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CONSISTENCY PROPERTIES OF A SIMULATION-BASED
ESTIMATOR FOR DYNAMIC PROCESSES1

BY MANUEL S. SANTOS

University of Miami and Universidad Carlos III de Madrid

This paper considers a simulation-based estimator for a general class of
Markovian processes and explores some strong consistency properties of the
estimator. The estimation problem is defined over a continuum of invariant
distributions indexed by a vector of parameters. A key step in the method of
proof is to show the uniform convergence (a.s.) of a family of sample dis-
tributions over the domain of parameters. This uniform convergence holds
under mild continuity and monotonicity conditions on the dynamic process.
The estimator is applied to an asset pricing model with technology adoption.
A challenge for this model is to generate the observed high volatility of stock
markets along with the much lower volatility of other real economic aggre-
gates.

1. Introduction. Simulation-based estimation is advocated in several applied
areas of economics and finance (e.g., [6, 12, 15]), but relatively little is known
about asymptotic properties of these estimation methods. Our purpose here is to
establish some strong consistency properties of a simulation-based estimator. Al-
though the estimator seems highly specific, our results should be of broad appli-
cation to other types of simulation-based estimation methods. The estimator is ap-
plied to a macroeconomic model of technology adoption where some parameters
are hard to estimate by other methods.2 In this model, news about the arrival of new
technologies will suddenly impact the stock market because of their option value
in the creation of new products and designs. A challenge for this model is to rec-
oncile the volatility of real economic aggregates (e.g., worked hours, consumption
and investment) with the much greater volatility of the stock market. Traditional
business cycle models fail to offer a joint explanation for the fluctuations of the
real and financial sectors. Hence, it becomes of interest to search for the best fit
of our model and check if it has the ability to replicate volatilities along these two
dimensions.
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For simplicity, our theoretical analysis centers on the following parameterized
family of random dynamical systems:

sn = ϕ(sn−1, εn, θ), n = 1,2, . . . .(1.1)

Stochastic equations of the form (1.1) often arise as solutions of various dynamic
models in biology, economics, physics and other applied disciplines. In the sequel,
sn is a finite vector of state variables, εn is a vector of i.i.d. shocks and θ is a
finite vector of parameters. In many applications, it becomes crucial the estima-
tion of the vector of parameters θ by a reliable procedure. Traditional data-based
estimation methods are of limited applicability for nonlinear stochastic systems.
First, the estimator may require optimization of the likelihood function, or of an
associated objective, and such calculation may not be computationally feasible.
Indeed, function ϕ may be unknown, and usually has to be computed numerically.
Besides, both the vector of shocks ε and some state variables s may be unobserv-
able.3 Second, commonly used goodness-of-fit criteria, such as the minimum size
of the squared residuals, can be quite uninformative on the dynamic properties of
the selected model. Simulation-based estimators can target directly the moments
of an invariant probability or some other critical aspects of the dynamics.

The informational requirements for the implementation of our estimator are
quite weak, and stem from the ability to simulate the model. Thus, a researcher
must be able to evaluate function ϕ (or have access to a computer-generated law
of motion) as specified in (1.1), and take a stand on the functional form of the
probability law for the shock ε. (Vector θ may encompass parameter values for the
distribution of ε.) Therefore, the functional form of ϕ and the actual sequence of
realizations {εn}n≥1 may both be unknown.

The proofs of consistency of the estimator deal with the nonlinear dynamical
effects of the vector of parameters θ, which feeds into the evolution of sample
paths {sn}n≥1 for a fixed initial condition s0 and a sequence of shocks {εn}n≥1.

Indeed, the estimation problem is defined over a continuum of invariant probabil-
ity measures μθ which vary with parameter θ , and the estimated parameter values
are selected over a continuum of sample distributions. In contrast, traditional es-
timators [16, 20] select values from the unique invariant distribution of the data
generating process. A key step below is to demonstrate the uniform convergence
of a continuum of sample distributions for every initial condition s0 and almost all
sequences of realizations {εn}n≥1. This result is of independent interest in proba-
bility theory. As in usual proofs of consistency, the result amounts to a uniform law
of large numbers, but for our simulation-based estimator the convergence is over a
continuum of invariant distributions parameterized by vector θ . This uniform law

3These unobservable state variables are often called “latent variables.” Note that function ϕ could
be nonseparable in s and ε, and the ergodic sets and distributions of the stochastic dynamical system
(1.1) will depend on parameter vector θ .
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of large numbers is shown to hold under mild continuity and monotonicity condi-
tions. We leave for future investigation extensions of this analysis to nonmonotone
dynamical systems.

The paper contributes to several strands of the literature. There are various re-
lated results on uniform convergence of invariant distributions for families of func-
tions (e.g., [9, 25, 31]), but these results fall short of what is required in the present
case since they are restricted to a fixed empirical distribution. Monotone Markov
processes are studied in [2] and [10]. The simulation-based estimator is set forth
in [11] and [21]. Available proofs on consistency of this estimator require uniform
continuity and contractivity conditions [29]. As discussed below, noncontinuous
decision rules are of considerable interest in economics. Finally, many applica-
tions make use of simulation-based estimation (e.g., see [14] and [22] for two
recent examples); however, in general these papers do not get into the analysis of
asymptotic properties of the estimator.

2. Assumptions. For convenience of the presentation, the set of states S is
a hypercube in Euclidean space Rk , that is, S = {s = (. . . , si, . . .) :ai ≤ si ≤ bi}
for given constants ai < bi and all i = 1, . . . , k and ≥ is the usual Euclidean (par-
tial) order. S denotes the relativized Borel σ -algebra of S. The vector of shocks
ε follows an i.i.d. process defined by a probability law Q on a measurable space
(E, E ). The domain of parameter vectors � ⊂ Rl is a compact set. We say that a
function h in S is increasing if h(s) ≥ h(s ′) for all s ≥ s′.

Function ϕ :S × E × � → S satisfies the following assumptions:

(A.1) Measurability. Function ϕ :S × E × � → S is measurable on the product
space S × E × �.

(A.2) Monotonicity. For each (ε, θ), mapping ϕ(·, ε, θ) :S → S is increasing.

Note that no order preserving conditions are required over space E × �.

(A.3) Feller property. For every fixed θ and every continuous function f :S → R,∫
f (ϕ(sj , ε, θ))Q(dε) →j

∫
f (ϕ(s, ε, θ))Q(dε) as sj →j s.(2.1)

This weak form of continuity over S is usually assumed to guarantee existence of
an invariant probability μθ for mapping ϕ(·, ·, θ); see [1], Chapter 1.

We also need some type of continuity on the domain of parameter vectors �.
Since mapping ϕ(·, ·, θ) may not be continuous on S × E, the continuity in
θ is defined with the help of some majorizing and minorizing functions ϕκ

and ϕκ . Let e denote the unit vector (1,1, . . . ,1) and κ > 0. Then ϕκ(s, ε, θ) =
projS[ϕ(projS[s + κe], ε, θ) + κe] for all (s, ε), where s ′ = projS[s + κe] means
the natural projection or minimum Euclidean distance of vector s + κe to set S.
The projection mapping just ensures that function ϕκ is well defined. Since func-
tion ϕ is monotone in s and the positive vector κe is added to both vector s in the
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domain and to the value ϕ(s′, ε, θ), we get that ϕκ(s, ε, θ) ≥ ϕ(s, ε, θ). We write
ϕκ(·, ·, θ) ≥ ϕ(·, ·, θ) to express functional dominance over ≥. In the same way,
we define function ϕκ(s, ε, θ) = projS[ϕ(projS[s − κe], ε, θ) − κe]. Functions ϕκ

and ϕκ will be further discussed below [Section 5, remark (iv)].

(A.4) Continuity in the parameters. For every θ and κ > 0, the set {θ ′|ϕκ(·, ·, θ) ≥
ϕ(·, ·, θ ′) ≥ ϕκ(·, ·, θ)} contains an open neighborhood Vκ(θ) of θ .

Observe that (A.1)–(A.3) will all be satisfied if ϕ is a continuous function over
a compact domain S × E × �. Moreover, (A.4) would hold trivially under
the upper and lower envelope functions ϕκ(s0, ε, θ) = supθ ′∈Vκ(θ) ϕ(s0, ε, θ

′) and
ϕκ(s0, ε, θ) = infθ ′∈Vκ(θ) ϕ(s0, ε, θ

′).

(A.5) Uniqueness of the invariant probability. For every θ , mapping ϕ(·, ·, θ) has
a unique invariant probability μθ .

Certain conditions guarantee (A.5), for example, [2] and [13]. This assumption
will simplify the analysis considerably, and it is necessary to obtain our global
convergence results. These results can suitably be extended to account for multiple
invariant probabilities; e.g., see Lemma 4.2 below.

Let ‖ · ‖ be the max norm in Rl . Then for every fixed θ , we define the distance
between mappings ϕ(·, ·, θ) and ϕ̃(·, ·, θ) over S × E as

d(ϕ(·, ·, θ), ϕ̃(·, ·, θ)) = max
s∈S

[∫
‖ϕ(s, ε, θ) − ϕ̃(s, ε, θ)‖Q(dε)

]
.(2.2)

The above assumptions ensure that the invariant probability μθ is always well
defined and weakly continuous in θ . Moreover, the maximum in (2.2) is always
attained at some s. It should be emphasized that the standard sup norm in the space
of functions ϕ(·, ·, θ) will be very restrictive since ϕ(·, ·, θ) may not be continuous
in (s, ε).

3. The simulated moments estimator (SME).

3.1. Model simulation. Let us first place ourselves in a simple framework of
model simulation. Assume that a researcher can evaluate function ϕ at any given
point (s, ε, θ), and can draw sequences {ε̂n}n≥1 from a random generator that mim-
ics the distribution of {εn}n≥1. No knowledge of the actual realization of the shock
process {εn}n≥1 is required. Later, the analysis is extended to the more typical
situation in which the researcher can only perform evaluations of a numerical ap-
proximation ϕj . Hence, for each parameter value θ and initial condition s0 one
can generate sequences {sn(s0,ω, θ)}n≥1 using dynamical system (1.1); that is,
sn(s0,ω, θ) = ϕ(sn−1(s0,ω, θ), εn, θ) for all n ≥ 1. It should be emphasized that
in order to search for the true value θ0 we need to sample over the whole parameter
space �.
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3.2. Probability spaces. Let s̃ = {s̃n}n≥1 be a sample path of observations of
the data generating process. Let ω = {εn}n≥1 be a sequence of realizations of the
shock process. A measure γ̃ is defined over the space of sequences s̃ = {s̃n}n≥1.

Also, from the probability law Q a measure γ can be constructed over the space 


of sequences ω = {εn}n≥1. Let λ = γ × γ̃ represent the product measure.

3.3. The SME. Our definition of the SME is conformed by the following ele-
ments:

(1) A function of interest f :S → Rp assumed to be continuous and increasing.
Then the expected or mean value Eθ(f ) = ∫

f (s)μθ(ds) may represent p

moments of an invariant distribution μθ . The expected value of f over the in-
variant distribution of the data generating process will be denoted by f̄ . The
restriction to increasing functions is rather harmless. Indeed, following [32]
the subclass of continuous and increasing functions determines convergence
in the weak topology of measures; that is, a sequence of probability mea-
sures {μn}n≥1 converges weakly to measure μ if and only if

∫
f (s)μn(ds) →n∫

f (s)μ(ds) for every continuous and increasing function f :S → R.
(2) A distance function G : Rp × Rp → R assumed to be continuous. The mini-

mum distance is attained at a vector of parameter values

θ0 = arg min
θ∈�

G(Eθ(f ), f̄ ).(3.1)

Under the above assumptions, there exists an optimal solution θ0. To facilitate
the presentation we suppose that θ0 is unique.

(3) An estimation rule characterized by a sequence of distance functions {GN }N≥1
and choices for the horizon {τN }N≥1 of the model’s simulations. This rule
yields a sequence of estimated values {θ̂N }N≥1 from associated optimization
problems with finite samples of model’s simulations and data. The estimated
value θ̂N (s0,ω, s̃) is obtained as

θ̂N (s0,ω, s̃) = arg inf
θ∈�

GN

(
1

τN(ω, s̃)

τN (ω,s̃)∑
n=1

f (sn(s0,ω, θ)),

(3.2)
1

N

N∑
n=1

f (s̃n),ω, s̃

)
.

We assume that the sequence of continuous functions {GN(·, ·,ω, s̃)}N≥1 con-
verges uniformly to function G(·, ·) for λ-almost all (ω, s̃), and the sequence
of functions {τN(ω, s̃)}N≥1 goes to ∞ for λ-almost all (ω, s̃). Note that both
functions GN(·, ·,ω, s̃) and τN(ω, s̃) are allowed to depend on ω and s̃. These
functions will usually depend on all information available up to time N.

The rule τN reflects that model’s simulations may be of a different length than
data samples.
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It should be stressed that problem (3.1) is defined over population characteristics
of the model and of the data generating process, whereas problem (3.2) is defined
over statistics of finite simulations and data.

DEFINITION. The SME is a sequence of measurable functions {θ̂N (s0,ω,

s̃)}N≥1 such that each function θ̂N satisfies (3.2) for all s0 and λ-almost all (ω, s̃).

By the measurable selection theorem ([8], Chapter 2), there exists a sequence
of measurable functions {θ̂N }N≥1.

4. Main results. As stressed above, the proof of consistency of the SME
has to deal with a continuum of invariant probabilities. The strategy is to
show that minimization problem (3.1) can be approximated by a sequence
of optimization problems (3.2) for λ-almost all (ω, s̃). The hardest step in
the proof is to demonstrate the uniform convergence (a.s.) of the sequences
{ 1
τN (ω,s̃)

∑τN (ω,s̃)
n=1 f (sn(s0,ω, θ))}N≥1 to Eθ(f ) over �, as N → ∞. This uni-

form convergence of the simulated statistics follows from a sandwich argument
that builds upon the weak continuity of the invariant probabilities of functions ϕκ

and ϕκ under perturbations in κ (Lemma 4.1), a generalized law of large num-
bers for each individual function (Lemma 4.2), and the order preserving property
of ϕ as stated in (A.2). These lemmas draw on some results in [30] on pointwise
convergence properties of invariant probabilities for random dynamical systems
satisfying the Feller property. We extend these results to establish uniform conver-
gence over � of the sample distributions (Proposition 4.3). Proofs are gathered in
the final section.

Let μκ
θ be an invariant probability of function ϕκ(·, ·, θ), and μκθ an invariant

probability of function ϕκ(·, ·, θ).

LEMMA 4.1 (Continuity of the invariant probabilities). Assume that the se-
quence of positive scalars {κj }j≥1 converges to zero. Then under (A.1)–(A.5) every
sequence of invariant probabilities {μκj

θ }j≥1 (resp. {μκj θ }j≥1) converges weakly
to the unique invariant probability μθ of mapping ϕ(·, ·, θ).

Note that our primitive assumptions (A.1)–(A.5) do not rule out the possibility
that the auxiliary functions ϕκ(·, ·, θ) and ϕκ(·, ·, θ) may contain multiple invariant
probabilities. Hence, let I(μκ

θ ) be the set of all the invariant probabilities μκ
θ of

ϕκ(·, ·, θ). From the proof of Lemma 4.1, the set I(μκ
θ ) is compact and convex

in the weak topology of measures. Then every continuous linear functional μκ
θ →∫

f (s)μκ
θ (ds) attains a maximum and a minimum over the domain I(μκ

θ ). In the
same way, let I(μκθ ) be the set of all the invariant probabilities μκθ of ϕκ(s, ε, θ).

Finally, for every sequence of shocks ω = {εn}n≥1 and initial condition s0, define
recursively the sample paths {sκ

n (s0,ω, θ)}n≥1 and {sκn(s0,ω, θ)}n≥1 generated by
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functions ϕκ and ϕκ as sκ
n (s0,ω, θ) = ϕκ(sκ

n−1(s0,ω, θ), εn, θ) and sκn(s0,ω, θ) =
ϕκ(sκn−1(s0,ω, θ), εn, θ), for all n ≥ 1.

We next show that the range of variation of the average behavior of a typ-
ical simulated path {sκ

n (s0,ω, θ)}n≥1 or {sκn(s0,ω, θ)}n≥1 is bounded by the
corresponding expected values over the sets of invariant probabilities I(μκ

θ )

and I(μκθ ).

LEMMA 4.2 (A generalized law of large numbers). Under (A.1)–(A.5), for
every fixed θ in �,

max
μκ

θ ∈I(μκ
θ )

∫
f (s)μκ

θ (ds) ≥ lim sup
N→∞

1

N

N∑
n=1

f (sκ
n (s0,ω, θ))

≥ lim inf
N→∞

1

N

N∑
n=1

f (sκn(s0,ω, θ))(4.1)

≥ min
μκθ∈I(μκθ )

∫
f (s)μκθ (ds)

for all s0 and γ -almost all ω.

In other words, there exists a set 
̂ with γ (
̂) = 1 such that (4.1) is satisfied for
all (s0,ω) ∈ S × 
̂. If each of the functions ϕκ(·, ·, θ) and ϕκ(·, ·, θ) has a unique
invariant distribution, then Lemma 4.2 is a simple consequence of the law of large
numbers of [4] together with (A.2).

The foregoing lemmas are the main ingredients in the proof of the following
uniform law of large numbers over the parameter space �. This result is key to
substantiate the strong consistency of the SME.

PROPOSITION 4.3 (Uniform convergence of the simulated statistics). Under
(A.1)–(A.5), there is a set 
̂ with γ (
̂) = 1 such that every pair (s0,ω) ∈ S × 
̂

satisfies the following property: For each ε > 0, there is a constant Nε(ω) such
that ∣∣∣∣∣ 1

N

N∑
n=1

f (sn(s0,ω, θ)) − Eθ(f )

∣∣∣∣∣ < ε(4.2)

for all N ≥ Nε(ω) and all θ in �.

Note that Nε(ω) only depends on ω, and hence it holds for all s0. This propo-
sition could be restated in terms of the uniform convergence in θ of the sample
distributions (e.g., see [20]), as the set of continuous functions f :S → Rp is sep-
arable.
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THEOREM 4.4 (Strong consistency of the SME). Assume that the process s̃ =
{s̃n}n≥0 is stationary and ergodic. Then under (A.1)–(A.5), for all s0 and λ-almost
all (ω, s̃), the SME {θ̂

N
(s0,ω, s̃)}N≥1 converges to θ0.

The SME is computationally costly and extensive model simulations must be
performed to sample the region of feasible parameter values. A gain in computa-
tional efficiency should be obtained when some parameter values are constrained
to take on certain values or can be estimated by more practical methods. For in-
stance, let θ = (θ1, θ2) and suppose that the second component θ2 can be estimated
by traditional methods. Then similar consistency results can be established for vec-
tor θ1 under the presumption that the estimator for vector θ2 is consistent.

The consistency of the estimator can also be extended to numerical approxima-
tions. In most dynamical models, the solution ϕ does not admit an analytical rep-
resentation, but it is usually possible to perform functional evaluations of a numer-
ical approximation. Most numerical methods can generate sequences of solutions
{ϕj }j≥1 that converge to the original function ϕ as we refine the approximation
scheme. Hence, it is of interest to know asymptotic properties of the estimator as
the numerical error vanishes.

As in (3.1), for every approximate function ϕj a solution θj is attained over the
parameterized family of invariant probabilities. More specifically,

θj = arg min
θ∈�

G

(∫
f (s)μ

j
θ (ds), f̄

)
,(4.3)

where μ
j
θ is an invariant probability of mapping ϕj (·, ·, θ). The invariant probabil-

ity of μ
j
θ may not be unique, even though for each θ the original mapping ϕ(·, ·, θ)

is assumed to have a unique invariant probability μθ . Also, the solution θj may
not be unique. The idea is that certain primitive assumptions (cf. [2] and [13])
may guarantee uniqueness of the invariant distribution μθ of ϕ(·, ·, θ) but unique-
ness is not generally preserved under numerical perturbations of the model such as
piecewise linear or polynomial interpolations. Hence, problem (4.3) should be un-
derstood as a minimization over the correspondence of invariant distributions μ

j
θ .

THEOREM 4.5 (Consistency of the SME for numerical approximations). Let
ϕj satisfy (A.1) and (A.3) for every j . Let ϕ satisfy (A.1) and (A.3)–(A.5). Assume
that the sequence of functions {ϕj (·, ·, θ)}j≥1 converges uniformly to ϕ(·, ·, θ) over
� in the metric (2.2). Then every sequence of optimal solutions {θj }j≥1 of (4.3)
must converge to the original solution θ0 of (3.1).

Obviously, Theorems 4.4 and 4.5 can be combined to obtain convergence of the
estimator in both N and j . Note that Theorem 4.5 does not depend on monotonicity
condition (A.2) since we are assuming the uniform convergence of the sequence of
functions {ϕj (·, ·, θ)}j≥1. But as in the proof of Proposition 4.3, condition (A.2)



204 M. S. SANTOS

can be instrumental to build a sandwich argument to establish the uniform con-
vergence of {ϕj (·, ·, θ)}j≥1 over θ in � from the pointwise convergence of these
functions for each θ .

5. Remarks. The following issues may deserve further discussion:

(i) Latent variables. The state space S may contain both observable and un-
observable state variables. For instance, assume that s = (s1, s2) is a vector in R2

such that s1 represents the value of production or output, s2 represents the level
of efficiency or productivity, and ε is a productivity shock. Usually, both s2 and ε

are unobservable. But function f may encompass enough moments or character-
istics of variable s1 so as to identify the whole vector of parameters θ . Several
papers (e.g., see [24, 28, 33] for some early examples) have stressed the impor-
tance of simulation-based estimation for models with unobservable or so-called
“latent variables.”

(ii) Monotonicity. Our results on the consistency of the SME follow from rela-
tively simple assumptions that are easy to check in applications. The monotonicity
condition (A.2) plays a key role in our arguments, and it is the most restrictive
assumption.4 All other regularity assumptions are dictated by technical considera-
tions and are less limiting in applications. As compared to [11], we dispense with
some strong assumptions such as geometric ergodicity, a global modulus of conti-
nuity condition, and damping conditions on the dynamics of the system. All these
assumptions may be hard to check in applications.

(iii) Ergodic processes. Our results could be extended beyond Markov process-
es, but stronger continuity conditions on mapping ϕ may be required. For instance,
[8], Proposition 6.21, derives a generalized law of large numbers that it is suitable
for extensions of Lemma 4.2 to ergodic processes under the more restrictive as-
sumption of continuity of mapping ϕ(·, ε, θ) :S → S.

(iv) Continuity in the vector of parameters. Although function ϕ(s, ε, θ) may
not be continuous in s, our method of proof relies on some type of continuity of
ϕ(s, ε, θ) in θ . A natural approach would be to require the continuity of ϕ(s, ε, θ)

in θ under the distance function d(ϕ(·, ·, θ), ϕ(·, ·, θ ′)) in (2.2). This metric is
suitable for our purposes, since by (A.3) discontinuities of ϕ(s, ε, θ) in s can be
smoothed out when integrating over ε. A related notion of continuity is assumed
in (A.4) under the majorizing and minorizing functions ϕκ and ϕκ . This construc-
tion has been useful to circumvent some measurability problems. To motivate the
definition of functions ϕκ and ϕκ the following simple example may be helpful.

4Monotonicity can be weakened under specific functional forms. Let s = (s1, s2) and θ = (θ1, θ2).
Assume that s1 = ϕ1(s1, s2, θ) and s2 = ϕ2(s2, θ2). Now, if there is an unbiased estimator for θ2,
consistency of the SME for θ1 can be insured by monotonicity of ϕ1 in s1. In the neoclassical growth
model, s2 = ϕ2(s2, θ2) corresponds to the law of motion of the exogenous technological progress,
and monotonicity of s1 = ϕ1(s1, s2, θ) in s1 follows from the concavity of the utility and production
functions.
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Suppose that s, ε and θ are scalars. Let ϕ(s, ε, θ) = s + ε + θ if s + ε + θ ≤ 2, and
ϕ(s, ε, θ) = s + ε + θ + 5 if s + ε + θ > 2. That is, this function is increasing, and
has a jump after reaching a certain threshold. (Observe that a sufficient condition
for the Feller property to be satisfied is that ε has a continuous density.) Consider
now the majorizing function ϕ̂κ (s, ε, θ) = ϕ(s, ε, θ)+ κe. Then ϕ̂κ ≥ ϕ. However,
the set {θ ′|ϕ̂κ (·, ·, θ) ≥ ϕ(·, ·, θ ′) ≥ ϕ(·, ·, θ)} is empty. Note that the majorizing
function in (A.4) is ϕκ(s, ε, θ) = ϕ(s ′, ε, θ) + κe where s′ = s + κe. Here, the set
{θ ′|ϕκ(·, ·, θ) ≥ ϕ(·, ·, θ ′) ≥ ϕ(·, ·, θ)} contains an open set of parameters θ ′.

(v) Feller property. [2] and [10] dispense with the Feller property by intro-
ducing a mild mixing condition that guarantees existence, uniqueness and global
stability to the invariant probability. Under the mixing condition the random dy-
namical system is a contraction mapping in a suitable metric space of probabil-
ities. The resulting metric topology, however, is too fine to allow for continuous
perturbations of the parameter space. For instance, when applied to a probabil-
ity measure μ the above restricted perturbation ϕ̂κ (s, ε, θ) = ϕ(s, ε, θ) + κe may
not vary continuously with κ over the distance function (2.4) of [2]. Therefore,
in the absence of further specific conditions (e.g., [11]) the Feller property seems
indispensable for the strong consistency of our simulation-based estimator.

6. Applications. Several dynamic optimization problems generate noncon-
tinuous, monotone decision rules. Simple discontinuities for monotone Markov
processes are often encountered in models of economic growth and finance, mod-
els of firm entry, patent races, replacement of durable goods, job search, marriage
and fertility; e.g., see [3, 17, 23], and the aforementioned papers in (i) of the pre-
vious section. In these models, the optimal decision can feature isolated jumps
because of discrete choices or lack of convexity but the Feller property may nev-
ertheless be satisfied.

Our purpose here is to estimate some critical parameters of a simplified version
of the stock market model of [18]. This model borrows several elements from [7]
and [26] who are concerned with the effects of technology adoption on economic
growth and business fluctuations rather than on financial markets. None of these
three papers consider model estimation, and simply report simulations for various
benchmark calibrations of the model.

6.1. The model. The representative household has preferences over consump-
tion c of an aggregate good and desutility of work l as represented by the expected
discounted objective:

E0

{ ∞∑
t=0

βt

[
ln(ct ) − l

1+χ
t

1 + χ

]}
(6.1)

with 0 < β < 1 and χ > 0. For given initial quantity of the aggregate asset, â,
the optimization problem faced by this agent is to choose a stochastic sequence of
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consumption, labor and shares of the aggregate stock {ct , lt , at }t≥0 that maximizes
the objective in (6.1) subject to the sequence of budget constraints

ct + qtat = wt lt + (qt + dt )at−1(6.2)

with at ≥ 0. Observe that qt denotes the market price of one stock unit, dt denotes
the dividend, and wt is the wage, for t = 0,1, . . . .

There is a mass of At intermediate goods that are bundled together into
a composite good Mt defined by a CES technology, Mt = [∫ At

0 mt(j)1/ϑ dj ]ϑ
where m(j) denotes the amount of intermediate good j ∈ [0,At ] bought by
the firm and ϑ > 1. The firm producing the final good accumulates capital k

and buys labor l and a bundle of intermediate goods M using production func-
tion y = θt (k

α
t l1−α

t )1−γ M
γ
t . Output can be devoted to consumption or invest-

ment, and capital depreciates at a rate δ > 0. Total factor productivity θt is gov-
erned by the following law of motion: log θt = ϕθ ln θt−1+εθ

t , for εθ
t ∼ N(0, σθ ).

The firm chooses stochastic sequences of investment, labor and intermediate goods
{it , lt ,mt (j)j∈[0,At ]}t≥0 to maximize expected discounted revenues.

Monopolistic competition prevails in the intermediate goods market. That is,
producer of intermediate good j selects both the optimal quantity m(j) to sell
and corresponding price p(j)—taken as given prices and quantities set up by all
other producers of intermediate goods. Following [26], we postulate a very simple
technology: Production of one unit of good j just requires one unit of the final
good. Then, the profit at time t of the producer of variety j is given by

πt(j) ≡ max
mt (j)

{pt(j)mi
t (j) − mi

t (j)}.(6.3)

Without loss of generality, we suppose that πt(j) is the same for all j . Each inter-
mediate good may eventually be displaced from the market. Let φ be the proba-
bility of survival of good j . Let rt be the stochastic rate of interest at time t . Then
for ηs

t = (1 + rt+1) · · · (1 + rs) the present value Vt of operating each technology
from the beginning of time t is defined as:

Vt = Et

{ ∞∑
s=t+1

πs(j)

ηs
t

φs−t

}
.(6.4)

Technological innovations arrive exogenously to the economy. The total stock of
technological innovations Zt evolves according to the law of motion

Zt = φZt−1 + xt(6.5)

with

lnxt = ϕx lnxt−1 + εx
t , ϕx ∈ (0,1), εx

t ∼ N(0, σx).(6.6)

These functional forms are considered here for simplicity. Indeed, we could allow
for discontinuities in variables Z and x to reflect sudden changes in the transmis-
sion of new technologies. These technologies are put into use by local adopters.
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The adoption sector behaves as a perfectly competitive market. Let At be the stock
of already adopted technologies, and λ(H) the probability of adoption of a new
technology after investing the amount of resources H . Then

At+1 = λ(Ht)[Zt − At ] + φAt .(6.7)

The optimal amount of expenditure Ht is derived from the following Bellman
equation in which the value function is the option value Jt of a new technology.5

Jt = max
Ht

{
−Ht + φEt

[
1

1 + rt+1

(
λ(Ht)Vt+1 + (

1 − λ(Ht)
)
Jt+1

)]}
.(6.8)

6.2. Equilibrium and asset prices. In our model, the exogenous state variables
are the stock of technological innovations Zt and xt and the value of total factor
productivity θt , and the endogenous state variables are the amount of capital kt

and the stock of adopted technologies At . The remaining variables are determined
endogenously as solutions to the model under (6.1)–(6.8) and the market clearing
conditions. Let us assume that at = 1 so that qt corresponds to the value of the
stock market. This value can be decomposed into the value of existing stocks plus
the option value of current and future technological innovations.

PROPOSITION 6.1. The stock market value qt can be computed as

qt = kt+1 + VtAt + J+
t (Zt − At) + ξt ,(6.9)

where J+
t ≡ Jt + Ht, and ξt ≡ Et {∑∞

s=t+1
1
ηs
t
Js(Zs − φZs−1)}.

Hence, the value of the stock market is given by the sum of four components:
The replacement cost of installed capital, the value of adopted technologies, the
option value of technological innovations currently available but not yet imple-
mented, and the present value of technological innovations expected to occur. Most
economic models identify the stock market value qt with the capital stock kt+1.

6.3. Computation, calibration and estimation of the model. The model can
be solved numerically from the first-order conditions of the above optimization
problems and the market clearing conditions. We compute these equations using
a low degree perturbation method; see [18]. Various parameters of the model are
calibrated to match some empirical statistics of medium-term fluctuations and the
volatility of patents.6 But for reasons that will become clear below, we apply our
simulation-based estimator to three critical parameters: χ , γ and ϑ .

5As is well known, this equation can be computed recursively by the method of successive approx-
imations.

6Following [7] medium-term cycles are defined as those within a frequency band of 2–50 years.
The data are filtered using the band-pass filter of [5].
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Following the economics literature (e.g., see [7] and references therein) we
choose values for the set of parameters (β,α, δ) to match US macro data.7 Parame-
ter β is fixed at 0.95 so that the real rate of return of investment in the deterministic
steady state is equal to the average real return on the S&P index over the period
1948–2004. Parameter α is set at 0.3 to match the average income share of labor
costs, and the annual depreciation rate δ is set at 0.075.

As a proxy for the number of adopted technologies At we use the percentage
deviation from its exponential trend of the number of patents issued.8 The parame-
ter values for the law of motion of variables θ and Z are selected to approximate
the variance, correlation, and first-order autocorrelation of total factor productivity
and patents over medium-term cycles in the data.

Following [7], we set the value of φ to 0.97 and the steady state value of λ

to 0.1. We assume that the probability of adoption takes on the functional form

λt (Ht) = �

(
At

kt

Ht

)ρ

(6.10)

with constant � > 0 and ρ ∈ (0,1). We estimate that the average share of adoption
expenditures over sales9 is 0.019 for the period 1970–1998. Then, in the steady
state solution, ρ must be 0.11.

We are then left with the estimation of parameters χ , γ and ϑ . There are several
estimates of the elasticity of individual labor supply χ , but these estimates do not
seem adequate for our aggregate model since hours worked fluctuate much less
than in the data. Regarding the share of intermediate goods γ , there are empiri-
cal estimates for the industrial sector (e.g., [19]), but our measure of intermediate
goods is much broader. Along the same lines, there are estimates of the mark-up
parameter ϑ for various sectors [27], but our model includes a very stylized cost
function for the production of intermediate goods and there are various nontangible
intermediate goods that may be expensed as patents and trademarks.

We define the objective function of our estimator as
1

σ̂σ̂inv

(σinv − σ̂inv)
2 + 1

σ̂σ̂hours

(σhours − σ̂hours)
2

(6.11)

+ 1

σ̂σ̂stock

(σstock − σ̂stock)
2,

7We consider output, hours, labor productivity and TFP for the nonfarm business sector. The source
is the Bureau of Labor Statistics (BLS). Consumption is measured as the sum of nondurables and
services and investment is nonresidential. Both series are obtained from the Bureau of Economic
Analysis (BEA). Each variable is transformed in per capita terms using the population aged 15–64.
The data sample spans from 1948 to 2004.

8The data come from the total number of utility patents granted from the US Patent and Trademark
Office for 1970–2004, and from Historical Statistics of the United States series W-99 for 1948–1970.

9This measure is estimated as the average ratio of nonfederally funded development expenditures
(a subset of R&D expenditures) over net sales for R&D-performing companies from the National
Science Foundation.
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where the standard deviations of the model σ are compared against standard de-
viations of the data σ̂ for variables inv = investment, hours = hours worked,
and stock = stock market value. These deviations are weighted by the inverse
of the standard deviation of σ̂ of each corresponding variable. Note that each σ

is a function of parameter values. The objective is minimized over the Euclid-
ean product of interval values: χ ∈ [0,1], γ ∈ [0.1,0.60] and ϑ ∈ [1.1,2.2] under
σ̂inv = 8.86, σ̂hours = 3.31, σ̂stock = 31.41, and σ̂σ̂inv = 0.0091, σ̂σ̂hours = 0.0035,
and σ̂σ̂stock = 0.0315.

The minimum is achieved at the following parameters: χ = 0, γ = 0.322
and ϑ = 1.4, with values for the objective: σinv = 10.44, σhours = 1.46 and
σstock = 5.34. Therefore, one main conclusion from this exercise is that in this
model the arrival of new technologies can at most account for approximately one
sixth of the variability in the stock market (i.e., σstock = 5.34 vs. σ̂stock = 31.41),
whereas we have checked that standard versions of the neoclassical model can
only account for approximately one tenth of this variability. Also, the model can-
not account for over half of the volatility of hours (σhours = 1.46 vs. σ̂hours = 3.31),
which of course may suggest that some labor market frictions must play an impor-
tant role.

To have a better view of the variability of stock markets, in future research we
are planning to consider some other variables such as debt (leverage), liquidity
constraints, taxes and subsidies, other production functions and markup policies,
and monetary and financial shocks. Of course, the volatility of stock markets at
present times may be due to lack of confidence and collateral requirements, but
these latter variables may have played a much smaller role in our period of analy-
sis.

7. Proofs.

PROOF OF LEMMA 4.1. Let ϕ̃κj (s, ε, θ) = ϕ(s′, ε, θ) for s′ = projS[s + κj e]
for every κj > 0 for j = 1,2, . . . . Let �κj (s, θ) = ∫

ϕ̃κj (s, ε, θ)Q(dε) and
�(s, θ) = ∫

ϕ(s, ε, θ)Q(dε). Then

�κj (s, θ) − �(s, θ) =
∫

[ϕ̃κj (s, ε, θ) − ϕ(s, ε, θ)]Q(dε).(7.1)

By (A.3), mapping �(·, θ) is continuous in s. As S is a compact set, �(·, θ)

is uniformly continuous. Hence, the sequence of functions {�κj (·, θ)}j≥1 must
converge uniformly to �(·, θ) over S as κj goes to zero. Further, by (A.2), we
have that ϕ̃κj (s, ε, θ) ≥ ϕ(s, ε, θ) for all s and κj > 0. Then from (7.1) and
the aforementioned convergence of the sequence {�κj (·, θ)}j≥1 the sequence
{ϕ̃κj (·, ·, θ)}j≥1 must converge to ϕ(·, ·, θ) in the metric (2.2) as κj goes to zero.
Since ϕκj (s, ε, θ) = ϕ̃κj (s, ε, θ) + κj e, the sequence of functions {ϕκj (·, ·, θ)}j≥1
must converge to ϕ(·, ·, θ) in the metric (2.2). Therefore, the corresponding se-
quence of invariant probabilities {μκj

θ }j≥1 must converge weakly to μθ ; see [30],
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Theorem 2. By the same argument, we can establish the weak convergence of the
sequence of invariant probabilities {μκj θ }j≥1. The proof is complete. �

PROOF OF LEMMA 4.2. From the proof of the preceding lemma, it becomes
clear that both functions ϕκ and ϕκ satisfy (A.3). Then the first and third inequal-
ities in (4.2) follow from [30], Theorem 3. The second inequality follows from
(A.2) and the fact that ϕκ ≥ ϕκ . �

PROOF OF PROPOSITION 4.3. Since a countable union of sets of measure
zero has measure zero, it suffices to establish that for a fixed rational number ε > 0
there is a set 
̂ with γ (
̂) = 1 such that for every s0 and ω ∈ 
̂ we can find Nε(ω)

so that ∣∣∣∣∣ 1

N

N∑
n=1

f (sn(s0,ω, θ)) − Eθ(f )

∣∣∣∣∣ < ε(7.2)

for all N ≥ Nε(ω) and all θ in �.
As � is compact, by Lemma 4.1 we can cover this set by a finite number of

open neighborhoods Vκj
(θj ) for points {θj } such that for all j = 1, . . . , J ,

max
μ

κj
θ ∈I(μ

κj
θj

)

∫
f (s)μ

κj

θj
(ds) − min

μκj θj
∈I(μκj θj

)

∫
f (s)μκj θj

(ds) <
ε

2
.(7.3)

By (A.2) and the definition of the functions ϕκj (s, ε, θj ) and ϕκj
(s, ε, θj ), for all

θ ∈ Vκj
(θj ) and all N ≥ 1 the following inequalities must hold true

1

N

N∑
n=1

f (s
κj
n (s0,ω, θj )) ≥ 1

N

N∑
n=1

f (sn(s0,ω, θ))

(7.4)

≥ 1

N

N∑
n=1

f (sκj n(s0,ω, θj ))

and ∫
f (s)μ

κj

θj
(ds) ≥

∫
f (s)μθ(ds) ≥

∫
f (s)μκj θj

(ds)(7.5)

for all invariant distributions μ
κi

θi
and μκj θj

. Moreover, by Lemma 4.2 there is a set


̂j with γ (
̂j ) = 1 such that for each (s0,ω) ∈ S × 
̂j and ε
2 there is N

j
ε (ω) such

that

max
μ

κj
θ ∈I(μ

κj
θj

)

∫
f (s)μ

κj

θj
(ds) + ε

2
≥ 1

N

N∑
n=1

f (s
κj
n (s0,ω, θj ))(7.6)
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and

1

N

N∑
n=1

f (sκj n(s0,ω, θi)) ≥ min
μκj θj

∈I(μκj θj
)

∫
f (s)μκj θj

(ds) − ε

2
(7.7)

for all N ≥ N
j
ε (ω). Let 
̂ = ⋂J

j=1 
̂j and Nε(ω) = max{Nj
ε (ω)}Jj=1. Then, com-

bining inequalities (7.3)–(7.7) we get that for every s0 and every ω ∈ 
̂ condition
(7.2) must hold true for all N ≥ Nε(ω). �

PROOF OF THEOREM 4.4. By assumption, the process s̃ = {s̃n}n≥0 is station-
ary and ergodic. Hence, { 1

N

∑N
n=1 f (s̃)}N≥1 converges (a.s.) to f̄ . Then Theo-

rem 4.4 is an immediate consequence of Proposition 4.3 and the following as-
sumptions: (i) The space of parameters � is a compact set, (ii) the maximizer θ0 in
(3.1) is unique and (iii) the sequence of continuous functions {GN(·, ·, s0,ω)}N≥1
converges uniformly to continuous function G(·, ·) for all s0 and almost all ω. �

PROOF OF THEOREM 4.5. Observe that by assumption the sequence {ϕj (·, ·,
θ)}j≥1 converges uniformly to ϕ(·, ·, θ) in the metric d(·, ·) of (2.2). Hence,
by (A.4) and a simple application of the triangle inequality, we get that given
δ > 0 for every θ there are a neighborhood V (θ) and a constant J such that
d(ϕ(·, ·, θ), ϕj (·, ·, θ ′)) < δ all θ ′ ∈ V (θ) and all j ≥ J. Moreover, for every func-
tion f and ε > 0 this neighborhood V (θ) and δ > 0 can be chosen small enough so
that | ∫ f (s)μθ(ds)− ∫

f (s)μ
j

θ ′(ds)| < ε for all j ≥ J and all θ ′ ∈ V (θ), see [30],

Corollary 1. It is now easy to see that the sequence {G(
∫

f (s)μ
j
θ (ds), f̄ )}j≥1 con-

verges uniformly to G(
∫

f (s)μθ(ds), f̄ ). Therefore, the corresponding sequence
of minimizers {θj }j≥1 must converge to θ0. �

PROOF OF PROPOSITION 6.1. This equation for the value of the stock market
is obtained from standard arguments using the no-arbitrage conditions along an
equilibrium path (e.g., see [18]). �
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