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QUENCHED INVARIANCE PRINCIPLE FOR THE KNUDSEN
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We consider a stochastic billiard in a random tube which stretches to in-
finity in the direction of the first coordinate. This random tube is stationary
and ergodic, and also it is supposed to be in some sense well behaved. The
stochastic billiard can be described as follows: when strictly inside the tube,
the particle moves straight with constant speed. Upon hitting the boundary, it
is reflected randomly, according to the cosine law: the density of the outgoing
direction is proportional to the cosine of the angle between this direction and
the normal vector. We also consider the discrete-time random walk formed by
the particle’s positions at the moments of hitting the boundary. Under the con-
dition of existence of the second moment of the projected jump length with
respect to the stationary measure for the environment seen from the particle,
we prove the quenched invariance principles for the projected trajectories of
the random walk and the stochastic billiard.

1. Introduction. The so-called Knudsen regime in gas dynamics describes a
very dilute gas confined between solid walls. The gas is dilute in the sense that
the mean free path of gas molecules, that is, the typical distance travelled between
collisions of gas molecules, is much larger than the typical distance between con-
secutive collisions of the gas molecules with the walls. Hence molecules interact
predominantly with the walls, and the interaction among themselves can be ne-
glected. A typical setting where this is relevant is in the motion of absorbed guest
molecules in the pores of a microporous solid where both the pore diameter and
the typical number of guest molecules inside the pores are small.
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On molecular scale the wall-molecule interaction is usually rather complicated
and very difficult to handle explicitly. Hence one resorts to a stochastic description
in which gas molecules, from now on referred to as particles, move ballistically
between collisions with the walls where they interact in a random fashion. In the
Knudsen model one assumes that particles are pointlike and that the kinetic energy
of a particle is conserved in a collision with the wall, but its direction of motion
changes randomly. The law of this random reflection is taken to be the cosine law
where the outgoing direction is cosine-distributed relative to the surface normal at
the point where the particle hits the wall. For a motivation of this choice, some-
times also called Lambert reflection law, see [12]. Notice that this dynamic implies
that the incoming direction is not relevant and is “forgotten” once a collision has
happened. Thus this process defines a Markov chain which we call “Knudsen sto-
chastic billiard” (KSB). The random sequence of hitting points is referred to as
“Knudsen random walk” (KRW) [6].

Pores in microporous solids may have a very complicated surface. Among
the many possibilities, an elongated tube-shaped pore surface has recently at-
tracted very considerable attention [23]. A three-dimensional connected network
of “tubes” may be regarded as constituting the entire (nonsimply connected) inte-
rior empty space of microporous grain in which particles can move. In this setting
parts of the surface of the individual tubes are open and connect to a neighboring
pore so that particles can move from one to another pore. It is of great interest to
study the large scale motion of a molecule along the direction in which the tube has
its greatest elongation. We think of the direction of longest elongation of a single
tube as the first coordinate in d-dimensional Euclidean space. Together with the
locally, usually very complicated surface of pores, this leads us to introduce the
notion of a random tube with a random surface to be defined precisely below.

Knudsen motion in a tube has been studied heuristically for simple regular
geometries such as a circular pipe and also numerically for self-similar random
surfaces (see, e.g., [8, 9, 21]). For the straight infinite pipe, it is not difficult to see
that in dimensions larger than two, the mean-square displacement grows asymp-
totically linearly in time, that is, diffusively, while in two dimensions the motion
is superdiffusive due to sufficiently large probability for very long flights between
collisions. Interestingly though, rigorous work on this conceptually simple prob-
lem is rare. In fact, it is not even established under which conditions on the pore
surface the motion of a Knudsen particle has diffusive mean square displacement
and converges to Brownian motion. Indeed, it is probable that one may construct
counterexamples to Brownian motion in three or more dimensions without having
to invent physically pathological pore surfaces, but considering a nonstationary
(expanding or shrinking) tube instead. We refer here to the work [20] (there, only
the two-dimensional case is considered, but it seems reasonable that one may ex-
pect similar phenomena in the general case as well). Even for the stationary tube, it
seems reasonable that the presence of bottlenecks with random (not bounded away
from 0) width may cause the process to be subdiffusive.
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In this work we shall define a class of single infinite random tubes for which we
prove convergence of KSB and KRW to Brownian motion. Together with related
earlier and on-going work, this lays the foundation for addressing more subtle is-
sues that arise in the study of motion in open domains which are finite and which
allow for injection and extraction of particles. This latter problem is of great im-
portance for studying the relation between the so-called self-diffusion coefficient,
given by the asymptotic mean square displacement of a particle in an infinite tube
under equilibrium conditions, on the one hand, and the transport diffusion coeffi-
cient on the other hand. The transport diffusion coefficient is given by the nonequi-
librium flux in a finite open tube with a density gradient between two open ends
of the tube. Often only one of these quantities can be measured experimentally,
but both may be required for the correct interpretation of other experimental data.
Hence one would like to investigate whether both diffusion coefficients are equal
and specify conditions under which this the case. This is the subject of a forthcom-
ing paper [7]. Here we focus on the question of diffusion in the infinite tube in the
absence of fluxes.

For a description of our strategy we first come to the modeling of the infi-
nite tube. The tube stretches to infinity in the first direction. The collection of
its sections in the transverse direction can be thought as a “well-behaved” function
ω :α �→ ωα of the first coordinate α which values are subsets of Rd−1. We assume
that the boundary of the tube is Lipschitz and almost everywhere differentiable, in
order to define the process. We also assume the transverse sections are bounded
and that there exist no long dead ends or too thin bottlenecks. For our long-time
asymptotics of the walk, we need some large-scale homogeneity assumptions on
the tube; it is quite natural to assume that the process ω = (ωα;α ∈ R) is random,
stationary and ergodic. Now, the process essentially looks like a one-dimensional
random walk in a random environment, defined by random conductances since
Knudsen random walk is reversible. The tube serves as a random environment for
our walk. The tube, as seen from the walker, is a Markov process which has a (re-
versible) invariant law. From this picture, we understand that the random medium
is homogenized on large scales, and that, for almost every environment, the walk
is asymptotically Gaussian in the longitudinal direction. More precisely, we will
prove that after the usual rescaling the trajectory of the KRW converges weakly
to Brownian motion with some diffusion constant (and from this we deduce also
the analogous result for the KSB). This will be done by showing ergodicity for the
environment seen from the particle and using the classical “corrector approach”
adapted from [17].

The point of view of the particle has become useful [5, 10, 15] in the study of re-
versible random walks in a random environment and in obtaining the central limit
theorem for the annealed law (i.e., in the mean with respect to the environment).
The authors from [14] obtain an (annealed) invariance principle for a random walk
on a random point process in the Euclidean space, yielding an upper bound on
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the effective diffusivity which agrees with the predictions of Mott’s law. The cor-
rector approach, by correcting the walk into a martingale in a fixed environment,
has been widely used to obtain the quenched invariance principle for the simple
random walk on the infinite cluster in a supercritical percolation [22] in dimension
d ≥ 4, [3] for d ≥ 2. These last two references apply to walks defined by random
conductances which are bounded and bounded away from 0. The authors in [4]
and [19] gave a proof under the only condition of bounded conductances.

In this paper we will leave untouched the questions of deriving heat kernel es-
timates or spectral estimates (see [1] and [13], respectively) for the corresponding
results for the simple random walk on the infinite cluster. We will not need such
estimates to show that the corrector can be neglected in the limit. Instead we will
benefit from the essentially one-dimensional structure of our problem and use the
ergodic theorem; this last ingredient will require introducing reference points in
Section 3.4 below to recover stationarity.

The paper is organized as follows. In Section 2 we formally define the random
tube and construct the stochastic billiard and the random walk and then formu-
late our results. In Section 3 the process of the environment seen from the particle
is defined and its properties are discussed. Namely, in Section 3.1 we define the
process of the environment seen from the discrete-time random walk and then
prove that this process is reversible with an explicit reversible measure. For the
sake of completeness, we do the same for the continuous-time stochastic billiard
in Section 3.2, even though the results of this section are not needed for the sub-
sequent discussion. In Section 3.3 we construct the corrector function, and in Sec-
tion 3.4 we show that the corrector behaves sublinearly along a certain stationary
sequence of reference points and that one may control the fluctuations of the cor-
rector outside this sequence. Based on the machinery developed in Section 3, we
give the proofs of our results in Section 4. In Section 4.1 we prove the quenched
invariance principle for the discrete-time random walk, and in Section 4.2 we dis-
cuss the question of finiteness of the averaged second moment of the projected
jump length. In Section 4.3 we prove the quenched invariance principle for the
continuous-time stochastic billiard, also obtaining an explicit relation between the
corresponding diffusion constants. Finally, in the Appendix we discuss the general
case of random tubes where vertical walls are allowed.

2. Notation and results. Let us formally define the random tube in Rd , d ≥ 2.
In this paper, Rd−1 will always stand for the linear subspace of Rd which is perpen-
dicular to the first coordinate vector e; we use the notation ‖ · ‖ for the Euclidean
norm in Rd or Rd−1. For k ∈ {d −1, d} let B(x, ε) = {y ∈ Rk :‖x −y‖ < ε} be the
open ε-neighborhood of x ∈ Rk . Define Sd−1 = {y ∈ Rd :‖y‖ = 1} to be the unit
sphere in Rd , and let Sd−2 = Sd−1 ∩ Rd−1 be the unit sphere in Rd−1. We write
|A| for the k-dimensional Lebesgue measure in case A ⊂ Rk and k-dimensional
Hausdorff measure in case A ⊂ Sk . Let

Sh = {w ∈ Sd−1 :h · w > 0}
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be the half-sphere looking in the direction h. For x ∈ Rd , sometimes it will be
convenient to write x = (α,u); α being the first coordinate of x and u ∈ Rd−1;
then α = x · e, and we write u = U x; U being the projector on Rd−1. Fix some
positive constant M̂ , and define

� = {u ∈ Rd−1 :‖u‖ ≤ M̂}.(1)

Let A be an open domain in Rd−1 or Rd . We denote by ∂A the boundary of A

and by Ā = A ∪ ∂A the closure of A.

DEFINITION 2.1. Let k ∈ {d − 1, d}, and suppose that A is an open domain
in Rk . We say that ∂A is (ε̂, L̂)-Lipschitz, if for any x ∈ ∂A there exist an affine
isometry Ix : Rk → Rk and a function fx : Rk−1 → R such that:

• fx satisfies Lipschitz condition with constant L̂, i.e., |fx(z) − fx(z
′)| < L̂‖z −

z′‖ for all z, z′;
• Ixx = 0, fx(0) = 0 and

Ix

(
A ∩ B(x, ε̂)

)= {z ∈ B(0, ε̂) : z(k) > fx

(
z(1), . . . , z(k−1))}.

In the degenerate case k = 1 we adopt the convention that ∂A is (ε̂, L̂)-Lipschitz
for any positive L̂ if points in ∂A have a mutual distance larger than ε̂.

Fix M̂ > 0, and define En for n ≥ 1 to be the set of all open domains A such that
A ⊂ � and ∂A is (1/n,n)-Lipschitz. We turn E =⋃n≥1 En into a metric space by
defining the distance between A and B to be equal to |(A \ B) ∪ (B \ A)|, making
E a Polish space. Let � = CE(R) be the space of all continuous functions R �→ E;
let A be the sigma-algebra generated by the cylinder sets with respect to the Borel
sigma-algebra on E, and let P be a probability measure on (�, A). This defines a
E-valued process ω = (ωα,α ∈ R) with continuous trajectories. Write θα for the
spatial shift: θαω· = ω·+α . We suppose that the process ω is stationary and ergodic
with respect to the family of shifts (θα,α ∈ R). With a slight abuse of notation, we
denote also by

ω = {(α,u) ∈ Rd :u ∈ ωα}
the random domain (“tube”) where the billiard lives. Intuitively, ωα is the “slice”
obtained by crossing ω with the hyperplane {α}×Rd−1. One can check that, under
Condition L below, the domain ω is an open subset of Rd , and we will assume that
it is connected.

We assume the following:

CONDITION L. There exist ε̃, L̃ such that ∂ω is (ε̃, L̃)-Lipschitz (in the sense
of Definition 2.1) P-a.s.
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FIG. 1. Notation for the random tube. Note that the sections may be disconnected.

Let μω
α be the (d − 2)-dimensional Hausdorff measure on ∂ωα (in the case

d = 2, μω
α is simply the counting measure), and denote μω

α,β = μω
α ⊗ μω

β . Since it
always holds that ∂ωα ⊂ �, we can regard μω

α as a measure on � (with suppμω
α =

∂ωα), and μω
α,β as a measure on �2 (with suppμω

α,β = ∂ωα × ∂ωβ ). Also, we
denote by νω the (d − 1)-dimensional Hausdorff measure on ∂ω; from Condition
L one obtains that νω is locally finite.

We keep the usual notation dx, dv, dh, . . . for the (d−1)-dimensional Lebesgue
measure on � (usually restricted to ωα for some α) or the surface measure on Sd−1.

For all x = (α,u) ∈ ∂ω where they exist, define the normal vector nω(x) =
nω(α,u) ∈ Sd−1 pointing inside the domain ω and the vector rω(x) = rω(α,u) ∈
Sd−2 which is the normal vector at u ∈ ∂ωα pointing inside the domain ωα (in fact,
rω is the normalized projection of nω onto Rd−1) (see Figure 1). Denote also

κx = κα,u = nω(x) · rω(x).

Observe that κ also depends on ω, but we prefer not to write it explicitly in order
not to overload the notation. Define the set of regular points

Rω = {x ∈ ∂ω : ∂ω is continuously differentiable in x, |nω(x) · e| 
= 1}.
Note that κx ∈ (0,1] for all x ∈ Rω. Clearly, it holds that

dνω(α,u) = κ−1
α,u dμω

α(u)dα(2)

(see Figure 2).
We suppose that the following condition holds:

CONDITION R. We have νω(∂ω \ Rω) = 0, P-a.s.

We say that y ∈ ω̄ is seen from x ∈ ω̄ if there exists h ∈ Sd−1 and t0 > 0 such
that x + th ∈ ω for all t ∈ (0, t0) and x + t0h = y. Clearly, if y is seen from x, then
x is seen from y, and we write “x

ω↔ y” when this occurs.



STOCHASTIC BILLIARDS IN A RANDOM TUBE 1025

FIG. 2. On formula (2); note that κα,u = cosφ.

One of the main objects of study in this paper is the Knudsen random walk
(KRW) ξ = (ξn)n∈N which is a discrete time Markov process on ∂ω (cf. [6]). It is
defined through its transition density K : for x, y ∈ ∂ω,

K(x,y) = γd

((y − x) · nω(x))((x − y) · nω(y))

‖x − y‖d+1 I{x, y ∈ Rω, x
ω↔ y},(3)

where γd = (
∫
Se

h · e dh)−1 is the normalizing constant. This means that, being
Pω,Eω the quenched (i.e., with fixed ω) probability and expectation, for any x ∈
Rω and any measurable B ⊂ ∂ω we have

Pω[ξn+1 ∈ B | ξn = x] =
∫
B

K(x, y) dνω(y).

Following [6], we shortly explain why this Markov chain is of natural interest.
From ξn = x, the next step ξn+1 = y is performed by picking randomly the di-
rection h = (y − x)/‖y − x‖ of the step according to Knudsen’s cosine den-
sity γdh · nω(x) dh on the half unit-sphere looking toward the interior of the
domain. By elementary geometric considerations, one can check that dνω(y) =
(h · nω(y))−1‖y − x‖d−1 dh and recover the previous formulas.

Let us define also

�(α,u,β, v) = (κα,uκβ,v)
−1K((α,u), (β, v)).(4)

From (3) we see that K(·, ·) is symmetric, that is, K(x,y) = K(y,x) for all
x, y ∈ Rω; consequently, � has this property as well:

�(α,u,β, v) = �(β,v,α,u) for all α,β ∈ R, u ∈ ∂ωα, v ∈ ∂ωβ.(5)

Clearly, both K and � depend on ω as well, but we usually do not indicate this in
the notation in order to keep them simple. When we have to do it, we write Kω,�ω

instead of K,�. For any γ we have

�θγ ω(α,u,β, v) = �ω(α + γ,u,β + γ, v).(6)
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Moreover, the symmetry implies that

Kω((0, u), y) = Kθy·eω((0, U y), (−y · e,u)
)
,(7)

�ω(0, u,α, v) = �θαω(0, v,−α,u).(8)

We need also to assume the following technical condition:

CONDITION P. There exist constants N,ε, δ such that for P-almost every ω,
for any x, y ∈ Rω with |(x − y) · e| ≤ 2 there exist B1, . . . ,Bn ⊂ ∂ω, n ≤ N − 1
with νω(Bi) ≥ δ for all i = 1, . . . , n and such that:

• K(x, z) ≥ ε for all z ∈ B1,
• K(y, z) ≥ ε for all z ∈ Bn,
• K(z, z′) ≥ ε for all z ∈ Bi , z′ ∈ Bi+1, i = 1, . . . , n − 1

[if N = 1 we only require that K(x,y) ≥ ε]. In other words, there exists a “thick”
path of length at most N joining x and y.

Now, following [6], we define also the Knudsen stochastic billiard (KSB)
(X,V ). First, we do that for the process starting on the boundary ∂ω from the
point x0 ∈ Rω ⊂ ∂ω. Let x0 = ξ0, ξ1, ξ2, ξ3, . . . be the trajectory of the random
walk, and define

τn =
n∑

k=1

‖ξk − ξk−1‖.

Then, for t ∈ [τn, τn+1), define

Xt = ξn + (ξn+1 − ξn)
t − τn

‖ξn+1 − ξn‖ .

The quantity Xt stands for the position of the particle at time t . Since (Xt)t≥0 is
not a Markov process by itself, we define also the càdlàg version of the motion
direction at time t ,

Vt = lim
ε↓0

Xt+ε − Xt

ε
.

Then, Vt ∈ Sd−1 and the couple (Xt ,Vt )t≥0 is a Markov process. Of course, we
can define also the stochastic billiard starting from the interior of ω by specifying
its initial position X0 and initial direction V0.

Define

S = {(ω,u) :ω ∈ �,u ∈ ∂ω0}.
One of the most important objects in this paper is the probability measure Q on S

defined by

dQ(ω,u) = 1

Z κ−1
0,u dμω

0 (u) dP(ω),(9)
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where Z = ∫� dP
∫
� κ−1

0,u dμω
0 (u) is the normalizing constant. (We will show that

Q is the invariant law of the environment seen from the walker.) To see that Z is
finite, note that Z = ∫� dP

∫ 1
0 dα

∫
� κ−1

α,u dμω
α(u) by translation invariance, that is,

the expected surface area of the tube restricted to the slab [0,1] × Rd−1 which is
finite by Condition L. Let L2(S) be the space of Q-square integrable functions
f :S �→ R. We use the notation 〈f 〉Q for the Q-expectation of f :

〈f 〉Q = 1

Z

∫
�

dP

∫
�

dμω
0 (u) κ−1

0,uf (ω,u)

and we define the scalar product 〈·, ·〉Q in L2(S) by

〈f,g〉Q = 1

Z

∫
�

dP

∫
�

dμω
0 (u) κ−1

0,uf (ω,u)g(ω,u).(10)

Note that 〈f 〉Q = 〈1, f 〉Q where 1(ω,u) = 1 for all ω,u.
Now, for (β,u) ∈ Rω we define the local drift and the second moment of the

jump projected on the horizontal direction:

�β(ω,u) = Eω

(
(ξ1 − ξ0) · e | ξ0 = (β,u)

)
=
∫
∂ω

(x · e − β)K((β,u), x) dνω(x)(11)

=
∫ +∞
−∞

(α − β)dα

∫
�

dμω
α(v) κβ,u�(β,u,α, v),

bβ(ω,u) = Eω

((
(ξ1 − ξ0) · e)2 | ξ0 = (β,u)

)
=
∫
∂ω

(x · e − β)2K((β,u), x) dνω(x)

=
∫ +∞
−∞

(α − β)2 dα

∫
�

dμω
α(v) κβ,u�(β,u,α, v).

When β = 0, we write simply �(ω,u) and b(ω,u) instead of �0(ω,u) and
b0(ω,u). In Section 3 we show that 〈�〉Q = 0 [see (24)].

Let Z
(m)· be the polygonal interpolation of n/m �→ m−1/2ξn · e. Our main result

is the quenched invariance principle for the horizontal projection of the random
walk.

THEOREM 2.1. Assume Conditions L, P, R, and suppose that

〈b〉Q < ∞.(12)

Then, there exists a constant σ > 0 such that for P-almost all ω, for any start-
ing point from Rω, σ−1Z

(m)· converges in law, under Pω, to Brownian motion as
m → ∞.
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The constant σ is defined by (47) below. Next, we obtain the corresponding
result for the continuous time Knudsen stochastic billiard. Define Ẑ

(s)
t = s−1/2Xst ·

e. Recall also a notation from [6]: for x ∈ ω, v ∈ Sd−1, define (with the convention
inf ∅ = ∞)

hx(v) = x + v inf{t > 0 :x + tv ∈ ∂ω} ∈ {∂ω,∞}
so that hx(v) is the next point where the particle hits the boundary when starting
at the location x with the direction v.

THEOREM 2.2. Assume Conditions L, P, R, and suppose that (12) holds. De-
note

σ̂ = σ�(d/2 + 1)Z
π1/2�((d + 1)/2)d

(∫
�

|ω0|dP

)−1

,

where σ is from Theorem 2.1. Then, for P-almost all ω, for any initial conditions
(x0, v0) such that hx0(v0) ∈ Rω, σ̂−1Ẑ

(s)· converges in law to Brownian motion as
s → ∞.

Next, we discuss the question of validity of (12).

PROPOSITION 2.1. If d ≥ 3 then (12) holds.

If d = 2, then one cannot expect (12) to be valid in the situation when ω contains
an infinite straight cylinder. Indeed, we have the following:

PROPOSITION 2.2. In the two-dimensional case, suppose that there exists an
interval S ⊂ � such that R × S ⊂ ω for P-a.a. ω. Then 〈b〉Q = ∞.

On the other hand, with Rα(ω,u) = sup{|α − β|; (β, v)
ω↔ (α,u)}, it is clear

that (12) holds when R0(ω,u) ≤ const for all u ∈ ω0, P-a.s. Such an example is
given by the tube {(α,u) ∈ R2 : cosα ≤ u ≤ cosα + 1}, a random shift to make it
stationary and ergodic (but not mixing).

REMARK 2.1. (i) The continuity assumption of the map α �→ ωα has a geo-
metric meaning: it prevents the tube from having “vertical walls” of nonzero sur-
face measure. The reader may wonder what happens without it. First, the dis-
integration formula (2) of the surface measure νω on ∂ω becomes a product
dμ̄ω

α(u) dφω(α) where μ̄ω
α is a measure on the section of ∂ω by the vertical hy-

perplane at α and where dφω(α) = κ−1
α,u dα + dφω

s (α) with a singular part φω
s . If

the singular part has atoms, one can see that the invariant law Q [see (9) above] of
the environment seen from the particle has a marginal in ω which is singular with
respect to P. This happens because, if the vertical walls constitute a positive pro-
portion of the tube’s surface, in the equilibrium the particle finds itself on a vertical



STOCHASTIC BILLIARDS IN A RANDOM TUBE 1029

wall with positive probability; on the other hand, if ω has the law P, a.s. there is
no vertical wall at the origin. The general situation is interesting but complicated;
in any case, our results continue to be valid in this situation as well [an important
observation is that (42) below would still hold, possibly with another constant].
To keep things simple, we will consider only, all through the paper, random tubes
satisfying the continuity assumption. In the Appendix, we discuss the general case
in more detail. Another possible approach to this general case is to work with the
continuous-time stochastic billiard directly (cf. Section 3.2).

(ii) A particular example of tubes is given by rotation invariant tubes. They are
obtained by rotating around the first axis the graph of a positive bounded func-
tion. The main simplification is that, with the proper formalism, one can forget the
transverse component u. Then the problem becomes purely one-dimensional.

3. Environment viewed from the particle and the construction of the cor-
rector.

3.1. Environment viewed from the particle: Discrete case. One of the main
methods we use in this paper is considering the environment ω seen from the
current location of the random walk. The “environment viewed from the particle”
is the Markov chain (

(θξn·eω, U ξn), n = 0,1,2, . . .
)

with state space S. The transition operator G for this process acts on functions
f :S �→ R as follows [cf. (2) and (4)]:

Gf (ω,u) = Eω

(
f (θξ1·eω, U ξ1) | ξ0 = (0, u)

)
=
∫
∂ω

K((0, u), x)f (θx·eω, U x)dνω(x)(13)

=
∫ +∞
−∞

dα

∫
�

dμω
α(v) κ0,uf (θαω, v)�(0, u,α, v).

REMARK 3.1. Note that our environment consists not only of the tube with
an appropriate horizontal shift, but also of the transverse component of the walk.
Another possible choice for the environment would be obtained by rotating the
shifted tube to make it pass through the origin with inner normal at this point
given by the last coordinate vector. However, we made the present choice to keep
notation simple.

Next, we show that this new Markov chain is reversible with reversible mea-
sure Q given by (9), which means that G is a self-adjoint operator in L2(S) =
L2(S,Q):
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LEMMA 3.1. For all f,g ∈ L2(S) we have 〈g,Gf 〉Q = 〈f,Gg〉Q. Hence,
the law Q is invariant for the Markov chain of the environment viewed from the
particle which means that for any f ∈ L2(S) and all n,

〈Eω[f (θξn·eω, U ξn) | ξ0 = (0, u)]〉Q = 〈f 〉Q.(14)

PROOF. Indeed, from (9) and (13),

〈g,Gf 〉Q = 1

Z

∫
�

dP

∫
�

dμω
0 (u)g(ω,u)κ−1

0,u

∫ +∞
−∞

dα

×
∫
�

dμω
α(v) κ0,u�(0, u,α, v)f (θαω, v)

= 1

Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

dμω
0,α(u, v) g(ω,u)f (θαω, v)�(0, u,α, v)(15)

= 1

Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

dμ
θαω
−α,0(u, v) g(ω,u)f (θαω, v)

(16)
× �θαω(−α,u,0, v)

= 1

Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

dμω−α,0(u, v)g(θ−αω,u)f (ω, v)

(17)
× �(−α,u,0, v)

= 1

Z

∫
�

dP

∫
�

dμω
0 (v)f (ω, v)κ−1

0,v

∫ +∞
−∞

dα

×
∫
�

dμω−α(u) κ0,v�(0, v,−α,u)g(θ−αω,u)(18)

= 〈f,Gg〉Q,

where we used (6) to pass from (15) to (16), the translation invariance of P to pass
from (16) to (17), the symmetry property (5) to pass from (17) to (18) and the
change of variable α �→ −α to obtain the last line. �

Let us define a semi-definite scalar product 〈g,f 〉1 := 〈g, (I − G)f 〉Q. Again
using (15), the translation invariance of P and the symmetry of �, we obtain

〈g,f 〉1 = 1

Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

dμω
0,α(u, v)�(0, u,α, v)

× g(ω,u)
(
f (ω,u) − f (θαω, v)

)
= 1

Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

dμω−α,0(u, v)�(−α,u,0, v)

× g(θ−αω,u)
(
f (θ−αω,u) − f (ω, v)

)
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= 1

Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

dμω
0,α(u, v)�(0, u,α, v)

× g(θαω, v)
(
f (θαω, v) − f (ω,u)

)
.

Consequently,

〈g,f 〉1 = 1

2Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

dμω
0,α(u, v)�(0, u,α, v)

(
f (ω,u) − f (θαω, v)

)
× (g(ω,u) − g(θαω, v)

)
,

so the Dirichlet form 〈f,f 〉1 can be explicitly written as

〈f,f 〉1 = 1

2Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

dμω
0,α(u, v)�(0, u,α, v)

(19)
× (f (ω,u) − f (θαω, v)

)2
,

or, by (2) and (4),

〈f,f 〉1 = 1

2Z

∫
�

dP

∫
�

κ−1
0,u dμω

0 (u)

(20)
×
∫
∂ω

dνω(x)K((0, u), x)
(
f (ω,u) − f (θx·eω, U x)

)2
.

At this point it is convenient to establish the following result:

LEMMA 3.2. The Markov process with initial law Q and transition operator
G is ergodic.

PROOF. Suppose that f ∈ L2(S) is such that f = Gf . Then 〈f,f 〉1 = 0 and
so, by the translation invariance and (20),∫

�
dP

∫
�

κ−1
s,u dμω

s (u)

∫
∂ω

dνω(x)K((s, u), x)
(
f (θsω,u) − f (θx·eω, U x)

)2 = 0

for any s. Integrating the above equation in s and using (2), we obtain∫
�

dP

∫
(∂ω)2

dνω(x) dνω(y)K(x, y)
(
f (θx·eω, U x) − f (θy·eω, U y)

)2 = 0.(21)

Let us recall Lemma 3.3(iii) from [6]: if for some x, y ∈ Rω we have K(x,y) > 0,
then there exist δ > 0 and two neighborhoods Bx of x and By of y such that
K(x′, y′) > δ for all x′ ∈ Bx, y

′ ∈ By . Now, for such x, y, (21) implies that there
exists a constant ĉ(ω, x, y) such that f (θz·eω, U z) = ĉ(ω, x, y) for νω-almost all
z ∈ Bx ∪ By . By the irreducibility Condition P (in fact, a much weaker irreducibil-
ity condition would be sufficient), this implies that f (θz·eω, U z) = ĉ(ω) for νω-
almost all z ∈ Rω. Since P is ergodic, this means that f (ω,u) = ĉ for μω

0 -almost
all u and P-almost all ω. �
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3.2. Environment viewed from the particle: Continuous case. For the sake of
completeness, we present also an analogous result for the Knudsen stochastic bil-
liard (Xt ,Vt ). The notation and the results of this section will not be used in the
rest of this paper.

Let Ŝ = {(ω,u) :ω ∈ �,u ∈ ω0}, and let Q̂ be the probability measure on Ŝ ×
Sd−1 defined by

dQ̂(ω,u,h) = 1

Ẑ
I{u ∈ ω0}dudhdP(ω),

where Ẑ = |Sd−1| ∫� |ω0|dP is the normalizing constant. The scalar product 〈·, ·〉Q̂
in L2(Q̂) is given, for two Q̂-square integrable functions f̂ , ĝ : Ŝ× Sd−1 �→ R, by

〈f̂ , ĝ〉Q̂ = 1

Ẑ

∫
�

dP

∫
ω0

du

∫
Sd−1

dh f̂ (ω,u,h)ĝ(ω,u,h).

For the continuous time KSB, the “environment viewed from the particle” is the
Markov process ((θXt ·eω, U Xt,Vt ), t ≥ 0) with the state space Ŝ × Sd−1. The
transition semi-group P̂t for this process acts on functions f̂ : Ŝ × Sd−1 �→ R in
the following way:

P̂t f̂ (ω,u,h) = Eω

(
f̂ (θXt ·eω, U Xt,Vt ) | X0 = (0, u),V0 = h

)
.

We show that P̂ is quasi-reversible with respect to the law Q̂.

LEMMA 3.3. For all f̂ , ĝ ∈ L2(Q̂) and t > 0 we have

〈ĝ, P̂t f̂ 〉Q̂ = 〈f̆ , P̂t ğ〉Q̂(22)

with f̆ (ω,u,h) = f̂ (ω,u,−h). In particular, the law Q̂ is invariant for the process
((θXt ·eω, U Xt,Vt ), t ≥ 0).

PROOF. We first prove that (22) implies that the law Q̂ is invariant. Indeed,
taking ĝ = 1, we get for all test functions f̂

〈1, P̂t f̂ 〉Q̂ = 〈f̆ ,1〉Q̂
= 〈f,1〉Q̂

by the change of variable h into −h in the integral. Hence Q̂ is invariant.
We now turn to the proof of (22). Introducing the notation Pω

t for the transition
kernel of KSB,

Pω(Xt ∈ dx′,Vt ∈ dh′ | X0 = x,V0 = h) = Pω
t (x, h;x′, h′) dx′ dh′,
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we observe that

P̂t f̂ (ω,u,h) =
∫
ω

dx′
∫

Sd−1
dh′ Pω

t ((0, u), h;x′, h′)f̂ (θx′·e,ω, U x′, h′).

In Theorem 2.5 in [6], it was shown that Pω
t is itself quasi-reversible, that is,

Pω
t (x, h;x′, h′) = Pω

t (x′,−h′;x,−h).

Therefore,

〈ĝ, P̂t f̂ 〉Q̂ = 1

Ẑ

∫
�

dP

∫
ω0

du

∫
Sd−1

dh ĝ(ω,u,h)P̂t f̂ (ω,u,h)

= 1

Ẑ

∫
�

dP

∫
ω0

du

∫
Sd−1

dh ĝ(ω,u,h)

∫
R

dα

∫
ωα

du′

×
∫

Sd−1
dh′ Pω

t ((0, u), h; (α,u′), h′)f̂ (θα,ω,u′, h′)

= 1

Ẑ

∫
�

dP

∫
ω0

du

∫
Sd−1

dh ĝ(ω,u,h)

∫
R

dα

∫
ωα

du′

×
∫

Sd−1
dh′ Pθαω

t ((0, u′),−h′; (−α,u),−h)f̂ (θαω,u′, h′)

= 1

Ẑ

∫
R

dα

∫
�

dP

∫
ω−α

du

∫
Sd−1

dh ĝ(θ−α,ω,u,h)

∫
ω0

du′

×
∫

Sd−1
dh′ Pω

t ((0, u′),−h′; (−α,u),−h)f̂ (ω,u′, h′)

= 1

Ẑ

∫
R

dα

∫
�

dP

∫
ωα

du

∫
Sd−1

dh ĝ(θα,ω,u,−h)

∫
ω0

du′

×
∫

Sd−1
dh′ Pω

t ((0, u′), h′; (α,u),h)f̂ (ω,u′,−h′)

= 〈f̆ , P̂t ğ〉Q̂,

where we used that the Lebesgue measure on Rd is product to get the second line,
quasi-reversibility for the third one, Fubini and translation invariance of P for the
fourth one, and change of variables (h,h′, α) to (−h,−h′,−α) in the fifth one.

�

3.3. Construction of the corrector. Now, we are going to construct the correc-
tor function for the random walk ξ .

Let us show that for any g ∈ L2(S),

〈g,�〉Q ≤ 1√
2
〈b〉1/2

Q 〈g,g〉1/2
1 .(23)
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Indeed, from (11) we obtain

〈g,�〉Q = 1

Z

∫ +∞
−∞

α dα

∫
�

dP

∫
�2

μω
0,α(u, v)g(ω,u)�(0, u,α, v)

= 1

Z

∫ +∞
−∞

α dα

∫
�

dP

∫
�2

μω−α,0(u, v)g(θ−αω,u)�(−α,u,0, v)

= − 1

Z

∫ +∞
−∞

α dα

∫
�

dP

∫
�2

μω
0,α(u, v)g(θαω, v)�(0, u,α, v),

so

〈g,�〉Q = 1

2Z

∫ +∞
−∞

α dα

∫
�

dP

(24)
×
∫
�2

μω
0,α(u, v)�(0, u,α, v)

(
g(ω,u) − g(θαω, v)

)
.

Using the Cauchy–Schwarz inequality in (24), we obtain

〈g,�〉Q ≤ 1

2

[
1

Z

∫ +∞
−∞

α2 dα

∫
�

dP

∫
�2

μω
0,α(u, v)�(0, u,α, v)

× 1

Z

∫ +∞
−∞

dα

∫
�

dP

∫
�2

μω
0,α(u, v)�(0, u,α, v)

× (g(ω,u) − g(θαω, v)
)2]1/2

= 1

2
〈b〉1/2

Q (2〈g,g〉1)
1/2,

which shows (23).
Note that, from (24) with g = 1 we obtain the important property

〈�〉Q = 0.

As shown in Chapter 1 of [16], we have the variational formula

〈(I − G)−1/2�,(I − G)−1/2�〉Q = 〈�,(I − G)−1�〉Q
= sup{〈g,�〉Q − 〈g,g〉1, 〈g,g〉1 < ∞}.

Then provided that (12) holds, inequality (23) implies that the drift � belongs
to the range of (I − G)1/2, and so the time-variance of � is finite. At this point
we mention that this already implies weaker forms of the CLT, by applying [15]
(under the invariant measure, or in probability with respect to the environment)
or [10] (under the annealed measure). With this observation, we could have used
the resolvent method originally developed in [15, 16] to construct the corrector.
However, it is more direct to use the method of the orthogonal projections on the
potential subspace (cf. [4, 18, 19]).
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For ω ∈ �, u ∈ ∂ω0, define

V+
ω,u = {y ∈ ∂ω :y · e > 0,K((0, u), y) > 0},

V−
ω,u = {y ∈ ∂ω :y · e < 0,K((0, u), y) > 0}.

Then, in addition to the space S, we define two spaces N ⊂ M in the following
way:

N = {(ω,u, y) :ω ∈ �,u ∈ ∂ω0, y ∈ V+
ω,u},

M = {(ω,u, y) :ω ∈ �,u ∈ ∂ω0, y ∈ ∂ω}.
On N we define the measure KQ with mass that is less than 1 for which a nonneg-
ative function f :N �→ R has the expected value

〈f 〉KQ =
〈∫

V+
ω,u

f (ω,u, y)K((0, u), y) dνω(y)

〉
Q

.(25)

Two square-integrable functions f,g :N �→ R have scalar product,

〈f,g〉KQ =
〈∫

V+
ω,u

f (ω,u, y)g(ω,u, y)K((0, u), y) dνω(y)

〉
Q

.(26)

Also, define the gradient ∇ as the map that transfers a function f :S �→ R to
the function ∇f :N �→ R, defined by

(∇f )(ω,u, y) = f (θy·eω, U y) − f (ω,u).(27)

Since Q is reversible for G, we can write

〈(∇f )2〉KQ =
〈∫

V+
ω,u

(
f (θy·eω, U y) − f (ω,u)

)2
K((0, u), y) dνω(y)

〉
Q

≤ 2
〈∫

∂ω
f 2(θy·eω, U y)K((0, u), y) dνω(y)

〉
Q

+ 2
〈∫

∂ω
f 2(ω,u)K((0, u), y) dνω(y)

〉
Q

= 2〈Gf 2〉Q + 2〈f 2〉Q
= 4〈f 2〉Q,

so ∇ is, in fact, a map from L2(S) to L2(N).
Then, following [4], we denote by L2∇(N) the closure of the set of gradients

of all functions from L2(S). We then consider the orthogonal decomposition of
L2(N) into the “potential” and the “solenoidal” subspaces: L2(N) = L2∇(N) ⊕
(L2∇(N))⊥. To characterize the solenoidal subspace (L2∇(N))⊥, we introduce the



1036 COMETS, POPOV, SCHÜTZ AND VACHKOVSKAIA

divergence operator in the following way. For f :N �→ R, we have divf :S �→ R

defined by

(divf )(ω,u) =
∫

V+
ω,u

K((0, u), y)f (ω,u, y) dνω(y)

(28)
−
∫

V−
ω,u

K((0, u), y)f
(
θy·eω, U y, (|y · e|, u)

)
dνω(y)

[note that for y ∈ V−
ω,u we have (|y · e|, u) ∈ V+

θy·eω,U y ]. Now, we verify the follow-

ing integration by parts formula: for any f ∈ L2(S), g ∈ L2(N),

〈g,∇f 〉KQ = −〈f divg〉Q.(29)

Indeed, we have

〈g,∇f 〉KQ =
〈∫

V+
ω,u

K((0, u), y)g(ω,u, y)

× (f (θy·eω, U y) − f (ω,u)
)
dνω(y)

〉
Q

(30)

= −
〈∫

V+
ω,u

K((0, u), y)g(ω,u, y)f (ω,u)dνω(y)

〉
Q

+
〈∫

V+
ω,u

K((0, u), y)g(ω,u, y)f (θy·eω, U y)dνω(y)

〉
Q

.

For the second term in the right-hand side of (30), we obtain〈∫
V+

ω,u

K((0, u), y)g(ω,u, y)f (θy·eω, U y)dνω(y)

〉
Q

= 1

Z

∫
�

dP

∫ +∞
0

dα

∫
�2

dμω
0,α(u, v)�(0, u,α, v)g(ω,u, (α, v))f (θαω, v)

= 1

Z

∫ 0

−∞
dα

∫
�

dP

∫
�2

dμω
α,0(v,u)�(α, v,0, u)g(θαω, v, (|α|, u))f (ω,u)

=
〈∫

V−
ω,u

f (ω,u)g
(
θy·eω, U y, (|y · e|, u)

)
K((0, u), y) dνω(y)

〉
Q

,

and so

〈g,∇f 〉KQ = −
〈∫

V+
ω,u

g(ω,u, y)f (ω,u)K((0, u), y) dνω(y)

〉
Q

+
〈∫

V−
ω,u

f (ω,u)g
(
θy·eω, U y, (|y · e|, u)

)
K((0, u), y) dνω(y)

〉
Q

= −〈f divg〉Q
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and the proof of (29) is complete.
Analogously to Lemma 4.2 of [4], we can characterize the space (L2∇(N))⊥ as

follows:

LEMMA 3.4. g ∈ (L2∇(N))⊥ if and only if divg(ω,u) = 0 for Q-almost all
(ω,u).

PROOF. This is a direct consequence of (29). �

A function f ∈ L2(N) can be interpreted as a flow by putting formally

f (ω,u, y) := −f
(
θy·eω, U y, (|y · e|, u)

)
for y ∈ V−

ω,u,ω ∈ S. Then it is straightforward to obtain that every f ∈ L2∇(N)

is curl-free, which means that for any loop y0, y1, . . . , yn ∈ ∂ω with y0 = yn and
K(yi, yi+1) > 0 for i = 1, . . . , n − 1, we have

n−1∑
i=0

f
(
θyi ·eω, U yi, yi+1 − (yi · e)e)= 0.(31)

Every curl-free function f can be integrated into a unique function φ :M �→ R

which can be defined by

φ(ω,u, y) =
n−1∑
i=0

f
(
θyi ·eω, U yi, yi+1 − (yi · e)e),(32)

where y0, y1, . . . , yn ∈ ∂ω is an arbitrary path such that y0 = (0, u), yn = y, and
K(yi, yi+1) > 0 for i = 1, . . . , n−1. Automatically, such a function φ satisfies the
following shift-covariance property: for any u ∈ ∂ω0, x, y ∈ ∂ω,

φ(ω,u, x) = φ(ω,u, y) + φ
(
θy·eω, U y, x − (y · e)e).(33)

We denote by H(M) the set of all shift-covariant functions M → R. Note that, by
taking x = y = (0, u) in (33), we obtain

φ(ω,u, (0, u)) = 0 for any φ ∈ H(M).(34)

Also, for any φ ∈ H(M), we define gradφ as the unique function f :N → R, from
the shifts of which φ is assembled [as in (32)]. In view of (34), we can write

(gradf )(ω,u, y) = f (ω,u, y) for (ω,u, y) ∈ N, f ∈ H(M).

Let us define an operator L which transfers a function φ :M �→ R to a function
f :S �→ R, f = Lφ with

(Lφ)(ω,u) =
∫
∂ω

K((0, u), y)[φ(ω,u, y) − φ(ω,u, (0, u))]dνω(y).(35)
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Note that, by (27), we obtain L(∇f ) = Gf − f for any f ∈ L2(S). Then, using
(33) and (34), we write, for φ ∈ H(M),

(div gradφ)(ω,u) =
∫

V+
ω,u

K((0, u), y)φ(ω,u, y) dνω(y)

−
∫

V−
ω,u

K((0, u), y)φ
(
θy·eω, U y, (|y · e|, u)

)
dνω(y)

=
∫

V+
ω,u∪V−

ω,u

K((0, u), y)φ(ω,u, y) dνω(y).

So, for any φ ∈ H(M), we have div gradφ = Lφ. This observation together with
Lemma 3.4 immediately implies the following fact:

LEMMA 3.5. Suppose that φ ∈ H(M) is such that gradφ ∈ (L2∇(N))⊥. Then
φ is harmonic for the Knudsen random walk, that is, (Lφ)(ω,u) = 0 for Q-almost
all (ω,u).

Now, we are able to construct the corrector. Consider the function φ(ω,u, y) =
y · e, and observe that φ ∈ H(M). Let φ̂ = gradφ. First, let us show that

〈φ̂2〉KQ = 1
2〈b〉Q,(36)

that is, if (12) holds, then φ̂ ∈ L2(N). Indeed,

〈φ̂2〉KQ =
〈∫

V+
ω,u

(y · e)2K((0, u), y) dνω(y)

〉
Q

= 1

Z

∫ +∞
0

α2 dα

∫
�

dP

∫
�2

dμω
0,α(u, v)�(0, u,α, v)

(37)

= 1

Z

∫ 0

−∞
α2 dα

∫
�

dP

∫
�2

dμω
α,0(v,u)�(α, v,0, u)

=
〈∫

V−
ω,u

(y · e)2K((0, u), y) dνω(y)

〉
Q

and so

〈φ̂2〉KQ = 1

2

〈∫
V+

ω,u∪V−
ω,u

(y · e)2K((0, u), y) dνω(y)

〉
Q

= 1

2
〈b〉Q.

Then, let g be the orthogonal projection of (−φ̂) onto L2∇(N). Define ψ ∈ H(M)

to be the unique function such that g = gradψ ; in particular, ψ(ω,u, (0, u)) = 0
for u ∈ ∂ω0. Then we have

φ̂ + g = grad
(
(y · e) + ψ(ω,u, y)

) ∈ (L2∇(N))⊥,
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so Lemma 3.5 implies that for Q-a.a. (ω,u), ψ is the corrector in the sense that

Eω

(
(ξ1 − ξ0) · e + ψ(ω,u, ξ1) − ψ(ω,u, ξ0) | ξ0 = (0, u)

)= 0(38)

[recall that, by (34), the term ψ(ω,u, ξ0) can be dropped from (38)]. Now, denote

Jω
x = Eω

(
(ξ1 − ξ0) · e + ψ

(
θξ0·eω, U ξ0, ξ1 − (ξ0 · e)e) | ξ0 = x

)
.

By the translation invariance of P, (38) and (2), we can write

0 =
∫ +∞
−∞

dα
1

Z

∫
�

dP

∫
�

dμω
α(u) κ−1

α,u

∣∣Jω
(α,u)

∣∣
= 1

Z

∫
�

dP

∫
∂ω

|Jω
x |dνω(x)

and this implies that Jω
x = 0 for νω ⊗ P-a.e. (ω, x). From (33), we have

ψ(ω,u, y) − ψ(ω,u, x) = ψ
(
θx·eω, U x, y − (x · e)e),

which does not depend on u. We summarize this in:

PROPOSITION 3.1. For P-almost all ω, it holds

Eω

(
(ξ1 − ξ0) · e + ψ(ω,u, ξ1) − ψ(ω,u, ξ0) | ξ0 = x

)= 0(39)

for all u ∈ ∂ω0 and νω-almost all x ∈ ∂ω.

3.4. Sequence of reference points and properties of the corrector. Let χ be a
random variable with uniform distribution in [−1/2,1/2], independent of every-
thing. Note that (χ + n,n ∈ Z) is then a stationary point process on the real line.
For a fixed environment ω define the sequence of conditionally independent ran-
dom variables ζn ∈ �, n ∈ Z, with ζn uniformly distributed on ∂ωχ+n,

Pω[ζn ∈ B] = μω
χ+n(B)

μω
χ+n(∂ωχ+n)

.(40)

We denote by Eζ the expectation with respect to ζ and χ (with fixed ω), and by Ēζ

the expectation with respect to ζ conditioned on {χ = 0}. Then by (33) we have
the following decomposition:

ψ(θχω, ζ0, (n, ζn)) =
n−1∑
i=0

ψ(θχ+iω, ζi, (1, ζi+1))(41)

so that ψ(θχω, ζ0, (n, ζn)) is a partial sum of a stationary ergodic sequence.
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By Condition L, there exists γ̃1 > 0 such that μω
n (∂ωn) ≥ γ̃1 P-a.s. Hence, since

P is stationary and κ0,u ∈ [0,1], we obtain for f ≥ 0,

〈Eζ f (θχω, ζ0)〉P = 〈Ēζ f (ω, ζ0)〉P
=
∫
�

dP
1

μω
0 (∂ω0)

∫
�

dμω
0 (u)f (ω,u)

(42)

≤ 1

γ̃1

∫
�

dP

∫
�

dμω
0 (u) κ−1

0,uf (ω,u)

= Z
γ̃1

〈f 〉Q,

which implies that

if f ∈ L2(Q) then 〈Eζ f 2(θχω, ζ0)〉P < ∞.

To proceed, we need to show that the random tube satisfies a uniform local
Döblin condition. Denote K̃(n) := K + K(2) + · · · + K(n).

LEMMA 3.6. Under Condition P, there exist N and γ̂ > 0 such that for all
x, y ∈ Rω with |(x − y) · e| ≤ 2 it holds that K̃(N)(x, y) ≥ γ̂ , P-a.s.

PROOF OF LEMMA 3.6. Indeed, with the notation used in Condition P and
n = N − 1,

K̃(N)(x, y) ≥ K(n+1)(x, y)

≥
∫
B1

K(x, z1) dνω(z1)

×
∫
B2

K(z1, z2) dνω(z2) · · ·
∫
Bn

K(zn−1, zn)K(zn, y) dνω(zn)

≥ δnεn+1

≥ δN−1εN . �

Next, we state some integrability and centering properties which will be needed
later.

LEMMA 3.7. We have

〈Eζψ2(ω,u, (χ, ζ0))〉Q < ∞,(43)

〈Eζψ(θχω, ζ0, (1, ζ1))〉P = 〈Ēζψ(ω, ζ0, (1, ζ1))〉P = 0.(44)

PROOF OF LEMMA 3.7. We start proving that

〈Eζψ2(θχω, ζ0, (1, ζ1))〉P < ∞.(45)
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We know that gradψ ∈ L2(N), that is, 〈(gradψ)2〉KQ < ∞. Analogously to the
proof of the symmetry relation (37), we obtain [note also that, by (29), 〈divg〉Q = 0
for all g ∈ L2(N)]

〈(gradψ)2〉KQ =
〈∫

V+
ω,u

ψ2(ω,u, y)K((0, u), y) dνω(y)

〉
Q

=
〈∫

V−
ω,u

ψ2(ω,u, y)K((0, u), y) dνω(y)

〉
Q

= 1

2

〈
Eω

(
ψ2(ω,u, ξ1) | ξ0 = (0, u)

)〉
Q.

Then, using (31) we write

ψ2(ω,u, ξn) ≤ nψ2(ω,u, ξ1) + n

n−1∑
j=1

ψ2(θξj ·eω, U ξj , ξj+1 − (ξj · e)e).
Since Q is reversible for G, this implies that for any n〈∫

∂ω
ψ2(ω,u, y)K(n)((0, u), y) dνω(y)

〉
Q

< ∞,(46)

where K(n)(x, y) is the n-step transition density.
Let us define

Fω
n = {x ∈ ∂ω :x · e ∈ (n − 1/2, n + 1/2]}.

Now we are going to use (46) and Lemma 3.6 to prove (45). Note that, by Condi-
tion L, there are positive constants C1,C2 such that

C1 ≤ νω(Fω
1 ) ≤ C2, P-a.s.

Using (31), we write on {χ = 0}
ψ2(ω, ζ0, (1, ζ1))

= 1

νω(Fω
1 )

∫
Fω

1

ψ2(ω, ζ0, (1, ζ1)) dνω(y)

≤ 2

νω(Fω
1 )

∫
Fω

1

(
ψ2(ω, ζ0, y) + ψ2(θ1ω, ζ1, y − e)

)
dνω(y)

≤ 2

γ̂ C1

(∫
∂ω

K̃(N)((0, ζ0), y)ψ2(ω, ζ0, y) dνω(y)

+
∫
∂ω

K̃(N)((1, ζ1), y)ψ2(θ1ω, ζ1, y − e) dνω(y)

)
.

Using the stationarity of ζ under P, we obtain that

〈Eζψ2(θχω, ζ0, (1, ζ1))〉P = 〈Ēζψ2(ω, ζ0, (1, ζ1))〉P,
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then, again by stationarity,〈
Ēζ
∫
∂ω

K̃(N)((1, ζ1), y)ψ2(θ1ω, ζ1, y − e) dνω(y)

〉
P

=
〈
Ēζ
∫
∂ω

K̃(N)((0, ζ0), y)ψ2(ω, ζ0, y) dνω(y)

〉
P

.

So, (45) follows from (42) and (46).
Analogously, it is not difficult to prove that (43) holds. Indeed, similarly to (42),

we have

Eζψ2(ω,u, (χ, ζ0)) =
∫ 1/2

−1/2
dα

1

μω
α(∂ωα)

∫
�

dμω
α(v)ψ2(ω,u, (α, v))

≤ 1

γ̃1

∫ 1/2

−1/2
dα

∫
�

dμω
α(v) κ−1

α,vψ
2(ω,u, (α, v))

= 1

γ̃1

∫
Fω

0

ψ2(ω,u, y) dνω(y),

where we used (2) in the last equality. So, by Lemma 3.6,

Eζψ2(ω,u, (χ, ζ0)) ≤ 1

γ̂ γ̃1

∫
∂ω

K̃(N)((0, u), y)ψ2(ω,u, y) dνω(y)

and (43) follows from (46).
Finally, let us prove (44). The first equality follows from the stationarity of P.

Then, since gradψ ∈ L2∇(N), there is a sequence of functions fn ∈ L2(S) such
that ∇fn → gradψ in the sense of the L2(N)-convergence. Note that, in fact,
when proving (45), we proved that for any function g ∈ H(M) such that gradg ∈
L2∇(S), we have for some C3 > 0,

〈Eζ g2(θχω, ζ0, (1, ζ1))〉P < C3〈(gradg)2〉KQ.

Then, (44) follows from the above fact applied to g assembled from shifts of
gradψ − ∇fn, since then we can then write

〈ψ(θχω, ζ0, (1, ζ1))〉P = lim
n→∞[〈fn(θχ+1ω, ζ1)〉P − 〈fn(θχω, ζ0)〉P] = 0

by the stationarity of P. �

4. Proofs of the main results.

4.1. Proof of Theorem 2.1. In this section, we apply the machinery of Sec-
tion 3 in order to prove the invariance principle for the (discrete time) motion of a
single particle.

PROOF OF THEOREM 2.1. Denote

�n = ξn · e + ψ(θχω, ζ0, ξn − χe).
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Observe that by (39), � is a martingale under the quenched law Pω. By shift-
covariance (33) the increments of �n do not depend of χ and ζ . With the notation

h(ω,u) = Eω[(�1 − �0)
2 | ξ0 = (0, u)],

the bracket of the martingale �n is given by

〈�〉n =
n−1∑
i=0

h(θξi ·eω, U ξi).

By the ergodic theorem,

1

n
〈�〉n −→ σ 2 def= 〈h(ω,u)〉Q,(47)

a.s. as n → ∞. Clearly, σ 2 ∈ (0,∞). Moreover, for all ε > 0,

n−1∑
i=0

Pω[|�i+1 − �i | ≥ εn1/2 | ξi] → 0(48)

for P-a.e. ω and Pω-a.e. path. To show this, define for any a > 0 and all n ≥ 1,

h(a)
n (ω) = Eω

(
(�n − �n−1)

2I{|�n − �n−1| ≥ a} | ξn−1
)
.

Using the ergodicity of the process of the environment viewed from the particle,
we obtain

1

n

n∑
i=1

h
(a)
i −→ 〈

Eω

(
(�1 − �0)

2I{|�1 − �0| ≥ a} | ξ0 = (0, u)
)〉

Q

as n → ∞ for P-almost all ω and Pω-almost all trajectories of the walk. Note
that, when a is replaced by εn1/2, the left-hand side is, by Bienaymé–Chebyshev
inequality, an upper bound of the left-hand side of (48) multiplied by ε2. Hence
(48) follows by taking a arbitrarily large.

Combining (47) and (48), we can apply the central limit theorem for martingales
(cf., e.g., Theorem 7.7.4 of [11]) to show that

n−1/2�[n·]
law−→ σB(·) as n → ∞,(49)

where B(·) is the Brownian motion.
Then the idea is the following: using (44) and the ergodic theorem, we obtain

that the corrector ψ(ω,u, x) behaves sublinearly in x which implies the conver-
gence of n−1/2ξ[nt] · e. More precisely, we can write, with mj := [1/2 + ξj · e] and
using (33),

�[nt]
n1/2 = ξ[nt] · e + ψ(θχω, ζ0, (m[nt], ζm[nt]))

n1/2
(50)

− ψ(θξ[nt]·eω, U ξ[nt], (χ + m[nt] − ξ[nt] · e, ζm[nt]))

n1/2 .
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Let us prove that the second term in the right-hand side converges to 0 in Pω-
probability for P-almost all ω and almost all (χ, ζ ). Suppose, for the sake of sim-
plicity, that t = 1. Then, by the stationarity of the process ((χ + n, ζn), n ∈ Z) and
(14) together with (43), we have for all i ≥ 0,〈

EζEω

[
ψ2(θξi ·eω, U ξi, (χ + mi − ξi · e, ζmi

)
) | ξ0 = (0, u)

]〉
Q

= 〈Eζψ2(ω,u, (χ, ζ0))〉Q
< ∞,

so, by the ergodic theorem,

1

n

n∑
i=1

Eω

(
ψ2(θχ+ξi ·eω, U ξi, (mi, ζmi

))

− ψ2(θχ+ξi−1·eω, U ξi−1, (mi−1, ζmi−1))
)→ 0

as n → ∞ which implies that

1

n
Eωψ2(θχ+ξn·eω, U ξn, (mn, ζmn)) → 0(51)

for P-almost all ω and almost all (χ, ζ ). Now, let us prove that the limit of the first
term in the right-hand side of (50) is the same as the limit of n−1/2ξ[nt] · e; for this,
we have to prove that

ψ(θχω, ζ0, (m[nt], ζm[nt]))

n1/2 → 0 as n → ∞, in Pω-probability.(52)

Using (41), (44), and the ergodic theorem, we obtain that for P-almost all ω

m−1ψ(θχω, ζ0, (m, ζm)) → 0 for almost all (χ, ζ ), as |m| → ∞. This means that,
for any ε > 0 there exists H (depending on ω, ζ,χ ) such that

|ψ(θχω, ζ0, (m, ζm))| ≤ H + ε|m|.(53)

Denote

�j = ξj · e + ψ(θχω, ζ0, (mj , ζmj
)).

From (53) we see that

|ψ(θχω, ζ0, (mj , ζmj
))| ≤ H + ε|mj |

≤ H + ε

2
+ ε|ξj · e|

≤ H + ε

2
+ ε
(|�j | + |ψ(θχω, ζ0, (mj , ζmj

))|),
so for ε < 1/2 we obtain

|ψ(θχω, ζ0, (mj , ζmj
))| ≤ 2H + ε + 2ε|�j |.
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Using (49) and (51) in (50), we obtain

max
j≤n

|�j |
n1/2

law−→ σ max
s∈[0,1]|B(s)|.

So by the portmanteau theorem (cf. Theorem 2.1(iii) of [2]),

lim sup
n→∞

Pω

[
max
j≤n

|ψ(θχω, ζ0, (mj , ζmj
))| ≥ an1/2

]
≤ P

[
max

s∈[0,1]|B(s)| ≥ aσ

2ε

]
,

which converges to 0 for any a as ε → 0. This concludes the proof of Theorem 2.1.
�

4.2. On the finiteness of the second moment. In this section, we prove the
results which concern the finiteness of 〈b〉Q. First, we present a (quite elementary)
proof of Proposition 2.1 in the case d ≥ 4.

PROOF OF PROPOSITION 2.1 (case d ≥ 4). First of all, note that

|{s ∈ Sd−1 :x + hs ∈ R × �}| = O
(
h−(d−1)) as h → ∞,

uniformly in x ∈ R ×�. So, since ω ⊂ R ×�, there is a constant C1 > 0, depend-
ing only on M̂ = diam(�)/2 and the dimension, such that for P-almost all ω

Pω[|(ξ1 − ξ0) · e| > h | ξ0 = x] ≤ C1h
−(d−1)(54)

for all x ∈ ∂ω, h ≥ 1. Inequality (54) immediately implies that b is uniformly
bounded for d ≥ 4. �

Unfortunately, the above proof does not work in the case d = 3. To treat this
case, we need some results concerning induced chords which in some sense gener-
alize Theorems 2.7 and 2.8 of [6]. So the rest of this section is organized as follows.
After introducing some notation, we prove Proposition 4.1 which is a generaliza-
tion of the result about the induced chord in a convex subdomain (Theorem 2.7
of [6]). This will allow us to prove Proposition 2.2. Then, using Theorem 2.8 of
[6] (the result about induced chords in a general subdomain) we prove Proposi-
tion 4.2—a property of random chords induced in a smaller random tube by a
random chord in a bigger random tube. This last result will allow us to prove
Proposition 2.1.

Let S ⊂ � be an open convex set, and denote by Ŝ = R×S the straight cylinder
generated by S. Assuming that Ŝ ⊂ ω, we let I be the event that the trajectory of
the first jump (i.e., from ξ0 to ξ1) intersects Ŝ:

I = {there exists t ∈ [0,1] such that ξ0 + (ξ1 − ξ0)t ∈ Ŝ}.
For any u ∈ ∂S such that ∂S is differentiable in u, define n̂u to be the normal vector
with respect to ∂Ŝ at the point (0, u); clearly, we have n̂u · e = 0 (if ∂S is not
differentiable in u, define n̂u arbitrarily). Fix some family (Uv, v ∈ ∂S) of unitary
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FIG. 3. On the definition of L and Y: we have L(x, y) = U z and Y(x, y) = U−1
U z

v.

linear operators with the property Uve = n̂v for all v ∈ ∂S. Now, on the event I we
may define the conditional law of intersection of ∂Ŝ. Namely, for x, y ∈ ∂ω, let

tx,y = inf{t ∈ [0,1] :x + (y − x)t ∈ ∂Ŝ}(55)

with the convention inf ∅ = ∞. Then, we define the (projected) location of the
crossing of ∂Ŝ by

L(x, y) =
{

U
(
x + (y − x)tx,y

)
, if tx,y ∈ [0,1],

∞, otherwise,
and the relative direction of the crossing by

Y(x, y) =
⎧⎨⎩U−1

L(x,y)

y − x

‖y − x‖ , if tx,y ∈ [0,1],
0, otherwise,

(see Figure 3).
Here, in the case when there is no intersection, for formal reasons we still assign

values for L and Y; note, however, that in the case tx,y ∈ [0,1], we have L(x, y) ∈
∂S and Y(x, y) ∈ Se.

Before proving Proposition 2.2, we obtain a remarkable fact which is closely
related to the invariance properties of random chords (cf. Theorems 2.7 and 2.8 of
[6]). We have that, conditioned on I , the annealed law of the pair of random vari-
ables (L(ξ0, ξ1),Y(ξ0, ξ1)) can be described as follows: L(ξ0, ξ1) and Y(ξ0, ξ1) are
independent, L(ξ0, ξ1) is uniform on ∂S and Y(ξ0, ξ1) has the cosine distribution.
More precisely, we formulate and prove the following result.

PROPOSITION 4.1. Let d ≥ 2. It holds that 〈Pω[I]〉Q = |∂S|/Z . Moreover,
for any measurable B1 ⊂ ∂S,B2 ⊂ Se we have〈

Eω

(
I{L(ξ0, ξ1) ∈ B1,Y(ξ0, ξ1) ∈ B2} | ξ0 = (0, u)

)〉
Q

(56)

= |∂S|
Z

|B1|
|∂S|γd

∫
B2

h · e dh.
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PROOF. First, we prove (56). Define F̃ ω
s = {x ∈ ∂ω : x · e ∈ [−s, s]} for s > 0.

By the translation invariance and (2), we have〈
Eω

(
I{L(ξ0, ξ1) ∈ B1,Y(ξ0, ξ1) ∈ B2} | ξ0 = (0, u)

)〉
Q

= 1

Z

∫
�

dP

∫
�

dμω
0 (u) κ−1

0,u

×
∫
∂ω

dνω(y)K((0, u), y)I{L((0, u), y) ∈ B1,Y((0, u), y) ∈ B2}

= 1

2sZ

∫
�

dP

∫ s

−s
ds

∫
�

dμω
s (u) κ−1

s,u(57)

×
∫
∂ω

dνω(y)K((s, u), y)I{L((s, u), y) ∈ B1,Y((s, u), y) ∈ B2}

= 1

2sZ

∫
�

dP

∫
F̃ ω

s

dνω(x)

×
∫
∂ω

dνω(y) I{L(x, y) ∈ B1,Y(x, y) ∈ B2}K(x,y).

Define the domain Dω
s by

Dω
s = {x ∈ ω :x · e ∈ [−s, s]}

and note that ∂Dω
s = F̃ ω

s ∪ ({−s} × ω−s) ∪ ({s} × ωs). For x, y ∈ ∂Dω
s let K̂(x, y)

be defined as in (3), but with Dω
s instead of ω. Note that K̂(x, y) = K(x,y) when

x, y ∈ F̃ ω
s .

Next, we show that the random chord in ω with the first point in F̃ ω
s has roughly

the same law as the random chord in Dω
s : for any ε > 0 there exists s0 such that for

all s ≥ s0 [with some abuse of notation, we still denote by νω(∂Dω
s ) the (d − 1)-

dimensional Hausdorff measure of ∂Dω
s ]∣∣∣∣ 1

νω(F̃ ω
s )

∫
F̃ ω

s

dνω(x)

∫
∂ω

dνω(y) I{L(x, y) ∈ B1,Y(x, y) ∈ B2}K(x,y)

− 1

νω(∂Dω
s )

∫
(∂Dω

s )2
dνω(x) dνω(y)(58)

× I{L(x, y) ∈ B1,Y(x, y) ∈ B2}K̂(x, y)

∣∣∣∣< ε

[in the second term, we suppose that L(x, y) = ∞,Y(x, y) = 0 when x ∈ ({−s} ×
S) ∪ ({s} × S)]. Indeed, we have

νω(F̃ ω
s ) ≤ νω(∂Dω

s ) ≤ νω(F̃ ω
s ) + 2|�|(59)
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and, by Condition L, there exists C4 > 0 such that

νω(F̃ ω
s ) ≥ C4s, P-a.s.(60)

Also, since ω ⊂ R × �, for any ε > 0 there exists C5 > 0 such that for all x ∈ ∂ω∫
{y∈∂ω : |(x−y)·e|>C5}

K(x,y) dνω(y) < ε, P-a.s.(61)

Now, (58) follows from (59)–(61) and a coupling argument: choose the first point
uniformly on ∂Dω

s ; with big probability, it will fall on F̃ ω
s−C5

(and so it can be
used as the first point of the random chord in ∂ω). Then, choose the second point
according to the cosine law; by (61), with big probability it will belong to F̃ ω

s , and
so the probability that the coupling is successful converges to 1 as s → ∞.

Then, recall Theorem 2.7 from [6]: in a finite domain, the induced random chord
in a convex subdomain has the same uniform × cosine law. So

1

νω(∂Dω
s )

∫
∂Dω

s ×∂Dω
s

dνω(x) dνω(y) I{L(x, y) ∈ B1,Y(x, y) ∈ B2}K̂(x, y)

= Pω[Is] |B1|
|Se| γd

∫
B2

h · e dh,

where Is is the event that the random chord of ∂Dω
s crosses the set [−s, s] × ∂S.

By formula (47) of [6] [see also formula (17) in Theorem 2.8 there], we have

Pω[Is] = 2s|∂S|
|∂Dω

s | = 2s|∂S|
νω(F̃ ω

s ) + |ω−s | + |ωs |
.(62)

Since, by the ergodic theorem, |F̃ ω
s |/(2s) → Z as s → ∞, (62) implies that

Pω[Is] → |∂S|/Z as s → ∞. We obtain (56) using (57) and (58), and sending
s to ∞.

Finally, the fact that 〈Pω[I]〉Q = |∂S|/Z follows from (56) (take B1 = ∂S,B2 =
Se). �

Now, using Proposition 4.1, it is straightforward to obtain Proposition 2.2.

PROOF OF PROPOSITION 2.2. Suppose that ω contains an infinite straight
cylinder Ŝ (more precisely, a strip, since we are considering the case d = 2) of
height r > 0, P-a.s. Keep the notation tx,y from (55), and define also

t ′x,y = sup{t ∈ [0,1] :x + (y − x)t ∈ ∂Ŝ}.
On the event I , define the random points ϒ0,ϒ1 ∈ ∂Ŝ by

ϒ0 = ξ0 + (ξ1 − ξ0)tx,y,

ϒ1 = ξ0 + (ξ1 − ξ0)t
′
x,y,
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FIG. 4. (d = 2) Computing the distribution of |(ϒ1 − ϒ0) · e|.

so that (ϒ0,ϒ1) is the random chord of Ŝ induced by the first crossing. On I c,
define ϒ0 = ϒ1 = 0. By Proposition 4.1, conditioned on I , the random chord
(ϒ0,ϒ1) has the cosine law, that is, the density of a direction is proportional to
the cosine of the angle between this direction and the normal vector (which, in this
case, is perpendicular to e). Let P [·] := Z

2 〈Pω[·I{I}]〉Q be the annealed probability
conditioned on the intersection; since d = 2 and S is a bounded interval, |∂S| = 2.
With η := (ξ1 − ξ0)/‖ξ1 − ξ0‖ and n̂ the inner normal vector to the cylinder at ϒ0,
we have (see Figure 4)

P [|(ϒ1 − ϒ0) · e| > x] = P

[
η · n̂ <

r√
r2 + x2

]

=
∫ π/2

arccos r√
r2+x2

cos z dz

= 1 − x√
r2 + x2

,

so the conditional density of the random variable |(ϒ1 − ϒ0) · e| is f (x) =
r2

(r2+x2)3/2 on R+. Then we have

〈b〉Q = 〈Eω

(|(ξ1 − ξ0) · e|2[I{I} + I{I c}] | ξ0 = (0, u)
)〉

Q

≥ 〈Eω

(|(ξ1 − ξ0) · e|2I{I} | ξ0 = (0, u)
)〉

Q

≥ 〈Eω|(ϒ1 − ϒ0) · e|2〉Q × 〈Pω[I]〉Q

= 2

Z

∫ +∞
0

x2 r2

(r2 + x2)3/2 dx = +∞,

which concludes the proof of Proposition 2.2. �

Let us observe that if a stationary ergodic random tube is almost surely con-
vex, then necessarily it has the form R × S for some convex (and nonrandom) set
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FIG. 5. Random chords induced in a random tube ω by a random chord in a random tube ω′ (in
this particular case, we have ι = 4).

S ⊂ �. This shows that Proposition 4.1 is indeed a generalization of Theorem 2.7
of [6]. Now our goal is to obtain an analogue of a more general Theorem 2.8
of [6]. For this we consider a pair of stationary ergodic random tubes (ω,ω′) ∈ �2,
let P̃ be their joint law and P,P′ be the corresponding marginals. Suppose also
that ω is contained in ω′ P̃-a.s. We keep the notation such as κx,K(x, y), . . .

for x, y ∈ ∂ω′ as well, when it creates no confusion; for the measures μ and
ν we usually indicate in the upper index whether they refer to ω or ω′. De-
note also Z ′ = ∫� dP′ ∫

� κ−1
0,u dμω′

0 (u). If (ξ ′
0, ξ

′
1) is a chord in ω′, we denote by

(ξ
(1)
0 , ξ

(1)
1 ), . . . , (ξ

(ι)
0 , ξ

(ι)
1 ) the induced random chords in ω (see Figure 5). Here,

ι ∈ {0,1,2, . . .} is a random variable which denotes the number of induced chords
in ω so that ι = 0 when the chord (ξ ′

0, ξ
′
1) has no intersection with ω.

The generalization of Theorem 2.8 of [6] that we want to obtain is the following
fact:

PROPOSITION 4.2. For any bounded function f :M �→ R we have〈
Eω

(
f (ω, U ξ0, ξ1) | ξ0 = (0, u)

)〉
Q

= Z ′

Z × 1

Z ′
∫
�2

dP̃(ω,ω′)
∫
�

dμω′
0 (u) κ−1

0,u(63)

× Eω,ω′

(
ι∑

k=1

f
(
θ
ξ

(k)
0 ·eω, U ξ

(k)
0 , ξ

(k)
1 − (ξ (k)

0 · e)e) ∣∣∣∣ ξ ′
0 = (0, u)

)
.

PROOF. We keep the notation from the proof of Proposition 4.1 (with the ob-
vious modifications in the case when ω′ is considered instead of ω). Without re-
striction of generality, we suppose that f is nonnegative. First, analogously to (57),
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we obtain that the right-hand side of (63) may be rewritten as

1

2sZ

∫
�2

dP̃(ω,ω′)
∫
F̃ ω′

s

dνω′
(x)

∫
∂ω′

dνω′
(y)K(x, y)

(64)

×
ι(x,y)∑
k=1

f
(
θx(k)·eω, U x(k), y(k) − (x(k) · e)e)=: T1,

where (x(1), y(1)), . . . , (x(ι(x,y)), y(ι(x,y))) are the chords induced in ω by the chord
(x, y) in ω′.

Let us denote F̃ ω
h,h′ = {x ∈ ∂ω :x · e ∈ [h,h′]} (so that F̃ ω

s = F̃ ω−s,s). Define

ι̂n(x, y) as the number of intersections of the chord (x, y) with F̃ ω
s−n,s−n+1. To

proceed, we need the following fact: let A be a subset of ∂Dω
s and x ∈ ∂Dω′

s . Then
we have

Pω′ [random chord beginning at x crosses A] ≤ νω(A) sup
y∈A

K̂(x, y).

Also, by decomposing A into pieces that may have at most one intersection with
the chord starting from x and using the above inequality, we obtain

Eω′ [number of intersections of the random chord from x with A]
(65)

≤ νω(A) sup
y∈A

K̂(x, y).

Using Condition L one obtains that νω(F̃ ω
s−n,s−n+1) is bounded from above by a

constant [see the argument before (42)]. From (3) we know that K(z, z′) ≤ γd‖z−z′‖ ,
so for any x ∈ {s} × ω′

s it is straightforward to obtain that∫
∂Dω′

s

ι̂n(x, y)K(x, y) dνω′
(y) ≤ C6ν

ω(F̃ ω
s−n,s−n+1)

n
≤ C7

n
.(66)

Suppose, without restriction of generality, that s is an integer number. Since
ι(x, y) ≤ 1 +∑2s

n=1 ι̂n(x, y), we obtain that

1

s

∫
�2

dP̃(ω,ω′)
∫
{s}×ω′

s

dνω′
(x)

∫
∂Dω′

s

dνω′
(y) K̂(x, y)ι(x, y)

≤ 1

s

(
1 +

2s∑
n=1

C7

n

)
(67)

≤ C8 ln s

s

and the same bound also holds if we change {s} × ω′
s to {−s} × ω′−s in the second

integral above.
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Note that, by the ergodic theorem, we have that

νω(∂Dω
s )

2s
→ Z,

νω′
(∂Dω′

s )

2s
→ Z ′ as s → ∞, P̃-a.s.

Then, analogously to (58), using (67) together with the fact that f is a bounded
function, we obtain that for any ε > 0 there exists s0 such that for all s ≥ s0 [recall
(64)],

T2 − T1 < ε,(68)

where

T2 := 1

νω′
(∂Dω′

s )

∫
(∂Dω′

s )2
dνω′

(x) dνω′
(y) K̂(x, y)

(69)

×
ι(x,y)∑
k=1

f
(
θx(k)·eω, U x(k), y(k) − (x(k) · e)e).

Then, by Theorem 2.8 of [6], we have

T2 = 1

νω(∂Dω
s )

∫
(∂Dω

s )2
dνω(x) dνω(y) K̂(x, y)f

(
θx·eω, U x, y − (x ·e)e).(70)

Again, it is straightforward to obtain that for any ε > 0 there exists s0 such that for
all s ≥ s0,∣∣∣∣ 1

νω(∂Dω
s )

∫
(∂Dω

s )2
dνω(x) dνω(y) K̂(x, y)f

(
θx·eω, U x, y − (x · e)e)

− 1

2sZ

∫
F̃ ω

s

dνω(x)(71)

×
∫
∂ω

dνω(y)K(x, y)f
(
θx·eω, U x, y − (x · e)e)∣∣∣∣< ε.

By the ergodic theorem, we have that P-a.s.

lim
s→∞

1

2sZ

∫
F̃ ω

s

dνω(x)

∫
∂ω

dνω(y)K(x, y)f
(
θx·eω, U x, y − (x · e)e)

= 〈Eω

(
f (ω, U ξ0, ξ1) | ξ0 = (0, u)

)〉
Q,

so, using (68), (70) and (71), we obtain, abbreviating for a moment

A :=
ι∑

k=1

f
(
θ
ξ

(k)
0 ·eω, U ξ

(k)
0 , ξ

(k)
1 − (ξ (k)

0 · e)e),
that 〈

Eω

(
f (ω, U ξ0, ξ1) | ξ0 = (0, u)

)〉
Q

(72)

≤ Z ′

Z × 1

Z ′
∫
�2

dP̃(ω,ω′)
∫
�

dμω′
0 (u) κ−1

0,uEω,ω′
(
A | ξ ′

0 = (0, u)
)
.
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The other inequality is much easier to obtain. Fix an arbitrary c̃ > 0, and consider
AI{A ≤ c̃} instead of A. Since AI{A ≤ c̃} is bounded, we now have no difficulties
relating the integrals on F̃ ω′

s × ∂ω′ to the corresponding integrals on (∂Dω′
s )2. In

this way we obtain that for any c̃,〈
Eω

(
f (ω, U ξ0, ξ1) | ξ0 = (0, u)

)〉
Q

≥ Z ′

Z × 1

Z ′
∫
�2

dP̃(ω,ω′)
∫
�

dμω′
0 (u) κ−1

0,uEω,ω′
(
AI{A ≤ c̃} | ξ ′

0 = (0, u)
)
.

We use now the monotone convergence theorem and (72) to conclude the proof of
Proposition 4.2. �

Using Proposition 4.2, we are now able to prove Proposition 2.1 for all d ≥ 3.

PROOF OF PROPOSITION 2.1. We apply Proposition 4.2 with ω′ being the
straight cylinder, ω′ = R × �. For the random chord in a straight tube, using the
fact that the cosine density vanishes in the directions orthogonal to the normal
vector, we obtain that (for any starting point ξ ′

0) φ0 := Eω′((ξ ′
1 − ξ ′

0) · e)2 < ∞.
Now consider the function fc̃(ω,u, y) = (y · e)2I{(y · e)2 ≤ c̃}. Since

ι∑
k=1

fc̃

(
θ
ξ

(k)
0 ·eω, U ξ

(k)
0 , ξ

(k)
1 − (ξ (k)

0 · e)e)≤ ((ξ ′
1 − ξ ′

0) · e)2,
we obtain that for any c̃,〈

Eω

(
fc̃(ω, U ξ0, ξ1) | ξ0 = (0, u)

)〉
Q ≤ φ0.

Using the monotone convergence theorem, we conclude the proof of Proposi-
tion 2.1. �

Remarks. (i) Observe from the definitions of φ0 above and (1) of � that

φ0(M̂)
def= φ0 = M̂2φ0(1). Then we have shown the universal bound

〈b〉Q ≤ M̂2C(d)

for all random tubes with a vertical section included in the sphere � of radius M̂

where C(d) = φ0(1) corresponds to the straight cylinder with spherical section of
radius M̂ = 1.

(ii) For k ≥ 1, denote by

b(k)(ω,u) = Eω

(|(ξ1 − ξ0) · e|k | ξ0 = (0, u)
)

the kth absolute moment of the projection of the first jump to the horizontal direc-
tion. Then, similarly to the proof of Propositions 2.1 and 2.2, one can obtain, for
the d-dimensional model, that 〈b(d)〉Q = +∞ in the case when the random tube
contains a straight cylinder and that 〈b(d−δ)〉Q < ∞ for any δ > 0.
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4.3. Proof of Theorem 2.2. We start by obtaining a formula for the mean
length of the first jump, at equilibrium.

LEMMA 4.1. We have

〈Eω‖ξ1 − ξ0‖〉Q = π1/2�((d + 1)/2)d

�(d/2 + 1)
× 1

Z

∫
�

|ω0|dP.(73)

PROOF. Recall the notation F̃ ω
s , Dω

s , K̂(x, y) from the proof of Proposi-
tion 4.1. The strategy of the proof will be similar to that of the proof of Propo-
sition 4.2. Analogously to (57), we write

〈Eω‖ξ1 − ξ0‖〉Q = 1

Z

∫
�

dP

∫
�

dμω
0 (u) κ−1

0,u

×
∫
∂ω

dνω(y)K((0, u), y)‖(0, u) − y‖

= 1

2sZ

∫
�

dP

∫ s

−s
ds

∫
�

dμω
s (u) κ−1

s,u(74)

×
∫
∂ω

dνω(y)K((s, u), y)‖(s, u) − y‖

= 1

2sZ

∫
�

dP

∫
F̃ ω

s

dνω(x)

∫
∂ω

dνω(y)‖y − x‖K(x,y).

By Theorem 2.6 of [6], we know that∫
(∂Dω

s )2
dνω(x) dνω(y) K̂(x, y)‖x − y‖ = π1/2�((d + 1)/2)d

�(d/2 + 1)
|Dω

s |.(75)

Denote by D� = {−s} × ω−s and Dr = {s} × ωs the left and right vertical pieces
of ∂Dω

s , so that ∂Dω
s = F̃ ω

s ∪ D� ∪ Dr . From (74) we obtain [recall also that
K̂(x, y) = K̂(y, x) for all x, y ∈ ∂Dω

s ]

〈Eω‖ξ1 − ξ0‖〉Q ≥ 1

2sZ

∫
�

dP

∫
(F̃ ω

s )2
dνω(x) dνω(y)‖y − x‖K(x,y)

≥ 1

2sZ

∫
�

dP

(∫
(∂Dω

s )2
dνω(x) dνω(y)‖y − x‖K̂(x, y)

− 2
∫
(D�∪Dr)×∂Dω

s

dνω(y)‖y − x‖K̂(x, y)

)
.

Observe that [recall (1)] for all x, y ∈ R×� it holds that ‖x − y‖ ≤ |(x − y) · e|+
2M̂ . So by (54), there exists C1 > 0 such that for all s we have∫

(D�∪Dr)×∂Dω
s

dνω(y)‖y − x‖K̂(x, y) ≤ C1 ln s + 2M̂,
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and, using (75), we obtain

〈Eω‖ξ1 − ξ0‖〉Q
(76)

≥ 1

2sZ

∫
�

dP

(
π1/2�((d + 1)/2)d

�(d/2 + 1)
|Dω

s | − C1 ln s − 2M̂

)
dP.

Since, by the ergodic theorem,

1

2s
|Dω

s | →
∫
�

|ω0|dP a.s., as s → ∞,

and sending s to ∞ we obtain from (76) that

〈Eω‖ξ1 − ξ0‖〉Q ≥ π1/2�((d + 1)/2)d

�(d/2 + 1)
× 1

Z

∫
�

|ω0|dP.(77)

Now, fix c̃ > 0 and write analogously to (74)

〈Eω‖ξ1 − ξ0‖I{‖ξ1 − ξ0‖ ≤ c̃}〉Q
= 1

2sZ

∫
�

dP

∫
F̃ ω

s

dνω(x)

∫
∂ω

dνω(y)‖y − x‖I{‖y − x‖ ≤ c̃}K(x,y).

In this situation ‖ξ1 −ξ0‖I{‖ξ1 − ξ0‖ ≤ c̃} is bounded. So, analogously to the proof
of Proposition 4.1 and again using (75), by a coupling argument it is elementary to
obtain that for any c̃,

〈Eω‖ξ1 − ξ0‖I{‖ξ1 − ξ0‖ ≤ c̃}〉Q

≤ π1/2�((d + 1)/2)d

�(d/2 + 1)
× 1

Z

∫
�

|ω0|dP.

Using the monotone convergence theorem and (77), we conclude the proof of
Lemma 4.1. �

With Lemma 4.1 at hand, we are now ready to prove Theorem 2.2.

PROOF OF THEOREM 2.2. Define n(t) = max{n : τn ≤ t}. We have

t−1/2Xt · e = t−1/2ξn(t) · e + t−1/2(Xt − ξn(t)

) · e.
Let us prove first that the second term goes to 0. Indeed, by definition of the
continuous-time process we have

t−1((Xt − ξn(t)

) · e)2 ≤ 1

n(t)

((
ξn(t)+1 − ξn(t)

) · e)2.(78)

But then from the stationarity of ξ we obtain that

n−1Eω

((
ξn+1 − ξn

) · e)2 → 0
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as n → ∞ for P-almost all ω [this is analogous to the derivation of (51) in the
proof of Theorem 2.1].

Now, the first term in the right-hand side of (78) equals(
n(t)

t

)1/2

× 1

n(t)1/2 ξn(t) · e.

For the second term in the above product, apply Theorem 2.1. As for the first term,
since

n(t)

τn(t)+1
≤ n(t)

t
≤ n(t)

τn(t)

,

by the ergodic theorem and Lemma 4.1 we have, almost surely,

lim
t→∞

n(t)

t
= lim

n→∞
n

τn

= (〈Eω‖ξ1 − ξ0‖〉Q)−1

= �(d/2 + 1)Z
π1/2�((d + 1)/2)d

(∫
�

|ω0|dP

)−1

.

This concludes the proof of Theorem 2.2. �

APPENDIX

In this section we discuss the case when the map α �→ ωα is not necessarily
continuous which corresponds to the case when the random tube can have vertical
walls. The proofs contained here are given in a rather sketchy way without going
into much detail.

Define

�α = {u ∈ � : (α,u) ∈ ∂ω}
to be the section of the boundary by the hyperplane where the first coordinate is
equal to α. Then let

S (0) = {α ∈ R : |�α| ≥ 1}
and, for n ≥ 1,

S (n) =
{
α ∈ R : |�α| ∈

[
1

n + 1
,

1

n

)}
.

Besides Condition R, we have to assume something more. Namely, we assume
that for P-almost all ω, νω-almost all (α,u) ∈ ∂ω are such that either |�α| > 0
(so that α ∈ S (n) for some n), or (α,u) ∈ Rω (recall the definition of Rω from
Section 2).
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Also, we modify the definition of the measure μω
α in the following way: it is

defined as in Section 2 when |�α| = 0, and we put μω
α ≡ 0 when |�α| > 0.

Observe that, for any n ≥ 0, S (n) is a stationary point process. Note that, in
contrast, the set

⋃
n≥0 S (n) may not be locally finite, which is the reason why we

need to introduce a sequence S (n). Let P(n) be the Palm version of P with respect
to S (n), that is, intuitively it is P “conditioned on having a point of S (n) at the
origin.” Observe that P(n) is singular with respect to P, since, obviously,

P[|�0| > 0] = 0.

Now, define (after checking that the two limits below exist P-a.s.)

q0 =
(∫

�
|�0|dP(0)

)−1

× lim
a→∞

νω({x ∈ ∂ω :x · e ∈ [0, a], |�x·e| ≥ 1})
a

,

qn =
(∫

�
|�0|dP(n)

)−1

× lim
a→∞

νω({x ∈ ∂ω :x · e ∈ [0, a], |�x·e| ∈ [1/(n + 1),1/n)})
a

for n ≥ 1. Then, we define the measure Q which is the reversible measure for the
environment seen from the particle

dQ(ω,u) = 1

Z

[
κ−1

0,u dμω
0 (u) dP(ω) +

∞∑
n=0

qnI{u ∈ �0}dudP(n)(ω)

]
,(79)

where Z is the normalizing constant; as we will see below, Z still can be defined
directly through the limit

Z = lim
a→∞

νω({x ∈ ∂ω :x · e ∈ [0, a]})
a

.

The scalar product is now defined by

〈f,g〉Q = 1

Z

[∫
�

dP

∫
�

dμω
0 (u) κ−1

0,uf (ω,u)g(ω,u)

+
∞∑

n=0

qn

∫
�

dP(n)
∫
�0

duf (ω,u)g(ω,u)

]
.

Now we need a slightly different definition for the transition density: define
K̄(x, y) by formula (3) but without the indicator functions that |nω(x) · e| 
= 1
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and |nω(y) · e| 
= 1. Also, the transition operator G can be written in the following
way:

Gf (ω,u) = Eω

(
f (θξ1·eω, U ξ1) | ξ0 = (0, u)

)
=
∫
∂ω

K̄((0, u), x)f (θx·eω, U x)dνω(x)

=
∫ +∞
−∞

dα

∫
�

dμω
α(v) κ−1

α,vf (θαω, v)K̄((0, u), (α, v))

+
∞∑

n=0

∑
α∈S (n)

∫
�α

dv f (θαω, v)K̄((0, u), (α, v)).

Now, we have to prove the reversibility of G with respect to Q. The direct
method adopted in the proof of Lemma 3.1 now seems to be to cumbersome to
apply, so we use another approach by taking advantage of stationarity. For two
bounded functions f,g, consider the quantity

A(a) = 1

Za

∫
{x∈∂ω : x·e∈[0,a]}2

dνω(x) dνω(y) K̄(x, y)

× f (θx·eω, U x)g(θy·eω, U y).

Using (61), it is elementary to obtain that (assuming for now that the limit exists
P-a.s.)

lim
a→∞A(a) = lim

a→∞
1

Za

∫
{x∈∂ω : x·e∈[0,a]}

dνω(x)f (θx·eω, U x)

×
∫
∂ω

dνω(y) K̄(x, y)g(θy·eω, U y)

= lim
a→∞

1

Za

∫
{x∈∂ω : x·e∈[0,a]}

dνω(x)f (θx·eω, U x)

× Gg(θx·eω, U x).

Then we write, using the ergodic theorem,

lim
a→∞

1

a

∫ a

0
dα

∫
�

dμω
α(u) κ−1

α,uf (θαω,u)Gg(θαω,u)

=
∫
�

dP

∫
�

dμω
0 (u) κ−1

0,uf (ω,u)Gg(ω,u), P-a.s.

Again, by the ergodic theorem, we have

lim
a→∞

|S (m) ∩ [0, a]|
a

= qm, P-a.s.
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so that we can write

lim
a→∞

1

a

∑
α∈S (m)∩[0,a]

∫
�α

duf (θαω,u)Gg(θαω,u)

= qm

∫
�

dP(m)
∫
�0

duf (ω,u)Gg(ω,u), P-a.s.

Thus we have for P-almost all environments

lim
a→∞A(a) = lim

a→∞
1

Za

[∫ a

0
dα

∫
�

dμω
α(u) κ−1

α,uf (θαω,u)Gg(θαω,u)

+
∞∑

m=0

∑
α∈S (m)∩[0,a]

∫
�α

duf (θαω,u)Gg(θαω,u)

]

= 1

Z

[∫
�

dP

∫
�

dμω
0 (u) κ−1

0,uf (ω,u)Gg(ω,u)

+
∞∑

m=0

qm

∫
�

dP(m)
∫
�0

duf (ω,u)Gg(ω,u)

]
= 〈f,Gg〉Q.

By symmetry, in the same way one proves that lima→∞ A(a) = 〈g,Gf 〉Q, so G is
still reversible with respect to Q.

Now the crucial observation is that formula (42) is still valid even in the case
when Q is defined by (79), since we still have, for any f ≥ 0,

〈f 〉Q ≥ 1

Z

∫
�

dP

∫
�

dμω
0 (u) κ−1

0,uf (ω,u),

so one can see that the whole argument goes through in this general case as well.
However, we decided to write the proofs for the case of random tube without
vertical walls to avoid complicating the calculations which are already quite in-
volved. Here is the (incomplete) list of places that would require modifications
(and strongly complicate the exposition):

• the display after (30) [part of the proof of (29)];
• the proof of (36);
• the proof of Proposition 3.1;
• the proof of (43);
• calculations (57) and (74).
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