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ON ERGODICITY OF SOME MARKOV PROCESSES
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To the memory of Andrzej Lasota (1932–2006)

We formulate a criterion for the existence and uniqueness of an invari-
ant measure for a Markov process taking values in a Polish phase space. In
addition, weak-∗ ergodicity, that is, the weak convergence of the ergodic aver-
ages of the laws of the process starting from any initial distribution, is estab-
lished. The principal assumptions are the existence of a lower bound for the
ergodic averages of the transition probability function and its local uniform
continuity. The latter is called the e-property. The general result is applied
to solutions of some stochastic evolution equations in Hilbert spaces. As an
example, we consider an evolution equation whose solution describes the La-
grangian observations of the velocity field in the passive tracer model. The
weak-∗ mean ergodicity of the corresponding invariant measure is used to
derive the law of large numbers for the trajectory of a tracer.

1. Introduction. The lower bound technique is a useful tool in the ergodic
theory of Markov processes. It has been used by Doeblin (see [4]) to show mixing
of a Markov chain whose transition probabilities possess a uniform lower bound.
A somewhat different approach, relying on the analysis of the operator dual to the
transition probability, has been applied by Lasota and Yorke, see, for instance,
[15, 17]. For example, in [17], they show that the existence of a lower bound
for the iterates of the Frobenius–Perron operator (that corresponds to a piecewise
monotonic transformation on the unit interval) implies the existence of a stationary
distribution for the deterministic Markov chain describing the iterates of the trans-
formation. In fact, the invariant measure is then unique in the class of measures that
are absolutely continuous with respect to one-dimensional Lebesgue measure. It is
also statistically stable, that is, the law of the chain, starting from any initial distri-
bution that is absolutely continuous, converges to the invariant measure in the total
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variation metric. This technique has been extended to more general Markov chains,
including those which correspond to iterated function systems; see, for example,
[18]. However, most of the existing results are formulated for Markov chains tak-
ing values in finite-dimensional spaces; see, for example, [29] for a review of the
topic.

Generally speaking, the lower bound technique which we have in mind involves
deriving ergodic properties of the Markov process from the fact that there exists a
“small” set in the state space. For instance, it could be compact, such that the time
averages of the mass of the process are concentrated over that set for all sufficiently
large times. If this set is compact, then one can deduce the existence of an invariant
probability measure without much difficulty.

The question of extending the lower bound technique to Markov processes tak-
ing values in Polish spaces that are not locally compact is quite a delicate matter.
This situation typically occurs for processes that are solutions of stochastic partial
differential equations (SPDEs). The value of the process is then usually an element
of an infinite-dimensional Hilbert or Banach space. We stress here that to prove the
existence of a stationary measure, it is not enough only to ensure the lower bound
on the transition probability over some “thin” set. One can show (see the coun-
terexample provided in [26]) that even if the mass of the process contained in any
neighborhood of a given point is separated from zero for all times, an invariant
measure may fail to exist. In fact, some general results concerning the existence of
an invariant measure and its statistical stability for a discrete-time Markov chain
have been formulated in [26]; see Theorems 3.1–3.3.

In the present paper, we are concerned with the question of finding a criterion for
the existence of a unique, invariant, ergodic probability measure for a continuous-
time Feller Markov process (Z(t))t≥0 taking values in a Polish space X ; see The-
orems 1 and 2 below. Suppose that (Pt )t≥0 is its transition probability semigroup.
In our first result (see Theorem 1), we show that there exists a unique, invari-
ant probability measure for the process, provided that for any Lipschitz, bounded
function ψ , the family of functions (Ptψ)t≥0 is uniformly continuous at any point
of X (we call this the e-property of the semigroup) and there exists z ∈ X such
that for any δ > 0,

lim inf
T →+∞

1

T

∫ T

0
Pt1B(z,δ)(x) dt > 0 ∀x ∈ X .(1.1)

Here, B(z, δ) denotes the ball in X centered at z with radius δ. Observe that, in
contrast to the Doeblin condition, we do not require that the lower bound in (1.1)
is uniform in the state variable x. If some conditions on uniformity over bounded
sets are added [see (2.8) and (2.9) below], then one can also deduce the stability
of the ergodic averages corresponding to (Z(t))t≥0; see Theorem 2. We call this,
after [29], weak-∗ mean ergodicity.

This general result is applied to solutions of stochastic evolution equations in
Hilbert spaces. In Theorem 3, we show the uniqueness and ergodicity of an in-
variant measure, provided that the transition semigroup has the e-property and the
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(deterministic) semi-dynamical system corresponding to the equation without the
noise has an attractor which admits a unique invariant measure. This is a natural
generalization of the results known for so-called dissipative systems; see, for ex-
ample, [3].

A different approach to proving the uniqueness of an invariant measure for a sto-
chastic evolution equation is based on the strong Feller property of the transition
semigroup (see [3, 6, 10] and [22]) or, in a more refined form, on the asymptotic
strong Feller property (see [11, 12, 19]). In our Theorem 3, we do not require
either of these properties of the corresponding semigroup. Roughly speaking, we
assume: (1) the existence of a global compact attractor for the system without the
noise [hypothesis (i)]; (2) the existence of a Lyapunov function [hypothesis (ii)];
(3) some form of stochastic stability of the system after the noise is added [hypoth-
esis (iii)]; (4) the e-property (see Section 2). This allows us to show lower bounds
for the transition probabilities and then use Theorems 1 and 2.

As an application of Theorem 3, we consider, in Sections 5 and 6, the La-
grangian observation process corresponding to the passive tracer model ẋ(t) =
V (t, x(t)), where V (t, x) is a time–space stationary random, Gaussian and
Markovian velocity field. One can show that when the field is sufficiently regular
[see (2.16)], the process Z(t) := V (t, x(t) + ·) is a solution of a certain evolu-
tion equation in a Hilbert space; see (5.5) below. With the help of the technique
developed by Hairer and Mattingly [11] (see also [5] and [14]), we verify the as-
sumptions of Theorem 3 when V (t, x) is periodic in the x variable and satisfies
a mixing hypothesis in the temporal variable; see (2.17). The latter reflects, phys-
ically, quite a natural assumption that the mixing time for the velocity field gets
shorter on smaller spatial scales. As a consequence of the statistical stability prop-
erty of the ergodic invariant measure for the Lagrangian velocity (Z(t))t≥0, we
obtain the weak law of large numbers for the passive tracer model in a compress-
ible environment; see Theorem 4. It generalizes the corresponding result that holds
in the incompressible case, which can be easily deduced due to the fact that the
invariant measure is known explicitly in that situation; see [25].

2. Main results. Let (X , ρ) be a Polish metric space. Let B(X ) be the space
of all Borel subsets of X and let Bb(X ) [resp., Cb(X )] be the Banach space of
all bounded, measurable (resp., continuous) functions on X equipped with the
supremum norm ‖ · ‖∞. We denote by Lipb(X ) the space of all bounded Lipschitz
continuous functions on X . Denote by

Lip(f ) := sup
x 	=y

|f (x) − f (y)|
ρ(x, y)

the smallest Lipschitz constant of f .
Let (Pt )t≥0 be the transition semigroup of a Markov family Z = ((Zx(t))t≥0,

x ∈ X ) taking values in X . Throughout this paper, we shall assume that the semi-
group (Pt )t≥0 is Feller, that is, Pt(Cb(X )) ⊂ Cb(X ). We shall also assume that the
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Markov family is stochastically continuous, which implies that limt→0+ Ptψ(x) =
ψ(x) for all x ∈ X and ψ ∈ Cb(X ).

DEFINITION 2.1. We say that a transition semigroup (Pt )t≥0 has the e-prop-
erty if the family of functions (Ptψ)t≥0 is equicontinuous at every point x of X
for any bounded and Lipschitz continuous function ψ , that is, if

∀ψ ∈ Lipb(X ), x ∈ X , ε > 0,∃δ > 0

such that

∀z ∈ B(x, δ), t ≥ 0, |Ptψ(x) − Ptψ(z)| < ε.

(Zx(t))t≥0 is then called an e-process.

An e-process is an extension to continuous time of the notion of an e-chain
introduced in Section 6.4 of [20].

Given B ∈ B(X ), we denote by M1(B) the space of all probability Borel mea-
sures on B . For brevity, we write M1 instead of M1(X ). Let (P ∗

t )t≥0 be the dual
semigroup defined on M1 by the formula P ∗

t μ(B) := ∫
X Pt1B dμ for B ∈ B(X ).

Recall that μ∗ ∈ M1 is invariant for the semigroup (Pt )t≥0 [or the Markov family
(Zx(t))t≥0] if P ∗

t μ∗ = μ∗ for all t ≥ 0.
For a given T > 0 and μ ∈ M1, define QT μ := T −1 ∫ T

0 P ∗
s μds. We write

QT (x, ·) in the particular case when μ = δx . Let

T := {x ∈ X : the family of measures (QT (x))T ≥0 is tight}.(2.1)

Denote by B(z, δ) the ball in X with center at z and radius δ, and by “w-lim”
the limit in the sense of weak convergence of measures. The proof of the following
result is given in Section 3.2.

THEOREM 1. Assume that (Pt )t≥0 has the e-property and that there exists
z ∈ X such that for every δ > 0 and x ∈ X ,

lim inf
T ↑∞ QT (x,B(z, δ)) > 0.(2.2)

The semigroup then admits a unique, invariant probability measure μ∗. Moreover,

w-lim
T ↑∞ QT ν = μ∗(2.3)

for any ν ∈ M1 that is supported in T .

REMARK 1. We remark here that the set T may not be the entire space X . This
issue is investigated more closely in [27]. Among other results, it is shown there
that if the semigroup (Pt )t≥0 satisfies the assumptions of Theorem 1, then the set
T is closed. Below, we present an elementary example of a semigroup satisfying
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the assumptions of the above theorem, for which T 	= X . Let X = (−∞,−1] ∪
[1,+∞), T (x) := −(x + 1)/2 − 1 for x ∈ X and let P : X × B(X ) → [0,1] be the
transition function defined by the formula

P(x, ·) =
{ (

1 − exp(−1/x2)
)
δ−x(·) + exp(−1/x2)δx+1(·), for x ≥ 1,

δT (x)(·), for x ≤ −1.

Define the Markov operator P :Bb(X ) → Bb(X ) corresponding to P(·, ·), that is,

Pf (x) =
∫

X
f (y)P (x, dy) for f ∈ Bb(X ).

Finally, let (Pt )t≥0 be the semigroup given by the formula

Ptf =
∞∑

n=0

e−t t
n

n!P
nf for t ≥ 0.(2.4)

It is obvious that the semigroup is Feller.
We check that (Pt )t≥0 satisfies the assumptions of Theorem 1 and that T =

(−∞,−1]. Let z := −1. Since, for every x ∈ X and δ > 0,

lim inf
t→+∞ P ∗

t δx(B(z, δ)) ≥ 1 − exp(−1/x2),

condition (2.2) is satisfied.
To prove the e-property, it is enough to show that for any f ∈ Lipb(X ),

lim
y→x

sup
n≥1

|P nf (x) − P nf (y)| = 0 ∀x ∈ X .(2.5)

If x ≤ −1, then condition (2.5) obviously holds. We may therefore assume that
x ≥ 1. Observe that

P nf (x) =
n−1∑
k=0

f
(
T n−1−k(−x − k)

)
Gk(x) + Hn(x)f (x + n), n ≥ 1,

where Hn(x) := ∏n−1
j=0 exp(−(x + j)−2) and Gk(x) := [1 − exp(−(x + k)−2)] ×

Hk(x). Here, we interpret
∏−1

j=0 as equal to 1. After straightforward calculations,
we obtain that for 1 ≤ x ≤ y, we have

|P nf (x) − P nf (y)|

≤ Lip(f )(y − x) + ‖f ‖∞
(

n−2∑
k=0

∫ y

x
|G′

k(ξ)|dξ +
∫ y

x
|H ′

n(ξ)|dξ

)
.

Condition (2.5) follows from the fact that
∑n−2

k=0 |G′
k(ξ)| and H ′

n(ξ) are uniformly
convergent on [1,+∞).

Finally, it can be seen from (2.4) that for any R > 0 and x ≥ 1, we have

lim inf
t→+∞ P ∗

t δx(B
c(0,R)) ≥ lim

n→+∞Hn(x) > 0,

which proves that x /∈ T .
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Following [29], page 95, we introduce the notion of weak-∗ mean ergodicity.

DEFINITION 2.2. A semigroup (Pt )t≥0 is called weak-∗ mean ergodic if there
exists a measure μ∗ ∈ M1 such that

w-lim
T ↑∞ QT ν = μ∗ ∀ν ∈ M1.(2.6)

REMARK 2. In some important cases, it is easy to show that T = X . For
example, if (Zx(t))t≥0 is given by a stochastic evolution equation in a Hilbert
space X , then it is enough to show that there exist a compactly embedded space
V ↪→ X and a locally bounded, measurable function 	 : [0,+∞) → [0,+∞) that
satisfies limR→+∞ 	(R) = +∞ such that

∀x ∈ X ∃T0 ≥ 0 sup
t≥T0

E	(‖Zx(t)‖V ) < ∞.

Clearly, if T = X , then the assumptions of Theorem 1 guarantee weak-∗ mean
ergodicity. In Theorem 2 below, the weak-∗ mean ergodicity is deduced from a
version of (2.2) that holds uniformly on bounded sets.

REMARK 3. Of course, (2.6) implies uniqueness of invariant measure for
(Pt )t≥0. Moreover, for any stochastically continuous Feller semigroup (Pt )t≥0,
its weak-∗ mean ergodicity also implies ergodicity of μ∗, that is, that any Borel set
B which satisfies Pt1B = 1B , μ∗-a.s. for all t ≥ 0, must be μ∗-trivial. This can be
seen from, for instance, part (iv) of Theorem 3.2.4 of [3].

REMARK 4. Note that condition (2.6) is equivalent to every point of X being
generic, in the sense of [8], that is,

w-lim
T ↑∞ QT (x, ·) = μ∗ ∀x ∈ X .(2.7)

Indeed, (2.6) obviously implies (2.7) since it suffices to take ν = δx , x ∈ X . Con-
versely, assuming (2.7), we can write, for any ν ∈ M1 and ψ ∈ Cb(X ),

lim
T ↑∞

∫
X

ψ(x)QT ν(dx) = lim
T ↑∞

∫
X

1

T

∫ T

0
Psψ(x) ds ν(dx)

(2.7)=
∫

X
ψ(x)μ∗(dx)

and (2.6) follows.

The proof of the following result is given in Section 3.3.

THEOREM 2. Let (Pt )t≥0 satisfy the assumptions of Theorem 1. Assume, also,
that there exists z ∈ X such that for every bounded set A and δ > 0, we have

inf
x∈A

lim inf
T →+∞QT (x,B(z, δ)) > 0.(2.8)
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Suppose, further, that for every ε > 0 and x ∈ X, there exists a bounded Borel set
D ⊂ X such that

lim inf
T →+∞QT (x,D) > 1 − ε.(2.9)

Then, besides the existence of a unique invariant measure μ∗ for (Pt )t≥0, the fol-
lowing are true:

(1) the semigroup (Pt )t≥0 is weak-∗ mean ergodic;
(2) for any ψ ∈ Lipb(X ) and μ ∈ M1, the weak law of large numbers holds,

that is,

Pμ-lim
T →+∞

1

T

∫ T

0
ψ(Z(t)) dt =

∫
X

ψ dμ∗.(2.10)

Here, (Z(t))t≥0 is the Markov process that corresponds to the given semigroup,
whose initial distribution is μ and whose path measure is Pμ. The convergence
takes place in Pμ probability.

Using Theorems 1 and 2, we establish the weak-∗ mean ergodicity for the family
defined by the stochastic evolution equation

dZ(t) = (
AZ(t) + F(Z(t))

)
dt + R dW(t).(2.11)

Here, X is a real, separable Hilbert space, A is the generator of a C0-semigroup
S = (S(t))t≥0 acting on X , F maps (not necessarily continuously) D(F) ⊂ X
into X , R is a bounded linear operator from another Hilbert space H to X and
W = (W(t))t≥0 is a cylindrical Wiener process on H defined over a certain filtered
probability space (
, F , (Ft )t≥0,P).

Let Z0 be an F0-measurable random variable. By a solution of (2.11) starting
from Z0, we mean a solution to the stochastic integral equation (the so-called mild
solution)

Z(t) = S(t)Z0 +
∫ t

0
S(t − s)F (Z(s)) ds +

∫ t

0
S(t − s)R dW(s), t ≥ 0

(see, e.g., [2]), where the stochastic integral appearing on the right-hand side is
understood in the sense of Itô. We suppose that for every x ∈ X , there is a unique
mild solution Zx = (Zx

t )t≥0 of (2.11) starting from x and that (2.11) defines a
Markov family in that way. We assume that for any x ∈ X , the process Zx is
stochastically continuous.

The corresponding transition semigroup is given by Ptψ(x) = Eψ(Zx(t)), ψ ∈
Bb(X ), and we assume that it is Feller.

DEFINITION 2.3. 	 : X → [0,+∞) is called a Lyapunov function if it is mea-
surable, bounded on bounded sets and lim‖x‖X ↑∞ 	(x) = ∞.
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We shall assume that the deterministic equation

dY (t)

dt
= AY(t) + F(Y (t)), Y (0) = x,(2.12)

defines a continuous semi-dynamical system (Y x, x ∈ X ), that is, for each x ∈ X ,
there exists a unique continuous solution to (2.12) that we denote by Yx =
(Y x(t))t≥0 and for a given t , the mapping x �→ Yx(t) is measurable. Furthermore,
we have YYx(t)(s) = Yx(t + s) for all t, s ≥ 0 and x ∈ X .

DEFINITION 2.4. A set K ⊂ X is called a global attractor for the semi-
dynamical system if:

(1) it is invariant under the semi-dynamical system, that is, Yx(t) ∈ K for any
x ∈ K and t ≥ 0;

(2) for any ε,R > 0, there exists T such that Yx(t) ∈ K + εB(0,1) for t ≥ T and
‖x‖X ≤ R.

DEFINITION 2.5. The family (Zx(t))t≥0, x ∈ X , is stochastically stable if

∀ε,R, t > 0 inf
x∈B(0,R)

P
(‖Zx(t) − Yx(t)‖X < ε

)
> 0.(2.13)

In Section 4, from Theorems 1 and 2, we derive the following result concerning
ergodicity of Z.

THEOREM 3. Assume that:

(i) the semi-dynamical system (Y x, x ∈ X ) defined by (2.12) has a compact,
global attractor K;

(ii) (Zx(t))t≥0 admits a Lyapunov function 	, that is,

∀x ∈ X sup
t≥0

E	(Zx(t)) < ∞;

(iii) the family (Zx(t))t≥0, x ∈ X , is stochastically stable and⋂
x∈K

⋃
t≥0

�t(x) 	= ∅,(2.14)

where �t(x) = suppP ∗
t δx ;

(iv) its transition semigroup has the e-property.

(Zx(t))t≥0, x ∈ X , then admits a unique, invariant measure μ∗ and is weak-∗
mean ergodic. Moreover, for any bounded, Lipschitz observable ψ , the weak law
of large numbers holds:

P-lim
T →+∞

1

T

∫ T

0
ψ(Zx(t)) dt =

∫
X

ψ dμ∗.
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REMARK 5. Observe that condition (2.14) in Theorem 3 is trivially satisfied
if K is a singleton. Also, this condition holds if the semi-dynamical system, ob-
tained after removing the noise, admits a global attractor that is contained in the
support of the transition probability function of the solutions of (2.11) correspond-
ing to the starting point at the attractor (this situation occurs, e.g., if the noise is
nondegenerate).

Another situation when (2.14) can be guaranteed occurs if we assume (2.13) and
uniqueness of an invariant probability measure for (Y x, x ∈ X ). From stochastic
stability condition (2.13), it is clear that the support of such a measure is contained
in any

⋃
t≥0 �t(x) for x ∈ K. We do not know, however, whether there exists an

example of a semi-dynamical system corresponding to (2.12) with a nonsingle
point attractor and such that it admits a unique invariant measure.

REMARK 6. The e-property used in Theorem 3 can be understood as an in-
termediary between the strong dissipativity property of [3] and asymptotic strong
Feller property (see [11]). A trivial example of a transition probability semigroup
that is neither dissipative (in the sense of [3]) nor asymptotic strong Feller, but
satisfies the e-property, is furnished by the dynamical system on a unit circle
{z ∈ C : |z| = 1} given by ż = iαz, where α/(2π) is an irrational real. For more
examples of Markov processes that have the e-property, but are neither dissipa-
tive nor have the asymptotic strong Feller property, see [16]. A careful analysis of
the current proof shows that the e-property could be viewed as a consequence of
a certain version of the asymptotic strong Feller property concerning time aver-
ages of the transition operators. We shall investigate this point in more detail in a
forthcoming paper.

Our last result follows from an application of the above theorem and concerns
the weak law of large numbers for the passive tracer in a compressible random
flow. The trajectory of a particle is then described by the solution of an ordinary
differential equation,

dx(t)

dt
= V (t,x(t)), x(0) = x0,(2.15)

where V (t, ξ), (t, ξ) ∈ R
d+1, is a d-dimensional random vector field. This is a sim-

ple model used in statistical hydrodynamics that describes transport of matter in a
turbulent flow. We assume that V (t, ξ) is mean zero, stationary, spatially periodic,
Gaussian and Markov in a time random field. Its covariance matrix

Ri,j (t − s, ξ − η) := E[Vi(t, ξ)Vj (s, η)]
is given by its Fourier coefficients,

R̂i,j (h, k) := 1

(2π)d

∫
Td

e−ikξRi,j (h, ξ) dξ

= e−γ (k)|h|Ei,j (k), i, j = 1, . . . , d,
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h ∈ R, k ∈ Z
d . Here, T

d := [0,2π)d , the energy spectrum E := [Ei,j ] maps Z
d

into the space S+(d) of all nonnegative definite Hermitian matrices and the mixing
rates γ : Zd → (0,+∞). Denote by TrA the trace of a given d × d matrix A and
by P-lim the limit in probability. In Section 6, we show the following result.

THEOREM 4. Assume that

∃m > d/2 + 1, α ∈ (0,1) |||E |||2 := ∑
k∈Zd

γ α(k)|k|2(m+1) Tr E (k) < ∞,(2.16)

∫ ∞
0

sup
k∈Zd

e−γ (k)t |k|dt < ∞.(2.17)

There then exists a constant vector v∗ such that

P-lim
t↑∞

x(t)

t
= v∗.

REMARK 7. We will show that v∗ = Eμ∗V (0,0), where the expectation Eμ∗ is
calculated with respect to the path measure that corresponds to the Markov process
starting with the initial distribution μ∗, which is invariant under Lagrangian obser-
vations of the velocity field, that is, the vector field-valued process V (t,x(t) + ·),
t ≥ 0. In the physics literature, v∗ is referred to as the Stokes drift. Since V is
spatially stationary, the Stokes drift does not depend on the initial value x0.

REMARK 8. Note that condition (2.17) holds if

∃ε,K0 > 0 such that ∀k ∈ Z
d∗ γ (k) ≥ K0|k|1+ε.

Indeed, it is clear that, under this assumption,∫ ∞
1

sup
k∈Zd∗

e−γ (k)t |k|dt < ∞.

On the other hand, for t ∈ (0,1], we obtain

sup
k∈Zd∗

e−γ (k)t |k| ≤ sup
k∈Zd∗

exp{−K0|k|1+εt + log |k|} ≤ C

t1/(1+ε)

for some constant C > 0. This, of course, implies (2.17).

3. Proofs of Theorems 1 and 2.

3.1. Some auxiliary results. For the proof of the following lemma the reader
is referred to [16]; see the argument given on pages 517 and 518.

LEMMA 1. Suppose that (νn) ⊂ M1 is not tight. There then exist an ε > 0,
a sequence of compact sets (Ki) and an increasing sequence of positive integers



ERGODICITY OF INVARIANT MEASURES 1411

(ni) satisfying

νni
(Ki) ≥ ε ∀i,(3.1)

and

min{ρ(x, y) :x ∈ Ki, y ∈ Kj } ≥ ε ∀i 	= j.(3.2)

Recall that T is defined by (2.1).

PROPOSITION 1. Suppose that (Pt )t≥0 has the e-property and admits an in-
variant probability measure μ∗. Then suppμ∗ ⊂ T .

PROOF. Let μ∗ be the invariant measure in question. Assume, contrary to our
claim, that (QT (x))T ≥0 is not tight for some x ∈ suppμ∗. Then, according to
Lemma 1, there exist a strictly increasing sequence of positive numbers Ti ↑ ∞,
a positive number ε and a sequence of compact sets (Ki) such that

QTi (x,Ki) ≥ ε ∀i,(3.3)

and (3.2) holds. We will derive the assertion from the claim that there exist se-
quences (f̃n) ⊂ Lipb(X ), (νn) ⊂ M1 and an increasing sequence of integers (mn)

such that suppνn ⊂ B(x,1/n) for any n, and

1Kmn
≤ f̃n ≤ 1

K
ε/4
mn

and Lip(f̃n) ≤ 4/ε ∀n.(3.4)

Here, Aε := {x ∈ X : dist(x,A) < ε}, with ε > 0, denotes the ε-neighborhood of
A ⊂ X . Moreover,

P ∗
t νn

( ∞⋃
i=n

Kε/4
mi

)
≤ ε/4 ∀t ≥ 0,(3.5)

and

|Ptfn(x) − Ptfn(y)| < ε/4 ∀t ≥ 0,∀y ∈ suppνn,(3.6)

f1 := 0 and fn := ∑n−1
i=1 f̃i , n ≥ 2. Temporarily admitting the above claim, we

show how to complete the proof of the proposition. First, observe that (3.2) and
condition (3.4) together imply that the series f := ∑∞

i=1 f̃i is uniformly con-
vergent and ‖f ‖∞ = 1. Also, note that for x, y such that ρ(x, y) < ε/8, we
have f̃i(x) 	= 0, or f̃i(y) 	= 0, for at most one i. Therefore, for such points,
|f (x)− f (y)| < 16ε−1ρ(x, y). This, in particular, implies that f ∈ Lip(X ). From
(3.3) and (3.4)–(3.6), it follows that∫

X
QTmn (x, dy)f (y) −

∫
X

QTmn νn(dy)f (y)

≥ QTmn (x,Kmn) +
∫

X
QTmn (x, dy)fn(y)(3.7)

−
∫

X
QTmn νn(dy)fn(y) − QTmn νn

( ∞⋃
i=n

Kε/4
mi

)
.
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By virtue of (3.3), the first term on the right-hand side of (3.7) is greater than or
equal to ε. Combining the second and the third terms, we obtain that their absolute
value equals ∣∣∣∣ 1

Tmn

∫ Tmn

0

∫
X

[P sfn(x) − P sfn(y)]νn(dy) ds

∣∣∣∣ (3.6)≤ ε

4
.

The fourth term is less than or equal to ε/4, by virtue of (3.5). Summarizing, we
have shown that∫

X
QTmn (x, dy)f (y) −

∫
X

QTmn νn(dy)f (y)

= 1

Tmn

∫ Tmn

0
ds

∫
X

[P sf (x) − P sf (y)]νn(dy) >
ε

2

for every positive integer n. Hence, there must be a sequence (tn, yn) such that
tn ∈ [0, Tmn], yn ∈ suppνn ⊂ B(x,1/n), for which Ptnf (x) − Ptnf (yn) > ε/2,

n ≥ 1. This clearly contradicts equicontinuity of (Ptf )t≥0 at x.

PROOF OF THE CLAIM. We accomplish this by induction on n. Let n = 1.
Since x ∈ suppμ∗, we have μ∗(B(x, δ)) > 0 for all δ > 0. Define the probability
measure ν1 by the formula

ν1(B) = μ∗(B|B(x,1)) := μ∗(B ∩ B(x,1))

μ∗(B(x,1))
, B ∈ B(X ).

Since ν1 ≤ μ−1∗ (B(x,1))μ∗, from the fact that μ∗ is invariant, it follows that the
family (P ∗

t ν1)t≥0 is tight. Thus, there exists a compact set K such that

P ∗
t ν1(K

c) ≤ ε/4 ∀t ≥ 0.(3.8)

Note, however, that K ∩ K
ε/4
i 	= ∅ for only finitely many i’s. Otherwise, in light

of (3.2), one could construct in K an infinite set of points separated from each
other at a distance of at least ε/2, which contradicts its compactness. As a result,
there exists an integer m1 such that

P ∗
t ν1

( ∞⋃
i=m1

K
ε/4
i

)
≤ ε/4 ∀t ≥ 0.

Let f̃1 be an arbitrary Lipschitz function satisfying 1Km1
≤ f̃1 ≤ 1

K
ε/4
m1

and

Lip(f̃1) ≤ 4/ε.
Assume, now, that for a given n ≥ 1, we have already constructed f̃1, . . . , f̃n,

ν1, . . . , νn, m1, . . . ,mn satisfying (3.4)–(3.6). Since (Ptfn+1)t≥0 is equicontin-
uous, we can choose δ < 1/(n + 1) such that |Ptfn+1(x) − Ptfn+1(y)| < ε/4
for all t ≥ 0 and y ∈ B(x, δ). Suppose, further, that νn+1 := μ∗(·|B(x, δ)). Since
the measure is supported in B(x, δ), condition (3.6) holds for fn+1. Tightness of
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(P ∗
t νn+1)t≥0 can be argued in the same way as in the case n = 1. As a conse-

quence, one can find mn+1 > mn such that

P ∗
t νn+1

( ∞⋃
i=mn+1

K
ε/4
i

)
≤ ε/4 ∀t ≥ 0.

Finally, we let f̃n+1 be an arbitrary continuous function satisfying (3.4). �

For given an integer k ≥ 1, times t1, . . . , tk ≥ 0 and a measure μ ∈ M1, we
let Qtk,...,t1μ := Qtk · · ·Qt1μ. The following simple lemma will be useful in the
sequel. In what follows, ‖ · ‖TV denotes the total variation norm.

LEMMA 2. For all k ≥ 1 and t1, . . . , tk > 0,

lim sup
T →+∞

sup
μ∈M1

‖QT,tk,...,t1μ − QT μ‖TV = 0.(3.9)

PROOF. To simplify the notation, we assume that k = 1. The general case can
be argued by the induction on the length of the sequence t1, . . . , tk and is left to the
reader. For any T > 0, we have

QT,t1μ − QT μ = (T t1)
−1

∫ t1

0
dr

[∫ T

0
P ∗

s+rμds −
∫ T

0
P ∗

s μds

]
= (T t1)

−1
∫ t1

0
dr

∫ r

0
(P ∗

s+T μ − P ∗
s μ)ds.

The total variation norm of QT,t1μ−QT μ can therefore be estimated by t1/T and
(3.9) follows. �

3.2. Proof of Theorem 1. The existence of an invariant measure follows from
Theorem 3.1 of [16]. We will show that for arbitrary x1, x2 ∈ T and ψ ∈ Lipb(X),

lim
T ↑∞

∣∣∣∣∫X
ψ(y)QT (x1, dy) −

∫
X

ψ(y)QT (x2, dy)

∣∣∣∣ = 0.(3.10)

From this, we can easily deduce (2.3) using, for instance, Example 22, page 74
of [24]. Indeed, for any ν, as in the statement of the theorem,∫

X
ψ(y)QT ν(dy) −

∫
X

ψ dμ∗

=
∫

X

∫
X

ν(dx)μ∗(dx′)
(∫

X
ψ(y)QT (x, dy) −

∫
X

ψ(y)QT (x′, dy)

)
and (2.3) follows directly from (3.10) and Proposition 1. The rest of the argument
will be devoted to the proof of (3.10).
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Fix a sequence (ηn) of positive numbers monotonically decreasing to 0. Also,
fix arbitrary ε > 0, ψ ∈ Lipb(X ), x1, x2 ∈ T . For these parameters, we define � ⊂
R in the following way: α ∈ � if and only if α > 0 and there exist a positive
integer N , a sequence of times (Tα,n) and sequences of measures (μn

α,i), (ν
n
α,i) ⊂

M1, i = 1,2, such that for n ≥ N ,

Tα,n ≥ n,(3.11)

‖QTα,n(xi) − μn
α,i‖TV < ηn,(3.12)

μn
α,i ≥ ανn

α,i for i = 1,2,(3.13)

and

lim sup
T ↑∞

∣∣∣∣∫X
ψ(x)QT νn

α,1(dx) −
∫

X
ψ(x)QT νn

α,2(dx)

∣∣∣∣ < ε.(3.14)

Our main tool is contained in the following lemma.

LEMMA 3. For given ε > 0, (ηn), x1, x2 ∈ T and ψ ∈ Lipb(X ), the set
� 	= ∅. Moreover, we have sup� = 1.

Accepting the truth of this lemma, we show how to complete the proof of (3.10).
To that end, let us choose an arbitrary ε > 0. Then there exists an α > 1 − ε that
belongs to �. By virtue of (3.12), we can replace the QT (xi, ·) appearing in (3.10)
by μn

α,i and the resulting error can be estimated for T ≥ Tα,n as follows:∣∣∣∣∫X
ψ(y)QT (x1, dy) −

∫
X

ψ(y)QT (x2, dy)

∣∣∣∣
≤

2∑
i=1

∣∣∣∣∫X
ψ(y)QT (xi, dy) −

∫
X

ψ(y)QT,Tα,n(xi, dy)

∣∣∣∣
+

∣∣∣∣∫X
ψ(y)QT μn

α,1(dy) −
∫

X
ψ(y)QT μn

α,2(dy)

∣∣∣∣
+

2∑
i=1

∣∣∣∣∫X
ψ(y)QT,Tα,n(xi, dy) −

∫
X

ψ(y)QT μn
α,i(dy)

∣∣∣∣(3.15)

≤
2∑

i=1

∣∣∣∣∫X
ψ(y)QT (xi, dy) −

∫
X

ψ(y)QT,Tα,n(xi, dy)

∣∣∣∣
+

∣∣∣∣∫X
ψ(y)QT μn

α,1(dy) −
∫

X
ψ(y)QT μn

α,2(dy)

∣∣∣∣
+ 2ηn‖ψ‖∞.
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To deal with the second term on the last right-hand side of (3.15), we use condition
(3.13). We can then replace μn

α,i by νn
α,i and obtain∣∣∣∣∫X

ψ(y)QT μn
α,1(dy) −

∫
X

ψ(y)QT μn
α,2(dy)

∣∣∣∣
(3.13)≤ α

∣∣∣∣∫X
ψ(y)QT νn

α,1(dy) −
∫

X
ψ(y)QT νn

α,2(dy)

∣∣∣∣
(3.16)

+
2∑

i=1

‖ψ‖∞(μn
α,i − ανn

α,i)(X )

≤
∣∣∣∣∫X

ψ(y)QT νn
α,1(dy) −

∫
X

ψ(y)QT νn
α,2(dy)

∣∣∣∣ + 2ε‖ψ‖∞.

In the last inequality, we have used the fact that 1 − α < ε. Summarizing, from
Lemma 2, (3.15), (3.16) and (3.14), we obtain that

lim sup
T ↑∞

∣∣∣∣∫X
ψ(y)QT (x1, dy) −

∫
X

ψ(y)QT (x2, dy)

∣∣∣∣ ≤ 2ηn‖ψ‖∞ + 2ε‖ψ‖∞ + ε.

Since ε > 0 and n were arbitrarily chosen, we conclude that (3.10) follows.

PROOF OF LEMMA 3. First, we show that � 	= ∅. Let z ∈ X be such that for
every δ > 0 and x ∈ X , condition (2.2) is satisfied. Equicontinuity of (Ptψ)t≥0 at
z ∈ X implies the existence of σ > 0 such that

|Ptψ(z) − Ptψ(y)| < ε/2 for y ∈ B(z,σ ) and t ≥ 0.(3.17)

By (2.2), there exist β > 0 and T0 > 0 such that

QT (xi,B(z, σ )) ≥ β ∀T ≥ T0, i = 1,2.(3.18)

Set α := β and Tα,n = n + T0 for n ∈ N, μn
α,i := QTα,n(xi) and νn

α,i(·) :=
μn

α,i(·|B(z,σ )) for i = 1,2 and n ≥ 1. Note that μn
α,i(B(z, σ )) > 0, thanks

to (3.18). The measures νn
α,i , i = 1,2, are supported in B(z,σ ) and, therefore,

for all t ≥ 0, we have∣∣∣∣∫X
ψ(x)P ∗

t νn
α,1(dx) −

∫
X

ψ(x)P ∗
t νn

α,2(dx)

∣∣∣∣
=

∣∣∣∣∫X
Ptψ(x)νn

α,1(dx) −
∫

X
Ptψ(x)νn

α,2(dx)

∣∣∣∣
≤

∣∣∣∣∫X
[Ptψ(x) − Ptψ(z)]νn

α,1(dx)

∣∣∣∣
+

∣∣∣∣∫X
[Ptψ(x) − Ptψ(z)]νn

α,2(dx)

∣∣∣∣ (3.17)
< ε.
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Hence, (3.14) follows. Clearly, conditions (3.10)–(3.13) are also satisfied. Thus,
� 	= ∅.

Next, we show that sup� = 1. Suppose, contrary to our claim, that α0 :=
sup� < 1. Thanks to the previous step, we have α0 > 0. Let (αn) ⊂ � be such
that limn→∞ αn = α0. Set Tn := Tαn,n, μn,i := μn

αn,i and νn,i := νn
αn,i for n ≥ 1

and i = 1,2. From conditions (3.12), (3.13) and the fact that the family (QT (xi))

is tight for i = 1,2, it follows that the sequences (μn,i), (νn,i), i = 1,2, are also
tight. Indeed, (3.12) clearly implies tightness of (μn,i), i = 1,2. As a consequence,
for any � > 0, there exists a compact set K ⊂ X such that μn,i(X \ K) < � for all
n ≥ 1, i = 1,2. In turn, condition (3.13) implies that for sufficiently large n, we
have

νn,i(X \ K) <
2μn,i(X \ K)

α0
<

2�

α0

and tightness of (νn,i), i = 1,2, follows. Therefore, without loss of generality, we
may assume that the sequences (μn,i), (νn,i), i = 1,2, are weakly convergent. The
sequences

μ̄n,i := μn,i − αnνn,i, n ≥ 1,(3.19)

are therefore also weakly convergent for i = 1,2. The assumption that α0 < 1
implies that the respective limits are nonzero measures; we denote them by μ̄i ,
i = 1,2, correspondingly. Let yi ∈ supp μ̄i , i = 1,2. Analogously to the previous
step, we may choose σ > 0 such that (3.17) is satisfied. By (2.2), we choose T > 0
and γ > 0 for which

QT (
yi,B(z, σ/2)

) ≥ γ for i = 1,2.(3.20)

Since the semigroup (Pt )t≥0 is Feller, we may find r > 0 such that

QT (y,B(z, σ )) ≥ γ /2 for y ∈ B(yi, r) and i = 1,2.(3.21)

Indeed, it suffices to choose φ ∈ Lipb(X ) such that 1B(z,σ/2) ≤ φ ≤ 1B(z,σ ). From
(3.20), we have

∫
X φ(x)QT (yi, dx) ≥ γ . The Feller property implies that there

exists r > 0 such that, for y ∈ B(yi, r) and i = 1,2, we have

QT (y,B(z, σ )) ≥
∫

X
φ(x)QT (y, dx) ≥ γ

2
.

Set s0 = min{μ̄1(B(y1, r)), μ̄2(B(y2, r))} > 0. Using part (iv) of Theorem 2.1,
page 16 of [1], we may find N ≥ 1 such that

μ̄n,i(B(yi, r)) >
s0

2
and αn + s0

γ

4
> α0(3.22)

for n ≥ N . We prove that α′
0 := α0 + s0γ /8 also belongs to �, which obviously

leads to a contradiction with the hypothesis that α0 = sup�. We construct se-
quences (Tα′

0,n
), (μn

α′
0,i

) and (νn
α′

0,i
), i = 1,2, that satisfy conditions (3.11)–(3.14)



ERGODICITY OF INVARIANT MEASURES 1417

with α replaced by α′
0. Let μ̂i

n(·) := μ̄n,i(·|B(yi, r)), i = 1,2, be the measure μ̄n,i

conditioned on the respective balls B(yi, r), i = 1,2. That is, if μ̄n,i(B(yi, r)) 	= 0,
then we let

μ̂i
n(·) := μ̄n,i(· ∩ B(yi, r))

μ̄n,i(B(yi, r))
,(3.23)

while if μ̄n,i(B(yi, r)) = 0, we just let μ̂i
n(·) := δyi

. Also, let μ̃i
n(·) := (QT μ̄n,i)×

(·|B(z,σ )). From the above definition, it follows that

QT μn,i ≥ s0γ

4
μ̃i

n + αnQ
T νn,i(3.24)

for n ≥ N and i = 1,2. Indeed, note that from (3.22) and (3.23), we have

μ̄n,i(B) ≥ s0

2
μ̂i

n(B) ∀B ∈ B(X ),(3.25)

hence, also,

QT μ̄n,i(B) ≥ s0

2
QT μ̂i

n(B) ∀B ∈ B(X ).(3.26)

On the other hand, by Fubini’s theorem, we obtain

QT μ̂i
n(B(z, σ )) = T −1

∫ T

0

∫
X

1B(z,σ )(x)P ∗
s μ̂i

n(dx) ds

= T −1
∫ T

0

∫
X

Ps1B(z,σ )(x)μ̂i
n(dx) ds

=
∫

X
QT (x,B(z, σ ))μ̂i

n(dx)

(3.23)=
∫
B(yi ,r)

QT (x,B(z, σ ))μ̂i
n(dx)

(3.21)≥ γ

2

and, consequently, (3.26) implies that

QT μ̄n,i(B(z, σ )) ≥ s0γ

4
.(3.27)

Hence, for any B ∈ B(X ),

QT μn,i(B)
(3.19)= QT μ̄n,i(B) + αnQ

T νn,i(B)

≥ QT μ̄n,i

(
B ∩ B(z,σ )

) + αnQ
T νn,i(B)

(3.27)≥ s0γ

4
μ̃n,i(B) + αnQ

T νn,i(B)

and (3.24) follows. At this point, observe that, by virtue of (3.24), measures
QT μn,i and (s0γ /4 + αn)

−1[(s0γ /4)μ̃n,i + αnQ
T νn,i] would satisfy (3.13), with

α′
0 in place of α, admitted them instead of μn

α′
0,i

and νn
α′

0,i
, respectively. Condi-

tion (3.12) need not, however, hold in such case. To remedy this, we average
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QT μn,i over a long time, using the operator QR corresponding to a sufficiently
large R > 0, and use Lemma 2. More precisely, since ηn > ‖QTn(xi) − μn,i‖TV

[thus, also, ηn > ‖QR,T,Tn(xi) − QR,T μn,i‖TV for any R > 0], by Lemma 2, we
can choose Rn > Tn such that

‖QRn,T ,Tn(xi) − QRn(xi)‖TV < ηn − ‖QRn,T ,Tn(xi) − QRn,T μn,i‖TV.(3.28)

Let

Tα′
0,n

:= Rn, μn
α′

0,i
:= QRnQT μn,i(3.29)

and

νn
α′

0,i
:=

(
αn + s0γ

4

)−1

QRn

(
αnQ

T νn,i + s0γ

4
μ̃n,i

)
(3.30)

for i = 1,2, n ≥ 1. By virtue of (3.28), we immediately see that

‖QTα′
0,n(xi) − μn

α′
0,i

‖TV < ηn ∀n ≥ 1.

Furthermore, from (3.24), positivity of QRn and the definitions of α′
0 and measures

μn
α′

0,i
νn
α′

0,i
, we obtain that

μn
α′

0,i
≥ α′

0ν
n
α′

0,i
∀n ≥ N, i = 1,2,

when N is chosen sufficiently large. To verify (3.14), note that from (3.30), it
follows that∣∣∣∣∫X

ψ(x)QSνn
α′

0,1
(dx) −

∫
X

ψ(x)QSνn
α′

0,2
(dx)

∣∣∣∣
≤ αn

(
αn + s0γ

4

)−1

×
∣∣∣∣∫X

ψ(x)QS,Rn,T νn,1(dx) −
∫

X
ψ(x)QS,Rn,T νn,2(dx)

∣∣∣∣(3.31)

+ s0γ

4

(
αn + s0γ

4

)−1∣∣∣∣∫X
ψ(x)QS,Rnμ̃n,1(dx) ds

−
∫

X
ψ(x)QS,Rnμ̃n,2(dx)

∣∣∣∣
for all S ≥ 0. Denote the integrals appearing in the first and the second terms on
the right-hand side of (3.31) by I (S) and II(S), respectively. Condition (3.14) will
follow if we could demonstrate that the upper limits, as S ↑ ∞, of both of these
terms are smaller than ε. To estimate I (S), we use Lemma 2 and condition (3.14),
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which holds for νn,i , i = 1,2. We then obtain

lim sup
S↑∞

I (S) ≤ lim sup
S↑∞

∣∣∣∣∫X
ψ(x)QS,Rn,T νn,1(dx) −

∫
X

ψ(x)QSνn,1(dx)

∣∣∣∣
+ lim sup

S↑∞

∣∣∣∣∫X
ψ(x)QSνn,1(dx) −

∫
X

ψ(x)QSνn,2(dx)

∣∣∣∣
+ lim sup

S↑∞

∣∣∣∣∫X
ψ(x)QS,Rn,T νn,2(dx) −

∫
X

ψ(x)QSνn,2(dx)

∣∣∣∣ < ε.

On the other hand, since supp μ̃i
n ⊂ B(z,σ ), i = 1,2, we obtain, from equiconti-

nuity condition (3.17),

II(S) = 1

SRn

∣∣∣∣∫ S

0

∫ Rn

0

∫
X

∫
X

(
Ps1+s2ψ(x) − Ps1+s2ψ(x′)

)
ds1 ds2

× μ̃n,1(dx)μ̃n,2(dx′)
∣∣∣∣ ≤ ε

2
.

Hence, (3.14) holds for νn
α′

0,i
, i = 1,2, and function ψ . Summarizing, we have

shown that α′
0 ∈ �. However, we also have α′

0 > α0 = sup�, which is clearly
impossible. Therefore, we conclude that sup� = 1. �

3.3. Proof of Theorem 2. Taking Theorem 1 into account, the proof of the first
part of the theorem will be completed as soon as we can show that T = X . Note
that condition (2.8) implies that z ∈ supp μ∗. Indeed, let B be a bounded set such
that μ∗(B) > 0. We can then write, for any δ > 0 and T > 0,

μ∗(B(z, δ)) =
∫

X
QT (y,B(z, δ))μ∗(dy)

= lim inf
T ↑∞

∫
X

QT (y,B(z, δ))μ∗(dy)

Fatou lem.≥
∫

X
lim inf
T ↑∞ QT (y,B(z, δ))μ∗(dy)

(2.8)≥ inf
y∈B

lim inf
T ↑∞ QT (y,B(z, δ))μ∗(B) > 0.

According to Proposition 1, the above implies that z ∈ T . Now, fix an arbitrary
x ∈ X . Let Cε be the family of all closed sets C ⊂ X which possess a finite ε-net,
that is, there exists a finite set, say {x1, . . . , xn}, for which C ⊂ ⋃n

i=1 B(xi, ε). To
prove that the family (QT (x)) is tight, it suffices to show that for every ε > 0, there
exists Cε ∈ Cε such that

lim inf
T ↑∞ QT (x,Cε) > 1 − ε;(3.32)
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for more details, see, for example, pages 517 and 518 of [16]. In light of Lemma 2,
this condition would follow if we could prove that for given ε > 0, k ≥ 1 and
t1, . . . , tk ≥ 0, one can find Tε > 0 and Cε ∈ Cε such that

QT,t1,...,tk (x,Cε) > 1 − ε ∀T ≥ Tε.(3.33)

Fix an ε > 0. Since z ∈ T , we can find Cε/2 ∈ Cε/2 such that (3.32) holds with

ε/2 in place of ε and x = z. Let C̃ := C
ε/2
ε/2 be the ε/2-neighborhood of Cε/2.

LEMMA 4. There exists σ > 0 such that

inf
ν∈M1(B(z,σ ))

lim inf
T ↑∞ QT ν(C̃) > 1 − 3ε

4
.(3.34)

In addition, if σ is as above, then for any k ≥ 1 and t1, . . . , tk ≥ 0, we can choose
T∗ such that

inf
ν∈M1(B(z,σ ))

QT,t1,...,tk ν(C̃) > 1 − 3ε

4
∀T ≥ T∗.(3.35)

PROOF. The claim made in (3.34) follows if we can show that there exists
σ > 0 such that

lim inf
T →+∞QT (y, C̃) > 1 − 3ε

4
∀y ∈ B(z,σ ).(3.36)

To prove (3.36), suppose that ψ is a Lipschitz function such that 1Cε/2 ≤ ψ ≤ 1
C̃

.
Since (Ptψ)t≥0 is equicontinuous at z, we can find σ > 0 such that |Ptψ(y) −
Ptψ(z)| < ε/4 for all y ∈ B(z,σ ). We then have

QT (y, C̃) ≥
∫

X
ψ(y′)QT (y, dy′) ≥

∫
X

ψ(y′)QT (z, dy′) − ε

4

and, using (3.32), we conclude that

lim inf
T ↑∞ QT (y, C̃) ≥ lim inf

T ↑∞ QT (z,Cε/2) − ε

4
> 1 − 3ε

4
.(3.37)

Estimate (3.35) follows directly from (3.34) and Lemma 2. �

Let us return to the proof of Theorem 2. Let σ > 0 be as in the above lemma
and let γ > 0 denote the supremum of all sums α1 + · · · + αk such that there exist
ν1, . . . , νk ∈ M1(B(z, σ )) and

Q
t0
1 ,...,t0

m0 (x) ≥ α1Q
t1
1 ,...,t1

m1 ν1 + · · · + αkQ
tk1 ,...,tkmk νk(3.38)

for some t0
1 , . . . , t0

m0
, . . . , tk1 , . . . , tkmk

> 0. In light of Lemma 4, to deduce (3.33), it
is enough to show that γ > 1 − ε/4. Assume, therefore, that

γ ≤ 1 − ε

4
.(3.39)
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Let D be a bounded subset of X, let T∗ > 0 be such that

QT (x,D) > 1 − ε

8
∀T ≥ T∗,(3.40)

and let

α := inf
x∈D

lim inf
T ↑∞ QT (x,B(z, σ )) > 0.(3.41)

Let α1, . . . , αk > 0, t0
1 , . . . , t0

m0
, . . . , tk1 , . . . , tkmk

> 0 and ν1, . . . , νk ∈ M1(B(z, σ ))

be such that

Q
t0
1 ,...,t0

m0 (x) ≥ α1Q
t1
1 ,...,t1

m1 ν1 + · · · + αkQ
tk1 ,...,tkmk νk

and

γ − (α1 + · · · + αk) <
αε

64
.(3.42)

For a given t ≥ 0, we let

μt := Q
t,t0

1 ,...,t0
m0 (x) − α1Q

t,t1
1 ,...,t1

m1 ν1 − · · · − αkQ
t,tk1 ,...,tkmk νk.

By virtue of Lemma 2, we can choose T∗ > 0 such that ‖Qt,t0
1 ,...,t0

m0 (x) −
Qt(x)‖TV < ε/16 for t ≥ T∗. Thus, from (3.40), we obtain that for such t ,

μt(D) > Qt(x,D) − ‖Qt,t0
1 ,...,t0

m0 (x) − Qt(x)‖TV − (α1 + · · · + αk)

≥ 1 − ε

8
− ε

16
− γ

(3.39)≥ ε

16
.

However, this means that for t ≥ T∗,

lim inf
T ↑∞ QT μt(B(z, σ ))

Fatou lem.≥
∫

X
lim inf
T ↑∞ QT (y,B(z, σ ))μt(dy)

≥
∫
D

lim inf
T ↑∞ QT (y,B(z, σ ))μt(dy)

(3.41)≥ αε

16
.

Choose T∗ > 0 such that

QT μt(B(z, σ )) >
αε

32
∀t, T ≥ T∗.(3.43)

Let ν(·) := (QT μt)(·|B(z,σ )). Of course, ν ∈ M1(B(z, σ )). From (3.43) and the
definitions of ν, μt , we obtain, however, that for t, T as above,

Q
T,t,t0

1 ,...,t0
m0 (x) ≥ α1Q

T,t,t1
1 ,...,t1

m1 ν1 + · · · + αkQ
T,t,tk1 ,...,tkmk νk + αε

32
ν.

Hence, γ ≥ α1 + · · · + αk + αε/32, which clearly contradicts (3.42).
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Proof of the weak law of large numbers. Recall that Pμ is the path measure cor-
responding to μ, the initial distribution of (Z(t))t≥0. Let Eμ be the corresponding
expectation and d∗ := ∫

ψ dμ∗. It then suffices to show that

lim
T →+∞ Eμ

[
1

T

∫ T

0
ψ(Z(t)) dt

]
= d∗(3.44)

and

lim
T →+∞ Eμ

[
1

T

∫ T

0
ψ(Z(t)) dt

]2

= d2∗ .(3.45)

Equality (3.44) is an obvious consequence of weak-∗ mean ergodicity. To show
(3.45), observe that the expression under the limit equals

2

T 2

∫ T

0

∫ t

0

(∫
X

P s(ψPt−sψ)dμ

)
dt ds

(3.46)

= 2

T 2

∫ T

0
(T − s)

(∫
X

Ps(ψ�T −s) dμ

)
ds,

where

�t(x) :=
∫

X
ψ(y)Qt(x, dy) = 1

t

∫ t

0
Psψ(x)ds.(3.47)

The following lemma then holds.

LEMMA 5. For any ε > 0 and a compact set K ⊂ X, there exists t0 > 0 such
that

∀t ≥ t0 sup
x∈K

∣∣∣∣�t(x) −
∫

X
ψ dμ∗

∣∣∣∣ < ε.(3.48)

PROOF. It suffices to show equicontinuity of (�t)t≥0 on any compact set K .
The proof then follows from pointwise convergence of �t to d∗ as t → ∞ and the
Arzela–Ascoli theorem. The equicontinuity of the above family of functions is a
direct consequence of the e-property and a simple covering argument. �

Now, suppose that ε > 0. One can find a compact set K such that

∀t ≥ 0 Qtμ(Kc) < ε.(3.49)

Then∣∣∣∣ 2

T 2

∫ T

0
(T − s)

(∫
X

Ps(ψ�T −s) dμ

)
ds − 2d∗

T 2

∫ T

0
(T − s)

(∫
X

Psψ dμ

)
ds

∣∣∣∣
≤ I + II,
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where

I := 2

T 2

∫ T

0
(T − s)

(∫
X

Ps

(
ψ(�T −s − d∗)1K

)
dμ

)
ds

and

II := 2

T 2

∫ T

0
(T − s)

(∫
X

Ps

(
ψ(�T −s − d∗)1Kc

)
dμ

)
ds.

According to Lemma 5, we can find t0 such that (3.48) holds with the compact set
K and ε‖ψ‖−1∞ . We then obtain |I | ≤ ε. Also, note that

|II| ≤ 2‖ψ‖∞(‖ψ‖∞ + |d∗|)QT μ(Kc)
(3.49)
< 2ε‖ψ‖∞(‖ψ‖∞ + |d∗|).

The limit on the right-hand side of (3.45) therefore equals

lim
T →+∞

2d∗
T 2

∫ T

0
(T − s)

(∫
X

Psψ dμ

)
ds

= lim
T →+∞

2d∗
T 2

∫ T

0
ds

∫ s

0

(∫
X

Qs′
ψ dμ

)
ds′ = d2∗ .

4. Proof of Theorem 3. In what follows, we are going to verify the assump-
tions of Theorem 2. First, observe that (2.9) follows from (ii) and Chebyshev’s
inequality. The e-property implies equicontinuity of (Ptψ, t ≥ 0) at any point for
any bounded, Lipschitz function ψ . What remains to be shown, therefore, is con-
dition (2.8). The rest of the proof is devoted to that objective. It will be given in
five steps.

STEP I. We show that we can find a bounded Borel set B and a positive con-
stant r∗ such that

lim inf
T ↑∞ QT (x,B) >

1

2
∀x ∈ K + r∗B(0,1).(4.1)

To prove this, observe, by (ii) and Chebyshev’s inequality, that for every y ∈ K,
there exists a bounded Borel set B0

y such that lim infT ↑∞ QT (y,B0
y) > 3/4. Let

By be a bounded, open set such that By ⊃ B0
y and let ψ ∈ Cb(X ) be such that

1By ≥ ψ ≥ 1B0
y
. Since (Ptψ)t≥0 is equicontinuous at y, we can find ry > 0 such

that |Ptψ(x) − Ptψ(y)| < 1/4 for all x ∈ B(y, ry) and t ≥ 0. Therefore, we have

lim inf
T ↑∞ QT (x,By) ≥ lim inf

T ↑∞
1

T

∫ T

0
Psψ(x)ds

≥ lim inf
T ↑∞

1

T

∫ T

0
Psψ(y)ds − 1

4

≥ lim inf
T ↑∞ QT (y,B0

y) − 1

4
>

1

2
.



1424 T. KOMOROWSKI, S. PESZAT AND T. SZAREK

Since the attractor is compact, we can find a finite covering B(yi, ryi
), i =

1, . . . ,N , of K. The claim made in (4.1) therefore holds for B := ⋃N
i=1 Byi

and
r∗ > 0 sufficiently small so that K + r∗B(0,1) ⊂ ⋃N

i=1 B(yi, ryi
).

STEP II. Let B ⊂ X be as in Step I. We prove that for every bounded Borel
set D ⊂ X , there exists a γ > 0 such that

lim inf
T ↑∞ QT (x,B) > γ ∀x ∈ D.(4.2)

From the fact that K is a global attractor for (2.12), for any r > 0 and a bounded
Borel set D, there exists an L > 0 such that Yx(L) ∈ K + r

2B(0,1) for all x ∈ D.
By (2.13), we have

p(r,D) := inf
x∈D

P
(‖Zx(L) − Yx(L)‖X < r/2

)
> 0.

We therefore obtain that

PL1K+rB(0,1)(x) ≥ p(r,D) ∀x ∈ D.(4.3)

Let r∗ > 0 be the constant given in Step I. Then

lim inf
T ↑∞ QT (x,B)

= lim inf
T ↑∞

1

T

∫ T

0
Ps+L1B(x) ds

= lim inf
T ↑∞

1

T

∫ T

0
P ∗

s+Lδx(B)ds

= lim inf
T ↑∞

1

T

∫ T

0

∫
X

Ps1B(z)P ∗
Lδz(dz) ds

≥ lim inf
T ↑∞

1

T

∫ T

0

∫
K+r∗B(0,1)

Ps1B(z)P ∗
Lδx(dz) ds(4.4)

Fubini
and Fatou≥

∫
K+r∗B(0,1)

lim inf
T ↑∞ QT (z,B)P ∗

Lδx(dz)

(4.1)≥ 1

2

∫
X

1K+r∗B(0,1)(z)P
∗
Lδx(dz)

= 1

2
PL1K+r∗B(0,1)(x)

(4.3)≥ γ := p(r∗,D)

2
∀x ∈ D.



ERGODICITY OF INVARIANT MEASURES 1425

STEP III. We show here that for every bounded Borel set D ⊂ X and any
radius r > 0, there exists a w > 0 such that

inf
x∈D

lim inf
T ↑∞ QT (

x, K + rB(0,1)
)
> w.(4.5)

We therefore fix D ⊂ X and r > 0. From Step II, we know that there exist a
bounded set B ⊂ X and a positive constant γ > 0 such that (4.2) holds. By (2.13),
we have, as in (4.4),

lim inf
T ↑∞ QT (

x, K + rB(0,1)
)

= lim inf
T ↑∞

1

T

∫ T

0

∫
X

PL1K+rB(0,1)(z)P
∗
s δx(dz) ds(4.6)

Fubini≥ lim inf
T ↑∞

∫
B

PL1K+rB(0,1)(z)Q
T (x, dz).

Using (4.3), we can further estimate the last right-hand side of (4.6) from below
by

p(r,D) lim inf
T ↑∞ QT (x,B)

(4.2)
> p(r,D)γ.(4.7)

We therefore obtain (4.5) with w = γp(r,D).

STEP IV. Choose z ∈ ⋂
y∈K

⋃
t≥0 �t(y) 	= ∅. We are going to show that for

every δ > 0, there exist a finite set of positive numbers S and a positive constant r̃

satisfying

inf
x∈K+r̃B(0,1)

max
s∈S

Ps1B(z,δ)(x) > 0.(4.8)

Let tx > 0 for x ∈ K be such that z ∈ suppP ∗
tx
δx . By the Feller property of

(Pt )t≥0, we may find, for any x ∈ K, a positive constant rx such that

P ∗
tx
δy(B(z, δ)) ≥ P ∗

tx
δx(B(z, δ))/2 for y ∈ B(x, rx).(4.9)

Since K is compact, we may choose x1, . . . , xp ∈ K such that K ⊂ ⋃p
i=1 Bi , where

Bi = B(xi, rxi
) for i = 1, . . . , p. Choose r̃ > 0 such that K + r̃B(0,1) ⊂ ⋃p

i=1 Bi .

STEP V. Fix a bounded Borel subset D ⊂ X , z ∈ ⋂
y∈K

⋃
t≥0 �t(y) and δ > 0.

Let a positive constant r̃ and a finite set S be such that (4.8) holds. Set

u := inf
x∈K+r̂B(0,1))

max
s∈S

Ps1B(z,δ)(x) > 0.(4.10)

From Step III, it follows that there exists w > 0 such that (4.5) holds for r = r̃ .
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Denote by #S the cardinality of S. We can easily check that

lim inf
T ↑∞

∑
q∈S

1

T

∫ T

0
Pq+s1B(z,δ)(x) ds

(4.11)
= #S lim inf

T ↑∞ QT (x,B(z, δ)) ∀x ∈ D.

On the other hand, we have∑
q∈S

1

T

∫ T

0
Pq+s1B(z,δ)(x) ds

=
∫

X

∑
q∈S

Pq1B(z,δ)(y)QT (x, dy)

(4.12)
≥

∫
K+r̃B(0,1)

∑
q∈S

Pq1B(z,δ)(y)QT (x, dy)

(4.10)≥ uQT (
x, K + r̃B(0,1)

) ∀x ∈ D.

Combining (4.5) with (4.12), we obtain

lim inf
T ↑∞

∑
q∈S

1

T

∫ T

0
Pq+s1B(z,δ)(x) ds > uw ∀x ∈ D,

and, finally, by (4.11),

lim inf
T ↑∞ QT (x,B(z, δ)) > uw/#S ∀x ∈ D.

This shows that condition (2.8) is satisfied with α = uw/#S.

5. Ergodicity of the Lagrangian observation process. This section is in
preparation for the proof of Theorem 4. Given an r ≥ 0, we denote by X r the
Sobolev space which is the completion of{

x ∈ C∞(Td;R
d) :

∫
Td

x(ξ) dξ = 0, x̂(k) ∈ Im E (k),∀k ∈ Z
d∗
}

with respect to the norm

‖x‖2
X r := ∑

k∈Zd∗

|k|2r |x̂(k)|2,

where

x̂(k) := (2π)−d
∫

Td
x(ξ)e−iξ ·k dξ, k ∈ Z

d,

are the Fourier coefficients of x. Note that X u ⊂ X r if u > r .
Let Ar be an operator on X r defined by

Ârx(k) := −γ (k)x̂(k), k ∈ Z
d∗,(5.1)
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with the domain

D(Ar) :=
{
x ∈ X r :

∑
k∈Zd∗

|γ (k)|2|k|2r |x̂(k)|2 < ∞
}
.(5.2)

Since the operator is self-adjoint, it generates a C0-semigroup (Sr(t))t≥0 on X r .
Moreover, for u > r , Au is the restriction of Ar and Su is the restriction of Sr .
From now on, we will omit the subscript r when it causes no confusion, writing A

and S instead of Ar and Sr , respectively.
Let Q be a symmetric positive definite bounded linear operator on{

x ∈ L2(Td, dξ ;R
d) :

∫
Td

x(ξ) dξ = 0
}

given by

Q̂x(k) := γ (k)E (k)x̂(k), k ∈ Z
d∗ .

Let m be the constant appearing in (2.16) and let X := X m and V := X m+1. Note
that, by Sobolev embedding (see, e.g., Theorem 7.10, page 155 of [9]), X ↪→
C1(Td,R

d) and hence there exists a constant C > 0 such that

‖x‖C1(Td ;Rd ) ≤ C‖x‖X ∀x ∈ X .(5.3)

For any t > 0, the operator S(t) is bounded from any X r to X r+1. Its norm can
be easily estimated by

‖S(t)‖L(X r ,X r+1) ≤ sup
k∈Zd∗

|k|e−γ (k)t .

Let ek(x) := eik·x , k ∈ Z
d . The Hilbert–Schmidt norm of the operator S(t)Q1/2

(see Appendix C of [2]) is given by

‖S(t)Q1/2‖2
L(HS)(X ,V) := ∑

k∈Zd

‖S(t)Q1/2ek‖2
V

= ∑
k∈Zd

|k|2(m+1)γ (k)e−2γ (k)t Tr E (k).

Taking into account assumptions (2.16) and (2.17), we easily obtain the following
lemma.

LEMMA 6. (i) For each t > 0, the operator Q1/2S(t) is Hilbert–Schmidt from
X to V and there exists β ∈ (0,1) such that∫ ∞

0
t−β‖S(t)Q1/2‖2

L(HS)(X ,V) dt < ∞.

(ii) For any r ≥ 0 and t > 0, the operator S(t) is bounded from X r into X r+1

and ∫ ∞
0

‖S(t)‖L(X r ,X r+1) dt < ∞.
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Let W = (W(t))t≥0 be a cylindrical Wiener process in X defined on a filtered
probability space A = (
, F , (Ft ),P). By Lemma 6(i) and Theorem 5.9, page 127
of [2], for any x ∈ X , there exists a unique, continuous in t , X -valued process V x

solving, in the mild sense, the Ornstein–Uhlenbeck equation

dV x(t) = AV x(t) dt + Q1/2 dW(t), V x(0) = x.(5.4)

Moreover, (5.4) defines a Markov family on X (see Section 9.2 of [2]) and the
law L(V (0, ·)) of V (0, ·) on X is its unique invariant probability measure (see
Theorem 11.7 of [2]). Note that, since m > d/2 + 1, for any fixed t , the realization
of V x(t, ξ) is Lipschitz in the ξ variable. If the filtered probability space A is
sufficiently rich, that is, if there exists an F0-measurable random variable with
law L(V (0, ·)), then the stationary solution to (5.4) can be found as a stochastic
process over A. Its law on the space of trajectories C([0,∞) × T

d;R
d) coincides

with the law of (V (t, ·))t≥0.

5.1. An evolution equation describing the environment process. Since the re-
alizations of V x(t, ·) are Lipschitz in the spatial variable, equation (2.15), with
V x(t, ξ) in place of V (t, ξ), has a unique solution xx(t), t ≥ 0, for given initial
data x0. In fact, with no loss of generality, we may, and shall, assume that x0 = 0.
In what follows, we will also denote by x the solution of (2.15) corresponding to
the stationary right-hand side V . Let Z(s, ξ) := V (s, ξ + x(s)) be the Lagrangian
observation of the environment process or, in short, the observation process. It is
known (see [7] and [13]) that Z(s, ·) solves the equations

dZ(t) = [AZ(t) + B(Z(t), Z(t))]dt + Q1/2 dW̃(t),
(5.5)

Z(0, ·) = V
(
0,x(0) + ·),

where W̃ is a certain cylindrical Wiener process on the original probability space
A and

B(ψ,φ)(ξ) :=
(

d∑
j=1

ψj(0)
∂φ1

∂ξj

(ξ), . . . ,

d∑
j=1

ψj(0)
∂φd

∂ξj

(ξ)

)
,

(5.6)
ψ,φ ∈ X , ξ ∈ T

d .

By (5.3), B(·, ·) is a continuous bilinear form mapping from X × X into X m−1.
For a given an F0-measurable random variable Z0 which is square-integrable in

X and a cylindrical Wiener process W in X , consider the SPDE

dZ(t) = [AZ(t) + B(Z(t),Z(t))]dt + Q1/2 dW(t), Z(0) = Z0.(5.7)

Taking into account Lemma 6(ii), the local existence and uniqueness of a mild
solution follow by a standard Banach fixed point argument. For a different type of
argument, based on the Euler approximation scheme, see Section 4.2 of [7]. Global
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existence also follows; see the proof of the moment estimates in Section 5.1.2
below.

Given x ∈ X , let Zx(t) denote the value at t ≥ 0 of a solution to (5.7) satisfying
Zx(0, ξ) = x(ξ), ξ ∈ T

d . Since the existence of a solution follows from the Banach
fixed point argument, Z = (Zx, x ∈ X ) is a stochastically continuous Markov fam-
ily and its transition semigroup (Pt )t≥0 is Feller; for details see, for example, [2]
or [23]. Note that

Ptψ(x) := Eψ
(
V x(

t,xx(t) + ·)).
The following result on ergodicity of the observation process, besides being of

independent interest, will be crucial for the proof of Theorem 4.

THEOREM 5. Under assumptions (2.16) and (2.17), the transition semigroup
(Pt )t≥0 for the family Z = (Zx, x ∈ X ) is weak-∗ mean ergodic.

To prove the above theorem, we verify the hypotheses of Theorem 3.

5.1.1. Existence of a global attractor. Note that Y 0(t) ≡ 0 is the global attrac-
tor for the semi-dynamical system Y = (Y x, x ∈ X ) defined by the deterministic
problem

dY x(t)

dt
= AYx(t) + B(Y x(t), Y x(t)), Y x(0) = x.(5.8)

Clearly, this guarantees the uniqueness of an invariant measure ν∗ for the corre-
sponding semi-dynamical system; see Definition 2.4. Our claim follows from the
exponential stability of Y 0, namely,

∀x ∈ X , t > 0 ‖Yx(t)‖X ≤ e−γ∗t‖x‖X ,(5.9)

where

γ∗ = inf
k∈Zd∗

γ (k)(5.10)

is strictly positive by (2.17). Indeed, differentiating ‖Yx(t)‖2
X over t , we obtain

d

dt
‖Yx(t)‖2

X = 2〈AYx(t), Y x(t)〉X + 2
d∑

j=1

Yx(t,0)

〈
∂Y x(t)

∂ξj

, Y x(t)

〉
X

.

The last term on the right-hand side vanishes, while the first one can be estimated
from above by −2γ∗‖Yx(t)‖2

X . Combining these observations with Gronwall’s
inequality, we obtain (5.9).
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5.1.2. Moment estimates. Let B(0,R) be the ball in X with center at 0 and
radius R. We will show that for any R > 0 and any integer n ≥ 1,

sup
x∈B(0,R)

sup
t≥0

E‖Zx(t)‖2n
X < ∞.(5.11)

Recall that V x is the solution to (5.4) satisfying V x(0) = x. Let xx = (xx(t), t ≥ 0)

solve the problem

dxx

dt
(t) = V x(t,xx(t)), xx(0) = 0.(5.12)

We then obtain

‖Zx(t)‖2
X

d=
∫

Td

∣∣∇mV x(
t,xx(t) + ξ

)∣∣2 dξ = ‖V x(t)‖2
X ,(5.13)

where the first equality means equality in law. Since V x is Gaussian, there is a
constant C1 > 0 such that

E‖V x(t)‖2n
X ≤ C1(E‖V x(t)‖2

X )n.

Hence, there is a constant C2 > 0 such that for ‖x‖X ≤ R,

E‖V x(t)‖2n
X ≤ C2(1 + R2n)

(∫ t

0
‖S(t − s)Q1/2‖2

L(HS)(X ,X ) ds

)n

≤ C2(1 + R2n)

(∫ ∞
0

‖S(s)Q1/2‖2
L(HS)(X ,X ) ds

)n

.

Note that there is a constant C3 such that∫ ∞
0

‖S(s)Q1/2‖2
L(HS)(X ,X ) ds ≤ C3|||E |||2 < ∞,

where |||E |||2 appears in (2.16) and (5.11) indeed follows.

5.1.3. Stochastic stability. Define Z̃x(t) := V x(t,xx(t) + ·). This satisfies
equation (5.5) and so the laws of (Z̃x(t))t≥0 and (Zx(t))t≥0 are identical. On the
other hand, for Ṽ x(t) := S(t)x and

dyx

dt
= Ṽ x(t,yx(t)), y(0) = 0,

we have that Yx(t, ·) := Ṽ x(t,yx(t)+·) satisfies (5.8). To show stochastic stability,
it suffices to prove that

∀ε,R,T > 0 inf‖x‖X ≤R
P

(‖Z̃x(T ) − Yx(T )‖X < ε
)
> 0.(5.14)

Let M = (M(t))t≥0 be the stochastic convolution process

M(t) :=
∫ t

0
S(t − s)Q1/2 dW(s), t ≥ 0.(5.15)
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It is a centered, Gaussian, random element in the Banach space C([0, T ], X )

whose norm we denote by ‖ · ‖∞. We will use the same notation for the norm on
C[0, T ]. Note that V x(t) = Ṽ x(t) + M(t). Since M is a centered, Gaussian, ran-
dom element in the Banach space C([0, T ], X ), its topological support is a closed
linear subspace; see, for example, [28], Theorem 1, page 61. Thus, in particular,
0 belongs to the support of its law and

∀δ > 0 q := P(Fδ) > 0,(5.16)

where Fδ := [‖M‖∞ < δ]. Since ‖V x − Ṽ x‖∞ < δ on Fδ , we can choose δ suffi-
ciently small so that ‖xx − yx‖∞ < ρ, where ρ is chosen in such a way that

‖Z̃x(T ) − Yx(T )‖X

≤ ∥∥V x(
T ,xx(T ) + ·) − Ṽ x(

T ,xx(T ) + ·)∥∥X

+ ∥∥Ṽ x(
T ,xx(T ) + ·) − Ṽ x(

T ,yx(T ) + ·)∥∥X < ε ∀x ∈ B(0,R)

on Fδ . Hence, (5.14) follows.

5.1.4. e-property of the transition semigroup. It suffices to show that for any
ψ ∈ C1

b(X ) and R > 0, there exists a positive constant C such that

sup
t≥0

sup
‖x‖X ≤R

‖DPtψ(x)‖X ≤ C‖ψ‖C1
b (X ).(5.17)

Here, Dφ denotes the Fréchet derivative of a given function φ ∈ C1
b(X ). Indeed,

let ρn ∈ C2
0(Rn) be supported in the ball of radius 1/n, centered at 0 and such that∫

Rn ρn(ξ) dξ = 1. Suppose that (en) is an orthonormal base in X and Qn is the
orthonormal projection onto span{e1, . . . , en}. Define

ψn(x) :=
∫

Rn
ρn(Qnx − ξ)ψ

(
n∑

i=1

ξiei

)
dξ, x ∈ X .

One can deduce (see part 2 of the proof of Theorem 1.2, pages 164 and 165
in [22]) that for any ψ ∈ Lip(X ), the sequence (ψn) satisfies (ψn) ⊂ C1

b(X )

and limn→∞ ψn(x) = ψ(x) pointwise. In addition, ‖ψn‖L∞ ≤ ‖ψ‖L∞ and
supz‖Dψn(z)‖X ≤ Lip(ψ). Let R > 0 be arbitrary and x, y ∈ B(0,R). We can
write

|Ptψ(x) − Ptψ(y)| = lim
n→∞|Ptψn(x) − Ptψn(y)|

≤ sup
‖z‖X ≤R

‖DPtψn(z)‖X ‖x − y‖X

(5.17)≤ C‖ψn‖C1
b (X )‖x − y‖X

≤ C[‖ψ‖∞ + Lip(ψ)]‖x − y‖X .
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This shows equicontinuity of (Ptψ)t≥0 for an arbitrary Lipschitz function ψ in the
neighborhood of any x and the e-property follows.

To prove (5.17), we adopt the method from [11]. First, note that DPtψ(x)[v],
the value of DPtψ(x) at v ∈ X , is equal to E{Dψ(Zx(t))[U(t)]}, where U(t) :=
∂Zx(t)[v] and

∂Zx(t)[v] := lim
ε↓0

1

ε

(
Zx+εv(t) − Zx(t)

)
,

the limit here taken in L2(
, F ,P; X ). The process U = (U(t), t ≥ 0)t≥0 satisfies
the linear evolution equation

dU(t)

dt
= AU(t) + B(Zx(t),U(t)) + B(U(t),Zx(t)),

(5.18)
U(0) = v.

Suppose that H is a certain Hilbert space and 	 : X → H a Borel measur-
able function. Given an (Ft )t≥0-adapted process g : [0,∞) × 
 → X satisfying
E

∫ t
0 ‖gs‖2

X ds < ∞ for each t ≥ 0, we denote by Dg	(Zx(t)) the Malliavin deriv-
ative of 	(Zx(t)) in the direction of g. That is, the L2(
, F ,P;H)-limit, if exists,
of

Dg	(Zx(t)) := lim
ε↓0

1

ε
[	(Zx

εg(t)) − 	(Zx(t))],
where Zx

g(t), t ≥ 0, solves the equation

dZx
g(t) = [AZx

g(t) + B(Zx
g(t),Zx

g(t))]dt + Q1/2(
dW(t) + gt dt

)
,

Zx
g(0) = x.

In particular, one can easily show that when H = X and 	 = I , where I is the
identity operator, the Malliavin derivative of Zx(t) exists and the process D(t) :=
DgZ

x(t), t ≥ 0, solves the linear equation

dD

dt
(t) = AD(t) + B(Zx(t),D(t)) + B(D(t),Zx(t)) + Q1/2g(t),

(5.19)
D(0) = 0.

The following two facts about the Malliavin derivative will be crucial for us in the
sequel. Directly from the definition of the Malliavin derivative, we derive the chain
rule: if we suppose that 	 ∈ C1

b(X ;H), then

Dg	(Zx(t)) = D	(Zx(t))[D(t)].(5.20)

In addition, the integration by parts formula holds; see Lemma 1.2.1, page 25
of [21]. If we suppose that 	 ∈ C1

b(X ), then

E[Dg	(Zx(t))] = E

[
	(Zx(t))

∫ t

0
〈g(s),Q1/2 dW(s)〉X

]
.(5.21)

We also have the following proposition.
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PROPOSITION 2. For any given v, x ∈ X such that ‖v‖X ≤ 1,‖x‖X ≤ R, one
can find an (Ft )-adapted X -valued process gt = gt (v, x) that satisfies

sup
‖v‖X ≤1

sup
‖x‖X ≤R

∫ ∞
0

E‖Q1/2gs‖2
X ds < ∞,(5.22)

sup
‖v‖X ≤1

sup
‖x‖X ≤R

sup
t≥0

E‖DZx(t)[v] − DgZ
x(t)‖X < ∞.(5.23)

We prove this proposition shortly. First, however, let us demonstrate how it can
be used to complete the argument for the e-property. Let ωt(x) := DgZ

x(t) and
ρt (v, x) := DZx(t)[v] − DgZ

x(t). Then

DPtψ(x)[v] = E{Dψ(Zx(t))[ωt(x)]} + E{Dψ(Zx(t))[ρt (v, x)]}
= E{Dgψ(Zx(t))} + E{Dψ(Zx(t))[ρt (v, x)]}

(5.21)= E

{
ψ(Zξ (t))

∫ t

0
〈g(s),Q1/2 dW(s)〉X

}
+ E{Dψ(Zx(t))[ρt (v, x)]}.

We have∣∣∣∣E{
ψ(Zx(t))

∫ t

0
〈g(s),Q1/2 dW(s)〉X

}∣∣∣∣ ≤ ‖ψ‖L∞
(

E

∫ ∞
0

‖Q1/2g(s)‖2
X ds

)1/2

and

|E{Dψ(Zx(t))[ρt (v, x)]}| ≤ ‖ψ‖C1
b (X )E‖ρt (v, x)‖X .

Hence, by (5.22) and (5.23), we derive the desired estimate (5.17) with

C =
(

E

∫ ∞
0

‖Q1/2g(s)‖2
X ds

)1/2

+ sup
‖v‖X ≤1

sup
‖x‖X ≤R

sup
t≥0

E‖DZx(t)[v] − DgZ
x(t)‖X .

Therefore, the e-process property would be shown if we could prove Proposition 2.

5.1.5. Proof of Proposition 2. Let us denote by �≥N the orthogonal projection
onto span{zeikξ : |k| ≥ N,z ∈ Im E (k)} and let �<N := I − �≥N = �⊥≥N . Write

AN := �≥NA, QN := �≥NQ, A⊥
N := �<NA, Q⊥

N := �<NQ.

Given an integer N , let ζN(v, x)(t) be the solution of the problem

dζN

dt
(t) = ANζN(t) + �≥N

(
B(Zx(t), ζN(t)) + B(ζN(t),Zx(t))

)
− 1

2
�<NζN(t)‖�<NζN(t)‖−1

X ,(5.24)

ζN(0) = v.
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We adopt the convention that

�<NζN‖�<NζN‖−1
X := 0 if �<NζN = 0.(5.25)

Let

g := Q−1/2f,(5.26)

where

f (t) := A⊥
NζN(v, x)(t)

+ �<N [B(Zx(t), ζN(v, x)(t)) + B(ζN(v, x)(t),Zx(t))](5.27)

+ 1
2�<NζN(v, x)(t)‖�<NζN(v, x)(t)‖−1

X

and where N will be specified later. Note that f takes values in a finite-dimensional
space, where Q is invertible, by the definition of the space X . Recall that
ρt(v, x) := DZx(t)[v] − DgZ

x(t). We have divided the proof into a sequence of
lemmas.

LEMMA 7. We have

ρt (v, x) = ζN(v, x)(t) ∀t ≥ 0.(5.28)

PROOF. Adding f (t) to both sides of (5.24), we obtain

dζN(v, x)

dt
(t) + f (t)

= AζN(v, x)(t) + B(Zx(t), ζN(v, x)(t))
(5.29)

+ B(ζN(v, x)(t),Zx(t)),

ζN(v, x)(0) = v.

Recall that DZx(t)[v] and DgZ
x(t) obey equations (5.18) and (5.19), respectively.

Hence, ρt := ρt (v, x) satisfies

dρt

dt
= Aρt + B(Zx(t), ρt ) + B(ρt ,Z

x(t)) − Q1/2g(t),

ρ0 = v.

Since f (t) = Q1/2gt , we conclude that ρt and ζN(v, x)(t) solve the same linear
evolution equation with the same initial value. Thus, the assertion of the lemma
follows. �

LEMMA 8. For each N ≥ 1, we have �<NζN(v, x)(t) = 0 for all t ≥ 2.
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PROOF. Applying �<N to both sides of (5.24), we obtain

d

dt
�<NζN(v, x)(t) = −1

2
‖�<NζN(v, x)(t)‖−1

X �<NζN(v, x)(t),

(5.30)
ζN(v, x)(0) = v.

Multiplying both sides of (5.30) by �<NζN(v, x)(t), we obtain that z(t) :=
‖�<NζN(v, x)(t)‖2

X satisfies

dz

dt
(t) = −1

2

√
z(t).(5.31)

Since ‖v‖X ≤ 1, z(0) ∈ (0,1] and the desired conclusion holds from elementary
properties of the solution of the ordinary differential equation (5.31). �

LEMMA 9. For any R > 0, the following hold:
(i) for any N ,

sup
‖v‖X ≤1

sup
‖x‖X ≤R

sup
t∈[0,2]

E‖ζN(v, x)(t)‖4
X < ∞;(5.32)

(ii) there exists an N0 ∈ N such that for any N ≥ N0,

sup
‖v‖X ≤1

sup
‖x‖X ≤R

∫ ∞
0

(E‖ζN(v, x)(t)‖4
X )1/2 dt < ∞(5.33)

and

sup
‖v‖X ≤1

sup
‖x‖X ≤R

sup
t≥0

E‖ζN(v, x)(t)‖4
X < ∞.(5.34)

Since the proof of the lemma is quite lengthy and technical, we postpone its
presentation until the next section. However, we can now complete the proof of
Proposition 2.

First, we assume that f is given by (5.27) with an arbitrary N ≥ N0, where N0
appears in the formulation of Lemma 9. By Lemma 7, ρt(v, x) = ζN(v, x)(t). Of
course, (5.34) implies (5.23). We show (5.22). As a consequence of Lemma 8, we
have �NζN(v, x)(t) = 0 for t ≥ 2. The definition of the form B(·, ·) [see (5.6)]
and the fact that the partial derivatives commute with the projection operator �<N

together imply that

�<NB(Zx(t), ζN(v, x)(t)) = B(Zx(t),�<NζN(v, x)(t)).

As a consequence of Lemma 8 and convention (5.25), we conclude from (5.27)
that

f (t) = �<NB(ζN(v, x)(t),Zx(t)) = B(ζN(v, x)(t),�<NZx(t)) ∀t ≥ 2.
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By (5.3), for t ≥ 2, we have

‖f (t)‖X ≤ C‖ζN(v, x)(t)‖X ‖�<NZx(t)‖X m+1

≤ CN‖ζN(v, x)(t)‖X ‖�<NZx(t)‖X

≤ CN‖ζN(v, x)(t)‖X ‖Zx(t)‖X .

Consequently,

E

∫ ∞
2

‖Q1/2gt (v, x)‖2
X dt

= E

∫ ∞
2

‖f (t)‖2
X dt

≤ C2N2 sup
t≥2

(E‖Zx(t)‖4
X )1/2

∫ ∞
2

(E‖ζN(v, x)(t)‖4
X )1/2 dt.

Hence, by (5.11) and (5.33), we obtain

sup
‖x‖X ≤R,‖v‖X ≤1

E

∫ ∞
2

‖Q1/2gt (v, x)‖2
X dt < ∞.

Clearly, by Lemma 9(i) and (5.11), we have

sup
‖x‖X ≤R,‖v‖X ≤1

E

∫ 2

0
‖Q1/2gt (v, x)‖2

X dt < ∞

and the proof of (5.22) is completed.

5.1.6. Proof of Lemma 9. Recall that for any r , A is a self-adjoint operator
when considered on the space X r , and that

〈Aψ,ψ〉X r ≤ −γ∗‖ψ‖2
X r , ψ ∈ D(A),(5.35)

where γ∗ > 0 was defined in (5.10). Recall that V x is the solution to the Ornstein–
Uhlenbeck equation (5.4) starting from x and that xx is the corresponding solution
to (5.12). The laws of the processes (Zx(t))t≥0 and (V x(t, · + xx(t)))t≥0 are the
same. By virtue of this and the fact that ‖V x(t, · + xx(t))‖X = ‖V x(t)‖X , we
obtain that for each N ≥ 1 and r ≥ 0,

L((‖�≥NV x(t)‖X r )t≥0) = L((‖�≥NZx(t)‖X r )t≥0),(5.36)

where, as we recall, L stands for the law of the respective process.
In order to show the first part of the lemma, note that from (5.24), upon scalar

multiplication (in X ) of both sides by ζN(v, x)(t) and use of (5.35), we have

1

2

d

dt
‖ζN(v, x)(t)‖2

X

≤ −γ∗‖ζN(v, x)(t)‖2
X

+ |ζN(v, x)(t,0)|‖Zx(t)‖V ‖ζN(v, x)(t)‖X + 1

2
‖ζN(v, x)(t)‖X .
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Here, as we recall, V = X m+1. Taking into account (5.3) and the rough estimate
a/2 ≤ 1 + a2, we obtain

1

2

d

dt
‖ζN(v, x)(t)‖2

X ≤ (1 − γ∗)‖ζN(v, x)(t)‖2
X

+ C‖ζN(v, x)(t)‖2
X ‖Zx(t)‖V + 1.

Using Gronwall’s inequality and (5.36), we obtain

‖ζN(v, x)(t)‖2
X ≤ (‖v‖2

X + t) exp
{

2(1 − γ∗)t + 2C

∫ t

0
‖Zx(s)‖V ds

}
≤ (1 + t) exp

{
2(1 − γ∗)t + C

∫ t

0
‖V x(s)‖V ds

}
≤ (1 + t) exp

{
2(1 − γ∗)t + C

∫ t

0

(‖S(s)x‖V + ‖M(s)‖V
)
ds

}
,

where M = V 0 is given by (5.15). By Lemma 6(ii),

sup
‖x‖X ≤1

∫ ∞
0

‖S(s)x‖V ds < ∞.

Thus, the proof of the first part of the lemma will be completed as soon as we can
show that

E exp
{
C

∫ 2

0
‖M(s)‖V ds

}
< ∞.(5.37)

By Lemma 6, M is a Gaussian element in C([0,2], V). Therefore, (5.37) is a direct
consequence of the Fernique theorem (see, e.g., [2]).

To prove the second part of the lemma, first observe that for any N ≥ 1,

〈�≥NB(Zx(t), ζN(v, x)(t)), ζN(v, x)(t)〉X

= 〈B(Zx(t),�≥NζN(v, x)(t)),�≥NζN(v, x)(t)〉X

= 0.

Multiplying both sides of (5.24) by ζN(v, x)(t) and remembering that �<NζN(v,

x)(t) = 0 for t ≥ 2, we obtain that, for those times,

1

2

d

dt
‖ζN(v, x)(t)‖2

X

≤ −γ∗‖ζN(v, x)(t)‖2
X + |ζN(v, x)(t,0)|‖�≥NZx(t)‖V ‖ζN(v, x)(t)‖X

(5.3)≤ −γ∗‖ζN(v, x)(t)‖2
X + C‖�≥NZx(t)‖V ‖ζN(v, x)(t)‖2

X

≤ −γ∗‖ζN(v, x)(t)‖2
X

+ C
(‖�≥NS(t)x‖2

V + ‖�≥NZ0(t)‖V
)‖ζN(v, x)(t)‖2

X .
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Define

h(z) = z2√
1 + γ −1∗ |z|2

, z ≥ 0.

Note that there exists a constant C̃ such that

Czζ 2 ≤ γ∗
2

ζ 2 + C̃

4
h(z)ζ 2, z ≥ 0, ζ ∈ R.

Therefore,

C‖�≥NZ0(t)‖V ‖ζN(v, x)(t)‖2
X

≤ γ∗
2

‖ζN(v, x)(t)‖2
X + C̃

4
‖ζN(v, x)(t)‖2

X h(‖�≥NZ0(t)‖V ).

Using Gronwall’s inequality, we obtain, for t ≥ 2,

‖ζN(v, x)(t)‖2
X

≤ ‖ζN(v, x)(2)‖2
X exp

{
−γ∗(t − 2) + L‖x‖2

X

+ C̃

2

∫ t

2
h(‖�≥NZ0(s)‖V ) ds

}
,

where L := 2C
∫ ∞

2 ‖S(t)‖L(X ,V) dt . We have, therefore, by virtue of the Cauchy–
Schwarz inequality,

E‖ζN(v, x)(t)‖4
X

≤ E‖ζN(v, x)(2)‖4
X E exp

{
−2γ∗(t − 2) + 2L‖x‖2

X

+ C̃

∫ t

2
h(‖�≥NZ0(s)‖V ) ds

}
(5.36)= E‖ζN(v, x)(2)‖4

X E exp
{
−2γ∗(t − 2) + 2L‖x‖2

V

+ C̃

∫ t

2
h(‖�≥NM(s)‖V ) ds

}
,

where M is given by (5.15). Write

�N(t) := exp
{
C̃

∫ t

0
h(‖�≥NM(s)‖V ) ds

}
.

The proof of part (ii) of the lemma will be completed as soon as we can show that
there exists an N0 such that, for all N ≥ N0,

sup
t≥0

e−4γ∗(t−2)
E�N(t) < ∞ and

∫ ∞
2

e−2γ∗t (E�N(t))1/2 dt < ∞.
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To do this, it is enough to show that

∀κ > 0,∃N(κ) ≥ 1 such that sup
t≥0

e−κt
E�N(t) < ∞ ∀N ≥ N(κ).(5.38)

To do this, note that for any N1 > N , MN,N1(t) := �<N1�≥NM(t) is a strong
solution to the equation

dMN,N1(t) = ANMN,N1(t) dt + �<M�≥NQ1/2dW(t).

Therefore, we can apply the Itô formula to MN,N1(t) and the function

H(x) = (
1 + ‖(−AN)−1/2x‖2

V
)1/2

.

As a result, we obtain(
1 + ‖(−AN)−1/2MN,N1(t)‖2

V
)1/2

= 1 −
∫ t

0
‖MN,N1(s)‖2

V
(
1 + ‖(−AN)−1/2MN,N1(s)‖2

V
)−1/2

ds

+ 1

2

∫ t

0
‖H ′′((−AN)−1/2MN,N1(s))�<N1�≥NQ1/2‖2

L(HS)(X ,V) ds

+
∫ t

0

(
1 + ‖(−AN)−1/2MN,N1(s)‖2

V
)−1/2

× 〈(−AN)−1MN,N1(s),�<N1�≥NQ1/2dW(s)〉V .

Taking into account the spectral gap property of A, we obtain

‖MN,N1(s)‖2
V
(
1 + ‖(−AN)−1/2MN,N1(s)‖2

V
)−1/2

≥ ‖MN,N1(s)‖2
V
(
1 + γ −1∗ ‖MN,N1(s)‖2

V
)−1/2

= h(‖MN,N1(s)‖V ).

Therefore,

C̃

∫ t

0
h(‖MN,N1(s)‖V ) ds ≤ C̃ + MN,N1(t) + RN,N1(t),

where

MN,N1(t) = C̃

∫ t

0

(
1 + ‖(−AN)−1/2MN,N1(s)‖2

V
)−1/2

× 〈(−AN)−1MN,N1(s),�<N1�≥NQ1/2 dW(s)〉V

− C̃2

2

∫ t

0

(
1 + ‖(−AN)−1/2MN,N1(s)‖2

V
)−1

× ‖Q1/2(−AN)−1MN,N1(s)‖2
V ds
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and

RN,N1(t) = C̃

2

∫ t

0
‖H ′′((−AN)−1/2MN,N1(s))�<N1�≥NQ1/2‖2

L(HS)(X ,V) ds

+ C̃2

2

∫ t

0

(
1 + ‖(−AN)−1/2MN,N1(s)‖2

V
)−1

× ‖Q1/2(−AN)−1MN,N1(s)‖2
V ds.

Since

H ′′(x) = (
1 + ‖(−AN)−1/2x‖2

V
)−1/2

(−AN)−1

− (
1 + ‖(−AN)−1/2x‖2

V
)−3/2

(−AN)−1x

⊗ (−AN)−1x,

there exists a constant C1 such that for all N , N1 and t ,

RN,N1(t) ≤ tC1
(‖(−AN)−1‖4

L(X ,V)‖Q1/2‖2
L(X ,V)

+ ‖(−AN)−1Q1/2‖2
L(HS)(X ,V)

)
for all N1 > N . Let κ > 0. We can choose sufficiently large N0 such that for N ≥
N0,

C1
(‖(−AN)−1‖4

L(X ,V)‖Q1/2‖2
L(X ,V) + ‖(−AN)−1Q1/2‖2

L(HS)(X ,V)

) ≤ κ.

Since (exp{MN0,N1(t)}) is a martingale, we have shown, therefore, that for N ≥
N0,

E

∫ t

0
exp{h(‖MN,N1(s)‖V ) ds} ≤ exp{C̃ + κt}.

Letting N1 → ∞, we obtain (5.38).

6. Proof of Theorem 4. With no loss of generality, we will assume that the
initial position of the tracer x0 = 0. By definition,

x(t) =
∫ t

0
V (s,x(s)) ds =

∫ t

0
Z(s,0) ds,

where Z(t, x) = V (t,x(t) + x) is the observation process. Recall that Z(t) is a
stationary solution to (5.5). Obviously, uniqueness and the law of a stationary so-
lution do not depend on the particular choice of the Wiener process. Therefore,

L
(

x(t)

t

)
= L

(
1

t

∫ t

0
Z̃(s,0) ds

)
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and

L
(

dx
dt

(t)

)
= L(Z̃(t,0)),

where, as before, L(X) stands for the law of a random element X and Z̃ is, by
Theorem 5, a unique (in law) stationary solution of the equation

dZ̃(t) = [AZ̃(t) + B(Z̃(t), Z̃(t))]dt + Q1/2 dW(t).

Let F : X → R be given by F(x) = x(0). The proof of the first part of the theorem
will be completed as soon as we can show that the limit (in probability)

P-lim
t↑∞

1

t

∫ t

0
Z̃(s,0) ds

exists and is equal to
∫

X F(x)μ∗(dx), where μ∗ is the unique invariant measure
for the Markov family Z defined by (5.7). Since the semigroup (Pt )t≥0 satisfies
the e-property and is weak-∗ mean ergodic, part (2) of Theorem 2 implies that for
any bounded Lipschitz continuous function ψ ,

P-lim
t↑∞

1

t

∫ t

0
ψ(Z̃(s)) ds =

∫
X

ψ(x)μ∗(dx).

Since X is embedded in the space of bounded continuous functions, F is Lipschitz.
The theorem then follows by an easy truncation argument.
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