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Abstract. For α ∈ (0,1) an α-trimming, P ∗, of a probability P is a new probability obtained by re-weighting the probability of
any Borel set, B, according to a positive weight function, f ≤ 1

1−α
, in the way P ∗(B) = ∫

B f (x)P (dx).
If P,Q are probability measures on Euclidean space, we consider the problem of obtaining the best L2-Wasserstein approxi-

mation between: (a) a fixed probability and trimmed versions of the other; (b) trimmed versions of both probabilities. These best
trimmed approximations naturally lead to a new formulation of the mass transportation problem, where a part of the mass need
not be transported. We explore the connections between this problem and the similarity of probability measures. As a remarkable
result we obtain the uniqueness of the optimal solutions. These optimal incomplete transportation plans are not easily computable,
but we provide theoretical support for Monte-Carlo approximations. Finally, we give a CLT for empirical versions of the trimmed
distances and discuss some statistical applications.

Résumé. Pour α ∈ (0,1), une α-coupe P ∗ d’une probabilité P selon une fonction positive f majorée par 1/(1 − α) est la proba-
bilité obtenue pour tout ensemble de Borel B par P ∗(B) = ∫

B f (x)P (dx).

Si P,Q sont deux probabilités sur l’espace euclidien, on considère le problème de minimiser la distance de Wasserstein L2

entre (a) une probabilité et ses versions coupées (b) les versions coupées de deux probabilités. Ce problème mène naturellement à
une nouvelle formulation du problème de transport de masse, où une partie de la masse ne doit pas être transportée. Nous explorons
les liaisons entre ce problème et la similitude des mesures de probabilité. Un de nos résultats remarquables est l’unicité du transport
de masse. Ces plans de transport optimal incomplets ne sont pas facilement calculables mais nous fournissons un appui théorique
pour des approximations de Monte-Carlo. Enfin, nous donnons un TCL pour les versions empiriques des distances coupées et
discutons certaines applications statistiques.
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1. Introduction

This paper considers a modified version of the classical Mass Transportation Problem (MTP in the sequel). Broadly
speaking, the MTP can be formulated as trying to relocate a certain amount of mass with a given initial distribution to
another target distribution in such a way that the transportation cost is minimized. This seemingly simple problem has
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a long history which dates back to Monge. The initial formulation of the problem can be summarized in present-day
language as follows. Let P1, P2 be two probability measures on the Euclidean space R

k with norm ‖ · ‖ and Borel σ -
field β . Consider the set, T(P1,P2), of maps transporting P1 to P2, that is, the set of all measurable maps T : Rk → R

k

such that, if the initial space is endowed with the probability P1, then the distribution of the random variable T is P2.
Then Monge’s problem consists of finding a transportation map, T0, from P1 to P2 such that

T0 := arg min
T ∈T(P1,P2)

∫
Rk

∥∥x − T (x)
∥∥P1(dx).

A later, fundamental generalization of this problem is the so-called Kantorovitch–Rubinstein–Wasserstein (KRW)
formulation which consists in finding

W 2
2 (P1,P2) := inf

π∈M(P1,P2)

{∫
‖x − y‖2 dπ(x, y)

}
, (1)

with M(P1,P2) the set of finite, positive measures on β × β with marginals P1 and P2.
Apart from the consideration of different cost functions, the main difference between the Monge and the KRW

problems is that the later is not related to transportation maps. We mean that in the KRW formulation masses sharing
the same initial position may end up in different locations. The KRW minimization allows us also to consider the
L2-Wasserstein distance, W2(P1,P2), between probability measures with finite second moment (see, e.g., Bickel and
Freedman [3] for details). Remarkably, the Monge and the KRW formulations turn out to be equivalent under some
smoothness assumptions.

Existence, uniqueness or regularity of mappings T ∈ T(P1,P2) satisfying
∫

Rk ‖x − T (x)‖2 dP1(x) = W 2
2 (P1,P2)

are problems that have attracted the attention of mathematicians from very different points of view. Fluid Mechanics,
Partial Differential Equations, Optimization, Probability Theory and Statistics are in the very broad range of appli-
cations of this and related MTP’s justifying the interest and also the different technical approaches for their study.
To avoid a formidable amount of references we refer to the books by Rachev and Rüschendorf [20] and by Villani
[24] for an updated account of the interest and implications of the problem, as well as to recent works illustrating the
permanent actuality of the topic, as Ambrosio [2], Caffarelli et al. [6], or Feldman and McCann [15].

Here we will analyze a variant of the KRW problem involving incomplete mass transportation. Let us introduce
it through a motivating example. Gangbo and McCann consider in [17] the problem of identifying a leaf l0 by com-
paring it with a catalog. They analyze the approach based on minimizing the transportation cost between the uniform
distribution on the outline of l0 and its counterparts in the catalog. To avoid technicalities, we assume that we are
dealing with black and white pictures of l0 and the leaves in the catalog, rather than their outlines. We identify the
grey-levels with the density of a measure, compute the associated L2-Wasserstein distances and identify l0 with the
closest leaf in the catalog.

Now, let us assume that, as it often happens, the picture of l0 is corrupted at some spots. It seems reasonable to
delete those spots before making the comparisons. However, it is not always easy to tell a corrupted spot from a
distinctive feature. A reasonable procedure would be to transport only a part of the initial mass, dismissing a small
fraction, to minimize the transportation cost. If the leaves in the catalog are also corrupted by noise, then we should
also allow some fraction of the target picture to remain unmatched.

Turning to a more abstract formulation, we observe some random object X with law P1. Ideally, P1 should equal
P2 (one of the underlying laws in the catalogue); the presence of noise means that, in fact,

P1 = (1 − ε)P2 + εN, ε ≤ α, (2)

for some unspecified N if we assume that the noise level does not exceed α. If we compare P1 to a noisy standard,
P2, our goal should be to assess whether

Pi = (1 − εi)P0 + εiNi, εi ≤ α, i = 1,2. (3)

We say that P1 is similar to P2 at level α if (2) holds and, likewise, we say that P1 and P2 are similar (at level α) if (3)
holds. In a natural way we end up in the problem of dismissing a (small) fraction of the masses represented by P1 and
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P2. This resembles the trimming procedures employed in Statistics where, very often, outlying observations have to
be deleted. A probabilistic approach to trimming was first considered in Gordaliza [18] in the setup of robust location
estimation. We employ the following definition.

Definition 1.1. Given 0 ≤ α ≤ 1 and Borel probability measures P , P ∗ on R
k , we say that P ∗ is an α-trimming of P

if P ∗ is absolutely continuous with respect to P , and dP ∗
dP

≤ 1
1−α

. The set of all α-trimmings of P will be denoted by
Rα(P ).

This definition of trimming is more general than other usual alternatives in that it allows points to be partially
trimmed. It has been considered in Cascos and López-Díaz [8] and [9] for the construction and estimation of central
regions and in our work [1] in a particular problem of essential model validation, which can be reformulated as
follows: given (univariate) data from two random generators P1,P2, test whether Pi = L(ϕi(Z)), i = 1,2, for some
r.v. Z and nondecreasing functions ϕi such that P(ϕ1(Z) �= ϕ2(Z)) ≤ α.

In this paper we show the usefulness of Definition 1.1 for the assessment of similarity in the sense given in (2) and
(3). In fact, with our definition, (2) holds if and only if P2 ∈ Rα(P1), while (3) is equivalent to Rα(P1)∩ Rα(P2) �= ∅,
see Proposition 2.1 below. Thus, natural measures of the deviation from (2) or (3) are given by

W2
(

Rα(P1),P2
) := min

P ∗
1 ∈Rα(P1)

W2
(
P ∗

1 ,P2
)
,

W2
(

Rα(P1), Rα(P2)
) := min

P ∗
1 ∈Rα(P1),P

∗
2 ∈Rα(P2)

W2
(
P ∗

1 ,P ∗
2

)
.

We will refer to this minimal distances as one-sided and two-sided trimmed distances and to the minimization prob-
lems as optimal incomplete transportation problems. The corresponding minimizers will give a good approximation
to the common part in P1 and P2 and, automatically, will determine the noisy spots. The main goal of this work is the
study of these minimizers, showing existence, uniqueness and some qualitative properties, and to provide asymptotic
results (LLN’s and CLT’s) for the empirical versions obtained from i.i.d. realizations of P1 and P2.

The paper is organized as follows. In Section 2, after giving some general background on trimmings, we show that,
as in the classical optimal transportation problem, the KRW and Monge formulations are equivalent under absolute
continuity. We also prove the uniqueness of the optimal transportation plan. From a technical point of view, the most
remarkable (and difficult) result concerns the uniqueness in the two-sided problem (Theorems 2.11 and 2.16). Our
definition of trimming allows us to partially trim some points. In fact Theorem 2.15 shows that only the mass placed
on non-trimmed points is transported, while the mass on partially trimmed points must remain fixed. We complete
Section 2 with a Law of Large Numbers for empirical optimal incomplete trimmings, which justifies the use of Monte-
Carlo approximation. This is of primary interest, since there are not general explicit expressions for optimal incomplete
transportation plans, even on the real line. Finally, Section 3 gives CLT’s for empirical versions of the one- and two-
sided trimmed distances. Our approach is based on an empirical trimming process for which we prove convergence
to a certain Gaussian process. We show how these CLT’s can be applied for testing null hypotheses related to (2) and
(3). We provide a small simulation study showing the quality of the approximation for finite samples.

Once this work was completed we learned about recent work by Caffarelli and McCann [7] and Figalli [16] where
the problem of transporting a fraction of the whole mass is also considered. Although their motivation is very differ-
ent, a main goal of these works is the analysis of the uniqueness of the optimal transportation plan. Our uniqueness
results improve those in these references in that our smoothness assumptions are minimal and allow to handle singular
measures. This is of crucial importance in statistical applications in which one often has to deal with empirical mea-
sures (on the other hand [7] and [16] are concerned with regularity of the solutions and smoothness assumptions are
needed for that purpose). Our proofs are purely probabilistic and we believe they are of independent interest, giving a
new perspective on the topic.

We end this introduction with some notation. We write �k for Lebesgue measure on the space (Rk, β), while
F2(R

k) will denote the set of probabilities on R
k with finite second moment. Given probabilities P,Q, by P 	 Q

we will denote absolute continuity of P with respect to (w.r.t.) Q, and by dP
dQ

the corresponding Radon–Nykodym
derivative. By supp(P ) we mean the support of P and by P(·|B) the conditional probability given the set B . With a
slight abuse of notation, given Θ,Θ∗ ⊂ F2(Rk), we will often write

W2(P,Θ) = inf
Q∈Θ

W2(P,Q) and W2
(
Θ,Θ∗) = inf

(P,Q)∈Θ×Θ∗ W2(P,Q).
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Unless otherwise stated, the random vectors will be assumed to be defined on the same probability space (Ω,σ, ν).
Weak convergence of probabilities will be denoted by →w and L(X) will denote the law of the random vector X.

2. Trimmings and best trimmed approximations

We begin presenting some general background on trimmed probabilities. Further properties can be found in [1]. From
the definition of Rα(P ) it is obvious that P ∗ ∈ Rα(P ) if and only if P ∗ 	 P and dP ∗

dP
= 1

1−α
f with 0 ≤ f ≤ 1. Thus,

trimming allows us to downplay the weight of some regions of the measurable space without completely removing
them from the feasible set.

The following proposition contains some useful facts about trimmings (see also [9]). Its proof is elementary and,
hence, omitted.

Proposition 2.1. For probabilities P, {Pn} on R
k :

(a) P2 ∈ Rα(P1) iff (1 − α)P2(A) ≤ P1(A) for every Borel set A iff (2) holds.
(b) Rα(P1) ∩ Rα(P2) �= ∅ iff (3) holds.
(c) If α < 1 then Rα(P ) is compact for the topology of weak convergence.
(d) If α < 1, {Pn}n is a tight sequence and P ∗

n ∈ Rα(Pn) for every n, then {P ∗
n }n is tight. Moreover, if Pn →w P and

P ∗
n →w P ∗, then P ∗ ∈ Rα(P ).

Next, we show that trimmings of a probability can be parametrized in terms of trimmings of another one.

Proposition 2.2. If T transports Q to P , then

Rα(P ) = {
P ∗ ∈ P (X , β): P ∗ = Q∗ ◦ T −1,Q∗ ∈ Rα(Q)

}
.

Proof. If α = 1 and Q∗ 	 Q, then P ∗ := Q∗ ◦T −1 	 P , because P(B) = 0 implies Q(T −1(B)) = 0, thus P ∗(B) =
Q∗(T −1(B)) = 0. On the other hand, if P ∗ 	 P , we can define w(y) = dP ∗

dP
(T (y)) and Q∗(B) = ∫

B
w(y)Q(dy),

hence, the change of variable formula shows for any set B in β

Q∗ ◦ T −1(B) =
∫

T −1(B)

dP ∗

dP

(
T (y)

)
Q(dy) =

∫
B

dP ∗

dP
(x)P (dx) = P ∗(B).

Let us assume that α < 1. If Q∗ ∈ Rα(Q), then for any B in β

Q∗ ◦ T −1(B) =
∫

T −1(B)

dQ∗

dQ
(x)Q(dx) ≤ 1

1 − α
Q

(
T −1(B)

) = 1

1 − α
P (B),

thus Q∗ ◦ T −1 ∈ Rα(P ).
If we assume that P ∗ ∈ Rα(P ), by defining Q∗ as above: Q∗(B) = ∫

B
dP ∗
dP

(T (y))Q(dy), we have Q∗ 	 Q, and

Q∗ ◦ T −1 = P ∗. Moreover, since dP ∗
dP

(x) ≤ 1
1−α

a.s. (P ) and P = Q ◦ T −1, also dP ∗
dP

(T (y)) ≤ 1
1−α

a.s. (Q) hence
Q∗ ∈ Rα(Q). �

Example 2.3. If Q is the uniform distribution on the interval (0,1) then the set of distribution functions of elements
of Rα(Q) equals the set of absolutely continuous functions h : [0,1] → [0,1] with h(0) = 0, h(1) = 1 and such that
0 ≤ h′(x) ≤ 1/(1 −α) for almost every x. We write Cα for this class of functions. Now, if P is a probability on the real
line, a little thought yields that in this case Proposition 2.2 can be rewritten

Rα(P ) = {Ph: h ∈ Cα},
where Ph is the probability measures defined by Ph(−∞, x] = h(P (−∞, x]), x ∈ R. This parametrization will be
useful for the results in Section 3.
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For our choice of metric, W2, it is well known (see, e.g., [3]) that for P,Q ∈ F2(R
k) the inf in (1) is attained, so

that to find W 2
2 (P,Q) it is enough to obtain a pair (X,Y ) with L(X) = P and L(Y ) = Q such that

∫
‖X − Y‖2 dν = inf

{∫
‖U − V ‖2 dν, L(U) = P, L(V ) = Q

}
.

Such a pair (X,Y ) is called an L2-optimal transportation plan (L2-o.t.p.) for (P,Q). (L2-optimal coupling for (P,Q)

is an alternative, sometimes used, terminology.)
In Cuesta-Albertos and Matrán [11] (see also Brenier [4,5], Rüschendorf and Rachev [21] and McCann [19]) it was

proved that, under continuity assumptions on the probability P , the L2-o.t.p. (X,Y ) for (P,Q) can be represented as
(X,T (X)) for some suitable optimal map T . This map coincides with the (essentially unique) cyclically monotone
map transporting P to Q (see [19]). In the sequel we will use the term o.t.p. for the pair (X,Y ) which will also apply
to the map T . For later use we summarize some properties in the following statement. The interested reader can find
the proofs in Cuesta-Albertos et al. [11–13], and Tuero [22]. A different approach, involving more analytical proofs,
is summarized in [24].

Proposition 2.4. Assume P,Q ∈ F2(R
k) and P 	 �k , and let (X,Y ) be an o.t.p. for (P,Q). Then:

(a) The cardinal of the support of a regular conditional distribution of Y given X = x is one, P -a.s.
(b) There exists a P -probability one set D and a Borel measurable cyclically monotone map T :D → R

k such that
Y = T (X) a.s.

(c) If T is an o.t.p. for (P,Q), then T is a.e. continuous on supp(P ).
(d) Assume Qn ∈ F2(R

k) and Qn →w Q. Let Tn be o.t.p.’s for (P,Qn). Then Tn → T , P -a.s.

Turning back to trimmed probabilities, from Propositions 2.2 and 2.4(b) the following parametrization arises natu-
rally.

Corollary 2.5. If P0,Q ∈ F2(R
k), and P0 	 �k , then Rα(Q) = {P ∗

0 ◦ T −1: P ∗
0 ∈ Rα(P0)}, where T is the (essen-

tially) unique o.t.p. between P0 and Q.

Remark 2.6. Once we have chosen a particular P0 ∈ F2(R
k), P0 	 �k , Corollary 2.5 suggests to consider the com-

mon trimming of probabilities: if Pi ∈ F2(R
k) and Ti is the o.t.p. between P0 and Pi , i = 1,2, given P ∗

0 ∈ Rα(P0),
we say that the pair (P ∗

0 ◦ T −1
1 ,P ∗

0 ◦ T −1
2 ) ∈ Rα(P1) × Rα(P2) is a common trimming of P1 and P2 because it is

induced by the same trimming of P0. This suggests the consideration of a new measure of dissimilarity between P1
and P2 according to the shape of P0, namely the minimal distance between common trimmings

min
P ∗

0 ∈Rα(P0)
W2

(
P ∗

0 ◦ T −1
1 ,P ∗

0 ◦ T −1
2

)
.

That was the approach adopted in [1] for probabilities on the real line, taking the uniform law on the interval (0,1)

as the reference distribution.

Proposition 2.4(d) and Corollary 2.5 allow also to show that any trimming of a weak limit of probabilities can be
expressed as a weak limit of trimmings of those probabilities.

Lemma 2.7. Assume α ∈ (0,1). Let Q, {Qn}n be probabilities on R
k such that Qn →w Q. Then, if Q∗ ∈ Rα(Q),

there exist Q∗
n ∈ Rα(Qn), n ∈ N, such that Q∗

n →w Q∗.

Proof. Fix P 	 �k and consider the sequence {Tn}n of o.t.p.’s between P and Qn. If T is the o.t.p. between P and
Q, Proposition 2.4(d) implies that Tn → T , P -a.s.

By Corollary 2.5 Q∗ = P ∗ ◦ T −1 for some Q∗ ∈ Rα(Q). Define now Q∗
n = P ∗ ◦ T −1

n . Then Q∗
n ∈ Rα(Qn) by

Corollary 2.5. Since Tn → T , P -a.s., and P ∗ 	 P , also Tn → T , P ∗-a.s. Therefore Q∗
n = P ∗ ◦ T −1

n →w P ∗ ◦ T −1 =
Q∗. �
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2.1. One-sided trimming

We turn now to the optimal incomplete trasportation problems of the introduction. We consider first the one-sided
case. From Definition 1.1, if P ∈ F2(R

k) and P ∗ ∈ Rα(P ) then∫
‖x‖2 dP ∗(x) ≤ 1

1 − α

∫
‖x‖2 dP(x).

Thus, Rα(P ) ⊂ F2(R
k) if P ∈ F2(R

k). Our next result is a version of Proposition 2.1(c) for the metric W2.

Proposition 2.8. For α ∈ (0,1) and P ∈ F2(R
k), Rα(P ) is compact in the W2 topology.

Proof. Convergence in W2 is equivalent to weak convergence plus convergence of second moments ([3], Lemma 8.3).
Since Rα(P ) is tight (Proposition 2.1(c)), given an infinite set R ⊂ Rα(P ) we can extract a sequence {Qn}n ⊂ R
that converges weakly. Let Q be its weak limit. Then W2(Qn,Q) → 0 iff ‖x‖2 is uniformly Qn-integrable. Fix t > 0.
Then ∫

‖x‖>t

‖x‖2 dQn(x) =
∫

‖x‖>t

‖x‖2 dQn

dP
(x)dP(x) ≤ 1

1 − α

∫
‖x‖>t

‖x‖2 dP(x),

from which the uniform integrability of ‖x‖2 is immediate. �

A trivial consequence of this result is the existence of minimizers for the incomplete transportation problems (both
one- and two-sided). Combined with Proposition 2.1 it also yields that similarity in the sense of (2) is equivalent to
W2(Rα(P1),P2) = 0, while (3) holds iff W2(Rα(P1), Rα(P2)) = 0.

We will obtain uniqueness of the one-sided best trimmed approximation from strict convexity of W 2
2 . It is easy

to check that W 2
2 (P,Q) is a convex function of (P,Q), but under some smoothness, property (a) in Proposition 2.4

leads to a sharper result:

Theorem 2.9. Consider Pi,Qi ∈ F2(R
k) with Pi 	 �k , i = 1,2. If Q1 �= Q2 and there is not a common o.t.p. T such

that Q1 = P1 ◦ T −1 and Q2 = P2 ◦ T −1, then, for every γ in (0,1),

W 2
2

(
γP1 + (1 − γ )P2, γQ1 + (1 − γ )Q2

)
< γ W 2

2 (P1,Q1) + (1 − γ )W 2
2 (P2,Q2).

Proof. Write fi for the density of Pi , and let (Xi, Ti(Xi)), i = 1,2, be o.t.p.’s for (Pi,Qi), i = 1,2. If Pγ := γP1 +
(1 − γ )P2 and Qγ := γQ1 + (1 − γ )Q2, then fγ := γf1 + (1 − γ )f2 is a density function for Pγ . Let us define on
the support of Pγ the following random function:

T (x) =
{

T1(x) with probability γf1(x)/
(
γf1(x) + (1 − γ )f2(x)

)
,

T2(x) with probability (1 − γ )f2(x)/
(
γf1(x) + (1 − γ )f2(x)

)
.

If Xγ is any r.v. with probability law L(Xγ ) = Pγ , we have

ν
[
T (Xγ ) ∈ A

] =
∫

ν
[
T (Xγ ) ∈ A | Xγ = x

]
Pγ (dx)

=
∫

IA

[
T1(x)

] γf1(x)

γf1(x) + (1 − γ )f2(x)
Pγ (dx)

+
∫

IA

[
T2(x)

] (1 − γ )f2(x)

γf1(x) + (1 − γ )f2(x)
Pγ (dx)

= γ

∫
IA

[
T1(x)

]
f1(x)dx + (1 − γ )

∫
IA

[
T2(x)

]
f2(x)dx

= γ ν
[
T1(X1) ∈ A

] + (1 − γ )ν
[
T2(X2) ∈ A

]
= γQ1(A) + (1 − γ )Q2(A) = Qγ (A).
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Since L(T (Xγ )) = Qγ , by the same argument, we have

W 2
2 (Pγ ,Qγ ) ≤

∫ ∥∥Xγ − T (Xγ )
∥∥2 dν

= γ

∫ ∥∥X1 − T1(X1)
∥∥2 dν + (1 − γ )

∫ ∥∥X2 − T2(X2)
∥∥2 dν

= γ W 2
2 (P1,Q1) + (1 − γ )W 2

2 (P2,Q2).

This shows that W 2
2 (Pγ ,Qγ ) < γ W 2

2 (P1,Q1) + (1 − γ )W 2
2 (P2,Q2) unless T is an o.t.p. for (Pγ ,Qγ ). If this were

the case, (a) in Proposition 2.4 implies that T should be non-random, leading to

T (x) =
{

T1(x) if x ∈ supp(P1)\ supp(P2),

T1(x) (= T2(x)) if x ∈ supp(P1) ∩ supp(P2),

T2(x) if x ∈ supp(P2)\ supp(P1).

But this would contradict the assumptions because it implies that T would be a common o.t.p. for (P1,Q1) and
(P2,Q2). �

Taking P1 = P2 in Theorem 2.9, we obtain the strict convexity of W 2
2 (P, ·).

Corollary 2.10. Let P,Q1,Q2, be probability measures in F2(R
k). Assume P 	 �k . If Q1 �= Q2, then, for every γ

in (0,1),

W 2
2

(
P,γQ1 + (1 − γ )Q2

)
< γ W 2

2 (P,Q1) + (1 − γ )W 2
2 (P,Q2).

Now, we trivially have uniqueness of the best one-sided trimmed approximation under smoothness.

Theorem 2.11. Given P1,P2 ∈ F2(R
k) with P2 	 �k and α ∈ (0,1) there exists an unique P1,α ∈ Rα(P1) such that

W2(P1,α,P2) = W2
(

Rα(P1),P2
)
.

The following example shows that uniqueness can be lost if P2 does not have a density.

Example 2.12. Set P1 = 1
2δ{−1} + 1

2δ{1} and P2 = δ{0}. Obviously, every P ∗ ∈ Rα(P1) satisfies that W2(P
∗,P2) = 1,

hence, the set of best trimmed approximations is Rα(P1).

Uniqueness leads to a trivial proof of the following convergence result.

Theorem 2.13. Consider {Pn}n, P , Q ∈ F2(R
k), with W2(Pn,P ) → 0 and α ∈ (0,1). Then

(a) If Q 	 �k and Pn,α := arg minP ∗
n ∈Rα(Pn) W2(P

∗
n ,Q), then

W2(Pn,α,Pα) → 0, where Pα := arg min
P ∗∈Rα(P )

W2
(
P ∗,Q

)
.

(b) If P 	 �k and Qn,α ∈ Rα(Q) satisfies that W2(Pn,Qn,α) = W2(Pn, Rα(Q)), then

W2(Qn,α,Qα) → 0, where Qα := arg min
Q∗∈Rα(Q)

W2
(
P,Q∗).

Proof. Both statements have similar proofs, so we consider only (a). By Proposition 2.1(a) the sequence {Pn,α}n is
tight and by the same argument as in the proof of Proposition 2.8, the function ‖x‖2 is uniformly integrable for {Pn}n
thus also for {Pn,α}n. Therefore to show W2(Pn,α,Pα) → 0 it suffices to guarantee that if {Prn,α}n is any weakly
convergent subsequence then Prn,α →w Pα .
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By Proposition 2.1(b), if Prn,α →w P ∗, then P ∗ ∈ Rα(P ) and, therefore

W2(Pα,Q) ≤ W2
(
P ∗,Q

) = lim W2(Prn,α,Q) ≤ lim inf W2
(
P ∗

rn,α,Q
)

(4)

for any choice P ∗
rn,α ∈ Rα(Prn). Lemma 2.7 and the uniform integrability argument allow to choose this last sequence

verifying W2(P
∗
rn,α,Pα) → 0, hence W2(P

∗
rn,α,Q) → W2(Pα,Q), which joined with (4) and with the uniqueness of

the best trimmed approximation Pα given by Theorem 2.11 shows that P ∗ = Pα . �

2.2. Two-sided trimming

Uniqueness of the minimizers in the two-sided problem will require some additional notation and basic results. Given
v0 ∈ R

k with ‖v0‖ = 1, we will consider H0 an hyperplane orthogonal to v0. The orthogonal projection on H0 will
be denoted by π0 and for every y ∈ R

k , we will denote ry = 〈y − π0(y), v0〉. Given a measurable set B ⊂ R
k , and

z ∈ H0, we will also denote

Bz := {
y ∈ B: π0(y) = z

}
and zv0 := {ry : y ∈ Bz},

Given the probability distribution P , we will denote with P ◦ the marginal distribution of P on H0 and with Pz

a regular conditional distribution given z, where z ∈ H0. This conditional probability induces in an obvious way a
probability on the real line through the isometry Iz between (Rk)z and R, given by y → ry . This probability will be
denoted λz and its distribution (resp. quantile) function will be denoted F(x|z) (resp. qz(t)). We stress on the joint
measurability of these functions in the following lemma, that we include for future reference.

Lemma 2.14. The maps (x, z) → F(x|z) and (t, z) → qz(t) are jointly measurable in their arguments.

Proof. Note that if F(x, y) is a joint distribution function on R × R
k−1 and G(z) is the marginal on R

k−1, then they
are measurable (for probabilities supported on finite sets it is obvious and the generalization carries over through stan-
dard arguments). On the other hand, let us consider the measures ηx and μ respectively associated to the increasing
functions F(x, ·) and G(·). As a consequence of the Differentiation Theorem for Radon Measures (see, e.g., Sec-
tions 1.6.2 and 1.7.1 in Evans and Gariepy [14]), if we consider for any z = (z1, . . . , zk−1) ∈ R

k−1, the sequence of
rectangles An(z) := {(y1, . . . , yk−1): zi − 1

n
< yi ≤ zi + 1

n
, i = 1, . . . , k − 1}, we have the following a.s. convergence,

leading to the measurability:

F(x|z) = lim
n→∞

ηx(An(z))

μ(An(z))
.

The measurability of qz(t) follows from the key property x ≤ qz(t) if and only if F(x|z) ≤ t . �

Our next result is a nice property of optimal incomplete transportation plans in the two-sided problem. We show
that the best trimming functions are basically indicator functions of appropriate sets except for, maybe, points that
remain untransported. In particular, partial trimming is impossible on supp(P)\supp(Q).

Theorem 2.15. Consider P,Q ∈ F2(R
k) and α ∈ (0,1). Assume that P has density f w.r.t. �k . If P1 ∈ Rα(P ) and

Q1 ∈ Rα(Q) satisfy

W 2
2 (P1,Q1) = W 2

2

(
Rα(P ), Rα(Q)

)
> 0,

and T is an o.t.p. for (P1,Q1), then T (x) = x P -a.s. on the set A := {x ∈ R
k: a1(x) ∈ (0,1)}, where a1 := (1 − α)f1

and f1 is the density function of P1 with respect to P .

Proof. Assume, on the contrary, that P(A ∩ {x ∈ R
k: ‖T (x) − x‖ > 0}) > 0 and let us denote by P̂ the conditional

distribution of P given this set.
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From (c) in Proposition 2.4 we have that T is a.e. continuous. Let x0 be a point in the support of P̂ in which
T is continuous. Then, for every ε > 0 there exists δ > 0 such that T (B(x0, δ)) ⊂ B(T (x0), ε). Let us denote A =
B(x0, δ) ∩ A.

Let v0 = (T (x0) − x0)/‖T (x0) − x0‖ and H0 be the hyperplane orthogonal to v0 which contains x0. With the
notation at the beginning of this subsection, taking ε small enough, we can assume that m := infy∈B(T (x0),ε) ry is
greater than M := supy∈B(x0,δ)

ry . Therefore,∥∥T (y) − π0
[
T (y)

]∥∥ > ry for every y ∈ A. (5)

On the other hand, we have

P(A) =
∫

H0

Pz(Az)P
◦(dz) =

∫
H0

λz(zv0)P
◦(dz). (6)

Since x0 belongs to the support of P̂ , then P(A) > 0, thus

P ◦{z ∈ H0: λz(zv0) > 0
}

> 0. (7)

Let z ∈ H0 such that λz(zv0) > 0. If y1, y2 ∈ Az satisfy that ry1 < ry2 , the orthogonality between (π0(y) − x0) and
(y − π0(y)) for every y ∈ R

k and (5) leads to

∥∥y1 − T (y1)
∥∥2 = ∥∥T (y1) − π0

[
T (y1)

] + π0(y1) − y1 + π0
(
T (y1)

) − π0(y1)
∥∥2

= (rT (y1) − ry1)
2 + ∥∥π0

[
T (y1)

] − z
∥∥2

> (rT (y1) − ry2)
2 + ∥∥π0

[
T (y1)

] − π0(y2)
∥∥2 (8)

= ∥∥y2 − T (y1)
∥∥2

.

Now, we consider the partition of the set A = A− ∪ A+ given by

A− := {
y ∈ A: F

(
ry |π0(y)

) ≤ 1/2
}

and

A+ := {
y ∈ A: F

(
ry |π0(y)

)
> 1/2

}
.

From Lemma 2.14 we have that these sets are measurable. For almost every z ∈ H0 satisfying λz(zv0) > 0 they define
a value Rz, such that the sets

A−
z := {y ∈ Az: ry < Rz}, A+

z := {
y ∈ Az: ry > Rz

}
,

z−
v0

:= {ry : y ∈ A−
z }, z+

v0
:= {

ry : y ∈ A+
z

}
verify λz[z−

v0
] = λz[z+

v0
] > 0. Let λ−

z and λ+
z be the probability λz conditioned to the sets z−

v0
and z+

v0
respectively, and

let their corresponding distribution (resp. quantile) functions be F−(x|z) and F+(x|z) (resp. q−
z (t) and q+

z (t)). Then,
recalling the isometry Iz and the way to obtain o.t.p.’s in the real line, the map Γ :A− → A+ defined by

Γ (y) = I −1
π0(y)

[
q+
π0(y)

[
F−(

ry |π0(y)
)]]

is an o.t.p. between P −
z and P +

z for almost every z ∈ H0 satisfying Pz(zv0) > 0. To end the construction, let us
consider the function a∗ : Rk → R defined as follows:

a∗(y) =
⎧⎨
⎩

a1(y), if y /∈ A,

a1(y) − min
{
1 − a1

[
Γ (y)

]
, a1(y)

}
, if y ∈ A−,

a1(y) + min
{
1 − a1(y), a1

[
Γ −1(y)

]}
, if y ∈ A+.

From this point, the proof involves three steps:
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Step 1. f ∗ := a∗/(1 − α) is a density with respect to P that defines a probability P ∗ ∈ Rα(P ).

Obviously a∗(Rk) ⊂ [0,1]. On the other hand,∫
Rk

a∗(y)P (dy) =
∫

Rk

a1(y)P (dy) −
∫

A−
min

{
1 − a1

[
Γ (y)

]
, a1(y)

}
P(dy)

+
∫

A+
min

{
1 − a1(y), a1

[
Γ −1(y)

]}
P(dy). (9)

For almost every z ∈ H0 satisfying Pz(Az) > 0, by construction, the law of a1 under P +
z , P +

z ◦ a−1
1 , coincides with

the law P −
z ◦ (a1(Γ ))−1, while P +

z ◦ (a1(Γ
−1))−1 = P −

z ◦ a−1
1 . Therefore the last term verifies∫

A+
min

{
1 − a1(y), a1

[
Γ −1(y)

]}
P(dy)

=
∫

H0

(∫
A+

z

min
{
1 − a1(y), a1

[
Γ −1(y)

]}
Pz(dy)

)
P ◦(dz)

=
∫

H0

(∫
A−

z

min
{
1 − a1

(
Γ (y)

)
, a1(y)

}
Pz(dy)

)
P ◦(dz)

=
∫

A−
min

{
1 − a1

[
Γ (y)

]
, a1(y)

}
P(dy), (10)

what, joined to (9) leads to
∫

Rk a∗(y)P (dy) = ∫
Rk a1(y)P (dy) = 1 − α, which proves this step.

Step 2. There exists a random map, T ∗, transporting P ∗ to Q1.

Let us consider the random map T ∗ defined by T ∗(y) = T (y) on the complementary of A+ and, for y ∈ A+,
taking the values T (y) or T [Γ (y)] with probabilities f1(y)/f ∗(y) (= a1(y)/a∗(y)) and [f ∗(y) − f1(y)]/f ∗(y)

(= [a∗(y) − a1(y)]/a∗(y)), respectively. These values are positive because, by construction, a∗(y) > a1(y) on A+.
The argument to show that T ∗ transports P ∗ to Q1 is analogous to that developed in Theorem 2.9, taking into

account that P +
z ◦ a−1

1 = P −
z ◦ (a1(Γ ))−1.

Step 3. W 2
2 (P1,Q1) > W 2

2 (P ∗,Q1).

By construction of T ∗ and inequality (8), we have

W 2
2

(
P ∗,Q1

) ≤
∫

Rk

∥∥y − T ∗(y)
∥∥2

P ∗(dy)

=
∫

(A+)c

∥∥y − T (y)
∥∥2

P ∗(dy)

+
∫

A+

(∥∥y − T (y)
∥∥2 f1(y)

f ∗(y)
+ ∥∥y − T

[
Γ −1(y)

]∥∥2 f ∗(y) − f1(y)

f ∗(y)

)
f ∗(y)P (dy)

<

∫
(A−∪A+)c

∥∥y − T (y)
∥∥2

f1(y)P (dy) +
∫

A−

∥∥y − T (y)
∥∥2

f ∗(y)P (dy)

+
∫

A+

(∥∥y − T (y)
∥∥2

f1(y) + ∥∥Γ −1(y) − T
[
Γ −1(y)

]∥∥2(
f ∗(y) − f1(y)

))
P(dy).

Moreover, by construction of the map Γ , recalling the relation P +
z ◦ (a1(Γ

−1))−1 = P −
z ◦ (a1)

−1, we obtain that∫
A+

∥∥Γ −1(y) − T
[
Γ −1(y)

]∥∥2(
f ∗(y) − f1(y)

)
P(dy) = −

∫
A−

∥∥y − T (y)
∥∥2(

f ∗(y) − f1(y)
)
P(dy),
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what, by construction of f ∗, gives

W 2
2

(
P ∗,Q1

)
< W 2

2 (P1,Q1),

contradicting the optimality of the pair (P1,Q1). �

We are ready now for the main result in this subsection.

Theorem 2.16 (Uniqueness). Consider P,Q ∈ F2(R
k) with P 	 �k and α ∈ (0,1). If W 2

2 (Rα(P ), Rα(Q)) > 0,
then there exists a unique pair of probabilities P1 ∈ Rα(P ) and Q1 ∈ Rα(Q) such that

W 2
2 (P1,Q1) = W 2

2

(
Rα(P ), Rα(Q)

)
. (11)

Proof. Assume that (P1,Q1) and (P2,Q2) are two different pairs fulfilling (11), and let ai := (1 − α)fi , i = 1,2,
where fi is the density function of Pi with respect to P . By using convex combinations Pδi

= δiP1 + (1 − δi)P2 and
Qδi

= δiQ1 + (1 − δi)Q2, i = 1,2, with δ1 �= δ2, from Theorem 2.9, we can assume that P1 and P2 have common
support, and that T is the common o.t.p. for both solutions. That is, Qi = Pi ◦ T −1, for i = 1,2. Moreover, in the set
{a1 �= a2} it is satisfied that 0 < a1(y) < 1, so that Theorem 2.15 implies that T (x) = x on this set. But then it is easy
to show that there exist sets A ⊂ {a1 = a2} and B ⊂ {a1 < a2} such that, defining

a∗(x) =
{0, if x ∈ A,

a2(x), if x ∈ B,
a1(x), if x /∈ A ∪ B,

thus, f ∗ := a∗/(1 −α) is the density function of a probability, say P ∗, in Rα(P ), Q∗ := P ∗ ◦T −1 belongs to Rα(Q)

and

W 2
2

(
P ∗,Q∗) =

∫
Rk

∥∥x − T (x)
∥∥2

f ∗(x)P (dx)

=
∫

{a1=a2}−A

∥∥x − T (x)
∥∥2

f1(y)P (dx)

<

∫
{a1=a2}

∥∥x − T (x)
∥∥2

f1(x)P (dx) = W 2
2 (P1,Q1). �

With the uniqueness result in Theorem 2.16, the generalization of Theorem 2.13 to the two-sided case is straight-
forward.

Theorem 2.17. Consider {Pn}n, {Qn}n, P , Q ∈ F2(R
k), such that

W2(Pn,P ) → 0, W2(Qn,Q) → 0 and P 	 �k.

If P ∗
n ∈ Rα(Pn) and Q∗

n ∈ Rα(Qn) satisfy

W2
(
P ∗

n ,Q∗
n

) = W2
(

Rα(Pn), Rα(Qn)
)
,

then W2(P
∗
n ,P ∗) → 0 and W2(Q

∗
n,Q

∗) → 0, where P ∗ ∈ Rα(P ), Q∗ ∈ Rα(Q) and W2(P
∗,Q∗) = W2(Rα(P ),

Rα(Q)).

The Law of Large Numbers and the Glivenko–Cantelli Theorem assure (through a uniform integrability argument)
that when {P ω

n }n is the sequence of empirical measures based on a sequence {Xn}n of i.i.d. random vectors, with
law P ∈ F2(R

k), then W2(P
ω
n ,P ) → 0 for a.e. ω. This inmediately gives the following Law of Large Numbers for

empirical best trimmed approximations. For the sake of brevity we state only the result for the two-sided case, but it
can be trivially adapted to one-sided versions. These results allow the use of Monte-Carlo simulations to approximate
the optimal incomplete transportation plans considered in this paper.
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Theorem 2.18 (LLN for best empirical trimmings). Let {Xn}n, {Yn}n be i.i.d. r.v.’s with L(Xn) = P , L(Yn) = Q,
P,Q ∈ F2(R

k), and let P ω
n , Qω

m be the empirical distributions based on {X1(ω), . . . ,Xn(ω)} and {Y1(ω), . . . , Ym(ω)}.
Assume P or Q 	 �k and write

(Pα,Qα) := arg min
{

W2
(
P ∗,Q∗): P ∗ ∈ Rα(P ),Q∗ ∈ Rα(Q)

}
.

If P ω
n,α ∈ Rα(P ω

n ) and Qω
m,α ∈ Rα(Qω

m) satisfy W2(P
ω
n,α,Qω

m,α) = W2(Rα(P ω
n ), Rα(Qω

m)), and min(n,m) → ∞
then (

P ω
n,α,Qω

m,α

) → (Pα,Qα)

in the W2 × W2 topology for almost every ω.

3. CLT for empirical trimmed distances and applications

We will show in this section the asymptotic normality of trimmed empirical distances. We restrict ourselves to the
case of univariate data. A different, more involved approach can be used to prove a similar result in higher dimension
and will be presented in subsequent work. Hence, we assume that P and Q are probabilities on the real line with
distribution functions F and G, respectively, and write Pn and Qm for the empirical measures based on X1, . . . ,Xn

(i.i.d. r.v.’s with common law P ) and Y1, . . . , Ym (i.i.d. r.v.’s with common law Q). We will consider the following
technical assumptions:

P and Q have finite moment of order 4 + δ for some δ > 0. (12)

F has a continuously differentiable density F ′ = f such that

sup
t∈(0,1)

∣∣∣∣ t (1 − t)f ′(F−1(t))

f 2(F−1(t))

∣∣∣∣ < ∞. (13)

If Q has a density and Pα ∈ Rα(P ) is the unique trimming of P such that W2(Pα,Q) = W2(Rα(P ),Q), then the
o.t.p. between Pα and Q is given by G−1 ◦ Fα , Fα being the distribution function associated to Pα . We set then
ϕ1,α(x) := x2 − 2ϕ̃1,α(x), where ϕ̃1,α is a primitive of G−1 ◦ Fα . Finally we define

σ 2
1,α(P,Q) = 1

(1 − α)2

(∫ 1

0
ϕ2

1,α dP −
(∫ 1

0
ϕ1,α dP

)2)
= VarP

(
ϕ1,α

1 − α

)
. (14)

Observe that ϕ1,α is defined up to a constant, hence σ 2
1,α(P,Q) is well defined. Note also that σ 2

1,α(P,Q) = 0
if W2(Rα(P ),Q) = 0. Similarly, if (Pα,Qα) is the unique pair in Rα(P ) × Rα(Q) such that W2(Pα,Qα) =
W2(Rα(P ), Rα(Q)), we set ϕ2,α(x) := x2 − 2ϕ̃2,α(x), where ϕ̃2,α is a primitive of the o.t.p. between Pα and Qα ,
and define

σ 2
2,α(P,Q) = VarP

(
ϕ2,α

1 − α

)
. (15)

We set σ 2
2,α(P,Q) = 0 if W2(Rα(P ), Rα(Q)) = 0 and note that σ 2

2,α(P,Q) is not symmetric in P and Q.
We can state now the main result in this section.

Theorem 3.1. If (12) and (13) hold then
√

n
(

W 2
2

(
Rα(Pn),Q

) − W 2
2

(
Rα(P ),Q

)) →w N
(
0, σ 2

1,α(P,Q)
)
. (16)

If Q satisfies also (13) and n
n+m

→ λ ∈ (0,1) then√
nm

n + m

(
W 2

2

(
Rα(Pn), Rα(Qm)

) − W 2
2

(
Rα(P ), Rα(Q)

))
→w N

(
0, (1 − λ)σ 2

2,α(P,Q) + λσ 2
2,α(Q,P )

)
. (17)
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Before giving a proof of Theorem 3.1 we briefly discuss its application to the assessment of the similarity mod-
els (2) and (3). Both cases can be dealt with in an analogous fashion, so we focus on the two-sided model. We recall
(see the comments after Proposition 2.8) that P and Q are α-similar in the sense of (3) iff W2(Rα(P ), Rα(Q)) = 0.
With the aid of Theorem 3.1, given X1, . . . ,Xn i.i.d. P and Y1, . . . , Ym i.i.d. Q we can test the related null hypotheses

H1 : W2
(

Rα(P ), Rα(Q)
) ≤ �0 vs. W2

(
Rα(P ), Rα(Q)

)
> �0,

H2 : W2
(

Rα(P ), Rα(Q)
) ≥ �0 vs. W2

(
Rα(P ), Rα(Q)

)
< �0

for a given threshold �0 > 0 to be chosen by the practitioner. Observe that rejecting the null hypothesis H2 allows us
to conclude that, with high confidence, the unknown random generators P and Q are not far from similarity.

We should reject H2 if we observe small values of W 2
2 (Rα(Pn), Rα(Qm)). For a proper choice of how small it

should be for rejection, we note that the empirical version of (1 − λ)σ 2
2,α(P,Q) + λσ 2

2,α(Q,P ), namely,

σ 2
n,m = (1 − λn,m)σ 2

2,α(Pn,Qm) + λn,mσ 2
2,α(Qm,Pn),

where λn,m = n/(n + m), is a consistent estimator of the asymptotic variance (this can be proved with elementary
techniques, we omit details) and, therefore,

Zn,m =
√

nm/(n + m)

σn,m

(
W 2

2

(
Rα(Pn), Rα(Qm)

) − �2
0

) →w N(0,1)

under the assumptions of Theorem 3.1 if W2(Rα(P ), Rα(Q)) = �0. Clearly Zn,m → ∞ if W2(Rα(P ),

Rα(Q)) > �0 and Zn,m → −∞ if W2(Rα(P ), Rα(Q)) < �0. Thus, rejecting when

W 2
2

(
Rα(Pn), Rα(Qm)

) ≤ �0 + σn,m√
nm/(n + m)

�−1(β),

where β ∈ (0,1) and � is the standard normal d.f., gives a test of asymptotic level β for H2.
We show in Table 1 the results of a small simulation study about the performance of the latter test. We have

generated data from two distributions differing in location (P1 = N(0,1), Q1 = N(2,1)) or one being a contaminated
version of the other (P2 = N(0,1), Q2 = 0.8N(0,1)+0.2N(5,1)). We have considered different values of the sample
sizes n = m and different values of the threshold �2

0. In each case we have generated 1000 replicates of Zn,m and we
show the observed rejection frequencies for the above described test with a nominal level β = 0.05. We include in
the upper row the value of the true trimmed distance W 2

2 = W 2
2 (Rα(Pi), Rα(Qi)). We observe that when �0 = W 2

2
the observed frequencies show a good agreement to the nominal level β = 0.05, even very good for larger values of
W 2

2 . We also see that the rejection frequency is very low when W 2
2 exceeds the threshold, which means that, even for

samples of small size, we are very unlikely to conclude approximate similarity of P and Q (rejection of H2) when it
is not close to being true.

For illustration on the extensions of Theorem 3.1 to higher dimension we include in Table 2 a second simulation
study in which data come from P = Nk(0, Ik), the standard k-dimensional normal law, and Q, obtained from P by a
shift in location (of length 2). Here k = 2, . . . ,6, n = m = 100,200,500 and α = 0.05.

In higher dimension the centering constant W 2
2 (Rα(P ), Rα(Q)) in Theorem 3.1 has to change, and Ŵ 2

2 denotes the
bias-corrected centering. Again the nominal level is β = 0.05. We see that our conclusions are not much affected by the
dimensionality, and the agreement with respect to the nominal level is good. We should say that the dimensionality
does have an impact on the order of the bias, but we expect that a bootstrap correction could help to extend our
procedure for testing H2 with multivariate data.

We turn now to the proof of Theorem 3.1. With respect to the two sided case, if W2(Rα(P ), Rα(Q)) = 0 then we
can take P0 ∈ Rα(P ) ∩ Rα(Q) and, then

W2
(

Rα(Pn), Rα(Qn)
) ≤ W2

(
Rα(Pn),P0

) + W2
(

Rα(Qn),P0
)
.

Hence, if we prove (16), the statement (17) when W2(Rα(P ), Rα(Q)) = 0 will be also proved. On the other hand,
the CLT for the one-sided and the two-sided trimmed distances when W2(Rα(P ), Rα(Q)) > 0 can be proved with
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Table 1
Simulated power of W 2

2 (Rα(Pn), Rα(Qn)) for H2 with β = 0.05

P1, Q1; α = 0.05 P1, Q1; α = 0.1 P2, Q2; α = 0.05 P2, Q2; α = 0.1
W 2

2 � 3.21 W 2
2 � 2.64 W 2

2 � 1.58 W 2
2 � 0.74

�2
0 n Freq. �2

0 n Freq. �2
0 n Freq. �2

0 n Freq.

2.50 50 0.002 2.00 50 0.005 0.50 50 0.008 0.25 50 0.052
100 0.001 100 0.001 100 0.001 100 0.016
200 0.000 200 0.000 200 0.000 200 0.003
500 0.000 500 0.000 500 0.000 500 0.000

3.00 50 0.033 2.50 50 0.042 1.00 50 0.031 0.50 50 0.094
100 0.024 100 0.040 100 0.009 100 0.055
200 0.013 200 0.023 200 0.003 200 0.024
500 0.006 500 0.008 500 0.000 500 0.003

3.21 50 0.058 2.64 50 0.061 1.58 50 0.083 0.74 50 0.140
100 0.068 100 0.065 100 0.079 100 0.100
200 0.062 200 0.066 200 0.091 200 0.096
500 0.054 500 0.054 500 0.060 500 0.069

3.50 50 0.114 3.00 50 0.155 2.00 50 0.157 1.00 50 0.211
100 0.155 100 0.194 100 0.193 100 0.200
200 0.221 200 0.309 200 0.273 200 0.245
500 0.347 500 0.511 500 0.405 500 0.326

4.00 50 0.276 3.50 50 0.357 2.50 50 0.276 1.50 50 0.346
100 0.427 100 0.538 100 0.386 100 0.417
200 0.686 200 0.800 200 0.583 200 0.630
500 0.950 500 0.986 500 0.865 500 0.886

Table 2
Simulated power of W 2

2 (Rα(Pn), Rα(Qn)) in R
k for H2 with β = 0.05

k = 2 k = 3 k = 4 k = 5 k = 6

�2
0 Freq. �2

0 Freq. �2
0 Freq. �2

0 Freq. �2
0 Freq.

2.5 0.001 2.5 0 3.0 0 3.5 0 4.0 0
0 0 0.001 0 0
0 0 0 0 0

3.0 0.010 3.0 0.001 3.5 0.002 4.0 0 4.5 0
0.008 0 0.001 0.001 0
0.003 0.001 0.004 0.004 0.001

Ŵ 2
2 0.064 Ŵ 2

2 0.071 Ŵ 2
2 0.070 Ŵ 2

2 0.074 Ŵ 2
2 0.053

0.051 0.070 0.055 0.064 0.058
0.058 0.052 0.051 0.059 0.059

4.0 0.323 4.5 0.413 5.0 0.369 6.0 0.566 7.0 0.661
0.568 0.781 0.841 0.976 0.992
0.919 0.997 1 1 1

4.5 0.668 5.0 0.723 5.5 0.698 6.5 0.832 7.50 0.896
0.912 0.983 0.984 1 0.999
0.999 1 1 1 1

completely similar arguments, hence, for the sake of brevity we will only prove the result for the one-sided case. Our
approach is based on a empirical trimming process that we introduce next:

Vn(h) = √
n
(

W 2
2

(
(Pn)h,Q

) − W 2
2 (Ph,Q)

)
, h ∈ Cα. (18)



372

Here we are using the parametrization of Example 2.3. We define also

V(h) = 2
∫ 1

0

B(t)

f (F−1(t))

(
F−1(t) − G−1(h(t)

))
h′(t)dt, h ∈ Cα, (19)

where B(t) is a Brownian bridge on (0,1). Note that {V(h)}h∈Cα
is a centered Gaussian process with covariance

function

K(h1, h2) = 4
∫ 1

0
l1(t)l2(t)dt − 4

∫ 1

0
l1(t)dt

∫ 1

0
l2(t)dt, h1, h2 ∈ Cα,

where

li (t) =
∫ F−1(t)

F−1(1/2)

(
x − G−1(hi

(
F(x)

)))
h′

i

(
F(x)

)
dx, i = 1,2.

This follows from noting that, after integration by parts, V(hi) = −2
∫ 1

0 li (t)dB(t). It is an easy exercise to show that
li is square integrable provided (12) and (13) hold.

The main result regarding Vn is the following.

Theorem 3.2. If (12) and (13) hold then V is a tight, Borel measurable map into �∞(Cα) and Vn converges weakly
to V in �∞(Cα).

Proof. We set ρn(t) = √
nf (F−1(t))(F−1

n (t)−F−1(t)) (the weighted quantile process). A little rewriting shows that

Vn(h) = 2
∫ 1

0

ρn(h
−1(t))

f (F−1(h−1(t)))

(
F−1(h−1(t)

) − G−1(t)
)

dt + 1√
n

∫ 1

0

ρ2
n(h−1(t))

f 2(F−1(h−1(t)))
dt.

We can assume w.l.o.g. (Theorem 6.2.1 in [10]) that {Xn}n are defined in a sufficiently rich probability space in which
there exist Brownian bridges Bn satisfying

n1/2−ν sup
1/n≤t≤1−1/n

|ρn(t) − Bn(t)|
(t (1 − t))ν

=
{

OP (logn), if ν = 0,
OP (1), if 0 < ν ≤ 1/2.

(20)

We define also Nn(h) = 2
∫ 1−1/n

1/n
Bn(t)

f (F−1(t))
(F−1(t) − G−1(h(t)))h′(t)dt and note that

‖Vn − Nn‖Cα
:= sup

h∈Cα

∣∣Vn(h) − Nn(h)
∣∣

≤ 1

(1 − α)
√

n

∫ 1

0

ρ2
n(t)

f 2(F−1(t))
dt

+ 2

1 − α

(∫ 1/n

0

ρ2
n(t)

f 2(F−1(t))
dt

)1/2(∫ 1/n

0

(
F−1(t)

)2 dt +
∫ 1/(1−α)n

0

(
G−1(t)

)2 dt

)1/2

+ 2

1 − α

(∫ 1

1−1/n

ρ2
n(t)

f 2(F−1(t))
dt

)1/2(∫ 1

1−1/n

(
F−1(t)

)2
dt +

∫ 1

1−1/(1−α)n

(
G−1(t)

)2
dt

)1/2

+ 2 sup
h∈Cα

∣∣∣∣
∫ 1−1/n

1/n

ρn(t) − Bn(t)

f (F−1(t))

(
F−1(t) − G−1(h(t)

))
h′(t)dt

∣∣∣∣
=: An,1 + An,2 + An,3 + An,4.

Now, (12) and Lemma 3.3 below imply An,i →Pr 0, i = 1,2,3. From (20) we get

sup
h∈Cα

∣∣∣∣
∫ 1−1/n

1/n

ρn(t) − Bn(t)

f (F−1(t))
F−1(t)h′(t)dt

∣∣∣∣ ≤ OP (1)

n1/2−ν

∫ 1−1/n

1/n

(t (1 − t))ν

f (F−1(t))

∣∣F−1(t)
∣∣dt (21)
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for ν ∈ (0,1/2). If F has finite moment of order 4 + δ we can take ν ∈ (2/(4 + δ),1/2), ensuring that∫ 1
0

(t (1−t))ν

f (F−1(t))
|F−1(t)|dt < ∞ and, consequently that the right-hand side in (21) vanishes in probability. Similarly,

using Hölder’s inequality we get

sup
h∈Cα

∣∣∣∣
∫ 1−1/n

1/n

ρn(t) − Bn(t)

f (F−1(t))
G−1(h(t)

)
h′(t)dt

∣∣∣∣ (22)

≤ OP (1)

n1/2−ν

(∫ 1

0

∣∣G−1(t)
∣∣q dt

)1/q(∫ 1−1/n

1/n

(t (1 − t))pν

f p(F−1(t))
dt

)1/p

for p and q such that 1
p

+ 1
q

= 1. We choose q > 4 such that F and G have finite moment of order q . Then we will
have that the right-hand side of (22) vanishes in probability if we show that

1

np(1/2−ν)

∫ 1−1/n

1/n

(t (1 − t))pν

f p(F−1(t))
dt → 0. (23)

But taking ν = 1
q

(which implies ν < 1
4 ) we obtain (23) from Lemma 3.3.

Now, combining (21), (22) and (23) we have that An,4 → 0 in probability. Therefore ‖Vn − Nn‖Cα
→ 0 in proba-

bility. In fact, arguing as above we can show that ‖Vn − Ñn‖Cα
→ 0 in probability, where

Ñn(h) = 2
∫ 1

0

Bn(t)

f (F−1(t))

(
F−1(t) − G−1(h(t)

))
h′(t)dt.

Hence, to end the proof we have to show that V is tight, which amounts to showing that Ñn is uniformly d-
equicontinuous in probability for some metric d for which Cα is totally bounded (see Theorems 1.5.7 and 1.10.2
in [23]). We take d to be the uniform norm in Cα (for this choice Cα is indeed compact) and note that we have to prove
that for any given ε, η > 0 there exists δ > 0 such that

P
(

sup
‖h1−h2‖∞<δ

∣∣V(h1) − V(h2)
∣∣ > ε

)
< η.

From Markov’s inequality and compactness we see that it is enough to show that the map

h �→ E
∣∣V(h)

∣∣
is ‖ · ‖∞-continuous. We take hn,h0 ∈ Cα such that ‖hn − h0‖∞ → 0. After a change of variable we can write

V(hn) = 2
∫ 1

0

B(h−1
n (y))

f (F−1(h−1
n (y)))

(
F−1(h−1

n (y)
) − G−1(y)

)
dy =:

∫ 1

0
zn(y)dy.

From (13) we have continuity of F−1(x)/f (F−1(x)), which together with continuity of the trajectories of the Brown-
ian bridge and the fact that h−1

n (y) → h−1
0 (y) for almost every y shows that zn(y) → z0(y) for almost every y ∈ (0,1).

Continuity and the dominated convergence theorem yield that
∫
hn(δ)<y≤hn(1−δ)

zn(y)dy → ∫
h0(δ)<y≤h0(1−δ)

z0(y)dy

almost surely for δ ∈ (0, 1
2 ). Note that

∫
y≤hn(δ)

|B(h−1
n (y))|

f (F−1(h−1
n (y)))

∣∣F−1(h−1
n (y)

)∣∣dy ≤ 1

1 − α

∫ δ

0

|B(x)|
f (F−1(x))

∣∣F−1(x)
∣∣dx

and the last upper bound can be made arbitrarily small for small δ since the fourth moment assumption on F ensures
that |B(x)|

f (F−1(x))
|F−1(x)| is integrable. Similarly, taking q > 4 such that both F and G have finite moment of order q

and p such that 1
p

+ 1
q

= 1 we have

∫
y≤hn(δ)

|B(h−1
n (y))|

f (F−1(h−1
n (y)))

∣∣G−1(y)
∣∣dy ≤

(∫ δ

0

|B(x)|p
f p(F−1(x))

dx

)1/p(
1

(1 − α)q−1

∫ 1

0

∣∣G−1(y)
∣∣q dy

)1/q

.
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Lemma 3.3 shows that |B(x)|p
f p(F−1(x))

|F−1(x)| is integrable and we can also control the last upper bound. With the same
argument we can deal with the integral at 1 and this shows that V(hn) → V(h0) almost surely if ‖hn − h0‖∞ → 0.
V(hn) being Gaussian random variables, this implies that E|V(hn)| → E|V(h0)| and completes the proof. �

The following technical result has been used in the proof of Theorem 3.2. Its proof is elementary and we omit it.

Lemma 3.3. If F has finite moment of order 4 then:

(i)
√

n
∫ 1/n

0 (F−1(t))2 dt → 0;
√

n
∫ 1

1−1/n
(F−1(t))2 dt → 0.

(ii)
√

n
∫ 1/n

0 (F−1
n (t))2 dt → 0;

√
n

∫ 1
1−1/n

(F−1
n (t))2 dt → 0 in probability.

Further, if F satisfies (13), then:

(iii)
√

x
∫ 1−x

x
t (1−t)

f 2(F−1(t))
dt → 0 as x → 0.

(iv) If F has finite moment of order q > 4 and 1
p

+ 1
q

= 1 then

xp/2−p/q

∫ 1−x

x

(t (1 − t))p/q

f p(F−1(t))
dt → 0

as x → 0. We also have∫ 1

0

(t (1 − t))p/2

f p(F−1(t))
dt < ∞

(v)
√

n
∫ 1

0 (F−1
n (t) − F−1(t))2 dt → 0 in probability.

The proof of Theorem 3.1 will now follow easily.

Proof of Theorem 3.1. Let Pn,α , Pα be the best α trimmings of Pn and P , respectively, for Q. Then Pn,α = (Pn)hn,α

and Pα = Phα for some hn,α, hα ∈ Cα . Uniqueness of Pα and (13) ensure that hα is also unique. From Theorem 2.18
we have W2(Pn,α,Pα) → 0 which implies ‖hn,α ◦Fn −hα ◦F‖∞ → 0 and, since ‖hn,α −hα‖∞ ≤ ‖hn,α ◦Fn −hα ◦
F‖∞ + 1

1−α
‖Fn − F‖∞ we also have ‖hn,α − hα‖∞ → 0.

Observe next that the variance of V(hα) is 4(
∫ 1

0 l2(t)dt − (
∫ 1

0 l(t)dt)2), where, for some constants Ci

2l
(
F(x)

) = 2
∫ x

C1

(
y − G−1(hα

(
F(y)

)))
h′

α

(
F(y)

)
dy = 2

∫ x

C1

(
y − G−1(Fα(y)

))dPα

dP
(y)dy + C2

= 2

1 − α

∫ x

C1

(
y − G−1(Fα(y)

))
dy + C2,

where the last equality follows from the fact that, if (1 − α) dPα

dP
(y) ∈ (0,1) then G−1(Fα(y)) = y a.s. (this can be

shown with the same proof of Theorem 2.15). As a consequence, V(hα) is centered normal with variance σ 2
1,α(P,Q).

Now,
√

n
(

W 2
2 (Pn,α,Q) − W 2

2 (Pα,Q)
) = √

n
(

W 2
2

(
(Pn)hn,α ,Q

) − W 2
2

(
(Pn)hα ,Q

)) + Vn(hα).

Hence, by Theorem 3.2 it suffices to show that
√

n(W 2
2 ((Pn)hn,α ,Q) − W 2

2 ((Pn)hα ,Q)) vanishes in probability. To
check this, observe that, by optimality

√
n
(

W 2
2

(
(Pn)hn,α ,Q

) − W 2
2

(
(Pn)hα ,Q

)) ≤ 0. (24)

On the other hand
√

n
(

W 2
2

(
(Pn)hn,α ,Q

) − W 2
2

(
(Pn)hα ,Q

)) − √
n
(

W 2
2 (Phn,α ,Q) − W 2

2 (Phα ,Q)
)

= Vn(hn,α) − Vn(hα).
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Since ‖hn,α − hα‖∞ → 0 a.s., asymptotic equicontinuity yields that Vn(hn,α) − Vn(hα) → 0 in probability, while

√
n
(

W 2
2 (Phn,α ,Q) − W 2

2 (Phα ,Q)
) ≥ 0, (25)

again by optimality. Thus, combining (24) and (25) we conclude that
√

n(W 2
2 ((Pn)hn,α ,Q) − W 2

2 ((Pn)hα ,Q)) → 0
in probability and complete the proof. �
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