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NETWORK STABILITY UNDER MAX–MIN FAIR
BANDWIDTH SHARING

BY MAURY BRAMSON1

University of Minnesota

There has recently been considerable interest in the stability of differ-
ent fair bandwidth sharing policies for models that arise in the context of
Internet congestion control. Here, we consider a connection level model, in-
troduced by Massoulié and Roberts [Telecommunication Systems 15 (2000)
185–201], that represents the randomly varying number of flows present in a
network. The weighted α-fair and weighted max–min fair bandwidth sharing
policies are among important policies that have been studied for this model.
Stability results are known in both cases when the interarrival times and ser-
vice times are exponentially distributed. Partial results for general service
times are known for weighted α-fair policies; no such results are known for
weighted max–min fair policies. Here, we show that weighted max–min fair
policies are stable for subcritical networks with general interarrival and ser-
vice distributions, provided the latter have 2 + δ1 moments for some δ1 > 0.
Our argument employs an appropriate Lyapunov function for the weighted
max–min fair policy.

1. Introduction. We consider a connection level model for Internet conges-
tion control that was first studied by Massoulié and Roberts [9]. This stochastic
model represents the randomly varying number of flows in a network for which
bandwidth is dynamically shared among flows that correspond to the transfer of
documents along specified routes. Standard bandwidth sharing policies are the
weighted α-fair, α ∈ (0,∞), and the weighted max–min fair policies. An impor-
tant example of the former is the proportionally fair policy, which corresponds to
α = 1. The weighted max–min fair policy corresponds to α = ∞. These policies
allocate service uniformly to documents along a given route, and allocate service
amongst different routes in a “fair” manner. A question of considerable interest is
when such policies are stable.

De Veciana, Lee and Konstantopoulos [5] studied the stability of weighted max–
min fair and proportionally fair policies; Bonald and Massoulié [2] studied the sta-
bility of weighted α-fair policies. Both papers assumed exponentially distributed
interarrival and service times for documents. The first condition is equivalent to
Poisson arrivals, and the second condition corresponds to exponentially distrib-
uted document sizes with documents processed at a constant rate. Both papers
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constructed Lyapunov functions which imply the stability of such models when
the models are subcritical, that is, the underlying Markov process is positive Har-
ris recurrent when the average load at each link is less than its capacity.

Relatively little is currently known regarding the stability of subcritical net-
works with general interarrival and service times. Massoulié [8] showed stability
for the proportionally fair policy for exponentially distributed interarrival times
and general service times that are of phase type. A suitable Lyapunov function
was employed to show stability.

The stability problem for bandwidth sharing policies is in certain aspects similar
to the analogous problem for multiclass queueing networks. A significant compli-
cation that arises in the context of bandwidth sharing policies is the requirement of
simultaneous service of documents at all links along a route. This can reduce the
efficiency of service, and complicates analysis when the interarrival and service
times are not exponentially distributed.

When the interarrival and service times are exponentially distributed, finer re-
sults are possible. In Kang et al. [7], a diffusion approximation is established un-
der weighted proportionally fair policies. There and in Gromoll and Williams [6],
summaries and a more detailed bibliography are provided for different bandwidth
sharing policies, for both exponentially distributed and more general interarrival
and service times.

Here, we investigate the behavior of weighted max–min fair policies for sub-
critical networks whose interarrival and service times have general distributions.
We show that such networks are stable, provided that the service distributions have
2 + δ1 moments for some δ1 > 0. No conclusion is reached when fewer moments
exist. As in previous papers on stability, we construct a suitable Lyapunov func-
tion. Because of the more general framework here, the Markov process underlying
the model will now have a general state space, and will require the machinery
associated with positive Harris recurrence.

We next give a more detailed description of the model we consider, after which
we state our main results. We then provide some basic motivation behind their
proof together with a summary of the remainder of the paper.

Description of the model. In the model we consider, documents are assumed
to arrive at one of a finite number of routes r ∈ R according to independent re-
newal processes, with interarrival times denoted by ξr(1), ξr(2), . . . . Here, ξr(1)

are the initial residual interarrival times, and are considered part of the initial state.
The remaining variables ξr(2), ξr(3), . . . are assumed to be i.i.d. with mean 1/νr ,
νr > 0, for each r , with the sequences being independent of one another; ξr will
denote a random variable with the corresponding distribution. The service times
of documents are assumed to be independent of one another and of the interarrival
times, and have distribution functions Hr(·) with means mr < ∞. The initial state
will include the residual service times of documents initially in the network.
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On each route r , there are a finite number of links l, where service is allocated
to the documents on the route. For the models considered in [2, 5, 8] and [9],
documents on a route r receive service simultaneously at all links l on the route,
with all such documents being allocated the same rate of service λr at all such links
at a given time. Associated with such a network is an incidence matrix A = (Al,r ),
l ∈ L, r ∈ R, with Al,r = 1 if link l lies on route r and Al,r = 0 otherwise. When
Al,r = Al,r ′ = 1, with r �= r ′, the routes r and r ′ share a common link.

Setting zr equal to the number of documents on route r , �r = λrzr denotes the
rate of service allocated to the totality of all documents on the route. Each link l

is assumed to have a given bandwidth capacity cl > 0. A feasible policy requires
that this capacity not be exceeded, namely∑

r∈R
Al,r�r ≤ cl for all l ∈ L.(1.1)

Denoting by � = (�r) and c = (cl) the corresponding column vectors, this is
equivalent to A� ≤ c, with the inequality being interpreted coordinatewise.

None of the results in this paper relies on the restriction that either Al,r = 1
or Al,r = 0. Here, we continue to assume that (1.1) is satisfied, for given A, but
with the weaker assumption Al,r ≥ 0. Under this new setup, each link may be
interpreted as belonging to every route. A given link l now allocates the same
rate of service �r to each route r , which utilizes this service at rate Al,r . For
Al,r ∈ [0,1], Al,r may be interpreted as the proportion of this potential service
that is actually utilized at link l by route r .

The traffic intensity ρr = νrmr measures the average rate over time at which
work enters a route r . We say a network is subcritical if∑

r∈R
Al,rρr < cl for all l ∈ L,(1.2)

or, in matrix form, Aρ < c, where ρ = (ρr) is the corresponding column vector.
This corresponds to the definition of subcriticality that is employed in the context
of queueing networks, where the load at each station (here, load at each link) is
strictly less than its capacity. Condition (1.2) is needed for stability. It is assumed
in, for example, [2, 5] and [8].

The α-fair and max–min fair policies are examples of feasible policies for which
the allocation of service to documents at a given time is determined by the vector
z = (zr); the weighted α-fair and max–min fair policies are defined analogously,
but with a weight wr > 0 assigned to route r . We do not define α-fair here, or,
in particular, proportionally fair, referring the reader to the previous references.
Weighted max–min fair (WMMF) is defined as a feasible policy that, at each time,
allocates service so that

min
r∈R′{λr/wr} is maximized,(1.3)
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among nonempty routes R′. That is, the minimum amount of weighted service
each document receives is maximized, on r with zr > 0, subject to the constraint
(1.1).

As defined above, a WMMF policy always exists, although it need not be
unique, since there may be some flexibility in allocating service among those
routes where documents are receiving more than the minimal amount of service.
Since our results apply to all such policies, we will not bother to select a “best”
member that, for instance, maximizes service on the routes that are already re-
ceiving more than the minimum service. Such a “best” policy can be obtained
by solving a hierarchy of optimization problems, as mentioned above display (2)
in [5]. [By employing the convexity that is inherent in the constraint (1.1), it is
routine to verify the existence of such policies.]

Since the vector z of documents changes as time evolves, so will the alloca-
tion of service. From this point on, we reserve the notation λr(t) and �r(t) for
the allocation of service for a WMMF policy at time t . We find it useful to also
introduce

λw(t) = min
r∈R′{λr(t)/wr}(1.4)

with (1.3) in mind. Between arrivals and departures of documents, λ(·) = (λr(·))
and λw(·) will be constant; we specify that they be right continuous with left limits.

The state of the network evolves over time as documents arrive in the net-
work, are served, and then depart. For networks with exponentially distributed
interarrival and service times and an assigned policy, z = (zr) suffices to describe
its state. As with queueing networks, one needs to specify the residual interar-
rival and service times in general. With this in mind, we employ the notation
zr(Br) to denote the number of documents on route r that have residual service
times in Br ⊆ R

+, and ur to denote the residual interarrival time for r , with
z(B) = (zr(Br)), B = (Br), and u = (ur) denoting the corresponding vectors. Set-
ting

x = (z(·), u),(1.5)

the state x contains this information. We will employ X(t),Z(t, ·) and U(t) for the
corresponding random states at time t . The natural metric space S that corresponds
to the states x is no longer discrete. We will describe S in more detail in Section 2.

One can specify a Markov process X(·) on S that corresponds to the network
with the assigned WMMF policy. The process X(·) is constructed in the same
manner as is its analog for a queueing network. More detail is again given in Sec-
tion 2. We note here that since S is not discrete, the notion of positive recurrence
needs to be replaced by that of positive Harris recurrence. When X(·) is positive
Harris recurrent, we will say that the network is stable.

In order to demonstrate positive Harris recurrence for X(·), we will define, in
Section 3, an appropriate nonnegative function, or norm, ‖x‖, for x ∈ S. It is de-
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fined in terms of the norms |x|L, |x|R and |x|A, by

‖x‖ = |x|L + |x|R + |x|A.(1.6)

Without going into detail here, we note that |x|L and |x|R are defined from z(·),
where |x|L, in essence, measures residual service times smaller than N , for a given
large N , |x|R measures residual service times greater than N , and |x|A is a function
of the largest residual interarrival time. (When a distribution function Hr has a thin
enough tail, we actually replace N by a smaller value NHr that depends on Hr .)
As one should expect, as either the total number of documents

∑
r zr → ∞ or

|u| → ∞, then ‖x‖ → ∞.

Main results. We now state our two main results.

THEOREM 1.1. Suppose that a subcritical network with a weighted max–min
fair policy has interarrival times with finite means and service times with 2 + δ1

moments, δ1 > 0. For the norm in (1.6), and appropriate N,L and ε1 > 0,

Ex[‖X(N3)‖] ≤ (‖x‖ ∨ L) − ε1N
2 for all x ∈ S.(1.7)

Inequality (1.7) states that, for large ‖x‖, X(·) has an average negative drift
over [0,N3] that is at least of order 1/N . This rate will be a consequence of the
application of N in the construction of the norm |x|L that appears in (1.6).

The reader will recognize (1.7) as a version of Foster’s criterion. It will imply
the positive Harris recurrence of X(·), provided that the states in S communicate
with one another in an appropriate sense. Petite sets are typically employed for
this purpose; they will be defined in Section 2. A petite set A has the property that
each measurable set B is “equally accessible” from all points in A with respect to
a given measure.

THEOREM 1.2. Suppose that a subcritical network with a weighted max–min
fair policy has interarrival times with finite means and service times with 2 + δ1

moments, δ1 > 0. Also, suppose that AL = {x :‖x‖ ≤ L} is petite for each L > 0,
for the norm in (1.6). Then, X(·) is positive Harris recurrent.

Theorem 1.2 will follow from Theorem 1.1 by standard reasoning. More detail
is given in Section 2.

A standard criterion that ensures the above sets AL are petite is given by the
following two conditions on the interarrival times. The first condition is that the
distribution of ξr(2) is unbounded for all r , that is,

P
(
ξr(2) ≥ s

)
> 0 for all s.(1.8)
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The second condition is that, for some lr ∈ Z
+, the (lr − 1)-fold convolution of

ξr(2) and Lebesque measure are not mutually singular. That is, for some nonneg-
ative qr(·) with

∫∞
0 qr(s) ds > 0,

P
(
ξr(2) + · · · + ξr(lr ) ∈ [c, d]) ≥

∫ d

c
qk(s) ds(1.9)

for all c < d . When the interarrival times are exponentially distributed, both (1.8)
and (1.9) are immediate. More detail is given in Section 2.

We therefore have the following corollary of Theorem 1.2.

COROLLARY 1.1. Suppose that a subcritical network with a weighted max–
min fair policy has interarrival times with finite means that satisfy (1.8) and (1.9),
and service times with 2 + δ1 moments, δ1 > 0. Then, X(·) is positive Harris re-
current.

Outline of the paper and main ideas. In Section 2, we will provide a brief
background of Markov processes and will summarize the construction of the space
S and Markov process X(·) described above. We will also provide background that
will be employed to derive Theorem 1.2 from Theorem 1.1 and to obtain Corol-
lary 1.1. The machinery for this is standard in the context of queueing networks;
we explain there the needed modifications.

The remainder of the paper is devoted to the demonstration of Theorem 1.1.
(One minor result, Proposition 3.1, is needed for Theorem 1.2.) In Section 3, we
will specify the norms | · |L, | · |R and | · |A that define ‖ · ‖ in (1.6). Employing
bounds on these three norms that will be derived in Sections 4, 5 and 10, we obtain
the conclusion (1.7) of Theorem 1.1.

For large ‖x‖, at least one of the norms |x|V , with V equal to L,R or A, must
also be large. When |x|V is large for given V , it will follow that Ex[|X(N3)|V ] −
|x|V is sufficiently negative so that (1.7) will hold.

The analysis for | · |A is straightforward and is done in Section 4. The behav-
ior of Ex[|X(N3)|R] − |x|R is analyzed in Section 5. The remaining five sections
are devoted to analyzing Ex[|X(N3)|L] − |x|L. In the last two cases, one needs to
reason that, in an appropriate sense, the decrease in residual service times of exist-
ing documents more than compensates for the increase due to arriving documents,
thus producing a net negative drift.

For such an analysis, it makes sense to decompose the process X(·) into pro-
cesses X̃(·) and XA(·), with

X(t) = X̃(t) + XA(t) for all t.

The process X̃(t) is obtained from X(t) by retaining only those documents, the
original documents, that were initially in the network, and XA(t) consists of the
remaining documents. Neither X̃(·) nor XA(t) is Markov. One defines Z̃(t,B) and
ZA(t,B) analogously to Z(t,B).
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Because of the WMMF policy, all documents that remain on a route r , over
the time interval [0, t], receive the same service 
r(t), with 
r(t) = ∫ t

0 λr(t
′) dt ′.

Consequently,

Z̃r (t,B) = zr

(
B + 
r(t)

)
for t ≥ 0, r ∈ R,B ⊆ R

+.(1.10)

The norms | · |L and | · |R will be defined so that documents with greater resid-
ual service times contribute more heavily to the norms. On account of (1.10),
|X̃(t)|L and |X̃(t)|R will therefore decrease over time; one can also obtain up-
per bounds on |XA(t)|L and |XA(t)|R . One can use this to obtain a negative net
drift on Ex[|X(N3)|L] − |x|L and Ex[|X(N3)|R] − |x|R , as mentioned earlier.

Only limited use of inequalities arising from (1.10) is needed in Section 5 for
| · |R . More detailed versions are needed for | · |L, which are presented in the first
part of Section 6.

In Section 6, we also introduce the sets A(t), along which we will be able to
obtain good pathwise upper bounds on |XA(t)|L. We show in Section 6, by using
elementary large deviation estimates, that the probabilities of the complements
A(t)c are small enough so that

Ex[|X(N3)|L − |x|L; A(N3)c]
is negligible with respect to Ex[|X(N3)|L] − |x|L.

Sections 7–10 analyze the behavior of |X(N3)|L on A(N3). Section 7 consid-
ers the contribution to |X(N3)|L of residual times s > NHr ; NHr was mentioned
parenthetically after (1.6) and satisfies NHr ≤ N . Sections 8 and 9 consider the
contribution to |X(N3)|L of residual times s ≤ NHr . In Section 8, this is done for

r(N

3) > 1/b3, for given r , with the constant b introduced in (3.3). Here, ser-
vice of individual documents is intense enough to provide straightforward upper
bounds for |X(N3)|L − |x|L.

Section 9 considers the case with 
r(N
3) ≤ 1/b3. This is the only place in the

paper where the subcriticality of the network is employed; estimation for |X(N3)|L
must therefore be more precise. The short Section 10 combines the results of Sec-
tions 6–9 to give the desired bounds on Ex[|X(N3)|L] − |x|L.

Notation. For the reader’s convenience, we list here some of the notation in
the paper, part of which has already been employed. We set H̄r(s) = 1 − Hr(s);
quantities such as H̄ ∗

r (s) and �̄∗
r (s), are defined analogously in terms of H ∗

r (s)

and �∗
r (s), which will be introduced later on. The term x indicates a state in S and

the corresponding term X(t) indicates a random state at time t ; z(·) and Z(t, ·),
and u and U(t) play analogous roles. We will abbreviate 
r = 
r(N

3) and set
ir (s) = s + 
r ; ir (s) is the initial residual service time of an original document
that has residual service time s at time N3. We employ C1,C2, . . . and ε1, ε2, . . .

for different positive constants that appear in our bounds, whose precise values are
unimportant. The symbols Z

+ and R
+ denote the positive integers and positive
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real numbers, and Z
+,0 = Z

+ ∪ {0}; �y� and �y� denote the integer part of y ∈ R
+

and the smallest integer n with n ≥ y; and c ∨ d and c ∧ d denote the greater
and smaller value of c, d ∈ R. The acronyms LHS and RHS will stand for “left-
hand side” and “right-hand side” when referring to equations or inequalities. Since
the paper is devoted to demonstrating Theorems 1.1 and 1.2, we will implicitly
assume that the network under consideration has a WMMF policy, except when
stated otherwise, and that the moment conditions on the interarrival and service
times given in Theorem 1.1 hold. We assume the network is subcritical only when
explicitly stated.

2. Markov process background. In this section, we provide a more detailed
description of the construction of the Markov process X(·) that underlies a WMMF
network. We then show how Theorem 1.2 and its corollary follow from Theo-
rem 1.1. Analogs of this material for queueing networks are given in Bramson [1].
Because of the similarity of the two settings, we present a summary here and refer
the reader to [1] for additional detail.

Construction of the Markov process. As in (1.5), we define the state space
S to be the set of pairs x = (z(·), u), where z(·) = (zr(·)) and zr(·) is a counting
measure that maps B ⊆ R

+ to Z
+,0, and u = (ur), r ∈ R, has positive components.

Here, z(·) corresponds to the residual service times of documents and u to the
residual interarrival times. (One could, as in (4.1) of [1], distinguish documents
based on their “age,” which is not needed here.)

For the purpose of constructing a metric d(·, ·) on S, we assign to each docu-
ment the pair (ri, si), i = 1,2, . . . , where ri ∈ {1, . . . , |R|} denotes its route and
si > 0 its residual service time. Documents are ordered so that s1 ≤ s2 ≤ · · · ,
with the decision for ties being made based on a given ordering of the routes.
When i exceeds the number of documents belonging to x, we assign the value
(ri, si) = (0,0). For x, x′ ∈ S, with the coordinates labeled correspondingly, we
set

d(x, x′) =
∞∑
i=1

(
(|ri − r ′

i | + |si − s′
i |) ∧ 1

)+∑
r

|ur − u′
r |.(2.1)

One can check that d(·, ·) is separable and locally compact. (See page 82 of [1]
for details.) We equip S with the standard Borel σ -algebra inherited from d(·, ·),
which we denote by S . In Proposition 3.1, we will show | · |L, | · |R and | · |A are
continuous in d(·, ·).

The Markov process X(t) = (Z(t, ·),U(t)) underlying the network, with Z(t, ·)
and U(t) taking values z(·) and u as above, is defined to be the right continuous
process whose evolution is determined by the assigned WMMF policy. Documents
are allocated service according to the rates λr(·), which are constant in between
arrivals and departures of documents on routes. Upon an arrival or departure, rates



1134 M. BRAMSON

are re-assigned according to the policy. We note that this procedure is not policy
specific, and also applies to α-fair policies. By modifying the state space descriptor
to contain more information, one could also include more general networks.

Along the lines of page 85 of [1], a filtration (Ft ), t ∈ [0,∞], can be assigned to
X(·) so that X(·) is Borel right and, in particular, is strong Markov. The processes
X(·) fall into the class of piecewise-deterministic Markov processes, for which the
reader is referred to Davis [4] for more detail.

Recurrence. The Markov process X(·) is said to be Harris recurrent if, for
some nontrivial σ -finite measure ϕ,

ϕ(B) > 0 implies Px(ηB = ∞) = 1 for all x ∈ S,

where ηB = ∫∞
0 1{X(t) ∈ B}dt . If X(·) is Harris recurrent, it possesses a station-

ary measure π that is unique up to a constant multiple. When π is finite, X(·) is
said to be positive Harris recurrent.

A practical condition for determining positive Harris recurrence can be given
by using petite sets. A nonempty set A ∈ S is said to be petite if for some fixed
probability measure a on (0,∞) and some nontrivial measure ν on (S,S ),

ν(B) ≤
∫ ∞

0
P t(x,B)a(dt)

for all x ∈ A and B ∈ S . Here, P t(·, ·), t ≥ 0, is the semigroup associated
with X(·). As mentioned in the Introduction, a petite set A has the property that
each set B is “equally accessible” from all points x ∈ A with respect to the mea-
sure ν. Note that any nonempty measurable subset of a petite set is also petite.

For given δ > 0, set

τB(δ) = inf{t ≥ δ :X(t) ∈ B}
and τB = τB(0). Then, τB(δ) is a stopping time. Employing petite sets and τB(δ),
one has the following characterization of Harris recurrence and positive Harris
recurrence. (The Markov process and state space need to satisfy minimal regu-
larity conditions, as on page 86 of [1].) The criteria are from Meyn and Tweedie
[10]; discrete time analogs of the different parts of the proposition have long been
known; see, for instance, Nummelin [11] and Orey [12].

THEOREM 2.1. (a) A Markov process X(·) is Harris recurrent if and only if
there exists a closed petite set A with

Px(τA < ∞) = 1 for all x ∈ S.(2.2)

(b) Suppose the Markov process X(·) is Harris recurrent. Then, X(·) is positive
Harris recurrent if and only if there exists a closed petite set A such that for some
δ > 0,

sup
x∈A

Ex[τA(δ)] < ∞.(2.3)
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One can apply Theorem 2.1, together with a stopping time argument, to show
the following version of Foster’s criterion. It is contained in Proposition 4.5 in [1].

PROPOSITION 2.1. Suppose that X(·) is a Markov process, with norm ‖ · ‖,
such that for some ε > 0, L > 0 and M > 0,

Ex[‖X(M)‖] ≤ (‖x‖ ∨ L) − ε for all x.(2.4)

Then, for 0 < δ ≤ M ,

Ex[τAL
(δ)] ≤ M

ε
(‖x‖ ∨ L) for all x,(2.5)

where AL = {x :‖x‖ ≤ L}. In particular, if AL is closed petite, then X(·) is positive
Harris recurrent.

Theorem 1.2 and its corollary. Proposition 2.1 and Theorem 1.1 provide the
main tools for demonstrating Theorem 1.2. We also require Proposition 3.1, which
states that the norm ‖ · ‖ in (1.6) is continuous in the metric d(·, ·), and hence that
AL = {x :‖x‖ ≤ L} is closed for each L. Together, they give a quick proof of the
theorem.

PROOF OF THEOREM 1.2. From the conclusion (1.7) in Theorem 1.1, we
know that the assumption (2.4) in Proposition 2.1 is satisfied for some L, with
M = N3 and ε = ε1N

2. In Theorem 1.2, it is assumed that AL is petite; by Propo-
sition 3.1, we also know it is closed. So, all of the assumptions in Proposition 2.1
are satisfied, and hence X(·) is positive Harris recurrent. �

Corollary 1.1 follows immediately from Theorem 1.2 and the assertion, before
the statement of the corollary, that the sets AL are petite under the assumptions
(1.8) and (1.9). A somewhat stronger version of the analogous assertion for queue-
ing networks is demonstrated in Proposition 4.7 of [1]. (The proposition states that
the sets A are uniformly small.) The reasoning is the same in both cases and does
not involve the policy of the network. The argument, in essence, requires that one
wait long enough for the network to have at least a given positive probability of
being empty; this time t does not depend on x for ‖x‖ ≤ L. One uses (1.8) for
this. By using (1.9), one can also show that the joint distribution function of the
residual interarrival times has an absolutely continuous component at this time,
whose density is bounded away from 0. It will follow that the set AL is petite with
respect to ν, with a chosen as the point mass at t , if ν is concentrated on the empty
states, where it is a small enough multiple of |R|-dimensional Lebesque measure
restricted to a small cube.

3. Summary of the proof of Theorem 1.1. As mentioned in Section 1, the
norm ‖ · ‖ in Theorem 1.1 consists of three components, with

‖x‖ = |x|L + |x|R + |x|A(3.1)
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for each x. After introducing these components, we will state the bounds associ-
ated with each of them that we will need, leaving their proofs to the remaining
sections. We then show how Theorem 1.1 follows from these bounds.

Definition of norms. We first define |x|L. This requires a fair amount of no-
tation, which we will introduce shortly. We begin by expressing |x|L in terms of
this notation; when the notation is then specified, we motivate it by referring back
to |x|L.

We set |x|L = supr,s |x|r,s for r ∈ R and s > 0, where

|x|r,s = wr(1 + asN)z∗
r (s)

νr�(H̄ ∗
r (sN))

.(3.2)

We need to define the terms H ∗
r (·), z∗

r (·), �(·), a and sN .
Starting with H ∗

r (·) and z∗
r (·), we recall the distribution functions Hr(·) and

counting measure zr(·) from Section 1. In (3.2), we will require their analogs H ∗
r (·)

and z∗
r (·) to have densities with bounded first derivatives and to be “close” to Hr(·)

and zr(·). For this, we define H ∗
r (·) and z∗

r (·) as the convolutions of Hr(·) and of
zr(·) by an appropriate distribution function �(·) with density φ(·). Setting

φ(s) =
⎧⎪⎨
⎪⎩

2
3ebe−bs, for s > 1/b,
2
3b2s, for s ∈ (0,1/b],
0, for s ≤ 0,

(3.3)

for b ∈ Z
+ with b ≥ 2, φ(·) is the density of �(s) = ∫ s

−∞ φ(s′) ds′. We note that
�(·) has mean at most 2/b and that φ(·) satisfies

φ′(s) ≤ b2 and φ(s + s′)/φ(s) ≥ e−bs′
(3.4)

for s, s′ > 0. The above properties and the exponential tail of φ(·) will be useful
later when analyzing | · |L and | · |R [as in (3.7), (5.28), (6.39), (6.40) and (9.25)].

Convoluting by �(·), we set

H ∗
r (s) = (Hr ∗ �)(s) =

∫ ∞
0

�(s − s′) dH(s ′),
(3.5)

z∗
r ((0, s]) = (zr ∗ �)((0, s]) =

∫ ∞
0

�(s − s′) dzr((0, s′])

with z∗
r (B) being defined analogously for B ⊆ R

+. Differentiating both quantities
in (3.5), we also set

h∗
r (s) = (Hr ∗ �)′(s) =

∫ ∞
0

φ(s − s′) dH(s ′),
(3.6)

z∗
r (s) = (zr ∗ �)′((0, s]) =

∫ ∞
0

φ(s − s′) dzr((0, s′]).
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Convolution by �(·), as in (3.5), produces a measure z∗
r (·) that approximates zr(·)

and possesses a density.
Since Hr(·) is assumed to have a finite (2 + δ1)th moment for all r , the same is

true for H ∗
r (·). This implies that for appropriate C1 ≥ 1,

H̄ ∗
r (s) ≤ C1

(1 + s)2+δ1
for all s > 0 and r ∈ R,(3.7)

for δ1 chosen as in Theorem 1.1. We assume wlog that δ1 ≤ 1. Since the difference
of the means of H ∗

r (·) and Hr(·) is at most 2/b for each r and H(·) is subcritical,
H ∗(·) will also be subcritical for large enough b.

We set

�(σ) = σ + C2aσγ for σ ∈ [0,1].(3.8)

We choose γ ∈ (0, δ1/24], C2 ≥ 2C1/γ and a small enough so that a ≤ (1/C2)∧1
and (9.4) is satisfied. One can think of �(·) as being almost linear for values of σ

that are not too small; the power γ needs to be small in order to be able to bound
|x|r,s later on for H ∗

r (sN) small; γ > 0 is needed so that the integral in (9.7) is
finite.

We set sN = s ∧ (NHr + 1) for N ∈ Z
+, where

NHr = (H̄ ∗
r )−1(1/N4) ∧ N.(3.9)

It follows that

1/N4 ≤ H̄ ∗
r (NHr ) ≤ C1/N

2+δ1 .(3.10)

If H ∗
r (·) has a relatively fat tail, say H̄ ∗

r (s) ∼ s−3, (3.9) implies that NHr = N ;
otherwise, NHr < N and H̄ ∗

r (NHr ) = 1/N4. In either case, it will follow from
(3.10) that �(H̄ ∗

r (NHr )) is “large enough” for us to adequately bound |x|r,s . We
will assume that N ∈ Z

+ is chosen large enough so N ≥ 1/a and NHr ≥ 1 for all r .
The norm | · |L has been defined with the following motivation. As the process

X(·) evolves, documents arrive at each route, are served, and eventually depart.
In Proposition 9.2, we will show that, under certain assumptions for X(t) on t ∈
[0,N3], for large enough b,

λw(t) ≥ (1 + ε2)/|x|L on t ∈ [0,N3],(3.11)

for some ε2 > 0, because of the subcriticality of H ∗(·). Reasoning as below (1.10),
this will imply that individual documents receive enough service so that |X(t)|L
decreases on average over [0,N3]. More specifically, the increase in the term
�(H̄ ∗

r (sN)) in (3.2), after translating sN according to the service of documents,
will compensate for the arrival of new documents. For documents with residual
service s ≤ NHr ≤ N + 1 at t = 0, the term 1 + asN in (3.2), after translating sN
according to the service of documents, will decrease sufficiently over [0,N3] to
produce the term −ε1N

2 in (1.7). For documents with residual service s > NHr ,
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we will instead need to employ the norm | · |R , which we introduce next. (On
(NHr ,NHr + 1], the intervals overlap.)

The norm | · |R in (3.1) is given by

|x|R = M1
∑
r

κN,r

∫ ∞
NHr

Nr(s)z
∗
r (s) ds.(3.12)

We need to identify the terms κN,r , Nr(·) and M1. We set

κN,r = 1/�(H̄ ∗
r (NHr ))(3.13)

and

Nr(s) =
{

s2/N, for s > N ,
s, for s ≤ N .

(3.14)

Later on, we will also employ κN
def= maxr κN,r . For the term M1, we will require

that

M1 ≥ 8C3

(
max
r,r ′ wr/wr ′

)
,(3.15)

where C3 is chosen as in (3.30).
Since | · |R is given by a weighted sum of the residual service times of the differ-

ent documents, it will be easier to work with than | · |L, which is a supremum. For
smaller values of s, we required | · |L because of the nature of the WMMF policy.
Because of the bound on H̄ ∗

r (·) in (3.7), the impact of large residual service times
on the evolution of X(·) will typically be small, and so one can employ the “more
generous” definition over (NHr ,∞) given in (3.12).

As we will see in Section 5, we will require the presence of the term Nr(s) in the
integrand in (3.12) to ensure that the integral decreases sufficiently rapidly from
the service of documents when the integral is large. This will rely on N ′

r (s) ≥ 1 on
(NHr ,∞). For s > N , the denominator N in s2/N is needed so that the expected
increase due to arrivals does not dominate the term −ε1N

2 in (1.7), which was
mentioned in the motivation for the definition of | · |L. This denominator is not
needed for s ∈ [NHr ,N) because (3.9) will guarantee that the integrand is already
sufficiently small there. The terms κN,r are needed when we combine the norms
| · |L and | · |R in ‖ · ‖, because of the denominator �(·) in | · |r,s .

The norm | · |A in (3.1) is needed for the residual interarrival times. It is given
by

|x|A = 1

N
max

r
θ(ur),(3.16)

where θ(y), y > 0, satisfies the following properties. We assume that θ(y) > 0 for
all y and that θ(·) and θ ′(·) are strictly increasing, with

θ ′(y) → ∞ as y → ∞.(3.17)
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We also assume that

θ(y) ≤ y2 for all y,(3.18)

and that θ(·) grows sufficiently slowly so that

E[θ(ξr)] < ∞ for all r.(3.19)

Since E[ξr ] < ∞, it is possible to specify such θ(·) that also satisfy the previous
two displays.

The above properties for θ(·) will enable us to show that the expected value of
|X(t)|A will decrease over time when |X(t)|A is large. In particular, because of
(3.17) and (3.19), the decrease in | · |A due to decreasing residual interarrival times
will, on the average, dominate the increase in | · |A due to new interarrival times that
occur when a document joins a route. The argument for this is given in Section 4
and is fairly quick. We note that when ξr are all exponentially distributed, the term
| · |A may be omitted in the definition of ‖ · ‖.

The reader attempting to understand the norm ‖ · ‖ should first concentrate on
| · |L, which was chosen to accommodate the WMMF policy. When the service
distributions Hr(·) all have compact support and the interarrival times are expo-
nentially distributed, one may, in fact, set ‖x‖ = |x|L for a large enough choice
of N .

We note that the norm | · |L is not appropriate for weighted α-fair policies. In
particular, the supremum and the function �(·) in its definition are not appropriate
factors in this context. On the other hand, | · |R , with suitable M1, and | · |A should
still be applicable to α-fair policies, provided a suitable replacement of | · |L can
be found.

In order to apply Proposition 2.1 in the proof of Theorem 1.2 in Section 2, we
needed to know that the sets AL = {x :‖x‖ ≤ L} are closed. For this, it suffices to
show the norm ‖ · ‖ is continuous in the metric d(·, ·) that is given in (2.1).

PROPOSITION 3.1. The norm ‖ · ‖ in (3.1) is continuous in the metric d(·, ·)
given by (2.1).

PROOF. It suffices to show | · |L, | · |R and | · |A are each continuous in d(·, ·).
For | · |L, note that the coefficients of z∗

r (s) in (3.2) are bounded. On the other hand,
if d(x, x′) ≤ ε < 1, then one can show, by using the first part of (3.4), that

|z∗
r (s) − z′,∗

r (s)| ≤ b2ε for all s and r,(3.20)

where z′,∗
r = (z′)∗r (s). It follows from this and (3.2) that | · |L is in fact Lipschitz in

d(·, ·).
For | · |R , one can apply both parts of (3.4) to show with a bit of work that, if

d(x, x′) ≤ ε < 1 and x has no residual service times greater than M , for given M ,
then ∫ ∞

NHr

Nr(s)|z∗
r (s) − z′,∗

r (s)|ds ≤ (M + 1)2b2ε + (1 − e−bε)|x|R(3.21)
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for all r . Since the coefficients of
∫∞
NHr

Nr(s)z
∗
r (s) ds in |x|R are bounded and the

RHS of (3.21) goes to 0 as ε → 0, the continuity of | · |R follows.
Since θ ′(ur) is bounded for bounded values of ur , | · |A is also continuous. �

In addition to the norms in (3.1), we will employ the following norms in show-
ing Theorem 1.1:

|x| = ∑
r

zr (R
+) = ∑

r

z∗
r (R

+)(3.22)

and

|x|K = ∑
r

κN,rz
∗
r ((NHr ,∞)).(3.23)

Although we will not employ them in this section, we also introduce the norms

|x|1 = ∑
r

z∗
r ((0,NHr ]), |x|2 = ∑

r

z∗
r ((NHr ,∞))(3.24)

and

|x|S = |x|L + max
r

wr

ρr

z∗
r ((NHr ,∞)).(3.25)

It obviously follows from (3.22) and (3.24) that |x| = |x|1 + |x|2. The norm | · |S
will be employed in Proposition 9.2 to derive the bound given in (3.11).

Bounds on | · |L, | · |R and | · |A. In order to derive (1.7), we need bounds on
| · |L, | · |R and | · |A as the process X(t) evolves from t = 0 to t = N3. We first
need to specify the term L appearing in (1.7). We choose l1 large enough so that

θ ′(l1/2) ≥ M1N(3.26)

and, for all r ,

E[θ(ξr); ξr > l1/2] ≤ (1/|R|)P (ξr > N3).(3.27)

We set

L1 = 1

N
θ(l1)(3.28)

and

L = 6(κ2
NN17 ∨ L1).(3.29)

For | · |L, we employ the bound from Proposition 10.2 that, for large enough N

and b, small enough a, and appropriate C3 and ε3 > 0,

Ex[|X(N3)|L] − |x|L
(3.30)

≤ C3N
3 · 1{|x| ≤ N6} + [C3(|x|K/|x|)N3 − ε3N

2] · 1{|x| > N6}
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for all x. The precise value of ε3 is not important; in Proposition 10.2, it is given
by 1

4 minr wr . We assume wlog that ε3 ≤ C3.
For | · |R , we employ the bound from Proposition 5.1 that, for given ε4 > 0, large

enough N , and M2 = 1
8(1 ∧ minl cl)(minr,r ′(wr/wr ′))M1 ≥ C3,

Ex[|X(N3)|R] − |x|R
≤ ε4N

2 − M2(|x|K/|x|)N3 · 1{|x| > N6}(3.31)

− κNN4 · 1{|x|R > κ2
NN17, |x| ≤ N6}

for all x. We will later choose ε4 small with respect to ε3; the constant C3 is chosen
as in (3.15) and (3.30).

For | · |A, we will show in Proposition 4.1 and Proposition 4.2 that, for this
choice of ε4 and large enough N ,

Ex[|X(N3)|A] − |x|A ≤ ε4N
2 − M1N

3 · 1{|x|A > L/6}(3.32)

for all x.

Derivation of (1.7) from (3.30), (3.31) and (3.32). We now derive (1.7) from
these three bounds. Adding the RHS of (3.30), (3.31) and (3.32), one obtains, for
large enough N and b, and small enough a,

Ex[‖X(N3)‖] − ‖x‖ ≤ 2C3N
3(3.33)

for all x. We next consider the behavior of the LHS of (3.33) for ‖x‖ > L/2, where
L is given by (3.29). This condition implies that either |x|L > κ2

NN17, |x|R >

κ2
NN17 or |x|A ≥ L/6.

Suppose first that |x|L > κ2
NN17. We note that if |x| ≤ N6, then

|x|L ≤ C4N
8

for some constant C4. This bound follows from the definition of |x|L in (3.2),
together with the bounds z∗

r (s) ≤ 12b2|x| for all s, sN ≤ N , and �(H̄ ∗
r (sN)) ≥

C5/N , for some C5 > 0 [which follows from (3.10) and γ ≤ 1/4]. Therefore, if
|x|L > κ2

NN17 and N is large enough so that κN ≥ 1, one must have |x| > N6.
On the other hand, it follows from (3.31) that, on |x| > N6,

Ex[|X(N3)|R] − |x|R ≤ ε4N
2 − M2(|x|K/|x|)N3.(3.34)

Adding the terms corresponding to |x| > N6 in (3.30) and (3.32) to this implies
that, for |x| > N6, and hence for |x|L > κ2

NN17,

Ex[‖X(N3)‖] − ‖x‖ ≤ (2ε4 − ε3)N
2 + (C3 − M2)(|x|K/|x|)N3

(3.35)
≤ −ε1N

2,

where the latter inequality follows for ε4 ≤ ε3/3 and ε1
def= ε3/3, since M2 ≥ C3.
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Suppose next that |x|R > κ2
NN17 and |x| ≤ N6. Adding up the corresponding

terms from (3.30), (3.31) and (3.32) implies that the LHS of (3.35) is at most

2ε4N
2 + C3N

3 − κNN4 ≤ −ε1N
3(3.36)

for large N , which is better than the bound in (3.35).
Suppose finally that |x|A ≥ L/6. We need to consider only the case |x| ≤ N6,

since |x| > N6 is covered by (3.35). In this case, it follows from (3.30), (3.31) and
(3.32) that the LHS of (3.35) is at most

(3C3 − M1)N
3 ≤ −ε1N

3,(3.37)

since M1 ≥ 4C3.
Together, (3.35), (3.36) and (3.37) imply that, for large enough N and b, and

small enough a,

Ex[‖X(N3)‖] − ‖x‖ ≤ −ε1N
2(3.38)

for all ‖x‖ > L/2. Since for large N ,

L − L/2 ≥ 2C3N
3 + ε1N

2,

(1.7) follows easily form (3.33) and (3.38).

4. Upper bounds on Ex[|X(N3)|A]. In this section, we will demonstrate the
inequality (3.32) for the upper bounds on Ex[|X(N3)|A]−|x|A. In Proposition 4.1,
we obtain the first term on the RHS of (3.32); this holds for all x. We then obtain
a better bound in Proposition 4.2, which is valid on |x| ≥ L/6. Both parts require
just standard techniques.

The first bound employs the following elementary inequality on the residual
interarrival times at time N3:

|X(N3)|A ≤ |x|A ∨ 1

N
max{θ(ξr(k)) : r ∈ R, k ∈ [2,Ar(N

3) + 1]}.(4.1)

Here and in later sections, Ar(t) denotes the cumulative number of arrivals at
the route r by time t ; A(t) will denote the corresponding vector. The inequality
k ≤ Ar(t) + 1 implies that the interarrival epoch associated with ξr(k) has al-
ready begun by time t . Recall that ξr(1) is the initial residual time at route r and
ξr(2), ξr(3), . . . are i.i.d. random variables, and θ(·) satisfies (3.16)–(3.19).

PROPOSITION 4.1. For any ε > 0 and large enough N , not depending on x,

Ex[|X(N3)|A] − |x|A ≤ εN2.(4.2)

PROOF. By (3.19), E[θ(ξr)] < ∞ for all r . One can therefore show with some
estimation that, for each r ,

1

t
Ex

[
max

k∈[2,Ar (t)+1] θ(ξr(k))
]
→ 0,(4.3)
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uniformly in x as t → ∞. For fixed x, (4.3) follows immediately from (4.83)
of [1]; since Ar(t) decreases when ξr(1) increases, this limit is uniform in x.

Inequality (4.2) follows immediately from (4.1) and (4.3), with t = N3. �

We proceed to Proposition 4.2. For the proposition, it will be useful to decom-
pose |X(t)|A − |x|A as

|X(t)|A − |x|A = IA(t) − DA(t),(4.4)

where IA(t) and DA(t) are the nondecreasing functions corresponding to the cu-
mulative increase and decrease of |X(·)|A up to time t . That is, IA(0) = DA(0) = 0,
with IA(t) being the jump process, with

IA(t) − IA(t−) = |X(t)|A − |X(t−)|A
and D′

A(t) being the rate of decrease of |X(t)|A at other times. We note that
DA(t) is locally Lipschitz, with D′

A(t) defined except at arrivals. In particular,
since U ′

r (t) = −1 except at arrivals,

D′
A(t) = 1

N
max

r
θ ′(Ur(t)) almost everywhere.(4.5)

We recall the definitions for l1,L1 and M1 in (3.26)–(3.28) and (3.15).

PROPOSITION 4.2. Suppose that |x|A ≥ L/6. Then, for large enough N not
depending on x,

Ex[|X(N3)|A] − |x|A ≤ 1 − M1N
3 ≤ −M1N

3/2.(4.6)

PROOF. We first show that

DA(N3) ≥ M1N
3.(4.7)

Since |x|A ≥ L/6 = κ2
NN17 ∨ L1 and θ(y) ≤ y2 for all y, one has, for N ≥ 2, that

maxr ur ≥ N8 ∨ l1. So, for all t ∈ [0,N3],
max

r
ur − max

r
Ur(t) ≤ N3 ≤ 1

2
max

r
ur .(4.8)

Consequently, for all t ∈ [0,N3],
max

r
Ur(t) ≥ 1

2
max

r
ur ≥ N3 ∨ 1

2
l1.(4.9)

Moreover, by (3.26) and (4.5), for maxr Ur(t) ≥ 1
2 l1, D′

A(t) ≥ M1 almost every-
where. Together with (4.9), this implies D′

A(t) ≥ M1 almost everywhere on
[0,N3], and hence (4.7) holds.

On account of (4.7), in order to show (4.6), it suffices to show

Ex[IA(N3)] ≤ 1(4.10)
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for large N . To obtain (4.10), we first note that, for each r , there cannot be more
than one interarrival time occurring over (0,N3] with value greater than N3. More-
over, because of (4.9), only interarrival times with value at least N3 ∨ (l1/2) can
contribute to IA(N3). The expectation of θ(ξr), for ξr conditioned on being greater
than N3 and restricted to being greater than l1/2, is

E[θ(ξr); ξr > l1/2]/P (ξr > N3).(4.11)

(If ξr is bounded above by N3, set the ratio equal to 0.) It follows that, for any x,

Ex[IA(N3)] ≤ 1

N

∑
r

E[θ(ξr); ξr > l1/2]/P (ξr > N3).(4.12)

By (3.27), the RHS of (4.12) is at most 1/N , which implies (4.10). �

5. Upper bounds on Ex[|X(N3)|R]. In this section, we will demonstrate the
following proposition for the upper bounds on Ex[|X(N3)|R] − |x|R , where | · |R
is the norm introduced in (3.12).

PROPOSITION 5.1. For given ε > 0, large enough N and all x,

Ex[|X(N3)|R] − |x|R ≤ εN2 − M2(|x|K/|x|)N3 · 1{|x| > N6}
(5.1)

− κNN4 · 1{|x|R > κ2
NN17, |x| ≤ N6},

where M2 is specified before (3.31).

The bound (5.1) implies (3.31), which was employed in Section 3, together
with bounds on Ex[|X(N3)|L] and Ex[|X(N3)|A], to obtain (1.7) of Theorem 1.1.
The bound on Ex[|X(N3)|A] was derived relatively quickly, whereas the bound
on Ex[|X(N3)|L] will require substantial estimation and will be derived in Sec-
tions 6–10. The bound on Ex[|X(N3)|R] that is given here will require a moderate
amount of work.

In order to show Proposition 5.1, it will be useful to rewrite |X(t)|R − |x|R as

|X(t)|R − |x|R = IR(t) − DR(t),(5.2)

where IA(t) and DA(t) are the nondecreasing functions corresponding to the cu-
mulative increase and decrease of |X(·)|R up to time t . A similar decomposition
was used in Section 4 for |X(t)|A. Here, IR(0) = DR(0) = 0, with IR(t) being the
jump process with

IR(t) − IR(t−) = |X(t)|R − |X(t−)|R.

One can check that DR(·) is continuous except when a document departs from
a route. Its derivative is defined almost everywhere, being defined except at the
arrival or departure of a document. Since DR(·) is nondecreasing,

DR(t2) − DR(t1) ≥
∫ t2

t1

D′
R(t) dt for t1 ≤ t2.



NETWORK STABILITY UNDER MAX–MIN FAIR BANDWIDTH SHARING 1145

It is easy to obtain a suitable upper bound on Ex[IR(N3)]; a suitable lower
bound on Ex[DR(N3)] requires more effort. We therefore first demonstrate Propo-
sition 5.2, which analyzes Ex[IR(N3)].

As in Section 4, Ar(t) denotes the cumulative number of arrivals at route r

by time t . It follows from elementary renewal theory that, for appropriate C6 and
t ≥ 1,

Ex[Ar(t)] ≤ C6t for each r(5.3)

(see, e.g., [3], page 136). Since large residual interarrival times can only delay
arrivals, the bound is uniform in x.

PROPOSITION 5.2. For given ε > 0 and large enough N ,

Ex[IR(N3)] ≤ εN2 for all x.(5.4)

PROOF. It follows from (3.12) that the expected increase in IR(·), due to a
document that arrives at route r , is

M1κN,r

∫ ∞
NHr

Nr(s)h
∗
r (s) ds.

Since the number of arriving documents by time N3 and their initial service times
are independent, it follows that

Ex[IR(N3)] =
(
M1κN,r

∫ ∞
NHr

Nr(s)h
∗
r (s) ds

)
Ex[Ar(N

3)].(5.5)

In order to bound the first term on the RHS of (5.5), we decompose the integral
there into

∫ N
NHr

+ ∫∞
N . When N ≥ NHr , one has, by (3.9) and (3.13),

κN,r

∫ N

NHr

Nr(s)h
∗
r (s) ds = 1

�(1/N4)

∫ N

NHr

sh∗
r (s) ds

(5.6)

≤ N

�(1/N4)
H̄ ∗

r (NHr ) ≤ (N3�(1/N4))−1.

This is, for large enough N , at most 1/N2, because of the small power γ in the
definition of �(·). Also,

κN,r

∫ ∞
N

Nr(s)h
∗
r (s) ds ≤ 1

N�(1/N4)

∫ ∞
N

s2h∗
r (s) ds

≤ 1

N1+δ1/2�(1/N4)

∫ ∞
N

s2+δ1/2h∗
r (s) ds(5.7)

≤ C7

N1+δ1/2�(1/N4)



1146 M. BRAMSON

for appropriate C7, with the last inequality holding because of (3.7). Since γ ≤
δ1/24, this is, for large N , at most 1/N1+δ1/4. Together, the bounds for the two
integrals imply that, for large enough N ,

M1κN,r

∫ ∞
NHr

Nr(s)h
∗
r (s) ds ≤ 2/N1+δ1/4.(5.8)

Application of (5.8) and (5.3) to (5.5), with t = N3 in (5.3), implies (5.4). �

We now derive a lower bound on Ex[DR(N3)]. As in (5.1), we need to consider
two separate cases, depending on whether |x| > N6 or both |x|R > κ2

NN17 and
|x| ≤ N6 hold. In both cases, we will employ the following lemma. Recall that
M2 = 1

8C8M1, with C8 = (1 ∧ minl cl)(minr,r ′(wr/wr ′)).

LEMMA 5.1. (a) For all t ,

DR(t) ≥ M1
(|x|K − |X(t)|K)

.(5.9)

(b) For almost all t ,

D′
R(t) ≥ C8M1

|X(t)|
∑
r

κN,r

∫ ∞
NHr

(
s

N
∨ 1

)
Z∗

r (t, s) ds

(5.10)
≥ 8M2|X(t)|K/|X(t)|.

PROOF. We first show (a). Recall that X̃(·) is the stochastic process con-
structed from X(·) in Section 1, where service of documents is pathwise identical
to X(·), but where the arrival of documents is suppressed. One can check that, for
all t and ω,

|X̃(t)|K ≤ |X(t)|K(5.11)

and

DR(t) ≥ |x|R − |X̃(t)|R.(5.12)

Inequality (5.11) follows immediately from Z̃∗(t,B) ≤ Z∗(t,B) for all B ⊆ R
+.

For (5.12), note that the LHS gives the cumulative decrease of |X(·)|R over [0, t]
due to the service of all documents, whereas the RHS gives the decrease due to
service of only the original documents while ignoring the decrease due to service
of new documents.

On account of (5.11) and (5.12), to show (5.9) it suffices to show

|x|R − |X̃(t)|R ≥ M1
(|x|K − |X̃(t)|K)

.(5.13)
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Substituting in the definition of | · |R given by (3.12) and integrating by parts on
the LHS of (5.13) gives

M1
∑
r

κN,rNr(NHr )
(
z∗
r ((NHr ,∞)) − Z̃∗

r (t, (NHr ,∞))
)

(5.14)
+ M1

∑
r

κN,r

∫ ∞
NHr

N ′
r (s)

(
z∗
r ((s,∞)) − Z̃∗

r (t, (s,∞))
)
ds.

It follows from (3.14) and NHr ≥ 1 that Nr(NHr ) ≥ 1 and that N ′
r (s) ≥ 1 for all s.

Consequently, (5.14) is at least

M1
∑
r

κN,r

(
z∗
r ((NHr ,∞)) − Z̃∗

r (t, (NHr ,∞))
)

= M1
(|x|K − |X̃(t)|K)

,

which implies (5.13).
For (b), we first note that because of the weighted max–min fair protocol

and (1.1), the rate at which each document is served is at least(
min

l
cl

)(
min
r,r ′ (wr/w

′
r )
)/|X(t)|.(5.15)

Moreover, the rate of decrease of |X(t)|R per unit service of each document on
route r is at least

M1κN,r

∫ ∞
NHr

N ′
r (s)Z

∗
r (t, s) ds ≥ M1κN,r

∫ ∞
NHr

(
s

N
∨ 1

)
Z∗

r (t, s) ds

(5.16)
≥ M1κN,rZ

∗
r (t, (NHr ,∞)).

Summing (5.16) over r and multiplying by (5.15) gives each of the bounds in
(5.10). �

We first derive a lower bound on Ex[DR(N3)] in the case where |x| > N6.

PROPOSITION 5.3. For large enough N and all |x| > N6,

Ex[DR(N3)] ≥ M2(|x|K/|x|)N3.(5.17)

PROOF. We restrict our attention to the set

B1 = {ω : |X(t)| ≤ |x| + N6 for all t ∈ [0,N3]}.
By applying Markov’s inequality to inequality (5.3) with t = N3, one has that, for
large N ,

Px

(∑
r

Ar(N
3) > N6

)
≤ C6

N3 |R| ≤ 1

2
(5.18)
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for all x. Consequently,

P(B1) ≥ 1/2.(5.19)

This bound does not depend on |x|.
We now consider two cases, depending on whether the set

B2 = {
ω : |X(t)|K > 1

2 |x|K for all t ∈ [0,N3]}
occurs. Since |x| > N6, it follows from the second half of (5.10) that, for all t ∈
[0,N3],

D′
R(t) ≥ 2M2|x|K/|x|

on B1 ∩ B2. Consequently, on B1 ∩ B2,

DR(N3) ≥ 2M2(|x|K/|x|)N3.(5.20)

On the other hand, on B1 ∩ Bc
2 ,

|x|K − |X(τ)|K ≥ 1
2 |x|K(5.21)

for some (random) τ ∈ [0,N3]. By (5.9),

DR(t) ≥ M1
(|x|K − |X(t)|K)

for all t . Together with (5.21), this implies that

DR(N3) ≥ DR(τ) ≥ 1
2M1|x|K ≥ 2M2(|x|K/|x|)N6,(5.22)

where |x| > N6 was used in the last inequality.
Together, (5.20) and (5.22) imply that, on B1,

DR(N3) ≥ 2M2(|x|K/|x|)N3.

Inequality (5.17) follows from this and (5.19). �

We now derive a lower bound on Ex[DR(N3)] in the case where |x|R > κ2
NN17

and |x| ≤ N6 both hold. We note that, starting from (5.26), the argument relies on
the discreteness of documents. If one wishes to employ a fluid limit based argu-
ment rather than the discrete setting employed in this paper, different reasoning
will be required at this point; it is not obvious how one would proceed.

PROPOSITION 5.4. For large enough N ,

Ex[DR(N3)] ≥ κNN4(5.23)

for all |x|R > κ2
NN17 and |x| ≤ N6.
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PROOF. As in the proof of Proposition 5.3, we restrict attention to the set B1
defined there. The bound P(B1) ≥ 1/2 in (5.19) continues to hold here. In our
present setting, since |x| ≤ N6, ω ∈ B1 implies that

|X(t)| ≤ 2N6 for all t ∈ [0,N3].
We also consider two cases, depending on whether

B3 = {
ω : |X(t)|R > 1

2κ2
NN17 for all t ∈ [0,N3]}

occurs.
The case Bc

3 is almost immediate. It follows from (5.2) that, for large enough N

and for some τ ∈ (0,N3],
DR(N3) ≥ DR(τ) ≥ |x|R − |X(τ)|R ≥ 1

2κ2
NN17 > 2κNN4(5.24)

for ω ∈ Bc
3 .

The case B3 requires some work. We first note that, by the first part of (5.10),

D′
R(t) ≥ C8M1

|X(t)|
∑
r

κN,r

(∫ ∞
NHr

(
s

N
∨ 1

)
Z∗

r (t, s) ds

)
(5.25)

≥ C8M1

2N6

∑
r

κN,r

(∫ ∞
NHr

(
s

N
∨ 1

)
Z∗

r (t, s) ds

)
,

when ω ∈ B1.
We will truncate the second integral in (5.25) in order to be able to introduce

an additional factor s into the integrand. We first note that, since �(0) = 0, if a
document with residual service time at least s is present at time t on some route r ,
then, for large N ,

|X(t)|R ≥ M1κN,rs
2/N ≥ M1s

2/N.(5.26)

Hence, there are no documents with residual service time

s > s1
def= (

(N/M1)|X(t)|R)1/2
.(5.27)

It follows that, for appropriate C9 > 0, (5.25) is at least

C8M1

2N6

∑
r

κN,r

(∫ s1+1

NHr

(
s

N
∨ 1

)
Z∗

r (t, s) ds

)

≥ C8M
3/2
1

4N13/2|X(t)|1/2
R

∑
r

κN,r

(∫ s1+1

NHr

Nr(s)Z
∗
r (t, s) ds

)
(5.28)

≥ 2C9M
3/2
1

N13/2|X(t)|1/2
R

∑
r

κN,r

(∫ ∞
NHr

Nr(s)Z
∗
r (t, s) ds

)

= 2C9M
1/2
1

N13/2 |X(t)|1/2
R ≥ C9M

1/2
1 κNN2
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for all t ∈ [0,N3]. The exponential tail of �(·) is used in the last inequality; the
equality relies on ω ∈ B3.

Employing the bound on D′
R(t) obtained from (5.25) and (5.28), and integrating

over t ∈ [0,N3], it follows that, for large N ,

DR(N3) ≥ C9M
1/2
1 κNN5 > 2κNN4

on B1 ∩ B3. Together with (5.24), this implies that DR(N3) > 2κNN4 on B1. In-
equality (5.23) follows from this and P(B1) ≥ 1/2. �

Proposition 5.1 follows immediately from (5.2) and Propositions 5.2, 5.3
and 5.4.

6. Upper bounds on Ex[|X(N3)|L]: Basic layout and bounds on excep-
tional sets. In this section, we begin our investigation of upper bounds on
Ex[|X(N3)|L] − |x|L. Since these bounds will require us to examine a number
of subcases in Sections 6–9, we will only arrive at the desired bounds in Section
10. In the current section, we first state certain elementary inequalities, mostly in-
volving | · |r,s , that will be useful later on. We then define the “good” sets A(·) of
realizations of X(·) to which our bounds in Sections 7–9 will apply. The remainder
of the section is spent demonstrating Proposition 6.1, which gives an upper bound
on Ex[|X(t)|L − |x|L; A(t)c], where A(t)c is the small exceptional set.

Elementary inequalities. Here we state a number of elementary inequalities
that will be useful later on. Let zi(·), i = 1,2,3, denote configurations of particles
on R

+, with zi(B) denoting the number of particles (or documents) in B ⊆ R
+. If

one assumes

z3(B) = z1(B) + z2(B) for all B ⊆ R
+,(6.1)

it follows that

z∗
3(B) = z∗

1(B) + z∗
2(B) for all B ⊆ R

+,(6.2)

where z∗
i (B) is defined analogously to z∗

r (B) below (3.5), with convolution being
with respect to φ(·). Several elementary equalities follow from (6.2), including

|x3|r,s = |x1|r,s + |x2|r,s for all r ∈ R and s > 0,(6.3)

where xi are states in the metric space S introduced in Section 2 for which the
analog of (6.1) is satisfied for each r and | · |r,s is given by (3.2).

Recall that X̃(·) and XA(·) are the processes constructed from X(·) that were
introduced in Section 1, where service of each document is pathwise identical to
X(·), but where, for X̃(·), the arrival of documents is suppressed and, for XA(·),
only new documents are included. One has

Z(t,B) = Z̃(t,B) + ZA(t,B) for t ≥ 0 and B ⊆ R
+,
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where the processes Z(·), Z̃(·), and ZA(·) correspond to X(·), X̃(·) and XA(·).
From (6.2),

Z∗(t,B) = Z̃∗(t,B) + ZA,∗(t,B) for t ≥ 0 and B ⊆ R
+,(6.4)

and from (6.3),

|X(t)|r,s = |X̃(t)|r,s + |XA(t)|r,s for t ≥ 0, r ∈ R, s > 0.(6.5)

Another elementary equality involving X(·) is given by

Z̃r (t,B) = zr

(
B + 
r(t)

)
for t ≥ 0, r ∈ R,B ⊆ R

+,(6.6)

where, we recall, 
r(t) is the translation that gives the amount of service an origi-
nal document that has not yet completed service has received by time t . The equal-
ity relies on all documents on a given route r receiving equal service at each time.
[If Z̃r (t,R

+) = 0, set 
r(t) = ∞ and zr(R
+ + ∞) = 0.] From (6.6), one obtains

Z̃∗
r (t,B) ≤ z∗

r

(
B + 
r(t)

)
for t ≥ 0, r ∈ R,B ⊆ R

+;(6.7)

the inequality arises from the possibility that original documents have completed
service by time t .

A consequence of (3.2) and (6.7) is that

|X̃(t)|r,s ≤ |x|r,s+
r(t) for t ≥ 0, r ∈ R, s > 0.(6.8)

Combining (6.5) and (6.8) produces

|X(t)|r,s ≤ |x|r,s+
r(t) + |XA(t)|r,s for t ≥ 0, r ∈ R, s > 0;(6.9)

taking the supremum over all r and s therefore gives

|X(t)|L ≤ |x|L + |XA(t)|L for all t ≥ 0.(6.10)

Application of (6.7) also implies

Z̃∗
r (t, s) ≤ z∗

r

(
s + 
r(t)

)
for t ≥ 0, r ∈ R,B ⊆ R

+,(6.11)

and application of (6.7), together with (6.4), implies that

|X(t)|2 ≤ |x|2 + |XA(t)|2 for t ≥ 0,(6.12)

where | · |2 is given in (3.24). The term on the LHS of (5.16) can also be derived
using (6.11).
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The sets A(t). In this subsection, we define the random set A(t), which is a
function of X(t ′), for t ′ ∈ [0, t]. In Sections 7–10, we will establish upper bounds
on |X(N3)|r,s for ω ∈ A(N3); the exceptional small set A(N3)c will be treated in
the next subsection. The set A(t) will be a “good” set in the sense that the number
of arrivals over [0, t], for given t , is restricted by upper bounds, which will enable
us to show that |X(·)|L decreases in an appropriate manner.

The set A(t) is given by A(t) = A1(t) ∩ A2(t), with

Ai (t) = ⋂
r,j

Ai,r,j (t) for i = 1,2,(6.13)

where Ai,r,j (t) specify upper bounds on the numbers of weighted arrivals of docu-
ments with different service times. To define Ai,r,j (t), we denote by v0, v1, . . . , vJ

the increasing sequence with

vj+1 = vj + 1/b3 for j = 0, . . . , J − 1,(6.14)

with v0 = 0 and vJ = N + 1, and where b is as in (3.3). Note that it follows from
the second half of (3.4) that, for b ≥ 2,

H̄ ∗
r (vj+1)/H̄

∗
r (vj ) ≥ 1/2 for all r and j.(6.15)

We also denote by S1
r (k), k = 1, . . . ,Ar(t), the service time of the kth arrival at

route r , where Ar(t) is the cumulative number of arrivals at r by time t .
We set, for r ∈ R and j = 0, . . . , J ,

A1,r,j (t) =
{
ω :

Ar(t)∑
k=1

�̄
(
vj − S1

r (k)
) ≤ 2νr

(
H̄ ∗

r (vj )t ∨ tη
)}

.(6.16)

Here, we assume η ∈ (0,1/12], and, as elsewhere, we set H̄r(·) = 1 − Hr(·) and
�̄(·) = 1 − �(·). One has, as a special case of (6.16), that

Ar(t) ≤ 2νr t on A1,r,0(t).(6.17)

Since

E
[
�̄
(
vj − S1

r (k)
)] =

∫ ∞
0

�̄(vj − s) dHr(s) = H̄ ∗
r (vj )(6.18)

and Ar(t) ∼ νr t for large t , the probability of the complement A1,r,j (t)
c can be

bounded above by using standard large derivation estimates. The term tη is in-
cluded on the RHS of (6.16) so that, when H̄ ∗

r (vj ) is small, the probability of the
event remains small.

We also set, for r ∈ R and j = 0, . . . , J ,

A2,r,j (t) =
{
ω :

Ar(t)∑
k=1

φ
(
vj − S1

r (k)
) ≤ (1 + ε5)νr

(
h∗

r (vj )t ∨ tη
)}

,(6.19)
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where ε5 > 0. Analogous to (6.18), one has

E
[
φ
(
vj − S1

j (k)
)] =

∫ ∞
0

φ(vj − s) dHr(s) = h∗
r (vj ).(6.20)

The probabilities Px(A2,r,j (t)
c) will satisfy large deviation bounds as well. The

constant ε5 here will later be required to satisfy ε5 ≤ ε7/4, where ε7 is specified
in (9.1) and measures how subcritical the network is. In (6.16), we only need to
employ the constant 2, rather than 1+ε5 as in (6.19), because (6.16) will be applied
to the right tail of H̄ ∗

r (·), rather than the “main body” of H ∗
r (·), as will (6.19).

Upper bounds on A(t)c. The main result in this last subsection is the following
proposition.

PROPOSITION 6.1. For large enough t ,

Ex[|X(t)|L − |x|L; A(t)c] ≤ N3e−C10t
η

(6.21)

for all N,x and appropriate C10 > 0.

Proposition 6.1 gives strong bounds on the growth of |X(t)|L on A(t)c. This
behavior is primarily due to the small probability Px(A(t)c), which is given in the
next proposition.

PROPOSITION 6.2. For large enough t ,

Px(A(t)c) ≤ Ne−C11t
η

(6.22)

for all N,x and appropriate C11 > 0.

The interarrival times are assumed to be independent, and large initial residual
interarrival times only delay future arrivals. The initial state x will therefore not
affect the bounds in (6.21) and (6.22). Note that only the arrival process A(·) is
relevant for the bounds in (6.22).

Proposition 6.2 will serve as the main step in demonstrating Proposition 6.1; it
will also be used along with Proposition 6.1 in Section 10. When we apply (6.21)
and (6.22) there, we will set t = N3 and so the factors N3 and N can be absorbed
into the corresponding exponentials. We note that C10 and C11 in (6.21) and (6.22),
and the bound on t depend on our choices of ε5 and b, and on νr and wr .

In order to show Proposition 6.2, we will employ elementary large deviation
estimates, which are given in the following two lemmas.

LEMMA 6.1. Let W(1),W(2), . . . denote nonnegative i.i.d. random variables
with mean β < ∞. Then, for each ε > 0, there exists C12 > 0, so that

P

(
n∑

k=1

W(k) ≤ (1 − ε)βn

)
≤ e−C12n.(6.23)
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When the support of W(1) is contained in [0,1] and ε ∈ (0,1],

P

(
n∑

k=1

W(k) ≥ (1 + ε)βn

)
≤ e−C13ε

2βn,(6.24)

where C13 > 0 does not depend on the distribution of W(1) or on ε.

PROOF. Both (6.23) and (6.24) are elementary large deviation bounds. We
summarize the argument for (6.24); (6.23) can be shown directly or by applying
(6.24) after truncating W(k).

As usual, one employs the moment generating function

ψθ(n) = E
[
eθ

∑n
k=1(W(k)−β)] for θ > 0.(6.25)

By expanding the exponential for n = 1, it follows that for appropriate C14 ≥ 1
and for θ ∈ (0,1],

ψθ(1) ≤ 1 + C14βθ2,(6.26)

and hence

ψθ(n) ≤ (1 + C14βθ2)n ≤ eC14βθ2n.(6.27)

By applying Markov’s inequality and setting θ = ε/2C14, it follows that the LHS
of (6.24) is at most

e−εβθnψθ(n) ≤ e−ε2βn/4C14 ≤ e−C13ε
2βn(6.28)

for C13 = 1/4C14, as desired. �

Let W(1),W(2), . . . denote the successive interarrival times for a renewal
process (with delay), with A(t) = max{n :

∑n
k=1 W(k) ≤ t} denoting the number of

renewals by time t . Here, W(2),W(3), . . . are i.i.d., with W(1) being the residual
interarrival time. We also introduce i.i.d. random variables Y(1), Y (2), . . . , with
Y(1) ∈ [0,1] that are defined on the same space as W(k). Set E[W(2)] = β > 0
and E[Y(1)] = m.

LEMMA 6.2. Let W(1),W(2), . . . and Y(1), Y (2), . . . be as above. Then, for
given ε ∈ (0,1] and large t ,

P

(
A(t)∑
k=1

Y(k) > (1 + ε)β−1mt

)
≤ e−C15mt ,(6.29)

where C15 > 0 does not depend on the distribution of Y(1).
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PROOF. {A(t) ≥ n} is contained in the event {∑n
k=1 W(k) ≤ t}. Consequently,

by (6.23) of Lemma 6.1, substitution of ε/3 for ε there implies that, for n(t) =
�(1 − ε/3)−1β−1t�,

P
(
A(t) > n(t)

) ≤ P

(
n(t)+1∑
k=2

W(k) ≤ t

)
≤ e−C16t(6.30)

for appropriate C16 > 0 and large t (which may depend on ε and the distribution
of W ).

We next consider the set where A(t) ≤ n(t). It follows from (6.24) of Lem-
ma 6.1 that

P

(
A(t)∑
k=1

Y(k) > (1 + ε)β−1mt;A(t) ≤ n(t)

)

(6.31)

≤ P

(
n(t)∑
k=1

Y(k) > (1 + ε)β−1mt

)
≤ e−C13ε

2β−1mt/9.

Inequality (6.29) follows from (6.30) and (6.31). �

We now employ Lemma 6.2 to prove Proposition 6.2.

PROOF OF PROPOSITION 6.2. We first note that since A(t) = A1(t) ∩ A2(t),
with Ai (t) = ⋂

r∈R
⋂J

j=0 Ai,r,j (t), where J = b3(N + 1) + 1 ≤ 2b3N , it suffices
to show that for each Ai,r,j (t),

Px(Ai,r,j (t)
c) ≤ e−C17t

η

(6.32)

for t ≥ t0, for some fixed t0 and appropriate C17 > 0.
We consider the case where i = 1. Denote by W(1),W(2), . . . the interarrival

times of documents on route r and set Y(k) = �̄(vj −S1
r (k)). Then, Y(k) are i.i.d.

random variables and, except for W(1), so are W(k). One has

β
def= E[W(2)] = ν−1

r and m
def= E[Y(1)] = H̄ ∗

r (vj )(6.33)

with the last equality following from (6.18).
We break the problem into two cases, depending on whether or not H̄ ∗

r (vj ) ≥
tη−1, in each case applying Lemma 6.2, with ε = 1. Under H̄ ∗

r (vj ) ≥ tη−1, one
has

Px(A1,r,j (t)
c) = Px

(
Ar(t)∑
k=1

�̄
(
vj − S1

r (k)
)
> 2νrH̄

∗
r (vj )t

)
≤ e−C15t

η

(6.34)

for large t and C15 > 0 as in the lemma, where neither depends on the particular
value of H̄ ∗

r (vj ).
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For H̄ ∗
r (vj ) < tη−1, we replace the random variables defined above (6.33) by

i.i.d. random variables Y ′(k) ∈ (0,1], with Y ′(k) ≥ Y(k) and E[Y ′(k)] = tη−1.
Then, again applying Lemma 6.2, but this time to Y ′(k), k = 1,2, . . . ,

Px(A1,r,j (t)
c) ≤ Px

(
Ar(t)∑
k=1

Y ′(k) > 2νr t
η

)
≤ e−C15t

η

(6.35)

as before. Together with (6.34), this implies (6.32) for i = 1, with C17 = C15.
The reasoning for (6.32) when i = 2 is the same, except that one now sets

Y(k) = φ(vj − S1
r (k)), from which one obtains

m
def= E[Y(1)] = h∗

r (vj ).(6.36)

Also, the coefficient 2 on the RHS of (6.16) is replaced by the coefficient 1 + ε5
in (6.19). Setting ε = ε5 in Lemma 6.2, one obtains

Px

(
Ar(t)∑
k=1

φ
(
vj − S1

r (k)
)
> (1 + ε5)νr

(
h∗

r (vj ) ∨ tη
)) ≤ e−C15t

η

(6.37)

for large t and appropriate C15 > 0, chosen as in the lemma. Setting C17 = C15,
one obtains (6.32) for i = 2 as well. �

Setting |A(t)| = ∑
r Ar(t), where Ar(t) is the number of arrivals at each route

by time t , it follows from elementary renewal theory that for appropriate C18 and
t ≥ 1,

E[|A(t)|2] ≤ C18t
2(6.38)

(see, e.g., [3], page 136). Inequality (6.38) is not difficult to show by applying a
standard truncation argument.

Here and later on, we will also use the two inequalities

z∗
r (s) ≤ bz∗

r ((s,∞)) for all s > 0,(6.39)

and

�
(
H̄ ∗

r (NHr + 1)
)
/�(H̄ ∗

r (NHr )) ≥ e−b,(6.40)

which follow from the definition of φ(·) and the second inequality in (3.4).
Employing Proposition 6.2 and these inequalities, we now demonstrate Proposi-
tion 6.1.

PROOF OF PROPOSITION 6.1. By Hölder’s inequality,

Ex[|X(t)|L − |x|L; A(t)c] ≤ √
Px(A(t)c)

√
Ex

[(|X(t)|L − |x|L)2]
.(6.41)

Also, by Proposition 6.2, one has√
Px(A(t)c) ≤ √

Ne−C11t
η/2

(6.42)
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for all N,x and appropriate C11 > 0. So it remains to bound the expectation on the
RHS of (6.41).

It follows from the definitions of | · |L, φ(·) and �(·), and from (3.10), (6.39)
and (6.40), that

|x′|L ≤
(

sup
r

wr

νr

)
2beb(1 + aN)|x′|

�(1/N4)
≤ C19N

2|x′|(6.43)

for all x′ ∈ S and appropriate C19. So application of (6.10), together with (6.43)
for x′ = XA(t), implies that

Ex

[(|X(t)|L − |x|L)2] ≤ Ex[|XA(t)|2L] ≤ C2
19N

4Ex[|XA(t)|2]
≤ C2

19N
4Ex[|A(t)|2].

Together with (6.38), this implies√
Ex

[(|X(t)|L − |x|L)2] ≤ C20N
2t(6.44)

for appropriate C20 and large t .
Substitution of (6.42) and (6.44) into (6.41) implies that for large enough t ,

(6.21) holds, as desired. �

7. Upper bounds on |X(N3)|r,s for s > NHr . In Section 6, we obtained up-
per bounds on Ex[|X(N3)|L−|x|L; A(N3)c]; we still need to analyze the behavior
of |X(N3)|L − |x|L on A(N3). For this, we analyze |X(N3)|r,s for several cases
that depend on whether or not |x| > N6 and s > NHr .

In this section, we consider the case where |x| > N6 and s > NHr , which is the
simplest case. The main result here is the following proposition. Recall that |x|2 is
defined in (3.24).

PROPOSITION 7.1. For given ε3 > 0, large enough N , and |x| > N6 and |x|2/
|x| ≤ 1/2,

Ex

[
sup

r,s>NHr

|X(N3)|r,s − |x|L;G
]

(7.1)

≤ C3(|x|K/|x|)N3 + ε3N
2
(

1

2
− P(G)

)

for all measurable sets G, with C3 > 0 not depending on N , G or x.

In the proof of Proposition 10.1, we will employ Proposition 7.1 by setting

G = A(N3) ∩
{
ω : |X(N3)|L = sup

r,s>NHr

|X(N3)|r,s
}
.(7.2)

Much of the work needed to demonstrate Proposition 7.1 is done in the follow-
ing proposition. We recall that ir (s) = s + 
r , where 
r = 
r(N

3).
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PROPOSITION 7.2. For given ε > 0, large enough N and all x,

Ex

[
sup

r,s>NHr

{|X(N3)|r,s − |x|r,ir (s)
};G]

≤ C21εN
2(7.3)

for all measurable sets G, with C21 not depending on ε, N , G or x.

PROOF. We will instead show that

Ex

[
sup

r,s>NHr

|XA(N3)|r,s
]
≤ C21εN

2.(7.4)

Inequality (7.3) follows immediately from this and inequality (6.9) since
|XA(N3)|r,s ≥ 0.

To show (7.4), we first note that for all r and s,

|XA(N3)|r,s ≤ C22κN,rNHr Z
A,∗
r (N3, s)(7.5)

for appropriate C22, where ZA,∗
r (N3, s)

def= (ZA)∗r (N3, s). The inequality uses (3.2)
and (6.40). On s > NHr , the RHS of (7.5) is at most

C22bκN,rNHr Z
A,∗
r (N3, (s,∞)) ≤ C22bκN,r

∫ ∞
NHr

Nr(s
′)ZA,∗

r (N3, s′) ds′(7.6)

on account of (6.39) and Nr(s) ≥ s.
On the other hand, by (3.12), the RHS of (7.6) is at most

(C22b/M1)|XA(N3)|R ≤ C21IR(N3),(7.7)

where C21
def= C22b/M1 and IR(·) is as in Section 5. Putting (7.5)–(7.7) together, it

follows that, for large N ,

sup
r,s>NHr

|XA(N3)|r,s ≤ C21IR(N3).(7.8)

Also, by Proposition 5.2, for given ε, one has that for large enough N ,

Ex[IR(N3)] ≤ εN2 for all x.(7.9)

Taking expectations in (7.8) and applying (7.9) implies (7.4). �

In order to demonstrate Proposition 7.1, we need Lemma 7.1, which bounds
|x|K from below in terms of |x| when (supr,s≥NHr

|x|r,s)/|x|L is not small. For the
lemma, we require the inequality

z∗
r ((0,NHr ]) ≤ C23|x|L for r ∈ R,(7.10)

for appropriate C23. This is a weaker version of (9.8), which we prove in Lem-
ma 9.2. [Equation (7.10) does not require any additional assumptions on a or b,
unlike (9.8).]
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If one supposes that |x|2 ≤ |x|/2, it then follows easily by summing (7.10) over
r that

|x|L ≥ C24|x|(7.11)

for C24 = 1/2C23|R|. This inequality will be used in Proposition 7.1 and will also
be used in Sections 8 and 9.

LEMMA 7.1. Suppose that, for some r0 and s0 ≥ NHr0
,

|x|r0,s0 ≥ |x|L/2.(7.12)

Then, for appropriate ε6 > 0 not depending on N ,

|x|K ≥ ε6|x|/N.(7.13)

PROOF. Applying (7.10), and then substituting (7.12) into (3.2), one obtains
for given r that

z∗
r ((0,NHr ]) ≤ C25Nz∗

r0
(s0)/�

(
H̄ ∗

r0
(NHr0

+ 1)
)

(7.14)
≤ C25bebNκN,r0z

∗
r0

((NHr0
,∞))

for appropriate C25 > 0, where the second inequality employs the assumption s0 ≥
NHr0

, together with (6.39) and (6.40). Addition of z∗
r ((NHr ,∞)) to both sides of

(7.14) gives

z∗
r (R

+) ≤ z∗
r ((NHr ,∞)) + C25bebNκN,r0z

∗
r0

((NHr0
,∞))

≤ (1 + C25beb)N
∑
r ′

κN,r ′z∗
r ′((NHr′ ,∞)).

Summing over r then implies

|x| ≤ ε−1
6 N |x|K(7.15)

with ε6 = [|R|(1 + C25beb)]−1. �

We now apply Proposition 7.2, together with Lemma 7.1 and (7.11), to demon-
strate Proposition 7.1.

PROOF OF PROPOSITION 7.1. Suppose first that |x|r0,s0 > |x|L/2 for some r0
and s0 > NHr0

. Choosing ε > 0 and C21 as in Proposition 7.2, with ε small enough
so ε < ε3/C21 for given ε3 > 0, it follows from the proposition and Lemma 7.1
that for large N and any G, the LHS of (7.1) is at most

C21εN
2 ≤ ε3N

2 ≤ 2ε3ε
−1
6 (|x|K/|x|)N3 − ε3N

2

(7.16)
≤ C3(|x|K/|x|)N3 − ε3N

2,
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if C3 is chosen to be at least 2ε3ε
−1
6 , where ε6 is as in the lemma. This is at most

the RHS of (7.1).
Suppose, on the other hand, that |x|r,s ≤ |x|L/2 for all s > NHr and r . Under

|x| > N6 and |x|2 ≤ |x|/2, it follows from (7.11) that |x|L ≥ C24N
6. Hence,

sup
r,s>NHr

|x|r,s − |x|L ≤ −1

2
C24N

6.(7.17)

Since ir (s) ≥ s > NHr , it follows from Proposition 7.2 and (7.17) that the LHS of
(7.1) is at most

C21εN
2 + sup

r,s>NHr

|x|r,s − |x|L ≤ C21εN
2 − 1

2
C24N

6P(G)

(7.18)

≤ ε3N
2
(

1

2
− P(G)

)

for large N , if we choose ε ≤ ε3/2C21. This is at most the RHS of (7.1), which
completes the proof. �

8. Pathwise upper bounds on |X(N3)|r,s for s ≤ NHr and �r > 1/b3. In
the previous section, we analyzed the behavior of |X(N3)|r,s − |x|L for s > NHr .
When s ≤ NHr , we analyze the cases where 
r ≤ 1/b3 and 
r > 1/b3 separately.
The latter case is quicker and we do it in this section, postponing the case 
r ≤
1/b3 until Section 9. For both cases, we will require certain pathwise upper bounds
on |XA(N3)|r,s that hold on A1(N

3), which are given in Proposition 8.1. We begin
the section with these bounds.

Upper bounds on |XA(N3)|r,s on A1(N
3). In order to derive bounds on

|XA(N3)|r,s , we first require bounds on ZA,∗
r (·, ·) that measure how quickly doc-

uments with the corresponding service times enter a route r up to a given time.
In Lemma 8.1, we provide uniform bounds on ZA,∗

r (t, s) for t ∈ [0,N3] and
ω ∈ A1(N

3). As in previous sections, S1
r (k), k = 1, . . . ,Ar(t), denotes the po-

sitions of the arrivals of documents up to time t . We also denote here by S2
r (t, k)

the amount of service such a document has received by time t ; S1
r (k) − S2

r (t, k) is
therefore the residual service time of the kth document at time t .

LEMMA 8.1. Suppose ω ∈ A1(N
3) for some N . Then, for all r , s ∈ [0,N +1]

and t ∈ [0,N3],
ZA,∗

r (t, s) ≤ 4bνr

(
H̄ ∗

r (s)N3 ∨ N3η).(8.1)

If instead s > N + 1, then

ZA,∗
r (t, s) ≤ 2bνr

(
H̄ ∗

r (N + 1)N3 ∨ N3η).(8.2)
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PROOF. For all r , s ∈ [0,N + 1] and t ∈ [0,N3],

ZA,∗
r (t, s) =

Ar(t)∑
k=1

φ
(
s − S1

r (k) + S2
r (t, k)

)
(8.3)

≤
Ar(N

3)∑
k=1

sup
s′∈[0,∞)

φ
(
s − S1

r (k) + s′) ≤ b

Ar(N
3)∑

k=1

�̄
(
s − S1

r (k)
)

with the latter inequality employing φ(s) ≤ b�̄(s) and the monotonicity of �̄(·).
Letting j0 denote the largest j with vj ≤ s, the last term in (8.3) is at most

b

Ar(N
3)∑

k=1

�̄
(
vj0 − S1

r (k)
) ≤ 2bνr

(
H̄ ∗

r (vj0)N
3 ∨ N3η)(8.4)

on A1(N
3). The inequality in (8.2) follows from this, with j0 = J . The inequality

in (8.1) follows by applying (6.15) to the RHS of (8.4). �

We now derive uniform upper bounds on |XA(t)|r,s for t ∈ [0,N3] and ω ∈
A1(N

3). In applications, we will be primarily interested in the behavior at t = N3.

PROPOSITION 8.1. Suppose ω ∈ A1(N
3) for some N . Then, for all r and s,

|XA(t)|r,s ≤ C26N
3 for t ∈ [0,N3] and all x,(8.5)

for appropriate C26 not depending on x,N,ω, r or s. In particular,

|X(t)|L − |x|L ≤ C26N
3 for t ∈ [0,N3] and all x.(8.6)

PROOF. By (6.10),

|X(t)|L − |x|L ≤ |XA(t)|L for all t,(8.7)

and so (8.6) follows immediately from (8.5).
We now investigate |XA(t)|r,s . From (3.2) and Lemma 8.1, it follows that, for

t ∈ [0,N3],

|XA(t)|r,s = wr(1 + asN)ZA,∗
r (t, s)

νr�(H̄ ∗
r (sN))

≤ 4bwrN
3(1 + asN)H̄ ∗

r (sN)/�(H̄ ∗
r (sN))(8.8)

+ 4bwrN
3η(1 + asN)/�(H̄ ∗

r (sN)).

We proceed to analyze the two terms on the RHS of (8.8).
It follows from the definition of �(·) in (3.8) that, for all s,

(1 + asN)H̄ ∗
r (sN)/�(H̄ ∗

r (sN)) ≤ (1 + asN)(H̄ ∗
r (sN))1−γ /aC2.(8.9)
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Since by assumption, H̄ ∗
r (·) has more than two moments and γ ≤ 1/2, the RHS

of (8.9) goes to 0 as sN → ∞. Hence, it is bounded for all sN , which implies that
the first term on the RHS of (8.8) is bounded above by C27N

3, for some C27 not
depending on t, r or s.

On the other hand, for all s,

(1 + asN)/�(H̄ ∗
r (sN)) ≤ (

1 + a(N + 1)
)
H̄ ∗

r (NHr + 1)−γ /aC2
(8.10)

≤ (
1 + a(N + 1)

)
(ebN4)γ /C2a.

Since γ ≤ 1/4, η ≤ 1/3 and aN ≥ 1, the latter term on the RHS of (8.8) is bounded
above by C28N

2, for some C28 not depending on t , r or s.
The above bounds for the two terms on the RHS of (8.8) sum to (C27 +C28)N

3.
Setting C26 = C27 + C28, this implies (8.5). �

Upper bounds on |X(N3)|r,s for s ≤ NHr and 
r > 1/b3. Proposition 8.2
gives an upper bound on |X(N3)|r,s − |x|L when s ≤ NHr and 
r > 1/b3. The
proof, which employs Proposition 8.1, is quick.

PROPOSITION 8.2. Suppose that |x| > N6, with |x|2/|x| ≤ 1/2. Then, for
large enough N ,

sup

r>1/b3

sup
s≤NHr

|X(N3)|r,s − |x|L ≤ −N4 for all ω ∈ A1(N
3),(8.11)

where N does not depend on x or ω.

PROOF. For each r and s,

|X(N3)|r,s − |x|L = |XA(N3)|r,s − (|x|L − |X̃(N3)|r,s)
(8.12)

≤ C26N
3 − (|x|L − |X̃(N3)|r,s)

with the last line following from Proposition 8.1. We consider two cases, depend-
ing on whether |x|r,ir (s) > |x|L/2 for given r and s.

Suppose first that |x|r,ir (s) > |x|L/2, with s ≤ NHr and |x|2 ≤ |x|/2. One has

|x|r,ir (s) − |X̃(N3)|r,s ≥ wr

νr

· a

b3 · z∗
r (ir (s))

�(H̄ ∗
r (ir (s)N))

.(8.13)

To see this, one applies (6.7) to the definition of |x|r,s in (3.2), noting that since
s ≤ NHr ,

ir (s)N − sN = ir (s) ∧ (NHr + 1) − s ≥ 
r ∧ 1 > 1/b3,(8.14)

and that �(H̄ ∗
r (ir (s)N)) ≤ �(H̄ ∗

r (s)). On account of (3.2) and |x|r,ir (s) > |x|L/2,
one obtains, from the RHS of (8.13),

a

b3 ·
(

wrz
∗
r (ir (s))

νr�(H̄ ∗
r (ir (s)N))

/
|x|r,ir (s)

)
· |x|r,ir (s)

|x|L · |x|L

≥ a

b3 · (1 + air(s)N
)−1 · 1

2
· |x|L.
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Because of |x|2 ≤ |x|/2, (7.11), ir (s)N ≤ N , |x| > N6 and aN ≥ 1, this is at most
C29N

5, where C29 > 0 does not depend on N , x or ω. It follows from (8.13) and
the succeeding inequalities that

|x|L − |X̃(N3)|r,s ≥ |x|r,ir (s) − |X̃(N3)|r,s ≥ C29N
5.(8.15)

Together with (8.12), this gives the RHS of (8.11).
Suppose, on the other hand, that |x|r,ir (s) ≤ |x|L/2, with |x|2 ≤ |x|/2. Then, by

(7.11) and (6.8), the RHS of (8.12) is at most

C26N
3 − 1

2 |x|L − (|x|r,ir (s) − |X̃(N3)|r,s)
(8.16)

≤ C26N
3 − 1

2C24N
6 ≤ −N5

for large N . This implies (8.11) for |x|r,ir (s) ≤ |x|L/2, and hence completes the
proof. �

9. Pathwise upper bounds on |X(N3)|r,s for s ≤ NHr and �r ≤ 1/b3. In
Sections 7 and 8, we analyzed the behavior of |X(N3)|r,s − |x|L for s > NHr , and
for s ≤ NHr with 
r > 1/b3. There remains the case s ≤ NHr with 
r ≤ 1/b3,
which is the subject of this section. This is, in essence, the “main case” one needs
to show in order to establish the stability of the network since the other cases dealt
with less sensitive behavior and did not employ the subcriticality of the system that
was given in (1.2). The same was also true for the computations of the | · |A and
| · |R norms in Sections 4 and 5.

Section 9 consists of three subsections. First, in Proposition 9.2, we give lower
bounds on the minimal service rates λw(·) of documents in terms of the norm
| · |L. In the next subsection, we begin our analysis of |X(N3)|r,s for s ≤ NHr

and 
r ≤ 1/b3. We decompose |X(N3)|r,s − |x|r,ir (s) into several parts that are
easier to analyze. In Proposition 9.3, we then obtain upper bounds on the factor
Z∗

r (N3, s) − z∗
r (ir (s)) of one of the parts. In the third subsection, we do a detailed

analysis of the decomposition from the previous subsection, which also employs
the bounds on λw(·) from the first subsection. From this, we obtain in Proposition
9.5 the desired bound on |X(N3)|r,s − |x|L. We note that, whereas in Section 8,
our results pertained to ω ∈ A1(N

3), starting from the second subsection here,
we require ω ∈ A2(t). Our final results on |X(N3)|r,s − |x|L, for s ≤ NHr , will
therefore be valid on A(N3) = A1(N

3) ∩ A2(N
3).

Lower bounds on λw(·). In order to demonstrate the stability of the network,
its subcriticality needs to be employed at some point. With this in mind, we choose
ε7 ∈ (0,1] small enough so that

(1 + ε7)
2
∑
r∈R

Al,rρr ≤ cl for all l,(9.1)

which is possible because of (1.2). We henceforth assume ε5 ≤ ε7/4, where ε5 was
employed in (6.19) in the definition of A2(·).
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The main results in this subsection are Propositions 9.1 and 9.2. Proposition 9.1
gives a lower bound on λw(t) in terms of |X(t)|S ; Proposition 9.2, under additional
assumptions, gives the bound in terms of |x|L.

PROPOSITION 9.1. Assume (9.1) holds for some ε7 > 0. Then, for large
enough b and small enough a,

λw(t) ≥ (1 + ε7)/|X(t)|S(9.2)

for almost all t .

In this and the previous subsection, we need to employ certain properties of
�(H̄ ∗

r (·)), which appears in the denominator in (3.2). In Lemma 9.1, we state two
such properties; the first is employed for Lemma 9.3 and the second is employed
for Lemma 9.2. Recall that mr is the mean of Hr(·).

LEMMA 9.1. For �(·) as defined in (3.8),

�′(H̄ ∗
r (s)) ≥ 1 + as for all r and s.(9.3)

Moreover, for large enough b and small enough a,∫ ∞
0

�(H̄ ∗
r (s))

1 + as
ds ≤ (1 + ε7)mr(9.4)

for ε7 > 0 satisfying (9.1).

PROOF. By (3.8) and then (3.7), one has, for all r and s,

�′(H̄ ∗
r (s)) = 1 + C2γ a(H̄ ∗

r (s))γ−1

(9.5)
≥ 1 + C2C

γ−1
1 γ a(1 + s)(1−γ )(2+δ1) ≥ 1 + as,

where the last inequality uses γ ≤ 1/2 and C2 ≥ C1
(1−γ )/γ . This implies (9.3).

For (9.4), we note from (3.8) and (3.7) that∫ ∞
0

�(H̄ ∗
r (s))

1 + as
ds ≤

∫ ∞
0

H̄ ∗
r (s) ds + C2

1a

∫ ∞
0

(1 + s)−2γ (1 + as)−1 ds.(9.6)

The constant b can be chosen large enough so the first term on the RHS of (9.6)
is at most (1 + ε7/2)mr . Also, by choosing a > 0 small enough, since the second
term can be chosen as close to 0 as desired, by monotone convergence,

a

∫ ∞
0

(1 + s)−2γ (1 + as)−1 ds =
∫ ∞

0
(1 + s)−(1+2γ ) 1 + s

1/a + s
ds → 0(9.7)

as a ↘ 0. So, for large enough b and small enough a, (9.4) holds. �

By employing (9.4), we obtain upper bounds for z∗
r ((0,NHr ]) and z∗

r (R
+) in

terms of |x|L and |x|S . Inequality (9.9) will be crucial for Proposition 9.1.
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LEMMA 9.2. For large enough b and small enough a,

z∗
r ((0,NHr ]) ≤ (1 + ε7)w

−1
r ρr |x|L(9.8)

and

z∗
r (R

+) ≤ (1 + ε7)w
−1
r ρr |x|S(9.9)

for all N and r , where ε7 > 0 is as in (9.1).

PROOF. We note that by (3.2),

z∗
r ((0,NHr ]) =

∫ NHr

0
z∗
r (s) ds ≤ w−1

r νr |x|L
∫ NHr

0

�(H̄ ∗
r (s))

1 + as
ds.(9.10)

By (9.4), for large enough b and small enough a, the last term in (9.10) is at most

(1 + ε7)w
−1
r νrmr |x|L = (1 + ε7)w

−1
r ρr |x|L(9.11)

for all N and r , which implies (9.8). It follows from (9.8) and the definition of | · |S
in (3.25) that

z∗
r (R

+) ≤ (1 + ε7)w
−1
r ρr

[
|x|L + wr

ρr

z∗
r ((NHr ,∞))

]

≤ (1 + ε7)w
−1
r ρr |x|S,

which implies (9.9). �

A weaker version of the bound (9.8) was used in (7.10), where the RHS of (9.8)
was replaced by C23|x|L, and no additional assumptions on b and a were required.
This follows by noting that the second term on the RHS of (9.6) does not depend
on a (since a ≤ 1).

We now demonstrate Proposition 9.1.

PROOF OF PROPOSITION 9.1. On account of (9.1), a feasible protocol is given

by assigning service to each nonempty route r at rate �r,F
def= (1+ε7)

2ρr . By (9.9),
the rate at which each document is served is

λr,F = (1 + ε7)
2ρr

Zr(t,R+)
= (1 + ε7)

2ρr

Z∗
r (t,R+)

≥ (1 + ε7)wr

|X(t)|S(9.12)

at almost all times t . It follows from this and the definition of the weighted max–
min fair protocol that

λw(t) = min
r∈R′

λr(t)

wr

≥ min
r∈R′

λr,F

wr

≥ (1 + ε7)

|X(t)|S for almost all t,

which implies (9.2). �
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We apply Proposition 9.1 to derive the following lower bound of λr(t) on
[0,N3]. We note that, by (8.6) of Proposition 8.1 and (7.11), for ω ∈ A1(N

3),
|x| > N6 and |x|2 ≤ |x|/2,

|X(t)|L ≤ |x|L + C26N
3 ≤ (1 + ε)|x|L(9.13)

holds for given ε > 0 and large enough N . In the proposition, we will use

ε8
def=

[
C24

8

(
max

r

wr

ρr

)−1

ε7

]
∧ 1

2
.

PROPOSITION 9.2. Suppose that (9.1) holds for some ε7 ∈ (0,1], and that
|x| > N6, with |x|2 ≤ ε8|x|. Then, for large enough N and b, and small enough a,

λw(t) ≥ (1 + ε7/2)/|x|L(9.14)

for almost all t ∈ [0,N3] on ω ∈ A1(N
3).

PROOF. It follows from Proposition 9.1 that

λw(t) ≥ (1 + ε7)/|X(t)|S almost everywhere,(9.15)

for large enough b and small enough a. On the other hand, it follows from (3.25),
(9.13), (6.12) and (6.17) that, since |x| > N6 and |x|2 ≤ ε8|x|,

|X(t)|S ≤ |X(t)|L +
(

max
r

wr

ρr

)
Z∗

r (t, (NHr ,∞))

(9.16)

≤ (1 + ε)|x|L +
(

max
r

wr

ρr

)[
|x|2 + 2

(
max

r
νr

)
N3

]

holds for given ε > 0 and large enough N , for all ω ∈ A1(N
3) and t ∈ [0,N3].

Applying |x| > N6, |x|2 ≤ ε8|x| and (7.11) to the RHS of (9.16) implies that it is
at most (

1 + ε + ε7

8

)
|x|L + 2

(
max

r

wr

ρr

)(
max

r
νr

)
|x|L/C24N

2.

Consequently, for small enough ε > 0,

|X(t)|S ≤ (1 + ε7/4)|x|L for all t ∈ [0,N3].(9.17)

Together with (9.15), this implies (9.14). �

Decomposition of |X(N3)|r,s − |x|r,ir (s). In this short subsection, we decom-
pose |X(N3)|r,s − |x|r,ir (s) into several parts, one of which contains the factor
Z∗

r (N3, s) − z∗
r (ir (s)). In Proposition 9.3, we then obtain upper bounds on this

factor. In this and the remaining subsection, the estimates need to be more precise
than in previous sections in order to make use of the subcriticality of X(·).
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The decomposition that was referred to above is given by

|X(N3)|r,s − |x|r,ir (s)

= wr(1 + as)(Z∗
r (N3, s) − z∗

r (ir (s)))

νr�(σr)
(9.18)

− |x|r,ir (s)
1 + as

1 + air(s)

�(σr) − �(σ ′
r )

�(σr)
− awr
rz

∗
r (ir (s))

νr�(σ ′
r )

,

and holds for s ≤ NHr and 
r ≤ 1/b3. It will be employed in Corollary 9.1. Here
and later on, we abbreviate, setting σr = H̄ ∗

r (s) and σ ′
r = H̄ ∗

r (ir (s)). [One can
check that (9.18) holds as given, without employing either sN or ir (s)N , as in
(3.2), since ir (s) = s + 
r ≤ NHr + 1, and hence sN = s and ir (s)N = ir (s).]

To apply the bound (6.19) on ω ∈ A2(N
3) and derive an upper bound on

Z∗
r (N3, s) − z∗

r (ir (s)), we need to select a vj from among v0, . . . , vJ , as given
by (6.14). For this, we denote by v(s) the value vj with

vj ∈ [
ir (s), ir (s) + 1/b3).(9.19)

Under s ≤ NHr and 
r ≤ 1/b3, such a v(s) exists.

PROPOSITION 9.3. Suppose ω ∈ A2(N
3), for some N and b, with b as in

(3.3). Then,

Z∗
r (N3, s) − z∗

r (ir (s)) ≤ (1 + ε5)(1 + 4/b2)νr [h∗
r (v(s))N3 ∨ N3η](9.20)

for all r and s with 
r ≤ 1/b3 and s ≤ NHr , where ε5 > 0 is as in (6.19) and v(s)

is given by (9.19).

PROOF. By (6.7), the LHS of (9.20) is at most ZA,∗
r (N3, s). For s ≤ NHr , this

equals

Ar(N
3)∑

k=1

φ
(
s − S1

r (k) + S2
r (N3, k)

) ≤ e2/b2
Ar(N

3)∑
k=1

φ
(
v(s) − S1

r (k)
)

(9.21)

≤ (1 + 4/b2)

Ar(N
3)∑

k=1

φ
(
v(s) − S1

r (k)
)
.

To see (9.21), we note that since S2
r (N3, k) ≤ 
r ≤ 1/b3,

vj − S1
r (k) ∈ [s − S1

r (k) + S2
r (N3, k), s − S1

r (k) + S2
r (N3, k) + 2/b3].(9.22)

Together with the second half of (3.4), this implies the first inequality. The second
inequality follows by expanding e2/b2

. Since ω ∈ A2(N
3), the RHS of (9.20) then

follows by applying (6.19). �

In the next subsection, we will also employ the following bound on h∗
r (s2) −

h∗
r (s1) for s1 ≤ s2.
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PROPOSITION 9.4. For any r , s1 ≤ s2 and b,

h∗
r (s2) − h∗

r (s1) ≤ eb2(s2 − s1)H̄
∗
r (s1).(9.23)

PROOF. Since h∗
r (s) = ∫∞

0 φ(s − s′) dHr(s
′) for each s, the LHS of (9.23)

equals ∫ ∞
0

(
φ(s2 − s′) − φ(s1 − s′)

)
dHr(s

′).(9.24)

By the first part of (3.4) and the definition of φ(·), φ′(s) ≤ b2 for all s and φ(·) is
decreasing on [1/b,∞). So, (9.24) is at most∫ ∞

0
b2(s2 − s1)1{s′ > s1 − 1/b}dH(s′) ≤ b2(s2 − s1)H̄r (s1 − 1/b)

≤ b2(s2 − s1)H̄
∗
r (s1 − 1/b)(9.25)

≤ eb2(s2 − s1)H̄
∗
r (s1). �

Upper bounds on |X(N3)|r,s . In this subsection, we employ the previous two
subsections to obtain upper bounds on |X(N3)|r,s −|x|L for ω ∈ A(N3), when s ≤
NHr and 
r ≤ 1/b3. Our main result is the following proposition. As elsewhere in
this paper, we are assuming that aN ≥ 1.

PROPOSITION 9.5. Suppose that (9.1) holds for some ε7 ∈ [0,1] and that
|x| > N6, with |x|2 ≤ ε8|x|, where ε8 is specified below (9.13). Then, for large
enough N and b, and small enough a,

|X(N3)|r,s − |x|L ≤ −1
2wrN

2(9.26)

for ω ∈ A(N3), and all r and s with 
r ≤ 1/b3 and s ≤ NHr .

Our main step in demonstrating Proposition 9.5 will be to demonstrate the fol-
lowing proposition.

PROPOSITION 9.6. Under the same assumptions as in Proposition 9.5,

wr(1 + as)(Z∗
r (N3, s) − z∗

r (ir (s)))

νr�(σr)
≤ |x|L · 1 + as

1 + air(s)
· �(σr) − �(σ ′

r )

�(σr)
(9.27)

+ C30wrN
3

ab(1 + as)
+ C31wrN

3/2

for appropriate C30 and C31 not depending on w,N,a, b, r or s.
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In order to demonstrate Proposition 9.6, we note that, on account of Proposi-
tion 9.3, the LHS of (9.27) is, under the assumptions for the latter proposition, at
most

dr(s)
(
h∗

r (v(s))N3 ∨ N3η)
≤ dr(s)

(
inf

s′∈[s,ir (s)]
h∗

r (s
′)
)
N3(9.28)

+ dr(s)
(
h∗

r (v(s)) − inf
s′∈[s,ir (s)]

h∗
r (s

′)
)
N3 + dr(s)N

3η,

where

dr(s) = (1 + ε5)(1 + 4/b2)wr(1 + as)/�(σr).

We will show in Lemmas 9.3, 9.4 and 9.5 that each of the three terms on the
RHS of (9.28) is bounded above by the corresponding term on the RHS of (9.27).
Proposition 9.6 then follows.

We first show Lemma 9.3, which applies to the first term on the RHS of (9.28),
and should be thought of as the “main term” there.

LEMMA 9.3. Under the same assumptions as in Proposition 9.5,

dr(s)
(

inf
s′∈[s,ir (s)]

h∗
r (s

′)
)
N3 ≤ |x|L 1 + as

1 + air(s)
· �(σr) − �(σ ′

r )

�(σr)
.(9.29)

PROOF. It follows from Proposition 9.2 that

λw(t) ≥ (1 + ε7/2)/|x|L for almost all t ∈ [0,N3],(9.30)

for large enough N and b, and small enough a, and therefore


r ≥ (1 + ε7/2)wrN
3/|x|L for all r.(9.31)

Consequently, the LHS of (9.29) is at most

dr(s)|x|L
(

inf
s′∈[s,ir (s)]

h∗
r (s

′)
)

r/wr(1 + ε7/2)

(9.32)
≤ dr(s)|x|L(H̄ ∗

r (s) − H̄ ∗
r (ir (s))

)
/wr(1 + ε7/2).

This last quantity can be rewritten as

(1 + ε5)(1 + 4/b2)

1 + ε7/2
· |x|L · 1 + as

1 + air(s)
· �(σr) − �(σ ′

r )

�(σr)
(9.33)

× 1 + air(s)

(�(σr) − �(σ ′
r ))/(σr − σ ′

r )
.
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We proceed to bound the components of (9.33). Since ε5 ≤ ε7/4, one has for
large enough b, depending on ε7, that

(1 + ε5)(1 + 4/b2)

1 + ε7/2
≤ (1 + 1/b2)−1.(9.34)

Since �(·) is concave and σr > σ ′
r ,

�(σr) − �(σ ′
r )

σr − σ ′
r

≥ �′(σr) ≥ 1 + as,(9.35)

with the second inequality holding on account of (9.3). So the last term in (9.33)
is at most

1 + air(s)

1 + as
= 1 + a
r

1 + as
≤ 1 + 1/b3,(9.36)

where the inequality uses 
r ≤ 1/b3. Consequently, (9.33) is, for large b, at most

(1 + 1/b2)−1(1 + 1/b3)|x|L 1 + as

1 + air(s)
· �(σr) − �(σ ′

r )

�(σr)
,

which is at most as large as the RHS of (9.29). This implies the lemma. �

We next demonstrate Lemma 9.4, which applies to the second term on the RHS
of (9.28).

LEMMA 9.4. For all r and s with 
r ≤ 1/b3 and s ≤ NHr ,

dr(s)
(
h∗

r (v(s)) − inf
s′∈[s,ir (s)]

h∗
r (s

′)
)
N3 ≤ C30wrN

3

ab(1 + as)
(9.37)

for appropriate C30 not depending on w,N,a, b, r or s.

PROOF. Since v(s) − s ≤ 2/b3, it follows from Proposition 9.4 that the LHS
of (9.37) is at most

(1 + ε5)(1 + 4/b2)
2eb2

b3 wrN
3H̄ ∗

r (s)
(1 + as)

�(σr)
.(9.38)

On account of (3.8), since γ ≤ δ1/4, b ≥ 2 and ε5 ≤ 1, this is at most

24wr

C2ab
N3(H̄ ∗

r (s))1−γ (1 + as) ≤ 24C1wr

C2ab
N3(1 + as)1−(1−γ )(2+δ1)

(9.39)

≤ 24C1wrN
3

C2ab(1 + as)
.

Recall that C1 and C2 do not depend on w,N,a, b, r or s. The RHS of (9.37)
follows from this last term by setting C30 = 24C1/C2. �

We now demonstrate Lemma 9.5, which applies to the third term on the RHS of
(9.28).
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LEMMA 9.5. For all s ≤ NHr ,

dr(s)N
3η ≤ C31wrN

3/2(9.40)

for appropriate C31 not depending on w,N,a, b, r or s.

PROOF. Since s ≤ NHr ≤ N , γ ≤ 1/24, η ≤ 1/12, b ≥ 2 and ε5 ≤ 1, it follows
from (3.8) and (3.10) that the LHS of (9.40) is at most

4wrN
3η(1 + aN)

C2aH̄ ∗
r (NHr )

γ
≤ 4

C2a
wrN

1/2(1 + aN).(9.41)

Since aN ≥ 1, this is at most 8wrN
3/2/C2, which gives the RHS of (9.40) for

C31 = 8/C2. �

Proposition 9.6 follows by applying Lemmas 9.3, 9.4 and 9.5 to (9.28).
We will apply the following corollary of the proposition to Proposition 9.5. The

corollary combines the inequality (9.27) with (9.18).

COROLLARY 9.1. Under the same assumptions as in Propositions 9.5
and 9.6,

|X(N3)|r,s − |x|L ≤ C30wrN
3

ab(1 + as)
+ C31wrN

3/2 − awr
rz
∗
r (ir (s))

νr�(σ ′
r )

(9.42)

for appropriate C30 and C31 not depending on w, N , a, b, r or s.

PROOF. The first term on the RHS of (9.27) of Proposition 9.6 is at most

|x|r,ir (s)
1 + as

1 + air(s)
· �(σr) − �(σ ′

r )

�(σr)
+ |x|L − |x|r,ir (s)(9.43)

since the coefficients of |x|r,ir (s) in the first term in (9.43) are at most 1. Substi-
tuting (9.43) into (9.27) and then applying the resulting inequality to the RHS of
(9.18), we note that the term on the LHS of (9.27) is the first term on the RHS of
(9.18) and the first term in (9.43) is the negative of the second term on the RHS
of (9.18). After the resulting cancellation, the last two terms on the RHS of (9.27),
together with the last term on the RHS of (9.18), give the RHS of (9.42). �

In order to show Proposition 9.5, we will need a lower bound on the last term
on the RHS of (9.42) and an upper bound on each of the first two terms. In the
following lemma, we obtain the former. Note that the assumptions in the lemma
are those of Proposition 9.2, with the additional assumption that

|x|r,ir (s) ≥ |x|L/(1 + ε7/2) for some s ≤ NHr .(9.44)
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LEMMA 9.6. Suppose that (9.1) holds for some ε7 ∈ (0,1], that |x| > N6 with
|x|2 ≤ ε8|x|, and that (9.44) is satisfied for a given s. Then, for large enough N

and b, and small enough a,


rz
∗
r (ir (s))

νr�(σ ′
r )

≥ N3

1 + air(s)
on ω ∈ A1(N

3).(9.45)

PROOF. By Proposition 9.2,

λw(t) ≥ (1 + ε7/2)/|x|L for almost all t ∈ [0,N3].(9.46)

Consequently,


r ≥ (1 + ε7/2)wrN
3/|x|L for all r.(9.47)

It follows from (9.47), (3.2) and (9.44) that the LHS of (9.45) is at least

(1 + ε7/2)wrN
3z∗

r (ir (s))

νr�(σ ′
r )|x|L = (1 + ε7/2)N3|x|r,ir (s)

(1 + air(s))|x|L ≥ N3

1 + air(s)
.(9.48) �

We now apply Corollary 9.1 and Lemma 9.6 to demonstrate Proposition 9.5.

PROOF OF PROPOSITION 9.5. We will consider two cases for a given s ≤
NHr , depending on whether (9.44) holds. Suppose it does. Then, by Lemma 9.6,

awr
rz
∗
r (ir (s))

νr�(σ ′
r )

≥ awrN
3

1 + air(s)
,(9.49)

which is a lower bound for the third term on the RHS of (9.42).
On the other hand, if one chooses b ≥ 8C30/a

2, then, since a ≤ 1 and 
r ≤
1/b3 ≤ 1, the first term on the RHS of (9.42) satisfies

C30wrN
3

ab(1 + as)
≤ awrN

3

4(1 + air(s))
,(9.50)

which is 1/4 of the RHS of (9.49). Since s ≤ NHr , ir (s) ≤ N + 1. So, the sum of
the first and third terms on the RHS of (9.42) is, for large N , at most

− 3awrN
3

4(1 + air(s))
≤ −5

8
wrN

2.(9.51)

The second term on the RHS of (9.42) satisfies

C31wrN
3/2 ≤ 1

8wrN
2

for large N . Combining this with (9.51), one obtains from Corollary 9.1 that

|X(N3)|r,s − |x|L ≤ −1
2wrN

2,

which implies (9.26) under (9.44).
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When (9.44) fails for s, one has, for large N ,

|X(N3)|r,s − |x|L = (|X(N3)|r,s − |x|r,ir (s)
)− (|x|L − |x|r,ir (s)

)
≤ |X(N3)|r,s − |x|r,ir (s) − 1

4ε7|x|L
(9.52)

≤ |XA(N3)|r,s − 1
4C24ε7|x|

≤ C26N
3 − 1

4C24ε7N
6 ≤ −N5,

where, in the second inequality, we applied (6.9) and (7.11), and in the third in-
equality, we applied (8.5) of Proposition 8.1 and |x| > N6. This implies (9.26)
when (9.44) fails. �

10. Conclusion: Upper bounds on Ex[|X(N3)|L]. In the preceding four
sections, we obtained upper bounds on

|X(N3)|r,s − |x|L and Ex[|X(N3)|L − |x|L; A(N3)c]
under various assumptions. In Propositions 6.1 and 6.2 we showed that
Px(A(N3)c) and the corresponding expectation Ex[|X(N3)|L; A(N3)c] are small.
In Proposition 7.1, we showed that the expected value of |X(N3)|r,s −|x|L is small
for s > NHr . In Sections 8 and 9, we obtained pathwise estimates on A(N3) when
s ≤ NHr , depending on whether 
r > 1/b3 or 
r ≤ 1/b3. Proposition 8.2 gives
an upper bound in the former subcase and Proposition 9.5 gives an upper bound in
the latter subcase. Except for Propositions 6.1 and 6.2, we assumed that |x| > N6;
for the different results, we also required various side conditions.

We tie these results together in Proposition 10.2 to obtain inequality (3.30)
that was cited earlier. We do this in several steps, first combining the results for
s ≤ NHr , then combining these with Proposition 7.1 for s > NHr , and lastly in-
cluding the bound from Proposition 6.1 on A(N3)c. The first two steps are done
in Proposition 10.1. As elsewhere in the paper, aN ≥ 1 is assumed.

PROPOSITION 10.1. Suppose that (9.1) holds for some ε7 ∈ (0,1] and that
|x| > N6, with |x|2 ≤ ε8|x|, where ε8 is specified below (9.13). Then, for large
enough N and b, and small enough a,

|X(N3)|r,s − |x|L ≤ −1
2wrN

2(10.1)

for ω ∈ A(N3), all r , and s with s ≤ NHr . Moreover, for large enough N and b,
and small enough a,

Ex[|X(N3)|L − |x|L; A(N3)]
(10.2)

≤ C3(|x|K/|x|)N3 −
(

1

4
min

r
wr

)
N2(2Px(A(N3)) − 1

)
.
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Note that the assumptions for the first half of Proposition 10.1 are the same as
for Proposition 9.5, except that the restriction that 
r ≤ 1/b3 has been removed.

PROOF OF PROPOSITION 10.1. Inequality (9.26) in Proposition 9.5 covers the
case where 
r ≤ 1/b3; (8.11) of Proposition 8.2 covers the case where 
r > 1/b3.
Together, they imply (10.1).

In order to demonstrate (10.2), we partition A(N3) into G ∪ H , with

G =
{
ω : |X(N3)|L = sup

r,s>NHr

|X(N3)|r,s
}
.

Applying Proposition 7.1 to this G, with ε3 = (minr wr)/2, and applying (10.1)
on H , it follows that the LHS of (10.2) equals

Ex

[
sup

r,s>NHr

|X(N3)|r,s − |x|L;G
]
+ Ex

[
sup

r,s≤NHr

|X(N3)|r,s − |x|L;H
]

≤ C3(|x|K/|x|)N3 −
(

1

4
min

r
wr

)
N2(2Px(G) + 2Px(H) − 1

)
(10.3)

= C3(|x|K/|x|)N3 −
(

1

4
min

r
wr

)
N2(2Px(A(N3)) − 1

)
.

This implies (10.2). �

We now obtain our desired result, Proposition 10.2, which gives upper bounds
on Ex[|X(N3)|L] − |x|L. The first part of the proposition applies to all x; the
second part requires that |x| > N6.

PROPOSITION 10.2. Suppose that (9.1) holds for some ε7 ∈ (0,1].
(a) For large enough N ,

Ex[|X(N3)|L] − |x|L ≤ C3N
3 for all x.(10.4)

(b) For |x| > N6, large enough N and b, and small enough a,

Ex[|X(N3)|L] − |x|L ≤ C3(|x|K/|x|)N3 −
(

1

4
min

r
wr

)
N2.(10.5)

In both parts, C3 is an appropriate constant that does not depend on x or N .

PROOF. We first show (a). By (6.10) and (8.6) of Proposition 8.1,

|X(N3)|L − |x|L ≤ C26N
3(10.6)

for all ω ∈ A1(N
3) and appropriate C26 > 0 not depending on x, N , or ω. Together

with Proposition 6.1, this implies

Ex[|X(N3)|L] − |x|L
= Ex[|X(N3)|L; A(N3)] + Ex[|X(N3)|L; A(N3)c] − |x|L(10.7)

≤ C26N
3 + N3e−C10N

3η ≤ 2C26N
3
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for large enough N . For C3 ≥ 2C26, this implies (10.4).
For (b), we suppose first that |x|2 ≤ ε8|x|, where ε8 is given below (9.13). Then,

(10.2) of Proposition 10.1, together with Propositions 6.1 and 6.2, implies that the
LHS of (10.5) is equal to

Ex[|X(N3)|L; A(N3)] + Ex[|X(N3)|L; A(N3)c] − |x|L
≤ C3(|x|K/|x|)N3 −

(
1

4
min

r
wr

)
N2(2Px(A(N3)) − 1

)
(10.8)

+ N3e−C10N
3η

≤ C3(|x|K/|x|)N3 −
(

1

4
min

r
wr

)
N2

for large N and b, and small a. This implies (10.5) for |x|2 ≤ ε8|x|.
Assume now that |x|2 > ε8|x|. Choosing C3 ≥ (2C26 + 1

4 minr wr)/ε8, it fol-
lows from (10.7) that, for large N ,

Ex[|X(N3)|L] − |x|L ≤
(
C3ε8 − 1

4
min

r
wr

)
N3

≤ C3(|x|2/|x|)N3 −
(

1

4
min

r
wr

)
N3

≤ C3(|x|K/|x|)N3 −
(

1

4
min

r
wr

)
N3.

This implies (10.5) for |x|2 > ε8|x|. �
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