ηB0).

Hence, if (ξ, η) /∈ C(B,σ), then we have that both sides of the equation that we
want to prove are 0; thus, for all such configurations, we indeed have equality of
the two sides. Therefore, let us assume that (ξ, η) ∈ C(B,σ). Define the event
A = {(κ, ζ ) ∈ �G: there is no edge e = 〈x, y〉 ∈ E with ζ(e) = 1 and κ(x) �= κ(y)}
and denote the analogously defined subsets of �G1 and �G2 by A1 and A2, re-
spectively. Since (ξ, η) ∈ C(B,σ), we have that

IA(ξ, η) = IA1(ξV1, ηE1)IA2(ξV2, ηE2).

Therefore, if (ξ, η) /∈ A, we have 0 on both sides of the desired equation in Lem-
ma 3.6, by the definition of the model, so let us assume that (ξ, η) ∈ A.

Now, denote by n the total number of FK clusters in η. For all i ∈ S, j ∈ {1,2},
denote the number of FK clusters in η that contain a vertex in Vj with spin i in ξ

but no vertex in Wj by ni
j . For each i ∈ S, denote the number of FK clusters in η

that contain a vertex in W1 ∪ W2 with spin i in ξ by ni
3. Throughout this proof, we
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shall omit the subscripts of the joint measures in the DaC(q) models; for example,
we write PG for the measure PG

p,q,(a1,a2,...,as)
. Since (ξ, η) ∈ C(B,σ)∩A, it imme-

diately follows from the definition of PG and the definition (1) of random-cluster
measures that

PG((ξ, η)) = qn

ZG
p,q

(∏
e∈E

pη(e)(1 − p)1−η(e)

)(
s∏

i=1

a
ni

1+ni
2+ni

3
i

)
.(5)

Note that E = E1 ∪ E2 ∪ B0 ∪ (B \ B0). Since (ξ, η) ∈ C(B,σ) ∩ A, we have
that

∏
e∈B0 pη(e)(1 − p)1−η(e) = (1 − p)|B0|, where | · | denotes cardinality, and

n = ∑s
i=1 ni

1 + ni
2 + ni

3. Furthermore, it is the case that

s∏
i=1

(qai)
ni

1+ni
2+ni

3 =
s∏

i=1

(qai)
ni

1+ni
2

since for all i /∈ S1/q , we have ni
3 = 0, whereas for all i ∈ S1/q , we have

qai = 1, so the factor
∏s

i=1(qai)
ni

3 is indeed 1. Using these observations, we
can factorize the expression in (5). Indeed, denoting by c the quantity (1 −
p)|B0|/(ZG

p,qPG(C(B,σ))) which does not depend on (ξ, η), we have that

PG((ξ, η) | C(B,σ)) = PG((ξ, η))

PG(C(B,σ))

= c

[ ∏
e∈E1

pη(e)(1 − p)1−η(e)
s∏

i=1

(qai)
ni

1

]

×
[ ∏

e∈E2

pη(e)(1 − p)1−η(e)
s∏

i=1

(qai)
ni

2

]

×
[ ∏
e∈B\B0

pη(e)(1 − p)1−η(e)

]
.

The last part of the proof, that is, showing that the expressions between
the first and second pairs of square brackets are c1PG1((ξV1, ηE1) | K1) and
c2PG2((ξV2, ηE2) | K2), respectively, where c1 and c2 are constants (i.e., they do
not depend on ξ or η) will be easy. It is sufficient to show the first of these since the
second one then follows by relabeling V1 and V2. Let n4 denote the total number
of FK clusters in ηE1 and, for each i ∈ S, let ni

5 denote the number of FK clusters
in ηE1 that contain a vertex in W1 with spin i in ξV1 . Since (ξ, η) ∈ C(B,σ) ∩ A,
we have that n4 = ∑s

i=1 ni
1 + ni

5. Similarly as in the paragraph after (5), we have
ni

5 = 0 for all i /∈ S1/q and qai = 1 for all i ∈ S1/q , so

s∏
i=1

(qai)
ni

1+ni
5 =

s∏
i=1

(qai)
ni

1 .
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Denoting Z
G1
p,qPG1(K1) by c1, the above observations imply that

PG1((ξV1, ηE1) | K1) = PG1((ξV1, ηE1))

PG1(K1)

= qn4

c1

∏
e∈E1

pη(e)(1 − p)1−η(e)
s∏

i=1

a
ni

1+ni
5

i

= 1

c1

∏
e∈E1

pη(e)(1 − p)1−η(e)
s∏

i=1

(qai)
ni

1 .

Finally, observe that none of c, c1, c2 depend on (ξ, η), hence the product cc1c2
must be equal to 1 to make PG(· | C(B,σ)) a probability measure. This observa-
tion completes the proof of Lemma 3.6. �

Lemma 3.6, combined with the limiting procedure for PZd

p,q,(a1,...,as)
, yields the

following result, which shows why quasi-closed barriers are useful.

COROLLARY 3.7. Fix parameters d , p, q ≥ 1, s and (a1, a2, . . . , as) of the
DaC(q) model on Zd . Let (X,Y ) be a random configuration in � with distribution
PZd

p,q,(a1,...,as)
, B a barrier and C(B) the event that B is quasi-closed. Then, given

C(B), (XVint(B)
, YEint(B)

) and (XVext(B)
, YEext(B)

) are conditionally independent. In
particular, for a set H ⊂ Zd and a spin configuration σ ∈ SH , we have that the
conditional distribution of (XVint(B)

, YEint(B)
) given C(B) and {(ξ, η) ∈ � : ξH =

σH } is P
int(B)
p,q,(a1,...,as )

conditioned on {(ξ, η) ∈ �int(B) : ξH∩Vint(B)
= σH∩Vint(B)

}.
REMARK 3.8. As a first application of Corollary 3.7, we give a proof of the

Markovianness of the measure μZd

p,q,(1/q,1/q,...,1/q) that does not use the connec-

tion between the DaC(q) and Potts models. Fix a finite subset W of Zd . For any
spin configuration σ ∈ SZd\W outside W , we have that the edge set B = {e ∈ E d : e
has one end-vertex in ∂W and one in ∂2W \ ∂W } is a quasi-closed barrier since,
for each edge e = 〈x, y〉 ∈ B , it is either the case that: σ(x) �= σ(y) and, there-
fore, e is closed; or, σ(x) = σ(y) ∈ S1/q since S = S1/q . Therefore, we have, by

Corollary 3.7, that for any spin configurations σ,σ ′ ∈ SZd\W with σ ′
∂W = σ∂W , the

conditional distributions PZd

p,q,(1/q,1/q,...,1/q) given Kσ
Zd\W and PZd

p,q,(1/q,1/q,...,1/q)

given Kσ ′
Zd\W are the same in SVint(B) × {0,1}Eint(B) . The statement follows.

Corollary 3.7 enables us to describe some of the intuition behind our main re-
sults. Roughly speaking, quasilocality means that, conditioning on a spin config-
uration σ ∈ SZd\H outside a set H , the spin distribution in H does not depend
on spins very far away from H . Corollary 3.7 shows that this is the case if H is
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surrounded by a quasi-closed barrier. In particular, the presence of such a quasi-
closed barrier is automatic if S = S1/q , as was noted in Remark 3.8. It is also easy
to see that if there is no percolation in σ in any spin (i.e., there exists no infinite
connected component of equal spins), then there exists a closed barrier surround-
ing H , namely the edge boundary of the (finite) union of H and the spin clusters
in σ that contain at least one vertex in ∂H . This reasoning will be used in the proof
of Proposition 2.9.

However, if there exists an infinite spin i cluster C in σ with i ∈ S \ S1/q that
contains a vertex in ∂H , then it cannot be decided whether or not a quasi-closed
barrier surrounding H exists just by looking at the spin configuration; one also
needs to check the edge configuration in C. Clearly, if we see an infinite open edge
component in C that contains a vertex in ∂H , then there is no quasi-closed barrier
that surrounds H ∪ ∂H . Since, by Lemma 3.3, the conditional edge distribution in
the spin i cluster C is a random-cluster measure with parameters p and qai , the
question is whether such measures percolate.

Now, recall the definition of � ∈ S which was given immediately before The-
orem 2.7 and consider the case when a� > 1/q . Note that the condition p <

pc(qa�, d), which appears in part 2(a) of Theorem 2.7, ensures that there is no
infinite edge cluster in any spin j cluster where j ∈ S \ S1/q , by the defini-
tion of � and using the well-known fact (see, e.g., [14]) that if q1 ≥ q2, then
pc(q1, d) ≥ pc(q2, d). In Section 4, we will show that for all such p, there ex-
ists a quasi-closed barrier surrounding H given any spin configuration σ ∈ SZd\H
with arbitrarily high probability and, hence, quasilocality holds.

This argument suggests that the best candidate for a spin configuration in which
spins arbitrarily far away from H still have a significant influence on the spin
distribution in H (thereby implying nonquasilocality) are those with an infinite
spin � cluster, and that quasilocality might fail for all p > pc(qa�, d). We have not
managed to prove this, but we get very close by proving nonquasilocality for all
p > pH

c (qa�, d) in Section 4. Indeed, this is equivalent to the full statement under
the widely accepted conjecture that for random-cluster measures, the critical value
and the half-space critical value coincide.

The case where a� < 1/q is more problematic, mainly because the random-
cluster measures with parameters p and qa� then do not have the property of pos-
itive association; in fact, it is easy to see that for such random-cluster measures,
the conditional probability given in Definition 2.2 is nonincreasing in ζ . Since, for
a� > 1/q , positive association plays a role both in proving quasilocality for small
p and in proving nonquasilocality for large p, without it, we must resort to com-
paring the conditional edge configuration given a spin configuration to Bernoulli
bond percolation. This, however, yields worse upper (resp., lower) bounds for the
quasilocality (resp., nonquasilocality) regime, leaving a gap between the bounds.

The following definition will help us to localise quasi-closed barriers.
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DEFINITION 3.9. Let (X,Y ) be an SZd × {0,1}E d
-valued random pair with

distribution PZd

p,q,(a1,...,as )
. Given that (X,Y ) = (ξ, η) for some (ξ, η) ∈ �, let Ŷ ∈

{0,1}E d
be defined by setting, for each e = 〈x, y〉 ∈ E d ,

Ŷ (e) =
{

0, if ξ(x) = ξ(y) ∈ S1/q ,
η(e), otherwise.

We write P̂Zd

p,q,(a1,...,as)
for the induced joint distribution of (X,Y, Ŷ ) on �̂ = SZd ×

{0,1}E d × {0,1}E d
.

The next lemma, which is a generalization of Lemma 9.5 in [18], compares the
conditional distribution of Ŷ given a spin configuration and Ŷ outside a finite edge
set F to a random-cluster measure for Zd with parameters p and qa� in the case
where a� > 1/q , and the conditional distribution of Y given a spin configuration
and Ŷ outside a finite edge set F to Bernoulli bond percolation with parameter

p
p+(1−p)qa�

in the case where a� < 1/q .

LEMMA 3.10. Suppose that q ≥ 1 and S �= S1/q . For any spin configu-

ration σ ∈ SZd
, edge set F ⊂⊂ E d and edge configurations ζ, ζ ′ ∈ {0,1}E d\F

such that ζ ′ ≥ ζ , defining Â = {(ξ, η, η̂) ∈ �̂ : ξ = σ, η̂E d\F = ζ } and A′ = {η ∈
�D :ηE d\F = ζ ′}, we have the following:

1. if a� > 1/q and φ is a random-cluster measure for Zd with parameters p and
qa�, then the conditional distribution of φ given A′ is stochastically larger than
the marginal on Ŷ of P̂Zd

p,q,(a1,...,as)
given Â;

2. if a� < 1/q , then the conditional distribution of the product measure

�
Zd ,1
p/(p+(1−p)qa�),1

given A′ is stochastically larger than the marginal on Y of

P̂Zd

p,q,(a1,...,as)
given Â.

PROOF. We first prove part 1. By Holley’s theorem on stochastic domination
(see [11], Theorem 4.8), it is sufficient to prove that for all a ∈ {0,1}, e = 〈x, y〉 ∈
F , ζg, ζs ∈ {0,1}F\{e} such that ζg ≥ ζs , if we define Bg = {η ∈ �D :ηF\{e} = ζg}
and B̂s = {(ξ, η, η̂) ∈ �̂ : η̂F\{e} = ζs}, then we have that

φ
({η ∈ �D :η(e) ≥ a} | A′ ∩ Bg

)
(6)

is greater than or equal to

P̂Zd

p,q,(a1,...,as)

({(ξ, η, η̂) ∈ �̂ : η̂(e) ≥ a} | Â ∩ B̂s

)
.(7)

This is obvious for a = 0. For a = 1, using the notation (η1;η2) for an edge con-
figuration which agrees with η1 on E d \ F and with η2 on F \ {e}, we have, by
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Definition 2.2 of random-cluster measures, that (6) equals⎧⎪⎨
⎪⎩

p, if x
(ζ ′;ζg)↔ y,

p

p + (1 − p)qa�

, if x
(ζ ′;ζg)
� y.

For (7), we first need to check what the spins of the endvertices x, y of e are in σ .
Indeed, if σ(x) �= σ(y) or σ(x) = σ(y) ∈ S1/q , then (7) = 0 by Definition 3.9. Let
us assume that σ(x) = σ(y) = j /∈ S1/q and denote the maximal monochromatic
component (with respect to σ ) in the graph Zd which contains x by Gx . By Lem-
ma 3.3, the conditional distribution of Y given σ is a random-cluster measure on
Gx with parameters p and qaj . Moreover, since j /∈ S1/q , we have that Ŷ and Y

agree on Gx . Keeping these observations in mind, it follows that (7) equals⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if σ(x) �= σ(y) or σ(x) = σ(y) ∈ S1/q ,

p, if σ(x) = σ(y) /∈ S1/q and x
(ζ ;ζs)↔ y,

p

p + (1 − p)qaj

, if σ(x) = σ(y) = j /∈ S1/q and x
(ζ ;ζs)
� y.

Since, due to the assumption a� ≥ 1/q , we have that

p ≥ p

p + (1 − p)qaj

for all j ∈ S and, by the definition of a�, we have that
p

p + (1 − p)qa�

≥ p

p + (1 − p)qaj

for all j ∈ S \ S1/q , we obtain the desired result by noting that x
(ζ ′;ζg)
� y implies

that x
(ζ ;ζs)
� y.

Part 2 can also be proven by a direct application of Holley’s theorem, noting
that, due to the definition of � and the assumption qa� < 1, we have

p

p + (1 − p)qa�

≥ max
{
p,max

i∈S

p

p + (1 − p)qai

}
. �

Although the set F had to be finite in Lemma 3.10 so that we could use Holley’s
theorem in the proof, it will not be difficult to deduce an analogous statement
corresponding to F = E d ; see below.

COROLLARY 3.11. Suppose that q ≥ 1 and S �= S1/q , and let σ ∈ SZd
be

an arbitrary spin configuration. Defining Â = {(ξ, η, η̂) ∈ �̂ : ξ = σ }, we have the
following:

1. if a� > 1/q , then the wired random-cluster measure �Zd ,1
p,qa�

is stochastically

larger than the marginal on Ŷ of P̂Zd

p,q,(a1,...,as)
given Â;
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2. if a� < 1/q , then the product measure �
Zd ,1
p/(p+(1−p)qa�),1

is stochastically larger

than the marginal on Y of P̂Zd

p,q,(a1,...,as )
given Â.

PROOF. We only give the proof of part 1 since part 2 can be proven anal-
ogously. Assume that a� > 1/q and let φ be a random-cluster measure for Zd

with parameters p and qa�. For n ∈ {1,2, . . .}, let En and Wn be as in Section 2.1
and define φn as φ conditioned on Wn ∩ {η ∈ �D :ηE d\En

≡ 1}. It follows from

Lemma 3.10 that for each n, φn is stochastically larger than the marginal on Ŷ of
P̂Zd

p,q,(a1,...,as)
given Â. On the other hand, φn coincides on En with φ

Gn,1
p,qa� (which

is defined in Section 2.1), so it converges to �Zd ,1
p,qa�

as n → ∞. Since stochastic
domination is preserved under weak limits, this observation completes the proof.

�

Note that if S1/q = ∅, then Ŷ can be replaced by Y in part 1 of Lemma 3.10 and
Corollary 3.11. Also, since Ŷ ≤ Y by definition, we could write Ŷ instead of Y in
part 2.

4. Proofs of the main results. After all of the preparation in Section 3, we are
now ready to prove our main results. The proof of Proposition 2.4 is not difficult.
In fact, one can use the same idea as is used in the proof of Lemma 5.6 in [17],
namely that any vertex can be isolated (i.e., incident to closed edges only) in the
edge configuration (given any spin configuration) with probability bounded away
from 0, in which case it can be assigned any spin in S, independently of everything
else. A formal proof proceeds as follows.

PROOF OF PROPOSITION 2.4. Fix v ∈ Zd , m ∈ S and σ ∈ SZd\{v}, and recall
the definition for W ⊂ Zd of the event Kσ

W ⊂ �C at the beginning of Section 2.2
and of the analogous event Cσ

W ⊂ � at the beginning of Section 3. Denote by Ev

the event that all 2d edges incident to v are closed. We have that

μZd

p,q,(a1,...,as)

(
Km{v} | Kσ

Zd\{v}
) ≥ PZd

p,q,(a1,...,as)

(
Cm{v} | Cσ

Zd\{v} ∩ Ev

)
(8)

× PZd

p,q,(a1,...,as)

(
Ev | Cσ

Zd\{v}
)
.

Obviously (or as a special case of Corollary 3.7), we have that the first term on the
right-hand side of (8) is am since, given Ev , v is assigned a spin independently of
everything else.

On the other hand,

PZd

p,q,(a1,...,as)

(
Ev | Cσ

Zd\{v}
) = ∑

b∈S

PZd

p,q,(a1,...,as )

(
Ev | Cσ

Zd\{v} ∩ Cb{v}
)

× PZd

p,q,(a1,...,as)

(
Cb{v} | Cσ

Zd\{v}
)
.
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Now, whatever value b ∈ S takes, the full spin configuration is given in the first
factor on the right-hand side, so we can apply Lemma 3.3. Under any random-
cluster measure with parameters p and q̃ > 0, the probability of Ev is bounded
away from 0: a lower bound for q̃ ≥ 1 is (1 − p)2d , while for q̃ < 1 it is (1 −

p
p+(1−p)q̃

)2d . Since the parameter q̃ here equals qab for some b, we get the lower
bound

min
{
(1 − p)2d,

(
1 − p

p + (1 − p)q mini∈S ai

)2d}

for the first factor, which is uniform in b. As the PZd

p,q,(a1,...,as)
(Cb{v} | Cσ

Zd\{v}) for

b ∈ S sum to 1, we get the same bound for PZd

p,q,(a1,...,as)
(Ev | Cσ

Zd\{v}).
Combining this with (8) and the remark thereafter, we have that

ε =
(
min
i∈S

ai

)(
min

{
1 − p,1 − p

p + (1 − p)q mini∈S ai

})2d

is a lower bound for μZd

p,q,(a1,...,as)
(Km{v} | Kσ

Zd\{v}). Since ε does not depend on v,
m or σ and is positive for any values of p ∈ [0,1), q ≥ 1 and a1, . . . , as ∈ (0,1),
we conclude that μZd

p,q,(a1,...,as)
is uniformly nonnull for such parameters. �

The proof of Theorem 2.7 consists of many parts. For the proof of parts 1, 2(b)
and 3(b), we use a counterexample that is very similar to the one given in [17, 18]
(see also [7, 22, 23]), defined below. Following the definition, we give Lemma 4.1,
after which it will not be difficult to prove parts 1, 2(b) and 3(b). Finally, we prove
parts 2(a) and 3(a). From this point on, we assume that S �= S1/q . First, recall the
definitions of 
n and � from Sections 2.1 and 2.2, respectively. Fix an arbitrary
spin m ∈ S such that m �= � and define an auxiliary spin configuration σ ∗ ∈ SZd

by
setting, for each x = (x1, x2, . . . , xd) ∈ Zd ,

σ ∗(x) =
⎧⎨
⎩

m, if x1 = 0, |x2| + |x3| + · · · + |xd | = 1
or x1 = −1, |x2| + |x3| + · · · + |xd | > 1,

�, otherwise,

and for k ∈ {1,2, . . .}, spin configurations σk,�, σ k,m ∈ SZd\{0} (see Figure 2) by

σk,�(x) =
{

� for x ∈ Zd \ 
k,
σ ∗(x) otherwise,

and

σk,m(x) =
{

m for x ∈ 
k+1 \ 
k ,
σk,�(x) otherwise.

Denote the two nearest neighbors of 0 in Zd with σ ∗-spin � by u1 = (1,0,

0, . . . ,0) and u2 = (−1,0,0, . . . ,0), the other nearest neighbors by u3, u4,
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� � � � � � � � � m m m m m m m m m

� � � m � � � � � m � � m � � � � m

� � � m � � � � � m � � m � � � � m

� � � � m � � � � m � � � m � � � m

� � � � � � � � m � � � � � � m

� � � � m � � � � m � � � m � � � m

� � � m � � � � � m � � m � � � � m

� � � m � � � � � m � � m � � � � m

� � � � � � � � � m m m m m m m m m

FIG. 2. Restriction of σ 3,� (to the left) and σ 3,m (to the right) to 
4 \ {0} in two dimensions. For
all x ∈ Z2 \ 
4, σ 3,�(x) = σ 3,m(x) = �.

. . . , u2d and for i ∈ {1,2, . . . ,2d}, the edges between 0 and ui by ei . Most of
the work needed for the proof of parts 1, 2(b) and 3(b) of Theorem 2.7 is contained
in the following lemma.

LEMMA 4.1. Fix parameters d ≥ 2, q ≥ 1, p and a1, a2, . . . , as ∈ (0,1) of
the DaC(q) model on Zd in such a way that S �= S1/q . Considering the events
A = {(ξ, η) ∈ �: there exists an open path in ηE d\{e1,e2,...,e2d } between u1 and u2}
and O�,m = {(ξ, η) ∈ � : ξ(0) ∈ {�,m}}, we have the following:

1. if, for a fixed k ∈ {1,2, . . .}, we have that

PZd

p,q,(a1,...,as)

(
A | O�,m ∩ Cσk,�

Zd\{0}
)
> 0,

then μZd

p,q,(a1,...,as)
is not k-Markovian;

2. if there exists γ > 0 such that, for all k ∈ {1,2, . . .},
PZd

p,q,(a1,...,as)

(
A | O�,m ∩ Cσk,�

Zd\{0}
)
> γ,

then μZd

p,q,(a1,...,as)
is not quasilocal.

PROOF. In order to simplify notation, in this proof, we denote PZd

p,q,(a1,...,as)

by P, Cσk,�

Zd\{0} by L = Lk and Cσk,m

Zd\{0} by M = Mk . The first step in the proof is to
derive, for all k ∈ {1,2, . . .}, inequality (10). Consider the expression∣∣P(

C�{0} | L) − P
(
C�{0} | M)∣∣.(9)

Note that we have

P
(
C�{0} | L) = P

(
C�{0} | O�,m ∩ L

)
P(O�,m | L)
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and similarly for M . Using this, we obtain, via basic algebra [i.e., first subtracting,
then adding a dummy term P(C�{0} | O�,m ∩ M)P(O�,m | L) in (9) between the
absolute values and finally using the fact that |a −b| ≥ |a|− |b|], that (9) is greater
than or equal to∣∣P(

C�{0} | O�,m ∩ L
) − P

(
C�{0} | O�,m ∩ M

)∣∣P(O�,m | L)

− |P(O�,m | L) − P(O�,m | M)|P(
C�{0} | O�,m ∩ M

)
.

Since P(O�,m | L) = P(C�{0} | L) + P(Cm{0} | L), we have, by uniform nonnullness

(i.e., Proposition 2.4), that there exists δ > 0 such that, uniformly in k, |P(O�,m |
L)| ≥ δ. Using this observation, noting that P(C�{0} | O�,m ∩M) ≤ 1, that P(O�,m |
L) = P(C�{0} | L) + P(Cm{0} | L) (and similarly for M) and applying the triangle
inequality yields that (9) is greater than or equal to∣∣P(

C�{0} | O�,m ∩ L
) − P

(
C�{0} | O�,m ∩ M

)∣∣δ
− ∣∣P(

C�{0} | L) − P
(
C�{0} | M)∣∣

− ∣∣P(
Cm{0} | L) − P

(
Cm{0} | M)∣∣.

After a rearrangement of the terms, this gives that

2
∣∣P(

C�{0} | L) − P
(
C�{0} | M)∣∣ + ∣∣P(

Cm{0} | L) − P
(
Cm{0} | M)∣∣

(10)
≥ δ

∣∣P(
C�{0} | O�,m ∩ L

) − P
(
C�{0} | O�,m ∩ M

)∣∣.
From now on, we will be working on bounding the right-hand side of (10) from

below. Elementary calculations and an application of Lemma 3.4 with i = �, j = m

and v = 0 show that

P
(
C�{0} | O�,m ∩ L ∩ A

)

= P(C�{0} | O�,m ∩ L ∩ A)

P(Cm{0} | O�,m ∩ L ∩ A)
P

(
Cm{0} | O�,m ∩ L ∩ A

)

= c
�,m
1

(
1 − P

(
C�{0} | O�,m ∩ L ∩ A

))
and therefore

P
(
C�{0} | O�,m ∩ L ∩ A

) = c
�,m
1

c
�,m
1 + 1

.(11)

By similar considerations, we obtain that

P
(
C�{0} | O�,m ∩ L ∩ Ac) = c

�,m
2

c
�,m
2 + 1

(12)
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and that

P
(
C�{0} | O�,m ∩ M

) = P
(
C�{0} | O�,m ∩ M ∩ Ac) = c

�,m
2

c
�,m
2 + 1

.(13)

Using (11) and (12), we get that

P
(
C�{0} | O�,m ∩ L

) = c
�,m
1

c
�,m
1 + 1

P(A | O�,m ∩ L)

+ c
�,m
2

c
�,m
2 + 1

P(Ac | O�,m ∩ L)

(14)

= c
�,m
2

c
�,m
2 + 1

+
(

c
�,m
1

c
�,m
1 + 1

− c
�,m
2

c
�,m
2 + 1

)

× P(A | O�,m ∩ L).

Applying (14) and (13) in (10) yields that, for any k, we have that

2
∣∣P(

C�{0} | Lk) − P
(
C�{0} | Mk)∣∣ + ∣∣P(

Cm{0} | Lk) − P
(
Cm{0} | Mk)∣∣

(15)

≥ δ

∣∣∣∣ c
�,m
1

c
�,m
1 + 1

− c
�,m
2

c
�,m
2 + 1

∣∣∣∣P(A | O�,m ∩ Lk).

Since a� �= 1/q by definition, we have that c
�,m
1 �= c

�,m
2 . This implies that the

first two factors on the right-hand side of (15) are positive constants, neither of
which depends on k. Now, suppose that μZd

p,q,(a1,...,as )
is k-Markovian for some k.

In that case, the left-hand side of (15) is 0 since σ
k,�

k\{0} = σ

k,m

k\{0}, therefore P(A |

O�,m ∩ Lk) = 0. This proves part 1 of Lemma 4.1. Similarly, if μZd

p,q,(a1,...,as)
is

quasilocal, then the limit of the left-hand side of (15) is 0 as k → ∞, which cannot
be the case if P(A | O�,m ∩ Lk) is bounded away from 0, uniformly in k. This
concludes the proof of part 2. �

PROOF OF THEOREM 2.7, PARTS 1, 2(b) AND 3(b). For this proof, recall
the notion of an increasing event on �D (see Section 2.1). Let d ≥ 2, q ≥ 1 and p,
a1, a2, . . . , as ∈ (0,1) be arbitrary parameters of the DaC(q) model on Zd in such a
way that S �= S1/q and let σk,�, A and O�,m be as in Lemma 4.1. For k ∈ {1,2, . . .},
define the edge sets Ed,k = {e ∈ E d : e is incident to 0 or to some v ∈ Zd \ {0} with
σk,�(v) = m}. For a parameter p̃ ∈ (0,1) and each k ∈ {1,2, . . .}, we define an
inhomogeneous bond percolation measure Pp̃,k on �D which assigns value 0 to
all e ∈ Ed,k and, independently to each e ∈ E d \ Ed,k , value 1 with probability p̃

and 0 with probability 1− p̃. It follows from Lemma 3.3 and Definition 2.2 that the
marginal on Y of the conditional distribution PZd

p,q,(a1,...,as)
given O�,m ∩ Cσk,�

Zd\{0}
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is stochastically larger than Pp̃,k with p̃ = p
p+(1−p)qa�

if qa� ≥ 1, and with p̃ = p

if qa� ≤ 1. Therefore, denoting the projection of A on �D by AD (note that AD ⊂
�D is increasing), we have, for any k, that

PZd

p,q,(a1,...,as)

(
A | O�,m ∩ Cσk,�

Zd\{0}
) ≥ Pp̃,k(AD).(16)

Since min{ p
p+(1−p)qa�

,p} > 0 for all p ∈ (0,1), we obviously have, for any fixed
k ∈ {1,2, . . .}, that Pp̃,k(AD) > 0. This proves non-k-Markovianness of the mea-

sure μZd

p,q,(a1,...,as)
according to (16) and part 1 of Lemma 4.1.

For the proof of part 2(b), recall the definition of the vertices u1, u2 ∈ Zd and
edges e1, e2, . . . , e2d ∈ E d (immediately before Lemma 4.1), and the fact that H+
denotes the set of vertices in Zd whose first coordinate is strictly positive. Define
H− as the set of vertices in Zd whose first coordinate is strictly negative. Consider
the events AH+ = {η ∈ �D :∃ an infinite open path in ηH+ which contains u1},
AH− = {η ∈ �D :∃ an infinite open path in ηH− which contains u2}, U = {η ∈
�D : there is at most one infinite open cluster in ηE d\{e1,e2,...,e2d }} and note that
AH+ ∩ AH− ∩ U ⊂ AD .

Now, assume that a� > 1/q . This implies that qa� ≥ 1 and hence the free
random-cluster measure �Zd ,0

p,qa�
exists and is the stochastically smallest random-

cluster measure for Zd with parameters p and qa� (see Section 2.1). Let us denote
by �

(c)
k the measure �Zd ,0

p,qa�
conditioned on the event {η ∈ �D :ηEd,k ≡ 0}. Due

to the aforementioned extremality of �Zd ,0
p,qa�

with respect to stochastic ordering,

Lemma 3.3 implies that the marginal on Y of the measure PZd

p,q,(a1,...,as)
condi-

tioned on O�,m ∩ Cσk,�

Zd\{0} is stochastically larger than �
(c)
k . Therefore, we have

that

PZd

p,q,(a1,...,as )

(
A | O�,m ∩ Cσk,�

Zd\{0}
) ≥ �

(c)
k (AD)

(17)
≥ �

(c)
k (AH+ ∩ AH− ∩ U).

Under the measure �Zd ,0
p,qa�

, the event U has probability 1 and the event one con-

ditions on to obtain �
(c)
k has positive probability, so it follows that �

(c)
k (U) = 1.

Hence, we have that

�
(c)
k (AH+ ∩ AH− ∩ U) = �

(c)
k (AH+ ∩ AH−)

(18)
≥ �

(c)
k (AH+)�

(c)
k (AH−),

by (3), since AH+ and AH− are increasing events.
Recalling from Section 2.1 that Ẽ ⊂ E d is the set of edges that are incident to at

least one vertex in Zd \ H+, we have, again by the FKG inequality, that

�
(c)
k (AH+) ≥ �Zd ,0

p,qa�
(AH+ | {η ∈ �D :η

Ẽ
≡ 0}).(19)
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Similarly, defining the half-space H≥−1 as the set of vertices in Zd whose first
coordinate is at least −1 and denoting by Ẽ′ the set of edges in E d that are incident
to a vertex in H≥−1 \ {u2}, we have, by the FKG inequality, that

�
(c)
k (AH−) ≥ �Zd ,0

p,qa�
(AH− | {η ∈ �D :η

Ẽ′ ≡ 0})
(20)

= p

p + (1 − p)qa�

�Zd ,0
p,qa�

(AH+ | {η ∈ �D :η
Ẽ

≡ 0}).

Here, we have also used the facts that, conditioning on {η ∈ �D :η
Ẽ′ ≡ 0}, AH−

can occur only if the edge between u2 and (−2,0, . . . ,0) is open (which has con-
ditional probability p

p+(1−p)qa�
by Definition 2.2) and that the states of edges

incident to u2 are conditionally independent of the event that (−2,0, . . . ,0) is
in an infinite open edge component in the corresponding half-space. It follows
from (19), (20) and the definition of pH

c (qa�, d) that for all p > pH
c (qa�, d), both

�
(c)
k (AH+) and �

(c)
k (AH−) are bounded away from 0, uniformly in k. Therefore,

by (17) and (18), PZd

p,q,(a1,...,as)
(A | O�,m ∩ Cσk,�

Zd\{0}) is bounded away from 0 for

such values of p, which implies nonquasilocality of μZd

p,q,(a1,...,as)
, by part 2 of

Lemma 4.1. This concludes the proof of part 2(b).
In the case where a� < 1/q , as remarked above, (16) holds with p̃ = p. On the

other hand, if p > pc(1, d), then p̃ > pc(1, d) and, hence, by Lemma 8.2 in [18]
[whose proof is based on a computation similar to (17) and (18)], we have

lim
k→∞Pp̃,k(AD) > 0.

By this, (16) and part 2 of Lemma 4.1, it follows that μZd

p,q,(a1,...,as )
is not quasilo-

cal, proving part 3(b). �

Our proof of part 2(a) of Theorem 2.7, that is, quasilocality of μZd

p,q,(a1,...,as)

for small p when a� > 1/q , will be a straightforward generalization of the proof
of part (i) of Theorem 4.4 in [18]. Although slightly more care is required when
a� < 1/q , a similar argument will also work in that case. Therefore, we will be
able to provide a proof below which deals with both cases simultaneously.

PROOF OF THEOREM 2.7, PARTS 2(a) AND 3(a). For the proof, recall the
definitions of Ŷ and �̂ (Definition 3.9), and, for a set W ⊂ Zd and a spin config-
uration κ ∈ SW , recall the definition of Kκ

W (Section 2.2) and define the anal-
ogous event Ĉκ

W = {(ξ, η, η̂) ∈ �̂ : ξW = κ}. Fix parameters d ≥ 2, q ≥ 1 and
a1, a2, . . . , as ∈ (0,1) of the DaC(q) model on Zd , and p in such a way that
p < pc(qa�, d) if a� > 1/q , and p <

pc(1,d)qa�

pc(1,d)qa�+1−pc(1,d)
if a� < 1/q . Fix an arbi-

trary W ⊂⊂ Zd , κ ∈ SW and ε > 0. We shall show the existence of N = N(ε,W)

such that for all n ≥ N , if σ,σ ′ ∈ SZd\W are spin configurations that agree on
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n \ W , then∣∣μZd

p,q,(a1,...,as)
(Kκ

W | Kσ
Zd\W) − μZd

p,q,(a1,...,as)
(Kκ

W | Kσ ′
Zd\W)

∣∣(21)

is less than or equal to ε.
In order to find such an N , we consider a “dominating measure” φdom

on �D : we define φdom = �Zd ,1
p,qa�

in the case where a� > 1/q and φdom =
�

Zd ,1
p/(p+(1−p)qa�),1

in the case where a� < 1/q . By Corollary 3.11, φdom is sto-
chastically larger than the conditional distribution of the modified random edge
configuration Ŷ given any spin configuration. Note that the parameters are chosen
in such a way that φdom-a.s. there exists no infinite open edge cluster [for the case
a� < 1/q , note that p <

pc(1,d)qa�

pc(1,d)qa�+1−pc(1,d)
ensures that p

p+(1−p)qa�
< pc(1, d)].

Therefore, it is possible to choose an N so large that

φdom({∂W ↔ ∂
N }) ≤ ε,(22)

where {∂W ↔ ∂
N } = {η ∈ �D : there exists a path between ∂W and ∂
N along
which all edges are open in η}. Fix an arbitrary n ≥ N and let σ,σ ′ ∈ SZd\W be
two arbitrary spin configurations such that σ
n\W = σ ′


n\W . An informal overview
of the proof that (21) ≤ ε is as follows.

Let Ŷ (resp., Ŷ ′) be the modified random edge configuration when the spin
configuration σ (resp., σ ′) is given. We would like to show that Ŷ and Ŷ ′ can be
coupled in such a way that there exists a barrier B with a high enough (at least
1 − ε) probability so that: (a) ŶB = Ŷ ′

B ≡ 0; (b) B separates ∂W and ∂
n. By
the definition of Ŷ , a barrier B satisfying (a) is a quasi-closed barrier in the case
where the spin configuration σ is given. Therefore, if B also satisfies (b), then, by
Corollary 3.7, the spin configuration in W does not depend on σZd\
n

⊂ σext(B).
Clearly, the same argument holds for σ ′. Since we have that σ ′


n\W = σ
n\W , we
see that finding a barrier B that satisfies (a) and (b) ensures that the conditional
spin distribution in W is the same, given either of σ or σ ′. Therefore, finding such
a barrier with probability at least 1 − ε yields that (21) ≤ ε.

In order to find such a barrier, we will couple Ŷ and Ŷ ′ together with an auxiliary
random edge configuration Y dom with distribution φdom. We will show below how
one can repeatedly use Lemma 3.10 to simultaneously construct Ŷ , Ŷ ′ and Y dom

with the correct distributions in such a way that Y dom ≥ Ŷ and Y dom ≥ Ŷ ′ hold
at all stages of the construction. By the choice of N in (22), we will find, with
probability 1 − ε, a barrier B satisfying (b) with Y dom

B ≡ 0. The point is that since
Y dom ≥ Ŷ and Y dom ≥ Ŷ ′, this implies that (a) also holds for B , so we are done. It
is important to add that our construction will find an appropriate barrier B when
such a barrier exists by assigning Ŷ -, Ŷ ′- and Y dom-values only to edges in B ∪
Eext(B). Therefore, although Ŷ and Ŷ ′ may take different values on such edges,
the conditional spin distributions given σ and the explored part of Ŷ , respectively,
given σ ′ and the explored part of Ŷ ′ are indeed the same in W ⊂ Vint(B).



GIBBSIANNESS AND NON-GIBBSIANNESS IN DaC(q) MODELS 1635

The formal implementation of this idea proceeds via essentially the same cou-
pling as used in [18], but we give it now for the sake of completeness. We will
define below a probability measure Q on �̂ × �̂ × �D that is a coupling of:

(i) an �̂-valued random triple (X,Y, Ŷ ) with distribution P̂Zd

p,q,(a1,...,as )
condi-

tioned on Ĉσ
Zd\W ;

(ii) an �̂-valued random triple (X′, Y ′, Ŷ ′) with distribution P̂Zd

p,q,(a1,...,as)
con-

ditioned on Ĉσ ′
Zd\W ;

(iii) an �D-valued random edge configuration Y dom with distribution φdom.

It then follows from the coupling inequality (Proposition 4.2 in [11]) that (21) ≤
Q(XW �= X′

W). Hence, showing that Q(XW = X′
W) ≥ 1 − ε would complete the

proof. We define Q in three stages, as follows.

I. Recall that En is the set of edges with both endvertices in 
n ∪ ∂
n. It
follows from Corollary 3.11 and Strassen’s theorem (see Section 2.1) that the set
Q = {μ :μ is a coupling of (i), (ii) and (iii) satisfying that μ(ŶE d\En

≤ Y dom
E d\En

and

Ŷ ′
E d\En

≤ Y dom
E d\En

) = 1} of probability measures on �̂ × �̂ × �D is nonempty. We
will choose Q from this set and will specify in stages II and III which element of
Q we pick.

II. Fix an arbitrary deterministic ordering of En and let (Ue : e ∈ En) be a col-
lection of independent random variables with uniform distribution on the interval
[0,1]. The following algorithm will determine Ŷ , Ŷ ′ and Y dom on a subset of En,
given that they are known in E d \ En, by drawing Ŷ -, Ŷ ′- and Y dom-values for one
edge at a time, as follows.

1. Let e ∈ En be the first edge in the previously fixed deterministic ordering which
has not been selected in any previous step of the algorithm and is incident to
some vertex in ∂
n or some previously selected edge f with Y dom(f ) = 1.

2. Let us denote by P(c) the probability measure P̂Zd

p,q,(a1,...,as)
conditioned on

Ĉσ
Zd\W and what we have seen thus far of Ŷ , by P(c)′ the measure P̂Zd

p,q,(a1,...,as)

conditioned on Ĉσ ′
Zd\W and what we have seen thus far of Ŷ ′ and by φ(c) the

measure φdom conditioned on what we have seen thus far of Y dom. We define

Ŷ (e) =
{

1, if Ue < P(c)
(
Ŷ (e) = 1

)
,

0, otherwise,
analogously,

Ŷ ′(e) =
{

1, if Ue < P(c)′(Ŷ ′(e) = 1
)
,

0, otherwise,
and, finally,

Y dom(e) =
{

1, if Ue < φ(c)
(
Y dom(e) = 1

)
,

0, otherwise.
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Note that if we had Y dom ≥ Ŷ and Y dom ≥ Ŷ ′ before step 2 of the algorithm
(which is μ-a.s. the case for any μ ∈ Q before the beginning of this algorithm),
then Lemma 3.10 implies that these inequalities are preserved by step 2.

3. If determining Y dom(e) in step 2 creates either an open path in Y dom between
∂
n and ∂W or a barrier B such that W ∪ ∂W ⊂ Vint(B) ⊂ 
n and Y dom

B ≡ 0,
then we stop the algorithm; otherwise, we go back to step 1.

Note that this algorithm terminates at the latest once all edges in ext(�W) have
been selected and that it does not select any edge in �W or in int(�W).

III. If the algorithm in stage II ends by finding an open path in Y dom between
∂
n and ∂W , then we draw the rest of (X,Y, Ŷ ), (X′, Y ′, Ŷ ′) and Y dom arbitrarily
with the correct conditional distributions, given what we have seen of them thus
far. This will possibly give that XW �= X′

W , but that is not a problem since, by
inequality (22), this case occurs with probability at most ε and, otherwise, we will
always be able to ensure that XW = X′

W .
Indeed, let as assume that the above algorithm found a barrier B such that

W ∪ ∂W ⊂ Vint(B) ⊂ 
n and Y dom
B ≡ 0. Since the inequalities Y dom ≥ Ŷ and

Y dom ≥ Ŷ ′ were retained throughout the whole algorithm (as remarked in step 2),
it follows from Y dom

B ≡ 0 that B is closed in Ŷ and Ŷ ′ as well. Since B is a
barrier which is closed in Ŷ , it is a quasi-closed barrier in (X,Y ). Therefore,
Corollary 3.7 implies that the conditional distribution of (X,Y ) on int(B), given
XZd\W = σ and what we have seen of Ŷ , is P

int(B)
p,q,(a1,...,as )

conditioned on {(ξ, η) ∈
�int(B) : ξVint(B)\W = σVint(B)\W }. By similar considerations, the conditional distrib-

ution of (X′, Y ′), given X′
Zd\W = σ ′ and what we have seen of Ŷ ′, is P

int(B)
p,q,(a1,...,as)

conditioned on {(ξ, η) ∈ �int(B) : ξVint(B)\W = σ ′
Vint(B)\W }. Since Vint(B) ⊂ 
n and

σ
n\W = σ ′

n\W , we can take (XVint(B)

, YEint(B)
, ŶEint(B)

) = (X′
Vint(B)

, Y ′
Eint(B)

, Ŷ ′
Eint(B)

)

in our coupling. This already implies that XW = X′
W since W ⊂ Vint(B), so the

coupling can be completed by drawing the rest of (X,Y, Ŷ ), (X′, Y ′, Ŷ ′) and Y dom

arbitrarily with the correct conditional distributions.
These considerations yield that with a coupling Q of (i), (ii) and (iii), as spec-

ified in stages I, II and III we have that Q(XW = X′
W) ≥ 1 − ε, which concludes

the proof as noted above. �

The proof of Proposition 2.9 is an easier application of the concept that the
existence of a (quasi-)closed barrier “blocks the information from outside.” Since
the proof is virtually the same as the proof of Proposition 3.7 in [17], that is, the
analogous statement for the DaC(1) model, we will just sketch it for the reader’s
convenience.

PROOF SKETCH OF PROPOSITION 2.9. Fix W ⊂ Zd and σ ∈ SZd\W such that
none of the spins in σ percolate. By the assumption (4), this is true for almost
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every spin configuration. Let W ′ ⊂ Zd \ W be the union of all spin components
in σZd\W that intersect the vertex boundary ∂W . Since there is no infinite spin
component in σ , we have that W ′ is a finite set, hence the edge boundary B =
�(W ∪ W ′) is a closed barrier. Therefore, it follows from Lemma 3.7 that the
conditional distribution of μZd

p,q,(a1,...,as)
given Kσ

Zd\W is μ
int(B)
p,q,(a1,...,as)

conditioned

on {ξ ∈ �
int(B)
C : ξW ′ = σW ′ }.

Now, recall the definition of ∂nW , the n-neighborhood of W , from Section 2.2.
If k is so large that W ′ ⊂ ∂k−1W , and σ ′ ∈ SZd\W is such that σ ′

∂kW
= σ∂kW , then it

is clear, by the same argument, that the conditional distribution of μZd

p,q,(a1,...,as)

given Kσ ′
Zd\W is μ

int(B)
p,q,(a1,...,as )

conditioned on {ξ ∈ �
int(B)
C : ξW ′ = σ ′

W ′ }. Since

σW ′ = σ ′
W ′ , the above conditions are the same, therefore, for any κ ∈ SW , we have

that ∣∣μZd

p,q,(a1,...,as)
(Kκ

W | Kσ
Zd\W) − μZd

p,q,(a1,...,as)
(Kκ

W | Kσ ′
Zd\W)

∣∣ = 0.

This proves almost sure quasilocality of μZd

p,q,(a1,...,as)
. �
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