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MAXIMUM LIKELIHOOD ESTIMATES UNDER k-ALLELE
MODELS WITH SELECTION CAN BE NUMERICALLY UNSTABLE

BY ERKAN OZGE BUZBAS1 AND PAUL JOYCE2

University of Idaho

The stationary distribution of allele frequencies under a variety of
Wright–Fisher k-allele models with selection and parent independent mu-
tation is well studied. However, the statistical properties of maximum like-
lihood estimates of parameters under these models are not well understood.
Under each of these models there is a point in data space which carries the
strongest possible signal for selection, yet, at this point, the likelihood is un-
bounded. This result remains valid even if all of the mutation parameters
are assumed to be known. Therefore, standard simulation approaches used to
approximate the sampling distribution of the maximum likelihood estimate
produce numerically unstable results in the presence of substantial selection.
We describe the Bayesian alternative where the posterior distribution tends to
produce more accurate and reliable interval estimates for the selection inten-
sity at a locus.

1. Introduction. We begin by introducing a certain amount of terminology
from population genetics. Within each living cell are a certain fixed number of
chromosomes, threadlike objects that govern the inheritable characteristics of an
organism. At certain positions, or loci, on the chromosomes, are genes, the funda-
mental units of heredity. At each locus there are several alternative types of genes
or alleles. A diploid organism has chromosomes that occur in homologous pairs.
The unordered pair of genes situated at the same locus of the homologous pair
is called a genotype. Thus, if there are k alleles, A1,A2, . . . ,Ak at a given locus,
then there are k(k + 1)/2 possible genotypes, (AiAj ), 1 ≤ i ≤ j ≤ k. The fitness
of a genotype (AiAj ) is determined by the reproductive success of individuals
carrying that genotype.

Understanding the evolutionary forces that shape the patterns of observed ge-
netic diversity is central to population genetics. Over evolutionary time, genotypes
with higher fitness tend to drive out those with lower fitness, thus reducing the ge-
netic diversity of a population with respect to the particular locus under selection.
However, there are selective mechanisms that actually promote genetic diversity.
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A simple such mechanism called heterozygote advantage assumes that carrying
two variant copies of a gene at a locus (heterozygote) leads to higher fitness in
comparison to carrying the same copy of the gene (homozygote). For example,
individuals suffering from sickle cell anemia carry two copies of a disease gene.
On the other hand, individuals that carry two copies of the healthy gene are sus-
ceptible to malaria. In regions with high incidence of malaria, individuals carry-
ing one copy of the healthy gene and one copy of the diseased gene have higher
fitness because they suffer only mild symptoms of anemia while also being resis-
tant to malaria [Allison (1956), Cavalli–Sforza and Bodmer (1971), Harding and
Griffiths (1997)]. As an infectious disease, malaria is a major health threat to hu-
man populations, affecting approximately 515 million people globally [Snow et al.
(2005)].

For a population with allele frequencies x1, x2, . . . , xk , where
∑k

i=1 xi = 1, we
define the homozygosity to be h = ∑k

i=1 x2
i , which is the probability that a sample

of size two will produce two genes with the same allele. A population under the
influence of heterozygote advantage would likely have low homozygosity. The
lowest possible value occurs when all of the allele frequencies are equal (xi = 1/k

for all i). Thus, low homozygosity might suggest that a high allelic diversity in
a population is explained by heterozygote advantage. If all genotypes have equal
fitness, we call the locus neutral. In this case, all of the genetic diversity is produced
by mutation from one allele to another.

While the heterozygote advantage model assumes a diploid population, it is
mathematically equivalent to a frequency dependent selection model which can
apply to haploid organisms [Neuhauser (1999)]. One form of frequency depen-
dence implies that high frequency alleles are at a selective disadvantage relative
to alleles at low frequency. An example of this regime comes from allele frequen-
cies from a bacteria that causes Lyme disease (Borrelia burgdorferi) [Donnelly,
Nordborg and Joyce (2001)]. The data [previously published in Qiu et al. (1997)]
consist of four alleles with frequencies x′ = (0.103,0.375,0.270,0.252). The ob-
served homozygosity is h = 0.288, relatively close to the minimum 0.25 under
k = 4. Under the neutral model assumption, mutations that occurred in the distant
past would correspond to high frequency alleles and more recent mutations would
give rise to low frequency alleles. So under neutrality one might expect a few alle-
les in high frequency and most alleles in low frequency, corresponding to relatively
high homozygosity. At first glance, the homozygosity in the above data appears to
be too low to be explained by neutrality. Watterson derived the distribution of the
homozygosity statistic under the assumption of neutrality which lead to one of the
most common tests to distinguish departures from neutrality [Watterson (1977)].
However, with modern computational methods, we are now in a position to go
beyond simply determining whether neutrality is feasible. We can now develop
likelihood based inference methods for precise alternative models that incorporate
selection and estimate the strength of selection. The alternative models presented
here are called the Wright–Fisher k-allele models with selection [Wright (1949)].
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These classical models have a rich mathematical theory and long history in popu-
lation genetics [see Ewens (2004) for background], mainly because they provided
theoretical insight into the dynamics of genes evolving under selection. In the data
rich world that population genetics finds itself today, there is a renewed interest
in these models as useful tools to draw inferences on selection at genetic loci of
interest.

A brief description of the Wright–Fisher process is as follows. Consider track-
ing a population of 2N genes over many generations. A gene can be one of k

possible alleles. Generations are non overlapping and the probability of sampling
genotype (AiAj ) is proportional to its fitness, wij = 1 − sij . To obtain the next
generation, 2N pairs of genes are sampled with replacement. A randomly chosen
allele within each sampled pair mutates to Ai with probability ui , independent
of the parent’s type. A standard diffusion argument [Ewens (2004)] based on the
Markov chain of allele frequencies generates the stationary distribution

fSel(x|θ ,�) = e−x′�x

ENeut(e−X′�X)
fNeut(x|θ),(1)

where x is a (k × 1) column vector of allele frequencies in the population, subject
to the condition

∑k
i=1 xi = 1, whose transpose is the row vector x′ = (x1, . . . , xk).

We have θ ′ = (θ1, . . . , θk), where θi = 4Nui , is the scaled mutation parameter for
type i and � = (σij ) with σij = 2Nsij , the (k × k) symmetric matrix of scaled
selection parameters. The probability density function for allele frequencies under
neutrality, fNeut(x|θ), is given by the familiar Dirichlet distribution

fNeut(x|θ) = �(θ1 + θ2 + · · · + θk)

�(θ1)�(θ2) · · ·�(θk)
x

θ1−1
1 x

θ2−1
2 · · ·xθk−1

k .(2)

We will use the notation ENeut(·) to represent expectation with respect to the neu-
tral density given by equation (2), and ESel(· |�) to denote expectation with respect
to the density that incorporates selection given by equation (1).

The symmetric selective overdominance model is a special case of equation (1),
obtained by setting wij = 1, that is (sij = 0) for heterozygotes (i �= j) and
wii = 1 − s, (sii = s > 0) for homozygotes regardless of the specific type and
assuming symmetric mutation θi = θ/k, for all i. Under these assumptions, the
matrix of selection parameters reduces to a diagonal matrix with equal elements,
� = σ Ik , where Ik is the k dimensional identity matrix, σ = 2Ns, and the mutation
parameter is θ = 4Nu. Therefore, X′�X = σ

∑k
i=1 X2

i . Substituting appropriately
into equation (1) gives

fSel(x|θ, σ ) = e−σ
∑k

i=1 x2
i

ENeut(e
−σ

∑k
i=1 X2

i )

�(θ)

(�(θ/k))k
(x1x2 · · ·xk)

θ/k−1.(3)

Despite the wide ranging applications of k-allele models, the statistical proper-
ties of estimators are not well understood. This article aims to clarify inference
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problems associated with estimators of the selection intensity and presents correct
frequentist and Bayesian methods for inference under k-allele models. Theoretical
results describing the large variability in the sampling distribution of maximum
likelihood estimates (MLEs), arising in the analysis of k-allele models with se-
lection in general and of symmetric overdominance in particular, are given. The
likelihood of allele frequencies under the stationary distribution of the diffusion
limit of a Wright–Fisher population is examined and the existence of a numer-
ical instability associated with MLEs for certain population compositions is es-
tablished. Numerical instability of MLEs occurs under what would normally be
considered ideal conditions. These conditions include the assumption that all the
mutation parameters are either known or can be estimated without error. Also, the
allele frequencies of the entire population are assumed to be observed, rather than
the usual assumption that the data are viewed as a random sample from the popu-
lation. Even under these idealized conditions, it is shown that when the data carry
a strong signal for selection, parametric bootstrap is inaccurate and unreliable for
assessing the strength of selection.

In Section 2 the theoretical basis for the instability behavior is formalized by
a theorem: under k-allele models with selection, there is a singularity point on the
allele frequency space where the likelihood is unbounded. A corollary associated
with the theorem is also presented: under the symmetric overdominance model,
the above mentioned singularity arises when all the alleles have equal frequencies.
This is identified as a perfectly heterozygous population. This result is surpris-
ing since it suggests that appreciable information in the data about selection yield
poor estimates and MLEs with a parametric bootstrap approach cannot be used
effectively to estimate the strength of selection. Therefore, our findings highlight
the limitations of using the sampling distribution of the MLEs for inference under
k-allele models with selection.

Section 3 exploits a monotonicity argument to show a correct frequentist ap-
proach to the problem as well as a Bayesian method as an alternative to parametric
bootstrap. Data from a Killer-cell immunoglobulin-like receptor (KIR) locus and
the Lyme disease bacteria locus discussed above are used to demonstrate the meth-
ods in Section 4. A comparison of the heterozygote advantage with another selec-
tive mechanism of importance, the homozygote advantage, is given in Section 5,
to emphasize that the effect of instability in MLEs may be different under different
selective scenarios.

2. Instability of the MLE. A useful summary of the population composition
under the overdominance model is the homozygosity statistic H = ∑

i X
2
i , which

is sufficient for σ given θ and the MLE σ̂ (h), is a decreasing function of h =∑
i x

2
i .

The signal for selection is strong when the population homozygosity is small
(Figure 1, left). However, the high rate of divergence and unboundedness of σ̂ (h)

as h approaches to its minimum value 1/k is unexpected. Small perturbations
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FIG. 1. Left: The distribution of the maximum likelihood estimates as a function of population
homozygosity based on equation (3) considering data space that can arise under k = 20 on a grid.
σ̂ asymptotes as h approaches to 1/k = 0.05. Right: Heavy tailed sampling distributions of σ̂ , each
based on 1000 simulated data sets with θ = 5.

of allele frequencies have a drastic effect on point estimates, particularly for
small h. For instance, for a highly polymorphic locus with k = 20 possible al-
leles, where 1/k = 0.05, a 38% decrease in homozygosity (h = 0.13 to h = 0.08)
corresponds to an approximate 300% increase in σ̂ (h); [σ̂ (0.13) ≈ 350, whereas
σ̂ (0.08) > 900].

We use the numerical methods of [Genz and Joyce (2003), Joyce, Genz and
Buzbas (2008)] to generate data from the density (3) and to evaluate the likelihood
based on it. These simulated data are then used to estimate the error of σ̂ . Assume
we condition on θ , so that the sole focus of inference is on σ . When a simu-
lated sample with h ≈ (1/k) is drawn, the resulting σ̂ is large. Thus, such samples
contribute to a heavy right tail for the distribution of σ̂ . Sampling distributions
generated under strong selection clearly reveal the substantial effect of the heavy
tail on the estimation of σ (Figure 1, right). Estimates from data sets generated
under a variety of (σ, θ, k) values show that the heavy tail in the distribution of σ̂

is a persistent feature. In fact, all k-allele models have a singularity in data space.
Theorem 1 below gives a precise statement of this general phenomenon.

THEOREM 1. Consider the probability density function fSel(x|θ ,�) defined
by equation (1) that describes the distribution of allele frequencies at stationarity
under the Wright–Fisher model with selection and parent independent mutation.
There exists a vector of allele frequencies x∗ = (x∗

1 , . . . , x∗
k )′, where fSel(x∗|θ ,�)

is unbounded as a function of � regardless of θ .
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The proof of Theorem 1 is given in Appendix A, where we show that the
point x∗ where fSel(x∗|θ ,�) is unbounded as a function of � is found by min-
imizing the quantity

∑
i,j σij xixj subject to the constraint

∑
i xi = 1. If the mean

fitness of the population is defined by w̄ = ∑
i,j wij xixj , we have

∑
i,j σij xixj =

2N(1 − w̄). Therefore, x∗ is a point in the data space where w̄ is optimal.
The symmetric overdominance model, which has a considerably simpler matrix

of selection parameters, allows for further results. In this case, both the limiting
value for σ̂ and the point x∗ at which the likelihood is unbounded can be estab-
lished.

COROLLARY 1. Consider the probability density function fSel(x|θ, σ ), de-
fined by equation (3) that describes the distribution of allele frequencies at station-
arity for the Wright–Fisher symmetric selective overdominance model with parent
independent mutation. Let x∗ = (1/k, . . . ,1/k)′.
a. If θ is assumed to be known, then, for all allele frequencies x �= x∗, the max-

imum likelihood estimate for σ is finite. Denote the MLE as a function of the
homozygosity h = ∑k

i=1 x2
i by σ̂ (h). Then,

lim
h→(1/k)+

σ̂ (h) = ∞.(4)

b. For all θ > 0, if (X1,X2, . . . ,Xk) has joint probability density given by equa-
tion (3), then (X1,X2, . . . ,Xk) converges in probability to (1/k,1/k, . . . ,1/k)

as σ → ∞.

(See Appendix B for proof).

Part (b) of Corollary 1 provides some context for the ill behavior of the MLE
for σ . If σ is large, it is highly likely that the population frequencies are nearly
equal. The asymptotic behavior of populations in the limit as σ goes to infinity
has been studied in other contexts by both Gillespie (1999) and Joyce, Krone and
Kurtz (2003).

3. Methods to assess the error in estimates.

3.1. Estimates using the monotonicity of homozygosity. By exploiting the
monotonicity of the distribution of the homozygosity statistic, H , we develop a fre-
quentist approach to obtain interval estimates of selection intensity under the se-
lective overdominance model [equation (3)] that does not rely on approximating
the sampling distribution for the MLE σ̂ . Throughout we assume that θ is known
and we drop the parameter θ for notational convenience when denoting the cumu-
lative distribution function (cdf) for the homozygosity H = ∑k

i=1 X2
i such that we

have

FH(h|σ) = PSel(H ≤ h|θ, σ ).
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While the cdf is always a monotone function of h for fixed σ , this particular cdf
is also monotone with respect to the parameter σ for fixed h. More precisely, we
can state that as σ increases, the probability of H being smaller than a particu-
lar value h increases. An exact confidence interval for σ is produced using this
monotonicity property in σ .

For a given confidence level (1 − α) and an observed homozygosity H = h, we
choose σ̂L and σ̂U so that

FH(h|σ̂L) = α1, FH(h|σ̂U ) = 1 − α2,(5)

where α = α1 +α2. We interpret σ̂L and σ̂U as the smallest and largest values of σ

that supports the data. Since FH(h|σ) is a monotone increasing function of σ , then
σ̂L ≤ σ ≤ σ̂U if and only if FH(h|σ̂L) ≤ FH(h|σ) ≤ FH(h|σ̂U ), which implies
α1 ≤ FH(h|σ) ≤ 1 − α2. Therefore,

PSel(σ̂L ≤ σ ≤ σ̂U ) = PSel
(
α1 ≤ FH(H |σ) ≤ 1 − α2

)
.

The standard theory shows that FH(H |σ) is a uniformly distributed random vari-
able on the interval [0,1] to give the result

PSel(σ̂L ≤ σ ≤ σ̂U ) = 1 − α1 − α2 = 1 − α.

Therefore, [σ̂L, σ̂U ] is an exact (1 − α) level confidence interval.
However, when θ is unknown, the monotonicity of H in σ holds no more and

only confidence regions are possible to obtain. Therefore, in applications where
the variability in θ̂ is expected to be considerable and the joint estimation of (θ, σ )
is required, the method is not very useful. Next, we turn to the Bayesian approach
as an alternative that allows for marginalization in σ .

3.2. Estimates based on the Bayesian methods. Assuming independent uni-
form priors on (θ, σ ), the joint posterior distribution of (θ, σ ) is proportional to
the likelihood,

PSel(θ, σ |x) ∝ e−σ
∑k

i=1 x2
i

ENeut(e
−σ

∑k
i=1 X2

i )
(x1x2 · · ·xk)

θ/k−1,(6)

which can be sampled using a standard Markov Chain Monte Carlo approach.
We sampled the joint posterior distribution of the parameters via an independent
Metropolis–Hastings update [Metropolis et al. (1953), Hastings (1970)]. The pos-
terior mode is found by numerically maximizing the joint distribution and 95%
credible intervals are used as a measure of variability for σ .

Since both the posterior and the bootstrap are based on the likelihood, intuition
suggests a similar problem of instability might arise in the Bayesian analysis. Ex-
amining the posterior sample of σ (see examples in Section 4), we find that the
Bayesian approach does not have the instability observed in the bootstrap. The
reason is that, in contrast to the parametric bootstrap which generates data, poste-
rior analysis works on fixed data. While each simulated data set in the bootstrap has
a certain probability of falling into the instability region, this problem is avoided in
posterior simulation, by sampling the parameter space rather than the data space.
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FIG. 2. A parametric bootstrap sample of size 10000 for σ̂ using the Lyme disease data. All values
of σ̂ > 300 are plotted at 300.

4. Examples. In this section we present two data applications to compare the
three methods discussed above for making inference on selection intensity: MLE-
bootstrap, monotonicity and the Bayesian approach.

4.1. Lyme disease data. We revisit (see Section 1) the Lyme disease bacteria
data. Recall the data consist of four alleles with frequencies x′ = (0.103,0.375,

0.270,0.252). The observed homozygosity is h = 0.288 relatively close to the
minimum 0.25 under k = 4. The MLEs for the mutation and selection parame-
ters are (θ̂ = 4.8, σ̂ = 35.1) respectively. A parametric bootstrap with (θ̂ , σ̂ , k) =
(4.8,35.1,4) admits poor precision for the estimated selection intensity as dis-
cussed in Section 2. Based on the simulated sampling distribution for σ̂ (Fig-
ure 2), we get an estimated standard error of 176.4. The 2.5th percentile of the
simulated sampling distribution of σ̂ corresponds to 17.2 and the 97.5th percentile
is 681.3. Therefore, an approximate 95% interval estimate based on the parametric
bootstrap associated with σ̂ is (17.2,681.3). Recall that the observed homozy-
gosity is 0.228, but P(H ≥ 0.288|σ = 681.2) < 0.001, suggesting that the upper
bound produced by the parametric bootstrap is far too conservative. Conversely,
P(H ≤ 0.288|σ = 17.25) = 0.354, suggesting that the lower bound produced by
the parametric bootstrap is too large to be reliable. Thus, the parametric bootstrap
is both unreliable and inaccurate. Using the monotonicity of homozygosity with
α1 = α2 = 0.025 produces an exact 95% confidence interval of (−8,105) for the
Lyme disease data. The upper bound from this method performs much better than
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FIG. 3. The empirical distributions of homozygosity under σ̂L = −10 (left) and σ̂U = 159 (right)
for KIR data (h = 0.172). The shaded areas correspond to 2.5th and 97.5th percentiles.

the bootstrap, as expected. The length of the exact confidence interval is over six
times smaller than the length of the interval produced by the parametric bootstrap.

A 95% credible interval from the posterior simulation gives (10.8, 124.9). The
length of the interval produced by the parametric bootstrap is over six times larger
than the interval estimate produced by the Bayesian method.

4.2. KIR data. Our second example is from a data set published in Nor-
man (2004) on KIR genes. The data are from the United Kingdom population [see
locus DL1/S1 from Table 2 in Norman (2004)]. The KIR are highly polymorphic
genes coding for proteins on natural killer cells and they detect a specific Major
histocompatibility complex Class I protein found on diseased natural killer cells.
Observed levels of variability at these loci suggest that the heterozygote advantage
mechanism is a good candidate to explain the variation in KIR genes. The popula-
tion frequencies are given by x′ = (0.22,0.21,0.17,0.16,0.15,0.04,0.03,0.02).
The homozygosity statistic is h = 0.172, again close to the minimum hmin = 0.125
for k = 8. An approximate 95% bootstrap interval estimate for this data set is
(21.1,396.4). Conditioning on θ̂ , the interval estimate using the monotonicity ar-
gument with α1 = α2 = 0.025 is given as (−10,159) (Figure 3), which is less than
half the length of the bootstrap interval.

Fixing θ at the posterior mode, the KIR data giving a 95% credibility interval
for σ is (6.3,182.9) (Figure 4). For comparison purposes a 95% credibility interval
for σ , (4.3,205.5), is obtained by joint estimation of θ and σ is also included in
Figure 4. Not surprisingly, the variability in σ increases when the uncertainty in θ

is taken into account.

5. Discussion. Wright–Fisher k-allele models with selection provide a flexi-
ble framework for considering a wide array of biologically meaningful selective
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FIG. 4. A sample from posterior distribution of σ for the KIR data set using fixed θ (left) and
the joint estimation (right). 95% credible interval limits are (6.3, 182.9) and (4.3, 205.5) (shades)
respectively.

schemes. The impact of the instability on the MLEs can vary substantially de-
pending on the particular selective scheme. In this section we describe an example
using the symmetric homozygote advantage model. Our goal is to compare the ho-
mozygote and heterozygote advantage models in terms of the instability explained.
The comparison is particularly insightful, as the two schemes have very different
biological implications and yet there is a close connection between their parame-
terization.

In contrast to heterozygote advantage, homozygote advantage selects for geno-
types with the same allelic types. The symmetric version can be obtained by letting
the selection matrix � = −σ Ik , σ > 0, now denoting the relative selective advan-
tage of homozygotes to heterozygotes. Note that the difference between this model
and the heterozygote advantage consists only of switching the sign of the selection
parameter. Therefore, both heterozygote and homozygote advantages can be ac-
commodated in the same model by allowing σ ∈ R, a useful property to compare
the instability regions arising under two regimes. Simulated sampling distributions
obtained under the homozygote advantage display a heavy left tail, reflecting the
sign change in σ . In light of Theorem 1, which holds for all selective schemes, this
result is not surprising. The existence of a singularity point for the homozygote ad-
vantage model is guaranteed. The strongest signal for selection under this model
is at H = 1 (i.e., at maximum homozygosity) and, in fact, the same point turns out
to be where σ̂ is infinite since this point maximizes the mean fitness.

Interestingly, the effect of the instability on the variability of MLEs under the
homozygote advantage is milder than the heterozygote advantage. The difference
is explained by examining the populations contributing to the tail of interest in the
corresponding bootstrap distributions (i.e., left and right tails for homozygote and
heterozygote advantage models respectively). They have different probabilities of
arising under the two cases. Let 0 < ε < 1 − 1/k and consider populations that
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FIG. 5. The probability that a sample falls into the instability region for different selection inten-
sities (as percent of generated samples with 1000 samples at each σ ) under homozygote advantage
(dots) and heterozygote advantage (open circles). The samples are generated under k = 10 and the
instability region is chosen using ε = 0.09 units from perfect homozygosity (1, 0.91) and heterozy-
gosity (0.1, 0.19) (see text).

are close to perfect homozygosity (1 − ε < H < 1), and those that are the same
distance from the perfect heterozygosity (1/k < H < 1/k + ε). In the bootstrap
procedure, whenever a generated data set falls in these regions, a large MLE for
the selection intensity is obtained. However, the probability of drawing a popula-
tion in the first set, PSel(1 − ε < H < 1|θ,−σ), is lower than the probability of
drawing a population in the second set, PSel(1/k < H < 1/k + ε|θ, σ ), for a given
(absolute) selection intensity (Figure 5). In other words, for a given number of
simulated samples, the expected number of samples to hit the singularity region is
larger under symmetric heterozygote advantage than under the homozygote advan-
tage. Hence, the type of selective regime is an important factor when evaluating the
effect of the instability on the confidence intervals. Unfortunately, in the important
case of the heterozygote advantage model, the effect is pronounced.

The ultimate goal for the use of methods discussed in this paper is to develop
statistical methods that can be used to detect selection at multiple loci simultane-
ously under the k allele models. Multiple loci data provide more information than
single locus data, therefore, inference is expected to be more precise. The Bayesian
methods gain a definite advantage of flexibility as the number of genetic loci, and
thus the dimensionality of the problem, increases.

Modern population genetics using coalescent based methods to explain poly-
morphism data have been effectively used to understand genealogy and recombi-
nation [Fearnhead (2001), Nordborg (2000), Griffiths and Marjoram (1997), Pad-
hukasahasram et al. (2008)] but have been less successful with selection. The
computational burden for simulating and analyzing data under coalescent based
methods with selection remains heavy. There is a renewed interest in diffusion ap-
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proaches which provide an alternative framework to handle models with selection
[Wakeley (2005)]. Furthermore, diffusion models are cornerstones of population
genetics theory. Their relatively long history resulted in a variety of useful models
to investigate selection other than the k-allele setup. An important task is to estab-
lish statistical properties of estimators and investigate the usefulness of different
statistical paradigms under these models.

Finally, counterintuitive results presented in this paper point out that care should
be exercised in method choice when making inference on selection under the class
of models we presented. As emphasized above, realistic applications of the meth-
ods involve inference from multiple loci possibly with complex selective schemes.
However, such setups are not ideal to investigate the statistical properties of the es-
timators. Because computationally intensive methods employed in analyzing them
become less tractable, complex models tend to hide problems of the type discussed
in this paper. Therefore, rigorous tests of the methods under the single locus case
are essential to guarantee the legitimacy of inference on selection made by em-
ploying these methods.

APPENDIX A: PROOF OF THEOREM 1

We begin by fixing θ and �, then finding a point in data space that produces the
largest possible signal for selection. Data space is represented by the k dimensional
simplex defined by �k = {(x1, x2, . . . , xk) | ∑k

j=1 xj = 1}. Since �k is a compact

set, there exists at least one point x∗ ≡ x∗(�) ∈ �k where e−x�x
′

is optimized.
It follows from equation (1) that x∗ is the point in data space that produces the
strongest possible signal for selection. Note that x∗ is obtained by minimizing the
quadratic function x�x

′ = ∑
ij σij xixj subject to the constraint

∑
i xi = 1. This

implies ∑
i,j

σij x
∗
i x∗

j ≤ ∑
i,j

σij xixj ∀x ∈ �k.(7)

We now turn to the alternative problem where we fix the data x and calculate
the maximum likelihood estimate for � denoted by �̂(x). Throughout we will
assume that θ is known. Since the likelihood [equation (1)] is a smooth function
of the parameters, the standard calculus approach to optimization based on the
derivative of the log likelihood is a valid method for finding the MLE. It follows
from equation (1) that

∂

∂σij

lnfSel(x|θ , �) = ENeut(XiXje
−X�X

′
)

ENeut(e−X�X′
)

− xixj

(8)
= ESel(XiXj |�) − xixj .

Therefore, to obtain the MLE for �, denoted by �̂(x), we set equation (8) equal
to zero for each pair of indices i, j and solve for �̂(x). Thus, for a given data set x,
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we have

ESel(XiXj |�̂(x)) − xixj = 0.(9)

Now multiply equation (9) by σij and sum to obtain

ESel

(∑
i,j

σijXiXj

∣∣∣�̂(x)

)
− ∑

i,j

σij xixj = 0.(10)

Now, assume x∗ satisfying the inequality (7) are the observed data. Then it
follows from equation (7) that the newly defined random variable

M∗ ≡ ∑
i,j

σijXiXj − ∑
i,j

σij x
∗
i x∗

j ≥ 0,(11)

with probability 1. Assume the likelihood given by equation (1) is bounded at the
point x∗. By continuity, the maximum likelihood estimate �̂(x∗) exists. Then it
follows from equation (10) that

ESel(M
∗|�̂(x∗)) = 0.(12)

Therefore, M∗ is a non-negative random variable with mean zero, implying
M∗ = 0 with probability 1. However, M∗ is a continuous function of the con-
tinuous random vector X and is therefore equal to zero with probability zero. So,
assuming the likelihood is bounded at x∗ leads to a contradiction.

APPENDIX B: PROOF OF COROLLARY 1

PROOF OF PART A. Because the likelihood given by equation (3) is a smooth
function of σ , standard calculus methods can be used to derive the MLE for σ .
Again assuming that θ is known and differentiating the natural log of the likelihood
given in (3), we get

∂

∂σ
lnfSel(x|σ, θ) = −h + ESel(H |σ).(13)

Define g(σ) ≡ ESel(H |σ), then g is a decreasing function. To show that g is de-
creasing, we show that g′(σ ) < 0 for all σ . It follows from equation (3) that

g(σ) = ESel(H |σ) = ENeut(He−σH )

ENeut(e−σH )

and

g′(σ ) = −ENeut(e
−σH )ENeut(H

2e−σH ) + (ENeut(He−σH ))2

(ENeut(e−σH ))2

= −VarSel(H) < 0.
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That is, as the selection intensity σ grows, then homozygotes are increasingly
disadvantaged. Thus, the mean homozygosity, ESel(H |σ), will become smaller
as the selection intensity, σ , grows. By equation (13), the maximum likelihood
estimate for σ will satisfy the equation

H = g(σ̂ ).

To establish equation (4), we need to show that for every sequence of homozy-
gosities converging to 1/k from above, the corresponding MLE for the selection
intensity converges to infinity. Consider a monotone decreasing sequence of real
numbers {an} where an → 0 as n → ∞. Define σn to be the solution to the equa-
tion

g(σn) = 1/k + an.

Since g is a decreasing function, it follows by monotonicity that σn must be an
increasing sequence. Increasing sequences must either converge or diverge to in-
finity. Suppose for a moment that σn → σ ∗ < ∞ as n → ∞. Then by continuity
of g, we have that g(σ ∗) = 1/k. This implies that

ESel(H − 1/k|σ ∗) = 0.(14)

However, we know that H ≥ 1/k with probability one. Therefore, it follows from
equation (14) that H −1/k is a nonnegative random variable with mean zero. This
implies that H − 1/k is identically zero with probability one. This is a contradic-
tion, since we know that, for any value of σ , H is a continuous random variable
whose distribution can be derived from equation (3) and so cannot be equal to 1/k

with probability one. Therefore, σn must go to infinity. �

PROOF OF PART B. Note that g(σ) = E(H |σ) is a decreasing function in σ

that is bounded below by 1/k. Therefore, limσ→∞ g(σ) must converge. Denote the
limit by b. Note that g−1(b) = ∞. By part (a), g−1(b) is the maximum likelihood
estimate for σ when H = b. Since the maximum likelihood estimate is finite for all
h > /1k, then b = 1/k. Therefore, E(H −1/k|σ) = E(|H −1/k| |σ) goes to zero
as σ → ∞. This implies that the L1 norm of H converges to 1/k, which implies
that H converges to 1/k in probability. The conclusion of part (b) is established by
noting that H = 1/k if and only if (X1,X2, . . . ,Xk) = (1/k,1/k, . . . ,1/k). �
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