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Consider a �-coalescent that comes down from infinity (meaning that it
starts from a configuration containing infinitely many blocks at time 0, yet
it has a finite number Nt of blocks at any positive time t > 0). We exhibit
a deterministic function v : (0,∞) → (0,∞) such that Nt/v(t) → 1, almost
surely, and in Lp for any p ≥ 1, as t → 0. Our approach relies on a novel
martingale technique.

1. Introduction. Various natural population genetics models lead to a repre-
sentation of the genealogical tree by a process called Kingman’s coalescent [16,
17]. Kingman’s coalescent is a Markov process which can be informally described
as follows: in a fixed sample of n individuals from the population, each pair of
ancestral lineages coalesces at rate 1.

In population genetics, one uses the above process to quantify polymorphism
in a homogeneously mixing population under neutral evolution. However, there is
some evidence that for modeling evolution of marine populations (see, e.g., [19]),
the use of coalescent processes which allow multiple collisions is more appropriate
than that of Kingman’s coalescent where only pairs of blocks can merge at any
given time. Similarly, multiple collisions are natural for modeling evolution of viral
populations, where natural selection plays a very strong role. They also emerge in
the fine-scale mapping of disease loci [21].

A suitable family of mathematical models has been introduced and studied by
Pitman [22] and Sagitov [26] under the name �-coalescents or coalescents with
multiple collisions. We postpone the precise definitions of these processes until the
next section.

Let N� ≡ N := (Nt , t ≥ 0) be the number of blocks process corresponding
to a particular �-coalescent process. In view of applications, we concentrate on
�-coalescents such that P(Nt < ∞, t > 0) = 1 and limt→0+ Nt = ∞ (here N is
really an entrance law). This property is typically referred to as coming down from
infinity (see Section 2.2 for a formal definition). It is important to understand the
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nature of divergence of Nt as t decreases to 0. In the current paper, our goal is to
exhibit a function v : (0,∞) → (0,∞) such that

lim
t→0

Nt

v(t)
= 1 almost surely.

We call any such v the speed of coming down from infinity (speed of CDI) for
the corresponding �-coalescent. Note that the limit above is in fact the limit as
t → 0+; from now on we always write t → 0. The exact form of the function v is
implicit and somewhat technical (see Theorem 1 for the precise statement). How-
ever, in many situations of interest, one can find a simpler function g(t), often a
power in t , such that g(t)/v(t) → 1, and therefore Nt/g(t) → 1, as t → 0. Then
we also refer to g as the speed of CDI for the corresponding coalescent. As men-
tioned above, Kingman’s coalescent is the simplest �-coalescent. In particular,
one can quickly find its speed of CDI by considering the “time-reversed” process.
Analogous time-reversals for general �-coalescents seem to be difficult to grasp.
The speed of CDI was recently determined for Beta-coalescents and their “per-
turbations” in Berestycki, Berestycki and Schweinsberg [4] and [5] and Bertoin
and Le Gall [6] (where convergence is established in probability). See also the
comment following the statement of Theorem 1 below.

With the above biology motivation in mind, there is a strong interest in under-
standing (see, e.g., [10, 13, 20]) analogues of Ewens’ sampling formula for �-coa-
lescents. It seems that only Kingman’s coalescent allows for an exact solution (see,
e.g., [12] or [14]) while in the general case, one should aim for good approxima-
tions. The only previous detailed analysis of this kind was carried out in [5] and
[4] for the special case of Beta-coalescents. The above result can be viewed as the
first step towards analogous understanding of the general �-coalescent case.

In a parallel work [3] we discuss the consequence of our main results to the
problem of quantifying polymorphism in a population whose genealogy is driven
by a coalescent with multiple collisions. In the same paper, we will describe a
general connection between the small-time asymptotics of �-coalescents and con-
tinuous random trees and their associated continuous-state branching processes
as well as generalized Fleming–Viot processes. These connections enable one to
guess the form of function v(t), and they imply the convergence in probability of
the quantity Nt/v(t) which is of interest under certain technical conditions. They
can also be useful in determining the power law order of growth of v as t → 0.

To the best of our knowledge, the martingale analysis in the current context is
novel. We believe that it is of independent interest. Although similar in spirit, our
setting is different from the general setting of Darling and Norris [8]. For their
technique to apply, it is necessary to start with good bounds on the accumulated
absolute difference of the “drifts” of the Markov chain and the solution to the
corresponding differential “fluid-limit” equation. Here it seems difficult to obtain
such bounds. However, it is possible to work directly [cf. the local martingale M ′

z
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from (22)] with the accumulated (nonabsolute) difference of the drifts in order to
obtain sufficiently good asymptotic estimates.

The rest of the paper is organized as follows. Section 2 contains definitions and
notations. The main results are stated in Section 3 and are proved in Section 4,
with some technical estimates postponed until the Appendix.

2. Definitions and preliminaries.

2.1. Notation. We recall some standard notation, and introduce additional no-
tation to simplify the exposition.

Denote the set of real (resp. rational) numbers by R (resp. Q) and set R+ =
(0,∞). For a, b ∈ R, denote by a ∧ b (resp. a ∨ b) the minimum (resp. maxi-
mum) of the two numbers.
Let N := {1,2, . . .} and let P be the set of partitions of N. Furthermore, for
n ∈ N denote by Pn the set of partitions of [n] := {1, . . . , n}.
If f is a function, defined in a left-neighborhood (s − ε, s) of a point s, we
denote by f (s−) the left limit of f at s.
Given two functions f,g : R+ → R+, write f = O(g) if lim supf (x)/g(x) <

∞, f = o(g) if lim supf (x)/g(x) = 0, and f ∼ g if limf (x)/g(x) = 1. The
point at which the limits are taken might vary, depending on the context.

If X and Y are two random objects, we write X
d= Y to indicate their equiva-

lence in distribution. As usual, convergence in distribution will be denoted by
⇒ symbol.
If F = (Ft , t ≥ 0) is a filtration, and T is a stopping time relative to F , denote
by FT the standard filtration generated by T (see, e.g., [11], page 389).
For ν a finite or σ -finite measure, denote the support of ν by supp(ν).

2.2. �-coalescents. Let � be a finite measure on [0,1]. The �-coalescent
is a Markov process (�t , t ≥ 0) with values in P (the set of partitions of N),
characterized as follows. If n ∈ N, then the restriction (�

(n)
t , t ≥ 0) of (�t , t ≥ 0)

to [n] is a Markov chain, taking values in Pn, with a following dynamics: whenever
�

(n)
t is a partition consisting of b blocks, the rate at which a given k-tuple of its

blocks merges is

λb,k =
∫
[0,1]

xk−2(1 − x)b−k�(dx).(1)

Note that mergers of several blocks into one block are possible, but multiple merg-
ers do not occur simultaneously. For a generalization of �-coalescents where mul-
tiple mergers are possible, see Schweinsberg [29]. For a generalization of �-coa-
lescents to spatial (not a mean-field) setting, see Limic and Sturm [18].

We will quote here several basic properties of the �-coalescent, and refer the
reader to Pitman [22] for details and additional analysis. When �({0}) = 0, the
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corresponding �-coalescent can be constructed via a Poisson point process in the
following way. Let

π(·) = ∑
i∈N

δti ,xi
(·)(2)

be a Poisson point process on R+ × (0,1) with the intensity measure dt ⊗ ν(dx)

where ν(dx) = x−2�(dx). Each atom (t, x) of π influences the evolution of the
process � as follows: for each block of �(t−), flip a coin with probability of heads
equal to x; all the blocks corresponding to coins that come up “head” then merge
immediately into one single block while all other blocks remain unchanged. Note
that in order to make this construction rigorous, one first considers the restric-
tions (�(n)(t), t ≥ 0), since the measure ν(dx) = x−2�(dx) may have infinite
total mass.

We next recall a remarkable property of �-coalescents. Let E be the event that
for all t > 0 there are infinitely many blocks, and let F be the event that for all t > 0
there are only finitely many blocks. Pitman [22] showed that, if �({1}) = 0, only
the following two types of behavior are possible, depending on the measure �:
either P(E) = 1 or P(F) = 1. When P(F) = 1, the process � is said to come
down from infinity. For instance, Kingman’s coalescent comes down from infinity,
while if �(dx) = dx is the uniform measure on (0,1), then the corresponding
�-coalescent does not come down from infinity. This particular �-coalescent was
discovered by Bolthausen and Sznitman [7] in connection with spin glasses.

A necessary and sufficient condition for a �-coalescent to come down from
infinity was given by Schweinsberg [28]: define

γb =
b∑

k=2

(k − 1)

(
b

k

)
λb,k,

then the �-coalescent comes down from infinity if and only if
∑∞

b=2 γ −1
b < ∞.

Recently, Bertoin and Le Gall [6] observed that this condition is equivalent to
the following requirement: define

ψ�(q) ≡ ψ(q) :=
∫
[0,1]

(e−qx − 1 + qx)ν(dx),(3)

where ν(dx) = x−2�(dx), then
∞∑

b=2

γ −1
b < ∞ if and only if

∫ ∞
a

dq

ψ(q)
< ∞,(4)

where the right-hand side is finite for some (and then automatically for all) a > 0.
Somewhat remarkably, the divergence rate function v is given [cf. definition (8) in
the next section] in terms of the right-hand side in (4). The condition (4) is well
known in the Lévy processes literature as the Grey’s criterion for extinction of
the underlying continuous-state branching process. We refer the reader to [3] for
further explanation of the above connections.
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3. Main results. Let � be a finite measure on [0,1], and let (�t , t ≥ 0) be
a �-coalescent. Without loss of generality, we may, and will, henceforth assume
that � is a probability measure, that is,

�[0,1] = 1.(5)

Indeed, a scaling of the total mass of � by a constant factor will induce the scaling
of the speed of evolution (and therefore, that of coming down from infinity) by the
same factor, and the speed of CDI v from (8) below will scale in the same way.

To each such measure � we associate a function ψ defined in (3). Moreover, for
a probability measure �̃ of the form �̃ = (1 − c)� + cδ0, where � has no atom at
0, we may rewrite as

ψ�̃(q) = c

2
q2 + (1 − c)

∫
[0,1]

(e−qx − 1 + qx)ν(dx).(6)

Note that if c = 1 we retrieve the Kingman coalescent, whose small-time behavior
is well understood. Henceforth we assume that c < 1.

When ψ is such that the integral in (4) is finite, or equivalently, when the corre-
sponding �-coalescent comes down from infinity, we can define

uψ(t) ≡ u(t) :=
∫ ∞
t

dq

ψ(q)
∈ (0,∞), t > 0,(7)

and its càdlàg inverse

vψ(t) ≡ v(t) := inf
{
s > 0 :

∫ ∞
s

1

ψ(q)
dq < t

}
, t > 0.(8)

Denote by (N�(t), t ≥ 0) = (N�
t , t ≥ 0) the number of blocks process for the �-

coalescent (�(t), t ≥ 0). The first main result of this paper is following theorem.

THEOREM 1.

lim
t→0

N�(t)

vψ(t)
= 1 almost surely.(9)

Note that if � does not come from infinity, both N�
t = N�(t) = ∞, for all

t ≥ 0, almost surely, and the formal definition (8) yields vψ ≡ ∞, so (9) extends
trivially if ∞/∞ = 1.

We next comment on some special cases of Theorem 1. When � = δ0, we have
v(t) = 2/t , and we recover the well-known result that for Kingman’s coalescent,
the number of blocks is almost surely asymptotic to 2/t . Another interesting case
occurs when � has the Beta(2 − α,α) distribution for some 1 < α < 2. That is,

�(dx) = 1

(2 − α)(α)
x1−α(1 − x)α−1 dx.(10)
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Here it is not hard to see that ψ(q) ∼ c1q
α as q → ∞, and thus that

v(t) ∼ c2t
−1/(α−1) as t → 0,

where c1 = ((α)α(α − 1))−1 and c2 = (α(α))−1/(α−1). In fact these calcula-
tions can easily be generalized to the case where � is regularly varying near 0
with index 1 < α < 2. In this case, Theorem 1 strengthens Lemma 3 in [6].

However, we emphasize that the most delicate case of the above theorem occurs
when the measure � “wildly oscillates” in any neighborhood of 0. An example
of such a measure is constructed in the appendix of [3]. It illustrates potential
difficulties in the analysis of functions ψ , u or v directly.

With a bit more work, we obtain as the second main result an analogue to The-
orem 1 in terms of convergence of moments.

THEOREM 2. For any d ∈ [1,∞),

lim
s→0

E

(
sup

t∈[0,s]

∣∣∣∣N
�(t)

vψ(t)
− 1

∣∣∣∣
d)

= 0.(11)

The following consequence of Theorem 1 says that, among all the �-coalescents
such that �[0,1] = 1, Kingman’s coalescent is extremal for the speed of coming
down from infinity.

COROLLARY 3. Assume (5). Then with probability 1, for any ε > 0, and for
all t sufficiently small,

N�(t) ≥ 2

t
(1 − ε).

PROOF. Without loss of generality assume that the �-coalescent comes down
from infinity. To see how the corollary follows from Theorem 1, observe that since
e−qx ≤ 1 − qx + q2x2/2 for x > 0,

ψ(q) ≤ q2

2

∫
[0,1]

x2ν(dx) ≤ q2

2
[due to (5)].(12)

Hence

uψ(s) ≥
∫ ∞
s

2

q2 dq = 2

s
and vψ(t) ≥ 2

t
.(13)

Due to Theorem 1, N�(t) ∼ vψ(t) as t → 0, implying that N�(t) ≥ 2(1 − ε)/t

with high probability for all t small. �

REMARK 4. It is interesting to compare the last result with the following fact
shown in Angel et al. [1]: ∫ 1

0
N�(t) dt = ∞,(14)
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regardless of the choice of the finite measure �. Corollary 3 may be used to give
an alternative proof of (14).

The following result is interesting from the perspective of applications in popu-
lation genetics. More specifically, the total length of the coalescent tree is relevant
for predicting the number of mutations in a large but finite sample. Assume (4),
so that the coalescent comes down from infinity. Let N�,n denote the number of
blocks process of the restriction �(n) with initial state �

(n)
0 = {{1}, . . . , {n}} as

defined at the beginning of Section 2.2. Let τn := inf{s > 0 :N�(s) ≤ n}, and let
Hn := {N�(τn) = n} be the event that the (unrestricted) �-coalescent ever attains
a configuration with exactly n blocks. Then, due to the strong Markov property,
the conditional law of (N�(s + τn), s ≥ 0) given Fτn on the event Hn, equals the
law of N�,n. Let tn = uψ(n) so that vψ(tn) = n.

THEOREM 5. For each s > 0 we have

lim
n→∞

∫ s
0 N�,n(t) dt∫ s

0 vψ(tn + t) dt
= lim

n→∞

∫ s
0 N�,n(t) dt∫ s

0 E(N�,n(t)) dt
= 1 in probability.

For Kingman and Beta coalescents [i.e., when � is of the form � = δ0 or (10) with
1 < α < 2], the above convergence holds almost surely.

Let τn
1 = inf{t ≥ 0 :N�,n(t) = 1}, so that

∫ τn
1

0 N�,n(t) dt equals the total length
of the (�-)coalescent tree with n leaves. Moreover, for any fixed s > 0,

∫ τn
1

s
N�,n(t) dt →

∫ τ1

s
N�(t) dt almost surely

(see Section 4.4) where the limit is a finite random variable. Hence the above
theorem yields the asymptotics for the total length of the coalescent (genealogical)
tree. Some more detailed analysis is postponed until [3].

Whereas Theorem 1 is a law of large numbers-type result for N�, Theorem 5

is a law of large numbers-type result for
∫ τn

1
0 N�,n(t) dt . A central limit theorem

for lengths of partial coalescent trees is obtained by Delmas, Dhersin and Siri-
Jegousse [9] (see also [27]) for the Beta-coalescent case, similar questions for
general �-coalescents remain open.

4. Martingale based arguments. We now proceed toward the proof of The-
orem 1. The following easy-to-check facts will be used in our analysis.

LEMMA 6. The function ψ : [0,∞) → R+ of (3) is (strictly) increasing on
[0,∞), and convex on (0,∞). Furthermore, for vψ , as in (8), we have v′

ψ(s) =
−ψ(vψ(s)), so that vψ is decreasing with its derivative decreasing in absolute
value.
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Due to Lemma 14, postponed until the next section, we can, and will, sup-
pose without loss of generality that supp(�) ⊂ [0,1/4]. This assumption simpli-
fies some technical estimates.

In this section we write N instead of N� whenever not in risk of confusion, and
we also abbreviate v = vψ . We start by observing that the function v is the unique
solution of the following integral equation:

log(v(t)) − log(v(z)) +
∫ t

z

ψ(v(r))

v(r)
dr = 0 ∀0 < z < t,(15)

with the “initial condition” v(0+) = ∞ [see Lemma 9 for properties of ψ(q)/q].
It is then natural to consider, for each fixed z > 0, the process

M(t) := log(N(t)) − log(N(z)) +
∫ t

z

ψ(N(r))

N(r)
dr, t ≥ z.(16)

Let n0 ≥ 1 be fixed. Define

τn0 := inf{s > 0 :N(s) ≤ n0}.(17)

The following proposition tells us that M(t ∧ τn0) is “almost” (up to a bounded
drift correction, and integrability condition) a martingale, with respect to the nat-
ural filtration (Ft , t ≥ 0) generated by the underlying �-coalescent process. Its
proof uses some general facts about binomial distributions, with precise statements
and arguments postponed until the Appendix. In particular, in the rest of this sec-
tion the parameter n0 is taken to be the integer n0 from Lemma 19.

As usual, E[dXs |Fs] denotes the infinitesimal drift of a continuous-time
process (Xs, s ≥ 0) with respect to the filtration F at time s. Similarly, we de-
note by E[(dXs)

2|Fs] the corresponding infinitesimal second moment. That is,

E[dXs |Fs]
ds

:= lim
ε→0

1

ε
E[Xs+ε − Xs |Fs]

and

E[(dXs)
2|Fs]

ds
:= lim

ε→0

1

ε
E[(Xs+ε − Xs)

2|Fs].

PROPOSITION 7. There exists some deterministic C < ∞ such that

E[d log(N(s))|Fs] =
(
−ψ(N(s))

N(s)
+ h(s)

)
ds,(18)

where (h(s), s ≥ z) is an F -adapted process such that sups∈[z,z∧τn0 ]|h(s)| ≤ C,
and

E[[d log(N(s))]2|Fs]1{s≤τn0 } ≤ C ds almost surely.

Both estimates are valid uniformly over z > 0.
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PROOF. To prove the proposition, it suffices to show that for each s > 0, we
have on {N(s) ≥ n0},∣∣∣∣E(d log(N(s))|Fs)

ds
+ ψ(N(s))

N(s)

∣∣∣∣ = |h(s)| = O

(∫
[0,1/4]

p2ν(dp)

)
(19)

and

E([d log(N(s))]2|Fs) = O

(∫
[0,1/4]

p2ν(dp)

)
ds,(20)

where O(·) can be taken uniformly in s. Note that the finite integrals above are in
fact taken over [0,1], since ν(dx) = ν(dx)1{x∈[0,1/4]} by assumption.

Recall the Poisson point process construction of Section 2.2 and fix n ≥ n0.
If �({0}) = 0, then on the event {N(s) = n} an atom of size p arrives at rate
ν(dp)ds, and given that, logN(s) = logn jumps to log(Bn,p + 1{Bn,p<n}) where
Bn,p has Binomial(n,1 − p) distribution. Hence we have

E(d log(N(s))|Fs) =
∫
[0,1]

E

[
log

Bn,p + 1{Bn,p<n}
n

]
ν(dp)ds.

In the general case where �({0}) = c ∈ (0,1), we have on the same event

E(d log(N(s))|Fs)

ds
= (1 − c)

∫
[0,1]

E

[
log

Bn,p + 1{Bn,p<n}
n

]
ν(dp)

+ c

(
n

2

)
log

n − 1

n
.

Let ψ0(q) = q2/2 be the function ψ corresponding to the atomic �(dx) = δ0(dx).
Note that

c

(
n

2

)
log

n − 1

n
= −c

2
n + c

4
+ O(1/n) = −c

ψ0(n)

n
+ c

4
+ O(1/n).

In view of (6), the estimate (19) will follow by Lemma 19 in the Appendix pro-
vided that

|np − 1 + (1 − p)n − (e−np − 1 + np)| = |(1 − p)n − e−np| ≤ Cnp2(21)

for all n ≥ n0, p ≤ 1/4 and for some C < ∞. Note that e−np > (1 − p)n, and, in
fact,

e−np − (1 − p)n = e−np

(
1 − exp

{
−n

(
p2

2
+ p3

3
+ · · ·

)})
.

Therefore, for p ≤ 1/4 we have

1 − exp
{
−n

(
p2

2
+ p3

3
+ · · ·

)}
≤ 1 − exp

{
−n

2
(p2 + p3 + · · ·)

}

≤ 1 − exp
(
−2

3
np2

)

≤ 2

3
np2;
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hence both (21) and (19) hold.
To bound the infinitesimal variance on the event {N(s) = n}, use the second

estimate in Lemma 19, together with the fact

E([d log(N(s))]2|Fs)

ds
≤ (1 − c)

∫
[0,1]

E

[
log2 Bn,p + 1{Bn,p<n}

n

]
ν(dp)

+ O

(
1

n2

)(
n

2

)
.

Finally, note that both bounds (19) and (20) are uniform in the choice of z. �

4.1. Proof of Theorem 1. Recall the process M from (16) and define

M ′
z(t) ≡ M ′(t) := M(t ∧ τn0) +

∫ t∧τn0

z
h(r) dr, t ≥ z,(22)

so that M ′
z has martingale increments due to Proposition 7. A general property

of the Doob–Meyer martingale correction (that one can check easily) implies that
E([dM ′

z(t)]2|Ft ) ≤ E[[d log(N(t))]2|Ft ], so that

E
(
M ′

z(s) − M ′
z(z)

)2 ≤ C(s − z) ∀0 < z < s,(23)

where C is the constant from Proposition 7.
Define a family of deterministic functions (vx, x ∈ R) by

vx(t) = v(t + x), t ≥ −x,

and note that each vx satisfies an appropriate analogue of (15) on its entire domain,
namely, vx(−x+) = ∞ and

log(vx(t)) − log(vx(z)) +
∫ t

z

ψ(vx(r))

vx(r)
dr = 0 ∀−x < z < t.(24)

For each fixed z > 0 and each x > −z, define

Mz,x(t) := log
N(t)

vx(t)
− log

N(z)

vx(z)

+
∫ t

z

[
ψ(N(r))

N(r)
− ψ(vx(r))

vx(r)
+ h(r)

]
dr, t ≥ z,

where h is given in (18).
Moreover, given X ∈ Fz such that P(X > −z) = 1, we can consider the process

Mz,X . The advantage of this approach will be apparent soon.
For fixed z > 0, the processes M ′

z,Mz,x and Mz,X are all adapted to the filtration
(Fr , r ≥ z).
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REMARK 8. Strictly speaking, the processes M ′
z,Mz,x and Mz,X defined

above are local martingales (see [23] Chapter II or [24], Chapters VI, 31–34 for de-
finition and first properties) since we do not know a priori whether log(N(t)) has
finite expectation. However, the optional stopping and Doob moment estimates
that we apply below still hold in this more general setting.

LEMMA 9. The function q �→ ψ(q)/q is increasing.

PROOF. Note that q �→ ψ(q)/q is smooth, and that its derivative at q equals

ψ ′(q)q − ψ(q)

q2 =
∫
(1 − (xq + 1)e−qx)ν(dx)

q2

=
∫
(1 − (xq + 1)e−qx)/x2�(dx)

q2 .

It is a simple matter to check that the integrand in the numerator is positive for all
x > 0, and that its limit as x → 0 is q2/2, so again it is positive.

The reader is invited to verify in a similar manner that limq→∞(ψ(q)/q)′′ =
− ∫

[0,1] e−qxx�(dx) which implies that q �→ ψ(q)/q is asymptotically concave.
Our argument does not make use of this fact. �

The following deterministic lemma is a crucial step in our analysis. It overcomes
the need for a priori estimates necessary for the method of [8] to apply, as discussed
in the Introduction.

LEMMA 10. Suppose f,g : [a, b] �→ R are deterministic càdlàg functions
such that

sup
x∈[a,b]

∣∣∣∣f (x) +
∫ x

a
g(u)du

∣∣∣∣ ≤ c(25)

for some c < ∞. If, in addition, f (x)g(x) > 0, x ∈ [a, b] whenever f (x) �= 0, then
both

sup
x∈[a,b]

∣∣∣∣
∫ x

a
g(u)du

∣∣∣∣ ≤ c and sup
x∈[a,b]

|f (x)| ≤ 2c.

PROOF. Due to the assumptions, we know that at any point x where f (x) is
positive (resp. negative) h(x) := ∫ x

a g(u)du is increasing (resp. decreasing) from
the right. Define t1 := min{x ∈ [a, b] : |h(x)| > c}, with the convention that t1 = b

if this set is empty. Suppose t1 < b. By continuity of h, it must be that |h(t1)| = c.
Without loss of generality, assume

h(t1) = c and hence h(t1 + ε) > c(26)
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for all small enough ε > 0. Having f (t) < 0 for all t ∈ (t1, t1 +ε) would imply that
h is decreasing on that same interval, contradicting (26). Therefore, there exists
t ∈ (t1, t1 + ε) such that f (t) ≥ 0. But since h(t) > c by (26), this would in turn
contradict (25). Hence it must be t1 = b, so that the uniform bound on |h| holds,
which together with (25) implies the uniform bound on |f |. �

Since N(t) → ∞ as t → 0, almost surely, we have

P(τn0 > 0) = 1 or equivalently lim
s→0

P(τn0 ≤ s) = 0.

Therefore, for any family (Ys, s > 0) of random variables, we have
lims→0,s≤τn0

Ys = lims→0 Ys , almost surely (in the sense that whenever one of
the limits exists so does the other). Without loss of generality we will henceforth
write Mz,x(t) instead of Mz,x(t ∧ τn0), t ∈ [z, s] instead of t ∈ [z, s ∧ τn0], etc.

Fix α∗ ∈ (0,1/2). By Doob’s L2-inequality for martingales and (23) we have

P
(

sup
t∈[z,s]

|M ′
z(t) − M ′

z(z)| > sα∗) ≤ s−2α∗
sup

t∈[z,s]
E

[(
M ′

z(t) − M ′
z(z)

)2]
(27)

≤ s−2α∗
C(s − z) = O(s1−2α∗

).

Denote by

A′
z(s) ≡ A′

z :=
{

sup
t∈[z,s]

|M ′
z(t) − M ′

z(z)| ≤ sα∗}

the complement of the above event. Henceforth we assume that s < (1/C)1/(1−α∗).
Note that then

∫ s
z h(r) dr ≤ ∫ s

z C dr ≤ Cs ≤ sα∗
. So we obtain that on A′

z [hence
with probability greater than 1 − O(s1−2α∗

)],

sup
t∈[z,s]

∣∣∣∣logN(t) − logN(z) +
∫ t

z

ψ(N(r))

N(r)
dr

∣∣∣∣ ≤ 2sα∗
.

We conclude that A′
z ⊂ Az, where

Az(s) ≡ Az

(28)

:=
{

sup
t1,t2∈[z,s]

∣∣∣∣logN(t2) − logN(t1) +
∫ t2

t1

ψ(N(r))

N(r)
dr

∣∣∣∣ ≤ 4sα∗
}
.

The advantage of the new definition is that Az1 ⊂ Az2 whenever z1 ≤ z2 ≤ s. More-
over, the bound in (27) is uniform in z ∈ (0, s), hence the decreasing property of
probability measures implies

P

( ⋂
z∈(0,s)

Az

)
= P

(
sup

t1,t2∈(0,s]

∣∣∣∣logN(t2) − logN(t1) +
∫ t2

t1

ψ(N(r))

N(r)
dr

∣∣∣∣ ≤ 4sα∗
)

= 1 − O(s1−2α∗
).
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Let Xz be the random variable defined by

N(z) = v(Xz + z) = vXz(z).(29)

LEMMA 11. We have limz→0 Xz = 0, almost surely.

PROOF. Since N is nonincreasing and v is (strictly) decreasing, it is easy to
see that (Xz + z, z > 0) is also a nondecreasing process, almost surely. There-
fore limz→0 Xz + z ≥ 0 exists, almost surely. Moreover, the above limit equals 0
with probability 1, since Xz + z = u(N(z)), and since P(N(0+) = ∞) = 1 and
limx→∞ u(x) = 0. �

Due to (24) and (28), we have, in particular, that

Az =
{

sup
t1,t2∈[z,s]

∣∣∣∣log
N(t2)

vXz(t2)
− log

N(t1)

vXz(t1)

+
∫ t2

t1

[
ψ(N(r))

N(r)
− ψ(vXz(r))

vXz(r)

]
dr

∣∣∣∣ ≤ 4sα∗
}
.

After plugging in t1 = z, we obtain

Az ⊂
{

sup
t∈[z,s]

∣∣∣∣log
N(t)

vXz(t)
+

∫ t

z

[
ψ(N(r))

N(r)
− ψ(vXz(r))

vXz(r)

]
dr

∣∣∣∣ ≤ 4sα∗
}
.

Lemma 9 implies the hypotheses of Lemma 10 omega-by-omega (with a = z,
b = s and the obvious choice of f and g), therefore

Az(s) = Az ⊂
{

sup
t∈[z,s]

∣∣∣∣log
N(t)

vXz(t)

∣∣∣∣ ≤ 8sα∗
}
.(30)

By fixing t < s and varying z ∈ (0, t] [note that log
vXz (t)

vX
z′ (t)

= log N(t)
vX

z′ (t)
− log N(t)

vXz (t)
]

we obtain

⋂
z∈(0,s)

Az(s) ⊂
{

sup
z,z′∈(0,s),t∈[z∨z′,s]

∣∣∣∣log
vXz(t)

vXz′ (t)

∣∣∣∣ ≤ 16sα∗
}
,

which together with (30) implies

⋂
z∈(0,s)

Az(s) ⊂
{

sup
t∈(0,s]

∣∣∣∣log
N(t)

limn vXzn
(t)

∣∣∣∣ ≤ 24sα∗
}
,

where (zn)n≥1 is any given deterministic sequence of strictly positive numbers
converging to 0. Due to Lemma 11, the continuity of v implies limn→∞ vXzn

(t) =
v(t), ∀t ∈ (0, s], almost surely. To summarize, we have just proved:
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PROPOSITION 12. If supp(�) ⊂ [0,1/4], then

P

(
sup

t∈(0,s∧τn0 ]

∣∣∣∣log
N(t)

v(t)

∣∣∣∣ ≤ 24sα∗
)

≥ P

( ⋂
z∈(0,s)

Az(s)

)
= 1 − O(s1−2α∗

).

Theorem 1 now follows due to the Borel–Cantelli lemma, after choosing a deter-
ministic sequence (sm)m≥1 of strictly positive numbers converging to 0 sufficiently
fast so that

∑
m(sm)1−2α∗

< ∞.

REMARK 13. The fixed scale assumption �[0,1](= �[0,1/4]) = 1 has not
been used in the above argument.

4.2. Relaxing assumptions on supp(�). Given a probability measure � on
[0,1] and a positive η ≤ 1, define its restriction �η by

�η(dx) = �(dx)1[0,η](dx).

For each η ∈ (0,1], denote by ψη the function ψ�η that corresponds to �η [cf.
(3)], and by vη the corresponding rate function from (8).

LEMMA 14. All the �η-coalescents, where η ∈ (0,1], have the same speed of
CDI. Moreover, for any fixed η ∈ (0,1),

lim
t→0

v(t)

vη(t)
= 1,(31)

so it suffices to prove Theorem 1 for one η ∈ (0,1) in order to prove it for all
η ∈ (0,1].

PROOF. Fix η ∈ (0,1). Assume first that �({0}) = 0. Then it is easy to
see that one can find a coupling of the two coalescent processes defined by �

and by �η, respectively, such that the corresponding coalescent block count-
ing processes N� and N�η coincide for all t ∈ (0, Tη) where P(Tη > 0) = 1.
Namely, recall the PPP construction of Section 2.2 and set Tη := min{t >

0 : (t,p) is an atom of π and p > η}.
If �({0}) > 0, let �′(dx) = �(dx)1(0,1)(x), and note that the PPP-based con-

struction of �′-coalescent can be enriched by superimposing pairwise coalescent
events at rate �({0}) thus yielding a construction of �-coalescent. Again, one
can couple such constructions of �-coalescent and �η-coalescent so that the two
processes agree until Tη as discussed above.

To prove the lemma, it now suffices to show (31) for any fixed η ∈ (0,1). Note
that we trivially have v(t) ≤ vη(t) for all t > 0, since ψη(q) ≤ ψ(q) for all q > 0.
Moreover,

ψη(q) = ψ(q) − aηq + bη + O(e−qη),
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where aη := ∫
(η,1](1/x)�(dx) and bη := ∫

(η,1](1/x2)�(dx). Therefore, for any
0 ≤ z ≤ t ,

log
v(t)

vη(t)
− log

v(z)

vη(z)
+

∫ t

z

[
ψ(v(r))

v(r)
− ψ(vη(r))

vη(r)
+ hz(r)

]
dr = 0,

where hz(r) is now a deterministic function, bounded by a fixed constant C, uni-
formly over z. The rest of the argument is a deterministic (and easier) analogue of
the argument given in Section 4.1. We leave it to an interested reader. �

If �({0}) > 0, then the size of the atom at 0 determines the speed of CDI. More
precisely, we have:

COROLLARY 15. If �({0}) = c > 0, then for all η ∈ (0,1],
vη(t) ∼ 2

ct
, t → 0.

PROOF. Denote by v0 the above function 2/(ct) and note that it corresponds

to �(dx) = cδ0(dx) and ψ0(q) = cq2

2 , in terms of (8). Next note that if η ∈ (0,1],
then

ψη(q) = cq2

2
+ f (q) = ψ0(q) + f (q),

where f (q) = o(q2) is a nonnegative function. In particular, vη(t) ≤ v0(t), t > 0.
Moreover, since for any ε, we can find q(ε) < ∞, such that

ψη(q) ≤ c(1 + ε)q2

2
for all q ≥ q(ε).

We have by the same reasoning, vη(t) ≥ v0(t)/(1 + ε) for all sufficiently small t .
Letting ε → 0 implies the statement. �

4.3. Proof of Theorem 2. Assume that the parameter n0 is the maximum
of the corresponding quantities from Lemmas 19 and 20. Assume initially that
supp(�) ⊂ [0,1/4] and fix z > 0. With the notation of Section 4.1 in mind, let
Mz,Xz ≡ M be the process given by

Mt := log
N(t ∧ τn0)

v(Xz + t ∧ τn0)
(32)

+
∫ t∧τn0

z

(
ψ(N(r))

N(r)
− ψ(v(Xz + r))

v(Xz + r)
+ h(r)

)
dr, t ≥ z.

Then Mz = 0, and due to Proposition 7, M is a martingale (in the sense that Mt

is an integrable random variable, t ≥ z). Note that here we use M as abbreviation;
the above process should not be confounded with M from (16).
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We next obtain better estimates on the tails of the distribution of Mt , via an
analogue of Hoeffding’s inequality [15] for discrete martingale sums. Since M has
only downward jumps, a simple case of a general result of Barlow, Jacka and Yor
([2], Proposition 4.2.1; see also [25]) implies that for any c > 0,

S(c) :=
(

exp
{
cMt − c2C(t − z)

2

}
, t ≥ z

)
,

is a supermartingale started from S
(c)
z = 1, with respect to the usual filtration F .

Note that Dt in [2, 25] corresponds to E[(dMt)
2|Ft ] in our notation, and that C is

the uniform upper bound from Proposition 7.
Fix some x ∈ R+. Let c = x/(C(s − z)), and y = exp{cx/2} = exp{cx −

c2C(s − z)/2)}, and let Ty = inf{t ≥ z :S(c)
t > y}. Since S(c) only has downward

jumps, it must be S
(c)
Ty

= y on {Ty < ∞}. Since S(c) is supermartingale, using op-
tional stopping at Ty ∧ s, we have

1 = E
(
S(c)

z

) ≥ E
(
S

(c)
Ty∧s

)

= yP (Ty ≤ s) + E
(
S(c)

s 1Ty>s

)
≥ yP (Ty ≤ s).

It follows that

P
(

sup
t∈[z,s]

Mt > x
)

≤ P
(

sup
t∈[z,s]

S
(c)
t > ecx−c2C(s−z)/2

)

≤ P(Ty ≤ s)

≤ 1

y
= exp

{
− x2

2C(s − z)

}
.

In order to obtain the “left tails” we use [2] Proposition 4.2.1 in a less trivial
sense. If c > 0, then

S(−c) :=
(

exp
{
−cMt − c2C(t − z)

2
− c2

2

∑
s≤t

(�sM)2
}
, t ≥ z

)
,

is a supermartingale where �sM = M(s) − M(s−) = �s logN(s ∧ τn0). Define

E(c)(t) := exp
{
c

∑
t∈[z,s]

(�tM)2 − e9c/4K0(t − z)

}

= exp
{
c

∑
t∈[z,s]

(
�t logN(s ∧ τn0)

)2 − e9c/4K0(t − z)

}
,

where K0 is the constant from Lemma 20. Due to Lemma 20, we have that for each
c > 0, the process (E(c)(t), t ≥ z) is a nonnegative super-martingale started from
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E(c)(z) = 1. Indeed, it is easy to verify in the sense of calculations of Proposition 7
that

E
(
dE(c)(t)|Ft

)
= E(c)(t) · E[exp{c(�tM)2} − 1|Ft ] − e9c/4K0 · E(c)(t) dt

≤ E(c)(t) ·
[ ∑
n≥n0

1{N(t)=n}
∫
[0,1/4]

(e9c/4K0p
2)/p2�(dp) − e9c/4K0

]
dt

= 0,

almost surely. To include the case �({0}) > 0 in the above calculation, note that
by a standard estimate (50) and Taylor’s series expansion,

(
n

2

)(
exp

{
c log2(

(n − 1)/n
)} − 1

) = c

2
+ O

(
c

n
+ ec

n2

)
.

Without loss of generality one can assume that both K0 ≥ 1 and c/2 + O(c/n +
ec/n2) ≤ e9c/4 for n ≥ n0 and all c > 0.

Then for x > 0, we have

P
(

inf
t∈[z,s]Mt < −x

)

≤ P

(
inf

t∈[z,s]Mt < −x, c2
∑

t∈[z,s]
(�sM)2 ≤ cx

)

+ P

( ∑
t∈[z,s]

(�tM)2 > x/c

)

≤ P
(

sup
t∈[z,s]

S
(−c)
t > ecx/2−c2C(s−z)/2

)

+ P
(

sup
t∈[z,s]

E(c2)(t) > exc−e9c2/4K0(s−z)
)

≤ e−cx/2+c2C(s−z)/2 + e−xc+e9c2/4K0(s−z).

We plug in c = 2
3

√
log[x/(K0(s − z))] [here we assume that x > 2K0(s − z)].

Since in each exponent the second term is negligible when compared to the first,
we get the sub-exponential estimate

P
(

inf
t∈[z,s]Mt < −x

)
= O

(
r(x; s − z)

)
,

where

r(x; s) := exp
{−x

√
log[x/(K0s)]/4

}
.
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Now another omega-by-omega application of Lemmas 9 and 10 yields

1 − O
(
r(x; s − z)

) ≤ P
(

sup
t∈[z,s]

|Mt | ≤ x
)

≤ P

(
sup

t∈[z,s]

∣∣∣∣log
N(t ∧ τn0)

v(Xz + t ∧ τn0)

∣∣∣∣ ≤ 2(x + Cs)

)
.

Since limz→0 v(Xz + t) = v(t) as argued before, in the limit we obtain

P

(
sup

t∈[0,s]

∣∣∣∣log
N(t ∧ τn0)

v(t ∧ τn0)

∣∣∣∣ ≤ 2(x + Cs)

)
≥ 1 − O(r(x; s)).(33)

Note that since N is an integer-valued process and v is a decreasing function,
inft∈[0,s] log(N(t)/v(t)) ≥ inft∈[0,s∧τn0 ] log(N(t)/v(t)) − logn0, almost surely.
Now (33) together with the observation N(t) ≤ N(t ∧ τn0) implies that the ran-
dom variable

�s := sup
t∈[0,s]

∣∣∣∣log
N(t)

v(t)

∣∣∣∣ = log
(

sup
t∈[0,s]

∣∣∣∣N(t)

v(t)

∣∣∣∣ ∨ sup
t∈[0,s]

∣∣∣∣ v(t)

N(t)

∣∣∣∣
)

satisfies P(�s > x) = O(r(x; s)), hence

P

(
sup

t∈[0,s]

∣∣∣∣N(t)

v(t)

∣∣∣∣ ≥ y

)
≤ O

(
1

y
√

log log(y)−log(K0s)/4

)
as y → ∞.

In particular, for any d ≥ 1, we can find a constant D(d) < ∞ such that

E

(
sup

t∈[0,s]

∣∣∣∣N(t)

v(t)

∣∣∣∣
d)

< D(d),(34)

hence (for a possibly different constant) E(supt∈[0,s]|N(t)/v(t) − 1|d) < D(d).
Now the almost sure convergence of Theorem 1 combined with an application of
dominated convergence theorem completes the argument.

For the case of general supp(�), recall the notation of Section 4.2. In addition,
denote by N1/4(t) the number of blocks process corresponding to �1/4. Due to the
coupling construction used in the argument of Lemma 14, we have

N1/4(t) ≥ N(t), t ≥ 0,

and moreover,

sup
t∈[0,s]

v1/4(t)

v(t)
< ∞.

Therefore estimate (34), established for the �1/4-coalescent, will imply the same
estimate [with possibly different constant D(d)] for the �-coalescent.
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4.4. Proof of Theorem 5. Recall the notation tn = uψ(n) = u(n) introduced
before the statement of Theorem 5. It suffices to show that any subsequence
(nk)k≥1 contains a further subsequence (nk(j))j≥1 such that

lim
j→∞

∫ s
0 N�,nk(j)(t) dt∫ s
0 v(tnk(j)

+ t) dt
= 1 = lim

j→∞

∫ s
0 N�,nk(j)(t) dt∫ s

0 E(N�,nk(j) (t)) dt
(35)

almost surely.

For t ≥ 0, define

Mn
t := log

N�,n(t ∧ τn
n0

)

v(tn + t ∧ τn
n0

)
(36)

+
∫ t∧τn

n0

0

(
ψ(N�,n(r))

N�,n(r)
− ψ(v(tn + r))

v(tn + r)
+ hn(r)

)
dr,

where hn is the drift compensator of log(N�,n) with respect to the filtration gen-
erated by the underlying �-coalescent and where

τn
n0

:= inf{s > 0 :N�,n(s) ≤ n0}.
Then Mn in (36) is a direct analogue of martingale (32). In particular, note that by
definition of tn, Mn

0 = 0, and as in (23),

E((Mn
t )2) ≤ Ct.

Recall τn0 defined in (17), and note that with probability 1, τn
n0

increases to τn0 as
n → ∞. The arguments leading to Proposition 12 apply in the current setting to
yield for a fixed α∗ < 1/2, and for all n (for n ≤ n0 the result holds trivially),

P

(
sup

t∈[0,s]

∣∣∣∣log
N�,n(t ∧ τn

n0
)

v(tn + t ∧ τn
n0

)

∣∣∣∣ ≤ 24sα∗
)

≥ 1 − O(s1−2α∗
) and(37)

P

(
sup

t∈[0,s]

∣∣∣∣log
N�,n(t ∧ τn

n0
)

v(tn + t ∧ τn
n0

)

∣∣∣∣ ≤ 2(x + Cs)

)
≥ 1 − O(r(x; s)).(38)

Fix some subsequence (nk)k≥1. We now show the first convergence statement
in (35). Choose any sequence sj of positive numbers decreasing to 0 so that∑

j

s1−2α∗
j < ∞.(39)

Next choose a further subsequence of (nk)k≥1, denoted again by (nj )j≥1 to sim-
plify notation, so that

lim
j→∞

∫ sj

0
v(tnj

+ t) dt = ∞,

(40)

lim
j→∞

∫ s
sj

v(tnj
+ t) dt∫ sj

0 v(tnj
+ t) dt

= lim
j→∞

∫ s
sj

N�,nj (t) dt∫ sj
0 N�,nj (t) dt

= 0,
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where the last limit is taken almost surely. Note that here we use observations
(13) and (14) and the following straightforward facts: for any fixed 0 ≤ a < b ≤ s,∫ b
a v(tnj

+ t) dt ↑ ∫ b
a v(t) dt and

∫ b
a N�,nj (t) dt ↑ ∫ b

a N�(t) dt . Due to (37), (39)
and the Borel–Cantelli lemma, we have

lim
j→∞ sup

t∈[0,sj ]

∣∣∣∣ N�,nj (t)

v(tnj
+ t)

− 1
∣∣∣∣ = 0 almost surely.(41)

The first statement in (35) now follows by a simple calculus fact: if (fn)n≥1,
(gn)n≥1, fn, gn : [0, s] → [0,∞), are two sequences of integrable functions such
that for some positive sequence δn → 0 it is true that

lim
n→∞

∫ δn

0
fn(t) dt = ∞, lim

n→∞

∫ s
δn

fn(t) dt∫ δn

0 fn(t) dt
= lim

n→∞

∫ s
δn

gn(t) dt∫ δn

0 gn(t) dt
= 0,

and

lim
n→∞ sup

t∈[0,δn]

∣∣∣∣fn(t)

gn(t)
− 1

∣∣∣∣ = 0,

then

lim
n→∞

∫ s
0 fn(t) dt∫ s
0 gn(t) dt

= 1.

For the second convergence statement in (35), note that (similar to the argument
for Theorem 2), almost sure convergence (41) together with estimate (38) and the
dominated convergence theorem, yield

lim
j→∞ sup

t∈[0,sj ]

∣∣∣∣EN�,nj (t)

v(tnj
+ t)

− 1
∣∣∣∣ = 0 almost surely.(42)

Note that without loss of generality we may assume that

lim
j→∞

∫ s
sj

EN�,nj (t) dt∫ sj
0 EN�,nj (t) dt

= 0.(43)

The previous argument applies.
The final statement of Theorem 5 will follow from Corollary 16, which is stated

and proved in next subsection.

4.4.1. Discussion on almost sure convergence. It is an open question whether
the convergence of Theorem 5 holds almost surely. Our technique seems too crude
to verify it in general, yet we offer below a partial result in this direction. One
standard approach would be to use the monotonicity∫ s

0
N�,n(t) dt ≤

∫ s

0
N�,n+1(t) dt and

∫ s

0
v(tn + t) dt ≤

∫ s

0
v(tn+1 + t) dt.
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It would suffice to find a subsequence nj along which convergence holds in the
almost sure sense, and in addition, such that

lim
j→∞

∫ s
0 v(tnj

+ t) dt∫ s
0 v(tnj+1 + t) dt

= 1.(44)

COROLLARY 16. Assume that α∗ < 1/2 is fixed, and that two sequences
(sj )j≥1 and (nj )j≥1 are given where nj is nondecreasing. If in addition to (39)
and (44), we have

lim
j→∞

∫ sj

0
v(tnj

+ t) dt = ∞, lim
j→∞

∫ s
sj

v(tnj
+ t) dt∫ sj

0 v(tnj
+ t) dt

= 0 and(45)

lim
j→∞

∫ s
sj

v(t) dt∫ s
sj

v(tnj
+ t) dt

< ∞,(46)

then the convergence of Theorem 5 holds almost surely.

PROOF. As discussed above, due to (44) and monotonicity, it suffices to show
convergence as stated in Theorem 5 along the sequence (nj )j≥1. Due to the Borel–
Cantelli lemma, (37), (39), (42) and the fact

P
(
lim sup

j

{τnj
n0 < sj }

)
= 0,

we have, as for Theorems 1 and 2, that

lim
j→∞

∫ sj
0 N�,nj (t) dt∫ sj
0 v(tnj

+ t) dt
= 1 almost surely

and

lim
j→∞

∫ sj
0 EN�,nj (t) dt∫ sj
0 v(tnj

+ t) dt
= 1.

Due to (45), we have

lim inf
j→∞

∫ s
0 N�,nj (t) dt∫ s
0 v(tnj

+ t) dt
≥ 1 almost surely

and

lim inf
j→∞

∫ s
0 EN�,nj (t) dt∫ s
0 v(tnj

+ t) dt
≥ 1.

For the corresponding upper bound on the lim sup, note that due to Theorem 1
(resp. Theorem 2) there exists a positive finite random variable C0 (resp. positive
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constant C0) such that∫ s
sj

N�(t) dt∫ s
sj

v(t) dt
≤ 1 + C0 a.s.,

(
resp.

∫ s
sj

EN�(t) dt∫ s
sj

v(t) dt
≤ 1 + C0

)
, for all j ≥ 1.

Due to (45) and (46) and monotonicity N�,nj (t) ≤ N�(t) (with probability 1), we
now have both

lim
j

∫ s
sj

N�,nj (t) dt∫ sj
0 v(tnj

+ t) dt
= 0 almost surely, and lim

j

∫ s
sj

EN�,nj (t) dt∫ sj
0 v(tnj

+ t) dt
= 0,

which completes the argument. �

Taking for example α∗ = 1/4, sj = 1/j3, and nj = exp(log2 j) (resp. nj = jη

with η > 3(α − 1)) in the case of Kingman (resp. Beta) coalescent, one can verify
(left to the reader) the hypotheses of the last corollary, implying the final statement
of Theorem 5.

APPENDIX: BINOMIAL CALCULATIONS

LEMMA 17. If X has Binomial(n,p) distribution and if Y = X − 1{X>0},
then:

(i) EY = np − 1 + (1 − p)n;
(ii) var(Y ) = np(1 − p) + (1 − p)n

(
1 − (1 − p)n

) − 2np(1 − p)n;(47)

(iii) EY 2 = −np − np2 + n2p2 + 1 − (1 − p)n.

PROOF. Property (i) is trivial, (ii) follows easily from the fact that

cov
(
X,1{X>0}

) = np(1 − p)n

and (iii) is implied by (i) and (ii). �

COROLLARY 18. If X has Binomial(n,1 − p) distribution and if Y = X +
1{X<n}, then

E

[(
n − Y

n

)2]
= O(p2).

PROOF. Note that n−Y has the distribution of the variable Y from Lemma 17.
Hence its second moment is given in (47). Since for p < 1/n we have

(1 − p)n = 1 − np + O(n2p2),

the claim of the corollary is true in this case. Now if p ≥ 1/n then np = O(n2p2)

therefore the largest term in (47) is again of order n2p2. �
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LEMMA 19. There exists n0 ∈ N and C0 < ∞ such that for all n ≥ n0 and all
p ≤ 1/4, if X has Binomial(n,1 − p) distribution, then∣∣∣∣E[

log
(
X + 1{X<n}

) − logn
] + np − 1 + (1 − p)n

n

∣∣∣∣ ≤ C0p
2

and

E
[(

log
(
X + 1{X<n}

) − logn
)2] ≤ C0p

2.

PROOF. Let Y = n − X as before, and abbreviate

T ≡ Tn := log
(
X + 1{X<n}

) − logn = log
(

1 − Y − 1{Y>0}
n

)
.(48)

We split the computation according to the event

An = {Y ≤ n/2},
whose complement due to a large deviation bound has probability bounded by

exp
{
−n

(
1

2
log

1

2p
+ 1

2
log

1

2(1 − p)

)}
= 2npn/2(1 − p)n/2,(49)

uniformly in p ≤ 1/4 and n. On Ac
n we have |T | ≤ logn, and on An we apply a

calculus fact,

|log(1 − x) + x| ≤ x2

2(1 − x)
≤ x2, x ∈ [0,1/2],(50)

to obtain∣∣∣∣E[T ] + E

[
Y − 1{Y>0}

n
1An

]∣∣∣∣ ≤ (logn)P (Ac
n) + E

[
(Y − 1{Y>0})2

n2 1An

]
.

Furthermore, since (Y − 1{Y>0})/n ≤ 1, we conclude
∣∣∣∣E[T ] + E

[
Y − 1{Y>0}

n

]∣∣∣∣ ≤ (logn + 1)P (Ac
n) + E

[
(Y − 1{Y>0})2

n2

]
.(51)

Note that by Corollary 18 and Lemma 17(i), in order to prove the first estimate of
the lemma, it remains to show

(logn)P (Ac
n) ≤ (logn)2npn/2(1 − p)n/2 ≤ Cp2(52)

for some C < ∞, all p ∈ [0,1/4], and all n large. Now consider f :p �→ (p(1 −
p))n/2/p2. Its derivative at p equals g(p)(n(1−2p)/2−2(1−p)) where g(p) is a
positive function. It is easy to check that if p ≤ 1/4, then n(1 − 2p)/2 − 2p2(1 −
p) > 0 for all n ≥ 6. Therefore f is an increasing function of p, so in order to
verify (52) for all p ≤ 1/4, it suffices to check it for p = 1/4. This corresponds to
having (logn)2n(3/16)n/2 ≤ C/16, that will hold for all large n = n(C) given a
C > 0.
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For the second estimate, again use the partitioning according to An and (50) to
obtain

ET 2 ≤ E[T 21An] + log2 nP (Ac
n) ≤

(
3

2

)2

E

[
(Y − 1{Y>0})2

n2

]
+ log2 nP (Ac

n),

which differs from (51) only by an extra factor of order logn multiplying P(Ac
n),

so the previous argument carries over. �

LEMMA 20. There exists n0 ∈ N and K0 < ∞ such that for all n ≥ n0, p ≤
1/4 and c > 0, if X has Binomial(n,1 − p) distribution, then

E
[
exp

{
c
[
log

(
X + 1{X<n}

) − logn
]2} − 1

] ≤ e9c/4K0p
2.

PROOF. The strategy is the same as that used for the second estimate in the
previous lemma, some details are left to the reader.

Recall that Y = n − X and observe that

E[ecT 2 − 1] ≤ nc lognP (Ac
n) + E[(ecT 2 − 1)1An]

≤ nc lognP (Ac
n) + E

[(
exp

{
c

9(Y − 1{Y>0})2

4n2

}
− 1

)
1An

]

≤ nc lognP (Ac
n) + E

[
exp

{
c

9(Y − 1{Y>0})2

4n2

}
− 1

]
.

Hence it suffices to show that for some K0, all c > 0 and all n, p as specified
above, we have

E

[
exp

{
c
(Y − 1{Y>0})2

n2

}
− 1

]
≤ ecK0p

2.(53)

Without loss of generality, one can assume that c > 1.
The left-hand side above

n∑
k=1

(
n

k

)
pk(1 − p)n−k(ec(k−1)2/n2 − 1

)

can be bounded, using Taylor’s expansion, by

n∑
k=1

(
n

k

)
pk(1 − p)n−k

{
c
(k − 1)2

n2 + ec

2

(k − 1)4

n4

}

= c

n2

(
E(Y − 1)2 − P(Y = 0)

)
(54)

+ ec

2n4

(
E(Y − 1)4 − P(Y = 0)

)
.
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Next compute

E(Y − 1)2 − P(Y = 0)

= Var(Y − 1) + (
E(Y − 1)

)2 − P(Y = 0)

= np(1 − p) + (np − 1)2 − (1 − p)n [recall (21)](55)

≤ np(1 − p) + (np − 1)2 − e−np + 2np2/3

≤ (np)2 + O(np2),

where, for the last inequality, we recall that e−x − 1 + x > 0 for x > 0. Similarly,
using the fact

(y − 1)4 = y(y − 1)(y − 2)(y − 3) + 2y(y − 1)(y − 2) + (y − 1)2

as well as the expressions for Binomial factorial moments, we have

E(Y − 1)4 − P(Y = 0)(56)

= n(n − 1)(n − 2)(n − 3)p4

+ 2n(n − 1)(n − 2)p3 + E(Y − 1)2 − P(Y = 0)

≤ n4p4 + 2n3p3 + (np)2 + O(np2)

≤ 4n4p2 + O(np2).(57)

Now (54)–(57) yield (53), and therefore the statement of the lemma, with appro-
priately chosen n0. �
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