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THE FIRST PASSAGE EVENT FOR SUMS OF DEPENDENT LÉVY
PROCESSES WITH APPLICATIONS TO INSURANCE RISK

BY IRMINGARD EDER1 AND CLAUDIA KLÜPPELBERG

Technische Universität München

For the sum process X = X1 + X2 of a bivariate Lévy process (X1,X2)

with possibly dependent components, we derive a quintuple law describing
the first upwards passage event of X over a fixed barrier, caused by a jump,
by the joint distribution of five quantities: the time relative to the time of the
previous maximum, the time of the previous maximum, the overshoot, the
undershoot and the undershoot of the previous maximum. The dependence
between the jumps of X1 and X2 is modeled by a Lévy copula. We calculate
these quantities for some examples, where we pay particular attention to the
influence of the dependence structure. We apply our findings to the ruin event
of an insurance risk process.

1. Introduction. In recent years, Lévy processes have been used to model
multivariate insurance risk and operational risk processes, where the dependence
between different business lines and risk types is crucial. The sum of the compo-
nents of such a risk portfolio describes the total risk of an insurance company or
a bank, and of special interest is the first passage event of the total risk process
over a constant barrier, cf. [12, 18] for the univariate case and [4, 5, 13] for the
multivariate case.

Motivated by these examples, we study in this paper the fluctuations of a one-
dimensional (càdlàg) Lévy process X = (Xt)t≥0, which is the sum of the com-
ponents of a general multivariate Lévy process X in R

d with possibly dependent
components. More precisely, we derive the joint distribution of those five quan-
tities, which characterise the first upwards passage of X over a constant barrier,
when it is caused by a jump, and investigate also, which component is likely to
cause this passage. The paper generalizes results in [8, 13] for first passage events
of Lévy processes.

We recall that the distribution of a d-dimensional Lévy process X is charac-
terised by the Lévy–Khintchine representation

E
[
ei(z,Xt )

] = e−t�(z), z ∈ R
d,
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where

�(z) = i(γ , z) + 1

2
z�Az +

∫
Rd

(
1 − ei(z,x) + i(z,x)1{|x|≤1}

)
�(dx),(1.1)

(·, ·) denotes the inner product in R
d , γ ∈ R

d and A is a symmetric nonnegative
definite d ×d matrix. The so-called Lévy measure � is a measure on R

d satisfying
�((0, . . . ,0)) = 0 and

∫
Rd min{1, |x|2}�(dx) < ∞. A particular role is played by

subordinators, which are Lévy processes, whose components have nondecreasing
paths. Other important classes are spectrally one-sided Lévy processes, which have
only positive or only negative jumps.

The important question, when considering multivariate Lévy processes, is the
dependence modeling between the jumps of the components. Starting with the ran-
dom walk model, a natural way of dependence modeling is by a copula, coupling
the increments of the marginal random walks; see [14, 20]. This approach works
also for compound Poisson processes (CPPes), but not for general Lévy processes
with infinite Lévy measure. Consequently, we invoke a Lévy copula, which intro-
duces dependence among the jump components of a multivariate Lévy process;
see [6, 15].

We derive new results in fluctuation theory for sums of Lévy processes and
study, in particular, the influence of jump dependence; for an introduction to fluc-
tuation theory for Lévy processes we refer to [1], Chapter VI, and [19], Chapters 6
and 7. For an illustration, see Figure 7.1 of [19].

We shall need the following definitions, where all stochastic quantities in this
paper are defined on a filtered probability space (�, F , (Ft )t≥0,P).

We define the running suprema and running infima of X for t > 0

Xt := sup
u≤t

Xu and Xt := inf
u≤t

Xu,(1.2)

and the first upwards passage time over and the first downwards passage time
under a fixed barrier x ∈ R by

τ+
x := inf{t > 0 :Xt > x} and τ−

x := inf{t > 0 :Xt < x}.(1.3)

Further, we define the time of the previous maximum of X and the time of the
previous minimum of X before time t > 0

Gt := sup{s < t :Xs = Xs} and Gt := sup{s < t :Xs = Xs}.(1.4)

More precisely, we investigate the following quantities for a sum X of possibly
dependent Lévy processes, which characterize first upwards passage of X over a
fixed barrier caused by a jump:

(1) τ+
x − Gτ+

x − time of first passage relative to time of previous maximum,

(2) Gτ+
x − time of previous maximum,

(3) Xτ+
x

− x overshoot,



THE FIRST PASSAGE EVENT FOR SUMS OF DEPENDENT LÉVY PROCESSES 2049

(4) x − Xτ+
x − undershoot, and

(5) x − Xτ+
x − undershoot of previous maximum.

Our paper is organized as follows. In Section 2, we consider the quintuple law in
the random walk case as motivation. The general quintuple law for sums of possi-
bly dependent Lévy processes is given in Section 3. In Section 4, two situations are
considered, where all quantities of the quintuple law can be identified concretely.
We calculate explicit quantities in Section 5, and give examples for different de-
pendence structures. In Section 6, we apply our results to describe the ruin event
in an insurance risk portfolio. The technical proofs are postponed to Section 7. For
presentation purposes, we restrict ourselves to d = 2.

2. The quintuple law for the sum of a bivariate random walk. To see
which jump of the Lévy process (X1,X2) entails the first passage of the sum
X = X1 + X2 and where the dependence affects this event, we decompose the
jumps of (X1,X2) in single, common, positive and negative jumps. We formu-
late first the quintuple law for the sum of a bivariate random walk (Z1

n,Z
2
n)n∈N0

starting in (Z1
0,Z2

0) = 0 given by

Z1
n =

n∑
i=1

ξ1
i and Z2

n =
n∑

i=1

ξ2
i , n ∈ N,

where (ξ1
n , ξ2

n )n∈N are i.i.d. with bivariate distribution function (d.f.) F12 and mar-
gins F1 and F2, respectively. We are interested in first upwards passage across
x ≥ 0 of their sum

Z0 = 0 and Zn =
n∑

i=1

(ξ1
i + ξ2

i ), n ∈ N,

where (ξ1
n + ξ2

n )n∈N are i.i.d. with d.f. F . For i = 1,2, we allow Fi to have an atom
at zero with the consequence that the random walks can have jumps of size 0 and
so one marginal random walk can jump without the other. We separate the jumps
of Z according to their origin and their sign and decompose Z for each n ∈ N into
components as follows:

Zn = P 1
n + P 2

n + P 3
n + P 4

n + P 5
n +

n∑
i=1

ξ1
i 1{ξ1

i <0,ξ2
i =0}

(2.1)

+
n∑

j=1

ξ2
j 1{ξ1

j =0,ξ2
j <0} +

n∑
k=1

(ξ1
k + ξ2

k )1{ξ1
k <0,ξ2

k <0},

where P 1, . . . ,P 5 are those components, where upwards passage can happen:

P 1
n =

n∑
i=1

ξ1
i 1{ξ1

i >0,ξ2
i =0}, P 2

n =
n∑

i=1

ξ2
i 1{ξ1

i =0,ξ2
i >0},
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P 3
n =

n∑
i=1

(ξ1
i + ξ2

i )1{ξ1
i >0,ξ2

i >0}, P 4
n =

n∑
i=1

(ξ1
i + ξ2

i )1{ξ1
i >0,ξ2

i <0},

P 5
n =

n∑
i=1

(ξ1
i + ξ2

i )1{ξ1
i <0,ξ2

i >0},

and the increments �P k have d.f.s FP k for k = 1, . . . ,5. Further, we define the
analogous quantities to (1.2)–(1.4): the running maxima of Z by

Zn := max
k≤n

Zk, n ∈ N0,

the first strictly upwards passage time of Z over a fixed barrier x ∈ R

T +
x := min{n ∈ N :Zn > x},

and the time of the previous maximum of Z before time n ∈ N

G
n := max{k ≤ n :Zk = Zn}.(2.2)

The quantities (1)–(5) from the Introduction are for the random walk Z:

(1) T +
x − 1 − G

T +
x −1

number of time points between previous maximum and
first passage,

(2) G
T +

x −1
time of previous maximum,

(3) ZT +
x

− x overshoot,
(4) x − ZT +

x −1 undershoot, and

(5) x − ZT +
x −1 undershoot of previous maximum.

Let (Tn,Hn)n∈N0 be the weakly ascending and (T̂ ∗
n , Ĥ ∗

n )n∈N0 the strictly de-
scending ladder process with potential measures

U(j, dx) =
∞∑

n=0

P(Tn = j,Hn ∈ dx),

(2.3)

Û∗(i, dx) =
∞∑

n=0

P(T̂ ∗
n = i, Ĥ ∗

n ∈ dx).

The proof of the following result is a consequence of the decomposition (2.1) in
combination with the proof of Theorem 4 of [8].

THEOREM 2.1 (Quintuple law for the sum of a bivariate random walk). Let
x > 0 be a constant barrier. For u > 0, y ∈ [0, x], v ≥ y and i, j ∈ N0 we have for
k = 1, . . . ,5,

P(T +
x − 1 − G

T +
x −1 = i,G

T +
x −1 = j,ZT +

x
− x ∈ du, x − ZT +

x −1 ∈ dv,

x − ZT +
x −1 ∈ dy,�ZT +

x
= �P k

T +
x

)

= FP k(du + v)Û∗(i, dv − y)U(j, x − dy).
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For the barrier x = 0, we have ZT +
0 −1 = 0 a.s. and get the following result.

COROLLARY 2.2. Let x = 0 be a constant barrier. For u > 0, v ≥ 0 and i, j ∈
N0, we have for k = 1, . . . ,5,

P(T +
0 − 1 − G

T +
0 −1 = i,G

T +
0 −1 = j,ZT +

0
∈ du,

−ZT +
0 −1 ∈ dv,�ZT +

0
= �P k

T +
0

)

= FP k(du + v)Û∗(i, dv)U(j, {0}).

REMARK 2.3. We can choose G
∗
n = min{k ≥ n :Zk = Zn} instead of G

n
in

(2.2). Then we work with the strictly ascending (instead of weakly ascending) and
the weakly descending (instead of strictly descending) ladder processes.

We have not yet specified the dependence structure between the random walks
Z1 and Z2. Since we want to study the influence of different dependence struc-
tures, we model dependence by some copula on the increments ξ1 and ξ2; see [14,
20] for details. By Sklar’s theorem for copulas (cf. [20], Theorem 2.3.3), we write
the joint d.f. of (ξ1, ξ2) as

F12(x, y) = C(F1(x),F2(y)), x, y ∈ [−∞,∞],(2.4)

where the copula C is unique, if F1 and F2 are continuous; otherwise, C is
uniquely determined on RanF1 × RanF2. Then we find expressions for the d.f.
F of the sum ξ1 + ξ2 and also of FP k , which makes the quintuple law of Theo-
rem 2.1 and Corollary 2.2 precise in reference of the chosen copula. In the follow-
ing result, we only consider the situation, where both random walks always jump
together. If F1, F2 have atoms in 0, then we decompose the random walks as in
(2.1) and observe that the absolutely continuous parts of F1 and F2 may have total
mass smaller than 1.

THEOREM 2.4. Suppose that Fi for i = 1,2 are absolutely continuous and the
dependence between Z1 and Z2 is modeled by a twice continuously differentiable
copula C. Then P 1 = P 2 = 0 a.s. and FP k for k = 3,4,5 of Theorem 2.1 are given
for z > 0 by

FP 3(z) =
∫ z

0

[
∂C(u, v)

∂u

∣∣∣∣
u=F1(x1)

]F2(z−x1)

F2(0)

F1(dx1),

FP 4(z) =
∫ 0

−∞

[
∂C(u, v)

∂v

∣∣∣∣
v=F2(x2)

]F1(z−x2)

F1(0)

F2(dx2),(2.5)

FP 5(z) =
∫ 0

−∞

[
∂C(u, v)

∂u

∣∣∣∣
u=F1(x1)

]F2(z−x1)

F2(0)

F1(dx1).
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PROOF. Since F1,F2 are absolutely continuous, all increments of Z1 and Z2

are nonzero and P 1 = P 2 = 0 a.s. From (2.4), we obtain for x1, x2 ∈ R

F12(dx1, dx2) = ∂2C(u, v)

∂u∂v

∣∣∣∣
u=F1(x1),v=F2(x2)

F1(dx1)F2(dx2).

Furthermore, FP 3(z) = ∫ z
0

∫ z−x1
0 F12(dx1, dx2) for z > 0. The expressions for FP 4

and FP 5 follow analogously. �

The potential measures U and Û∗ in Theorem 2.1 can be identified only in
special cases.

Recall the n-fold convolution Fn∗(dx) of a probability measure F(dx), where
F 0∗(dx) = δ0(dx) is the Dirac-measure in 0 and F 1∗ = F .

THEOREM 2.5. Suppose that for i = 1,2 the random walks Zi have only pos-
itive jumps. Further, let the Fi be absolutely continuous and the dependence be-
tween Z1 and Z2 is modeled by a twice continuously differentiable copula C. Then
Û∗({0}, {0}) = 1 and, for j ∈ N0 and x ≥ 0,

U(j, dx) = F
j∗
P 3(dx),

where FP 3 is given in (2.5).

PROOF. Z reaches a new maximum with every jump. So in (2.3), we have
P(Tn = j,Hn ∈ dx) = 1{n=j}P(Hj ∈ dx) and Hj is the sum of j independent
jumps with d.f. FP 3 . �

3. The quintuple law for the sum of two Lévy processes. For an arbitrary
bivariate Lévy process (X1,X2), we consider X = X1 +X2, which is again a Lévy
process; see [21], Proposition 11.10. The proofs of our results rely on the Lévy–Itô
decomposition of (X1,X2) into independent parts, corresponding to (1.1),

Xt = Wt + St , t ≥ 0,

where W is a Gaussian process in R
2 with characteristic triple (γ ,A,0). The Lévy

process S is the jump part of X with Lévy measure � and has representation

St =
∫
(0,t]

∫
|x|>1

xJ (dx, ds)

(3.1)
+ lim

ε↓0

∫
(0,t]

∫
ε<|x|≤1

(
xJ (dx, ds) − x�(dx) ds

)
, t ≥ 0,

see [21], Theorem 19.2. The convergence in the second term on the right-hand
side is a.s. and uniformly on compacts for t ∈ [0,∞). The measure J is a Poisson
random measure with intensity measure �(dx) ds on R

2 × (0,∞). We investigate
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first upwards passage by a jump of the sum process X, equivalently by a jump of
S = S1 + S2.

Analogously to the random walk in Section 2, we decompose the paths of
(S1, S2) according to their jump behavior in single, common, positive and negative
jumps. This causes no problem, if (S1, S2) has a.s. sample paths of bounded varia-
tion; see [19], Exercise 2.8. But (S1, S2) may have a.s. sample paths of unbounded
variation, so that, according to [2] relation (31.32), a pathwise decomposition is
not possible. In this case, we truncate for arbitrary 0 < ε < 1 all jumps smaller
than ε and consider first the process for t ≥ 0(

S
1,ε
t

S
2,ε
t

)
=

∫
(0,t]

∫
|x|>1

xJ (dx, ds)

(3.2)
+

∫
(0,t]

∫
ε<|x|≤1

(
xJ (dx, ds) − x�(dx) ds

)
,

which is a CPP with drift (DS1,ε ,DS2,ε ) = − ∫
ε<|x|≤1 x�(dx) and Lévy measure

�(·)1{|x|>ε}. For ε ↓ 0, the process (S
1,ε
t , S

2,ε
t )t≥0 converges a.s. to (S1

t , S2
t )t≥0

and the convergence is locally uniformly in t ∈ [0,∞); see Lemma 20.7 of [21].
Now, we can decompose (S1,ε, S2,ε) in independent components. We denote by
S1,ε,+ the process of single positive jumps of S1,ε; i.e., for t > 0

S
1,ε,+
t =

∫
(0,t]

∫
x1>1

x1J ((dx1, {0}), ds)

+
∫
(0,t]

∫
ε<x1≤1

(
x1J ((dx1, {0}), ds) − x1�(dx1, {0}) ds

)
and by S1,ε,− the single negative jumps of S1,ε , i.e., for t > 0

S
1,ε,−
t =

∫
(0,t]

∫
x1<−1

x1J ((dx1, {0}), ds)

+
∫
(0,t]

∫
−1≤x1<−ε

(
x1J ((dx1, {0}), ds) − x1�(dx1, {0}) ds

)
.

S2,ε,+ and S2,ε,− are defined analogously for S2,ε .
The processes S1,ε,ij and S2,ε,ij for i, j ∈ {+,−} are the dependent jump parts

of (S1,ε, S2,ε), where e.g., S1,ε,++ denotes the positive jumps of S1,ε , which hap-
pen together with positive jumps of S2,ε; i.e., for t > 0,

S
1,ε,++
t =

∫
(0,t]

∫
x1>1

x1J ((dx1, (0,∞)), ds)

+
∫
(0,t]

∫
ε<x1≤1

(
x1J ((dx1, (0,∞)), ds) − x1�(dx1, (0,∞)) ds

)
.

Analogously, S2,ε,++ denotes the positive jumps of S2,ε , which happen together
with positive jumps of S1,ε . The notations S1,ε,+−, S2,ε,+− and S1,ε,−−, S2,ε,−−
should be clear now.
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This implies the following Lévy–Itô decomposition for the sum process

X = X1 + X2 = W 1 + W 2 + S1 + S2

= W 1 + W 2(3.3)

+ lim
ε↓0

(P 1,ε + P 2,ε + P 3,ε + P 4,ε + P 5,ε + S1,ε,− + S2,ε,− + Sε,−−),

where W 1 + W 2 denotes the Gaussian part of X, which is independent of the
jump component, and in (3.3) we have set Sε,−− := S1,ε,−− + S2,ε,−−. Then we
summarize, using analogous notation to (2.1):

P 1,ε := S1,ε,+, P 2,ε := S2,ε,+, P 3,ε := S1,ε,++ + S2,ε,++,

P 4,ε := S1,ε,+− + S2,ε,+−, P 5,ε := S1,ε,−+ + S2,ε,−+,

which are all independent Lévy processes, because they a.s. never jump together;
see [21], Exercise 12.10 on page 67. Since all processes in (3.3) are independent,
we can let ε ↓ 0 componentwise. According to [21], Lemma 20.7, we have

lim
ε↓0

P k,ε =: P k a.s.,(3.4)

where the convergence is uniformly on compacts for t ∈ [0,∞) for k = 1, . . . ,5.
Our main result is derived as a consequence of the Wiener–Hopf factorization,

which is based on ladder processes. Using the same notation as in [8, 19], we de-
note by (Lt )t≥0 and (L̂t )t≥0 the local time at the maximum and at the minimum
and by (L−1

t ,Ht )t≥0 and (L̂−1
t , Ĥt )t≥0 the (possibly killed) bivariate subordina-

tors representing the ascending and descending ladder processes. Recall from [1],
Proposition VI.4, and [19], page 158, that with the exception of a CPP all local
extrema of X are distinct. Therefore, we exclude CPPes in the following and treat
them separately in Remark 3.4. The following situation is for every Lévy process
X, which is not a CPP.

The joint Laplace exponents κ and κ̂ of the above subordinators are for α,β ≥ 0
defined by the identities

e−κ(α,β) = E
[
e−αL−1

1 −βH11{1<L∞}
]
,

e−κ̂(α,β) = E
[
e−αL̂−1

1 −βĤ11{1<L̂∞}
]
,

where L∞ := limt→∞ Lt and L̂∞ := limt→∞ L̂t . By equations (6.15) and (6.16)
of [19], we can also write for β ∈ [0,∞) + iR,

κ(0, β) = q + ξ(β) = q + DHβ +
∫
(0,∞)

(1 − e−βx)�H(dx),(3.5)

where q ≥ 0 is the killing rate of H so that q > 0 if and only if limt→∞ Xt = −∞
a.s., DH = −γH −∫

|x|≤1 x�H(dx) ≥ 0 is the drift of H , and �H its Lévy measure.
Note that the function ξ(·) is the Laplace exponent of an unkilled subordinator.
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Similar notation is used for κ̂(0, β) by replacing q , ξ , DH and �H by q̂ , ξ̂ , DĤ

and �Ĥ . We also recall that whenever q > 0, we have q̂ = 0.
Associated with the ascending and descending ladder processes are the bivariate

potential measures on [0,∞)2

U (ds, dx) =
∫ ∞

0
P(L−1

t ∈ ds,Ht ∈ dx)dt,(3.6)

Û (ds, dx) =
∫ ∞

0
P(L̂−1

t ∈ ds, Ĥt ∈ dx)dt.(3.7)

We recall that local time at the maximum is defined only up to a multiplicative
constant; see e.g., [19], page 190, or [1], page 110. As a consequence, the exponent
κ can only be defined up to a multiplicative constant, which is then also inherited
by U .

Now, we are ready to state our first main result. Its proof can be found in Sec-
tion 7. We recall the definition of the P k in (3.4).

THEOREM 3.1 (Quintuple law for the sum of Lévy processes). Suppose that X

is not a CPP and �S1((0,∞)), �S2((0,∞)) > 0. Consider first upwards passage
of X over a constant barrier x > 0. Then there exists a normalization of local time
at the maximum, given by the identity

q = κ(q,0)κ̂(q,0), q ≥ 0,(3.8)

such that for u > 0, y ∈ [0, x], v ≥ y, s ≥ 0, t ≥ 0, and for k = 1, . . . ,5,

P(τ+
x − Gτ+

x − ∈ dt,Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv,

x − Xτ+
x − ∈ dy,�Xτ+

x
= �P k

τ+
x
)(3.9)

= �P k(du + v)Û (dt, dv − y)U (ds, x − dy).

For the barrier x = 0, the situation simplifies by considering

(R): 0 is regular for (0,∞); i.e., τ+
0 = 0 a.s., or

(I): 0 is irregular for (0,∞); i.e., τ+
0 > 0 a.s.

Since we still exclude that X is CPP, (R) holds if and only if (see [19], Theo-
rem 6.5):

• S1 + S2 is of unbounded variation, or
• S1 + S2 is of bounded variation and

– X has a Gaussian component, or
– X has non-Gaussian component, but

∗ X has drift DX = −γX − ∫
|x|≤1 x�X(dx) > 0, or

∗ X has drift DX = 0 and
∫ 1

0
x∫ x

0 �X((−∞,−y)) dy
�X(dx) = ∞.
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(I) holds if and only if S1 + S2 is of bounded variation, X has non-Gaussian com-
ponent and either

• DX < 0, or
• DX = 0 and

∫ 1
0

x∫ x
0 �X((−∞,−y)) dy

�X(dx) < ∞.

COROLLARY 3.2. Suppose that X is not a CPP and �S1((0,∞)),�S2((0,

∞)) > 0. Consider first passage of the barrier x = 0. Then −Xτ+
0 − = 0 a.s. and

Gτ+
0 − = 0 a.s.

(1) If (R) holds, then

−Xτ+
0 − = Gτ+

0 − = τ+
0 = Xτ+

0
= −Xτ+

0 − = 0 a.s.

(2) If (I) holds, then for u > 0, t ≥ 0, v ≥ 0, and for k = 1, . . . ,5,

P(τ+
0 ∈ dt,Xτ+

0
∈ du,−Xτ+

0 − ∈ dv,�Xτ+
0

= �P k

τ+
0
)

(3.10)
= �P k(du + v)Û (dt, dv)U ({0}, {0}).

REMARK 3.3 (First passage by creeping; cf. [1, 7] for details). In Theorem 3.1
and Corollary 3.2, we investigated the first passage of X caused by a jump. How-
ever, X may also creep over the barrier x ∈ R, in which case P(Xτ+

x
= x) > 0

holds. According to [1], Theorem VI.19, is equivalent to

DH = lim
β↑∞

κ(0, β)

β
> 0.

If X is of bounded variation, then X creeps upwards if and only if DX > 0, see
[7], Section 6.4, and [19], Theorem 7.11. The linear drift DX is deterministic and
so dependence between the jumps does not affect the creeping of X. If X has a
Gaussian component, then from A = 2DHDĤ (see [7], Corollary 4.4(i)) DH > 0
follows. So dependence between the jumps does not affect that X can creep. If X

is of unbounded variation, but has no Gaussian component, then X creeps upwards
if and only if∫ 1

0

x�X([x,∞))∫ 0
−x(

∫ u
−1 �X((−∞, z]) dz) du

dx

=
∫ 1

0
x(�P 1 + �P 2 + �P 3 + �P 4 + �P 5)([x,∞))

×
(∫ 0

−x

(
−

∫ u

−1
�S1,−(z) + �S2,−(z) + �

−
P 4(z)

+ �
−
P 5(z) + �S−−(z) dz

)
du

)−1

dx
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is finite. So only in this case, the dependence between the jumps can influence the
possibility of creeping.

REMARK 3.4 (Quintuple law for CPPes). We work with the weakly ascending
ladder process (L−1,H) and the strictly descending ladder process (L̂−1∗, Ĥ ∗) as
in Section 2. We consider the last time of the previous maximum of X before time t

defined by G in (1.4) and the first time of the previous minimum of X before time t ;
i.e.,

G∗
t := inf{s < t :Xs = Xt },(3.11)

see [8], Theorem 4, Remark 5, page 98, and [19], pages 167–168 and page 194.
The quintuple law of Theorem 3.1 holds also for CPPes with Û replaced by Û ∗ to
indicate that this is the potential measure of the strictly descending ladder process
as in Section 2. The result of Corollary 3.2 changes, since Gτ+

0 − > 0 a.s., and we
obtain for u > 0, t ≥ 0, s > 0, v ≥ 0,

P(τ+
0 − Gτ+

0 − ∈ dt,Gτ+
0 − ∈ ds,Xτ+

0
∈ du,−Xτ+

0 − ∈ dv,�Xτ+
0

= �P k

τ+
0
)

= �P k(du + v)Û ∗(dt, dv)U (ds, {0}), k = 1, . . . ,5.

The proof of the quintuple law for CPPes is analogous to Case 1 of the proof of
Theorem 3.1 in Section 7. The only subtlety is in the Wiener–Hopf factorization,
where we have to assign the mass given by the probabilities P(Xt = 0) for t ≥ 0
to one or the other of the integrals, which define κ and κ̂ ; see equations (6.19) and
(6.20) in [19]. With the definition of G∗ in (3.11) we assign the mass to κ ; cf. [19],
pages 167–168.

4. Two explicit situations. Whereas it is comparably easy to understand the
influence of the last jump of the Lévy process, since it is independent of the past, to
trace the influence of the dependence within the potential measures U and Û given
in (3.6) and (3.7) is rather involved. The ladder processes depend on the chosen
local times at the maxima and minima, respectively, which in general can not be
written as functionals of the path of X. In this section, we present two situations
of Theorem 3.1, where 0 is irregular for (0,∞) and X is spectrally positive.

4.1. Spectrally positive CPP. Let (S1, S2) be a spectrally positive CPP and X

be given by

Xt = S1
t + S2

t , t ≥ 0,(4.1)

and let λ > 0 denote the jump intensity of X and F the d.f. of the i.i.d. jump sizes
of X; note that both are determined by the marginal frequencies, marginal jump
sizes and the dependence structure; cf. [10] for details. Set W0 = 0 and denote
by (Wn)n∈N the arrival times of the jumps of X. (Wn)n∈N0 is a renewal process,
whose i.i.d. increments are expo(λ)-distributed. Then (XWn)n∈N0 is a random walk
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and we can apply the result of Theorem 2.1. Because of X = X a.s. and Gt =
sup{s < t :Xs = Xs} = t for all t ≥ 0, we have x−Xτ+

x − = x−Xτ+
x − and Gτ+

x − =
τ+
x a.s. and the quintuple law reduces to a triple law. Recall the definition of the

convolution Fn∗ before Theorem 2.5.

THEOREM 4.1. Suppose X is given by (4.1). Consider first passage of X over
a constant barrier x > 0. Then for u > 0, v ∈ [0, x], s > 0 and for k = 1,2,3,

P(τ+
x ∈ ds,Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv,�Xτ+
x

= �P k

τ+
x
)

= �P k(du + v)

∞∑
n=0

(λs)n

n! e−λs ds Fn∗(x − dv).

By construction of the P k as being independent, the d.f. F has representation

F = 1

λ

3∑
k=1

λP kFP k ,(4.2)

where the λP k denote the jump intensities of P k defined in (3.4).

For the barrier x = 0, the result reduces even further.

COROLLARY 4.2. Suppose X is given as in (4.1). Consider the first passage
of X over the barrier x = 0. Then −Xτ+

0 − = 0 a.s. and for u > 0, s > 0 and for
k = 1,2,3,

P(τ+
0 ∈ ds,Xτ+

0
∈ du,�Xτ+

0
= �P k

τ+
0
) = �P k(du)e−λs ds.

4.2. Subordinator with negative drift and finite mean. Let (S1, S2) be a (drift-
less) subordinator and X be given by

Xt = St − ct = S1
t + S2

t − ct, t ≥ 0,(4.3)

with negative drift DX = −c < 0. We denote its Lévy measure by �S and recall
the characteristic exponent of X from (1.1), which reduces to

�X(θ) = �S(θ) + icθ =
∫ ∞

0
(1 − eiθx)�S(dx) + icθ, θ ∈ R.(4.4)

Further, we suppose

0 < E[S1] = μS =
∫ ∞

0
x�S(dx) < c < ∞,(4.5)

such that limt→∞ Xt = −∞ a.s.
Under these conditions, the ascending ladder process (L−1,H) of X is a killed

bivariate CPP, and we denote its jump size distribution by FL−1 H(ds, dx). We
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denote by Fn∗
L−1 H the n-fold bivariate convolution of FL−1 H, where F 0∗

L−1 H(ds,

dz) = δ(0,0)(ds, dz) is the Dirac-measure in (0,0) and F 1∗
L−1 H = FL−1 H. Since L−1

and H always jump together, the convolution is taken componentwise; i.e., Fn∗
L−1 H

is the distribution of the sum of n independent jumps with bivariate d.f. FL−1 H.
In this situation, we can calculate U and Û explicitly, which we do in the proof in
Section 7.

THEOREM 4.3. Suppose X is given by (4.3), and that (4.5) holds. Consider
first passage of X over a fixed barrier x > 0. Then for u > 0, y ∈ [0, x], v ≥ y,
s ≥ 0, t ≥ 0 and for k = 1,2,3,

P(τ+
x − Gτ+

x − ∈ dt,Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du,

x − Xτ+
x − ∈ dv, x − Xτ+

x − ∈ dy,�Xτ+
x

= �P k

τ+
x
)(4.6)

= �P k(du + v)P
(
τ−
−(v−y) ∈ dt

)
dv

1

c

∞∑
n=0

(
μS

c

)n

Fn∗
L−1 H(ds, x − dy),

where the bivariate jump size d.f. FL−1 H is given by

FL−1 H(ds, dz) = 1

μS

∫
[0,∞)

�S(dz + θ)P(τ−
−θ ∈ ds) dθ.(4.7)

If we are only interested in the space variables, we can integrate out time in the
above quintuple law and obtain as proved in Section 7 the following.

COROLLARY 4.4. In the situation of Theorem 4.3, for u > 0, y ∈ [0, x], v ≥ y,
we get for k = 1,2,3,

P(Xτ+
x

− x ∈ du, x − Xτ+
x − ∈ dv, x − Xτ+

x − ∈ dy,�Xτ+
x

= �P k

τ+
x
)

(4.8)

= �P k(du + v) dv
1

c

∞∑
n=0

(
μS

c

)n

Fn∗
H (x − dy),

P(�Xτ+
x

= �P k

τ+
x
) = 1

c

∫ x

0

∫ ∞
y

�P k(v) dv

∞∑
n=0

(
μS

c

)n

Fn∗
H (x − dy),(4.9)

P(τ+
x < ∞) =

(
1 − μS

c

) ∞∑
n=1

(
μS

c

)n

Fn∗
H (x).(4.10)

The d.f. FH is for z > 0 defined as

FH(dz) = 1

μS

�S(z) dz = 1

μS

(�P 1 + �P 2 + �P 3)(z) dz.(4.11)
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Here, F 0∗
H (dz) = δ0(dz) and for n ∈ N

Fn∗
H (dz) = 1

μn
S

�
n⊗
S (z) dz

with �
1⊗
S = �S and �

2⊗
S (z) := ∫ z

0 �S(z − y)�S(y) dy.

REMARK 4.5. When the jump part S in (4.3) is a CPP with jump size d.f. F

and E[�S] = μ�S then, under the conditions of Theorem 4.3, for x > 0

FH(x) = 1

μ�S

∫ x

0
F(z) dz

and (4.10) is the celebrated Pollaczek–Khintchine formula.

COROLLARY 4.6. Suppose X is given by (4.3) and (4.5) holds. Consider the
first passage of X over the barrier x = 0. Then for u > 0, v ≥ 0 and t > 0 and for
k = 1,2,3,

P(τ+
0 ∈ dt,Xτ+

0
∈ du,−Xτ+

0 − ∈ dv,�Xτ+
0

= �P k

τ+
0
)

(4.12)

= �P k(du + v)P(τ−−v ∈ dt)
1

c
dv.

Further,

P(Xτ+
0

∈ du,−Xτ+
0 − ∈ dv,�Xτ+

0
= �P k

τ+
0
) = �P k(du + v)

1

c
dv,(4.13)

P(�Xτ+
0

= �P k

τ+
0
) = μP k

c
,(4.14)

P(τ+
0 < ∞) = μS

c
.(4.15)

The identities (4.13) and (4.14) are generalizations of Theorem 2.2(i) in [13],
where only independence is treated. When we compare (4.10) and (4.15), we see
that the ruin probability for the barrier x = 0 is not affected by the dependence in
contrast to barriers x > 0.

5. Dependence modeling by a Lévy copula. Our goal is to study the effect
of dependence between the jumps of X1 and X2 for the quintuple law. This depen-
dence affects the bivariate potential measures U , Û and also the factors �P k . As
dependence structure, we use the concept of a Lévy copula.

5.1. Lévy copulas. Similarly to copulas for d.f.s, Lévy copulas have been sug-
gested to model the dependence in the jump behaviour of Lévy processes. The
basic idea is to invoke an analogue of Sklar’s theorem (2.4) for Lévy measures
(cf. [15], Theorem 3.6) and model the dependence structure by a Lévy copula on
the marginal Lévy measures. Since, with the exception of a CPP, all Lévy mea-
sures have a singularity in 0, we follow Kallsen and Tankov [15] and introduce a
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Lévy copula on the tail integral, which is defined for each quadrant separately. For
convenience, we set R := (−∞,∞].

DEFINITION 5.1 (Bivariate tail integral and its margins).

(1) Let (X1,X2) be an R
2-valued Lévy process with Lévy measure �. Its tail

integral is the function � : (R \ {0})2 → R defined quadrantwise as

�(x1, x2) :=

⎧⎪⎪⎨
⎪⎪⎩

�
(
(x1,∞) × (x2,∞)

)
, x1 > 0, x2 > 0,

−�
(
(x1,∞) × (−∞, x2]), x1 > 0, x2 < 0,

−�
(
(−∞, x1] × (x2,∞)

)
, x1 < 0, x2 > 0,

�
(
(−∞, x1] × (−∞, x2]), x1 < 0, x2 < 0.

(2) The marginal tail integrals �1 and �2 are the tail integrals of the processes
X1 and X2, respectively, and we set for i = 1,2

�i(x) :=
{

�i((x,∞)), x > 0,
−�i((−∞, x]), x < 0.

THEOREM 5.2 (Sklar’s theorem for Lévy copulas, [15], Theorem 3.6).

(1) Let (X1,X2) be an R
2-valued Lévy process. We can write the joint tail

integral of (X1,X2) as

�(x1, x2) = Ĉ(�1(x1),�2(x2)), (x1, x2) ∈ (R \ {0})2,(5.1)

where the Lévy copula Ĉ is unique on Ran�1 × Ran�2.
(2) Let Ĉ be a bivariate Lévy copula and �1, �2 tail integrals of Lévy

processes. Then there exists an R
2-valued Lévy process (X1,X2) whose compo-

nents have tail integrals �1, �2 satisfying (5.1) for every (x1, x2) ∈ (R\{0})2. The
Lévy measure � of (X1,X2) is uniquely determined by Ĉ and �1, �2.

Various possibilities to construct parametric Lévy copula families can be found
in the literature. Proposition 5.5 of [6] shows how to construct a positive Lévy
copula from a distributional copula, Theorem 5.1 of [15] presents Lévy copulas as
limits of distributional copulas, and their Theorem 6.1 shows how to construct
Archimedean Lévy copulas analogously to Archimedean copulas. We present
some examples for later use.

EXAMPLE 5.3. (a) The independence Lévy copula is defined as (cf. [15],
Proposition 4.1)

Ĉ⊥(u, v) = u1{v=∞} + v1{u=∞}.(5.2)
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(b) The complete dependence Lévy copula is defined as (cf. [15], Theorem 4.4)

Ĉ‖(u, v) = min{|u|, |v|}1K(u, v) sgn(u) sgn(v),(5.3)

where K := {x ∈ R
2 : sgn(x1) = sgn(x2)} = (−∞,0)2 ∪ [0,∞)2.

(c) For θ > 0 and η ∈ [0,1], the Clayton–Lévy copula is defined as [cf. [15],
equation (6.5)]

Ĉη,θ (u, v) = (|u|−θ + |v|−θ )−1/θ (
η1{uv≥0} − (1 − η)1{uv<0}

)
.(5.4)

For η = 1, the two components always jump in the same direction, for η = 0 in
opposite direction. The parameter θ models the degree of dependence: for η = 1
and θ → 0, we obtain the independence model and for θ → ∞ the complete de-
pendence model. Further, Clayton–Lévy copulas are homogeneous of order 1, i.e.,

Ĉη,θ (cu, cv) = cĈη,θ (u, v) for all c > 0, and continuous on R
2
. This Lévy copula

has been used frequently, see e.g., Example 5.9 in [6] and [4, 5, 10].
(d) For ζ > 0 and η ∈ (0,1), a nonhomogeneous Archimedean Lévy cop-

ula can be found by invoking Theorem 6.1 of [15]. Defining ϕ = ϕζ : [−1,1] →
[−∞,∞] by

ϕζ (x) = ηζ
x

1 − x
1{x≥0} − (1 − η)ζ

|x|
1 − |x|1{x<0}

yields the nonhomogeneous Lévy copula

Ĉη,ζ (u, v) = |uv|
|u| + |v| + ζ

(
η1{uv≥0} − (1 − η)1{uv<0}

)
,(5.5)

which is continuous on R
2
. From limζ→∞ Ĉη,ζ (u, v) = 0 for all u, v ∈ R and for

all η ∈ (0,1), we obtain the independence Lévy copula, and for ζ → 0, we obtain
the Clayton–Lévy copula with parameter θ = 1.

5.2. Calculating the quantities in the quintuple law. Analogously to Defini-
tion 5.1(2), we define the tail integrals �P k for k = 1, . . . ,5 of the single and joint
jump components. The following result shows the influence of a specific Lévy
copula on the tail integrals, where we set �S2(0) := �S2((0,∞)). A proof can be
found in Section 7.

THEOREM 5.4. Suppose that the jump parts S1 and S2, given in (3.1), have
absolutely continuous Lévy measures �Si and the dependence between their jumps
is modeled by a twice continuously differentiable Lévy copula Ĉ. Then the tail
integrals in Theorem 3.1 and Corollary 3.2, respectively, are given for z > 0,

�P 1(z) = �S1(z) − lim
y↓0

Ĉ(�S1(z),�S2(y)) + lim
y↑0

Ĉ(�S1(z),�S2(y)),(5.6)

�P 2(z) = �S2(z) − lim
x↓0

Ĉ(�S1(x),�S2(z)) + lim
x↑0

Ĉ(�S1(x),�S2(z)),(5.7)
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�P 3(z) =
∫ ∞

0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=�

S1 (x),v=�
S2 ((z−x)∨0)

�S1(dx),(5.8)

�P 4(z) =
∫ ∞
z

[
∂Ĉ(u, v)

∂u

∣∣∣∣
u=�

S1 (x)

]�
S2 (z−x)

lima↑0 �
S2 (a)

�S1(dx),

�P 5(z) =
∫ ∞
z

[
∂Ĉ(u, v)

∂v

∣∣∣∣
v=�

S2 (y)

]�
S1 (z−y)

lima↑0 �
S1 (a)

�S2(dy).

If Ĉ is left-continuous in the second coordinate in ∞ and �S2((0,∞)) =
�S2((−∞,0)) = ∞, then (5.6) reduces to �P 1 ≡ 0.

The analogous result holds for the first coordinate with �P 2 ≡ 0.

The following result is a simple consequence of Theorem 5.4.

COROLLARY 5.5 ([5], Proposition 2.16). Assume that the conditions of The-
orem 5.4 hold and that S1 and S2 are spectrally positive. Then the tails (5.6)–(5.8)
reduce to

�P 1(z) = �S1(z) − lim
y↓0

Ĉ(�S1(z),�S2(y)),

�P 2(z) = �S2(z) − lim
x↓0

Ĉ(�S1(x),�S2(z)),

�P 3(z) =
∫ ∞

0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=�

S1 (x),v=�
S2 (0∨(z−x))

�S1(dx).

If Ĉ is left-continuous in the second coordinate in ∞ and �S2((0,∞)) = ∞, then
�P 1 ≡ 0.

The analogous result holds for the first coordinate with �P 2 ≡ 0.

The following lemma shows that for a left-continuous and homogeneous Lévy
copula Ĉ single jumps always have a marginal lighter tail than the corresponding
component.

LEMMA 5.6. Assume that the conditions of Corollary 5.5 hold. If Ĉ is left-
continuous in the j th coordinate in ∞ and homogeneous, then for i �= j ,

�P i (z) = o(�Si (z)), z → ∞.(5.9)

Now, we apply our results to the situations of Section 4.

THEOREM 5.7. Suppose that the jump parts S1 and S2, given in (3.1), have
absolutely continuous Lévy measures �Si and the dependence between their jumps
is modeled by a twice continuously differentiable Lévy copula Ĉ.
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(1) In the situation of Section 4.1, when S1 and S2 are spectrally positive
CPPes with jump intensities λ1, λ2 and jump size d.f.s F1, F2, Theorem 4.1 and
Corollary 4.2 hold with

λ = λ1 + λ2 − Ĉ(λ1, λ2),(5.10)

and for z > 0

F(z) = 1

λ

(
λ1F 1(z) − Ĉ(λ1F 1(z), λ2) + λ2F 2(z) − Ĉ(λ1, λ2F 2(z))

(5.11)

+ λ1

∫ ∞
0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=λ1F 1(x),v=λ2F 2(0∨(z−x))

F1(dx)

)
.

(2) In the situation of Section 4.2, when S = S1 + S2 is a subordinator, Corol-
lary 4.4 holds for FH(z) given for z > 0 by

FH(dz) = 1

μS

(
�S1(z) − lim

y↓0
Ĉ(�S1(z),�S2(y))

+ �S2(z) − lim
x↓0

Ĉ(�S1(x),�S2(z))

+
∫ ∞

0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=�

S1 (x),v=�
S2 (0∨(z−x))

�S1(dx)

)
dz.

REMARK 5.8 (Comparison of random walk and Lévy process modeling). Let
(X1,X2) be a spectrally positive CPP (without drift) with marginal intensities
λ1, λ2 and absolutely continuous marginal jump size d.f.s F1,F2. Denote by
(Wi

n)n∈N0 the arrival times of the jumps of Xi . We use the embedded random walk
structure by defining Zi

n := Xi
Wi

n
. Then the d.f. of the increments of Zi is equal to

Fi and, by absolute continuity, Z1 and Z2 always jump together. If we model the
dependence between jumps by a distributional copula C, then with equation (2.5)
the tail of the jump size d.f. FZ of Z = Z1 + Z2 is given by

FZ(z) =
∫ ∞

0

(
1 − ∂C(u, v)

∂u

∣∣∣∣
u=F1(x),v=F2((z−x)∨0)

)
F1(dx).

Rewriting this expression in terms of the distributional survival copula C̃(u, v) :=
u + v − 1 + C(1 − u,1 − v) (see [20], equation (2.6.2)) yields

FZ(z) =
∫ ∞

0

∂C̃(u, v)

∂u

∣∣∣∣
u=F 1(x),v=F 2((z−x)∨0)

F1(dx).(5.12)

When we consider, however, the Lévy process (X1,X2) and use a Lévy cop-
ula Ĉ, then the tail P(�X1 + �X2 > z) is given by (5.11). Comparing (5.12)
and (5.11), the most apparent differences are the first four summands in (5.11).
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These summands represent the possibility of single jumps of Xi . They are miss-
ing in (5.12) since the random walks Z1 and Z2 always jump together by con-
struction. But also the last integrals in (5.11) and (5.12), which represent the
common jumps of X1 and X2, differ. Furthermore, we have obviously differ-
ent spaces: a distributional survival copula C̃ : [0,1]2 → [0,1] and a Lévy copula
Ĉ : (−∞,∞]2 → (−∞,∞].

5.3. Examples for different dependence structures. We present four examples
for different dependence structures, modeled by a Lévy copula Ĉ, and characterize
all quantities of Theorem 4.1 and Corollary 4.4.

5.3.1. Independence. Suppose S1 and S2 are independent, i.e., S1 and S2 a.s.
never jump together, cf. Example 12.10(i) of Sato [21]. Then P 1 = S1,+ = S1,
P 2 = S2,+ = S2 and P 3 = S1,++ + S2,++ = 0. This corresponds to Exam-
ple 5.3(a), and we obtain

�S(dz) = (�S1 + �S2)(dz) = (�P 1 + �P 2)(dz).

In the situation of Section 4.1, when the jump parts S1 and S2 are spectrally pos-
itive CPPes with intensities λ1 and λ2 and jump size d.f.s F1 and F2, we get in
Theorem 4.1 and in Corollary 4.2 the identities λ = λ1 + λ2 and

F(dz) = 1

λ
�S(dz) =

(
λ1

λ1 + λ2
F1 + λ2

λ1 + λ2
F2

)
(dz).

In the situation of Section 4.2, when X is a subordinator with negative drift, Corol-
lary 4.4 holds with

FH(dz) = 1

μS

(
�S1(z) + �S2(z)

)
dz.

In this case (4.13) and (4.14) are the results of [13], Theorem 2.2(i).

5.3.2. Complete dependence. The jumps of (S1, S2) are said to be completely
dependent, if there is a strictly ordered subset S ⊂ [0,∞)2 such that (�S1

t ,

�S2
t ) ∈ S for every t > 0 (except for some null set of paths), see [15], Defini-

tion 4.2. This means that S1 and S2 a.s. jump together and so P 1 = P 2 = 0 and
P 3 = S1 + S2 = S. This is the situation of Example 5.3(b). In Section 4.1, we get
in Theorem 4.1 and Corollary 4.2 the identities λ = λ1 = λ2 and

F(dz) = P(�S1 + �S2 ∈ dz),

where the jump sizes �S1 and �S2 are completely dependent. In Corollary 4.4,
we get FH(dz) = �P 3(z) dz/μS . A simple example for complete dependence is
S1 ≡ S2, then F(dz) = F1(dz/2) and

FH(dz) = 1

μS

�S1(z/2) dz.
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5.3.3. Clayton–Lévy copula. In both situations of Section 4, the jump part S

has only positive jumps and so we must have η = 1 in (5.4). By absolute continuity,
the tail integral of S is for z > 0 given by

�S(z) = �P 1(z) + �P 2(z) + �P 3(z)

= �S1(z) − (
�S1(z)

−θ + (�S2((0,∞)))−θ )−1/θ

+ �S2(z) − (
�S2(z)

−θ + (�S1((0,∞)))−θ )−1/θ(5.13)

+
∫
(0,∞)

(
�S1(x)−θ + �S2

(
(z − x) ∨ 0

)−θ )−1/θ−1

× �S1(x)−θ−1�S1(dx).

If �S1((0,∞)) = ∞, then we see from (5.13) that �P 2 = 0 holds, i.e., S2 has
no single jumps. So if �S1 and �S2 are infinite measures, then there are in-
finitely many common jumps and no single jumps. If �S1((0,∞)) = ∞ and
�S2((0,∞)) = λ2 < ∞, then the intensity rate of the common jumps reduce to
�((0,∞) × (0,∞)) = lima→∞ Ĉθ (a, λ2) = λ2. If (S1, S2) is a CPP, then we get
the result of [5], Proposition 3.1. In Section 4.1, Theorem 4.1 holds with

λ = λ1 + λ2 − (λ−θ
1 + λ−θ

2 )−1/θ and F(z) = 1

λ
�S(z), z > 0,

and in Section 4.2, Corollary 4.4 holds with FH(dz) = �S(dz)/μS . For all u,
v > 0,

∂Ĉθ

∂θ
(u, v) = θ−2(u−θ + vθ )−1/θ−1(

u−θ (
ln(u−θ + v−θ ) + θ lnu

)
+ v−θ (

ln(u−θ + v−θ ) + θ lnv
)) ≥ 0

and �P 1(z) = �S1(z)− Ĉθ (�S1(z),�S2((0,∞))). From this, we see that increas-
ing the dependence parameter θ reduces the number of single jumps, see Figure 1.
In the special case of two CPPes with the same marginal Lévy measures, which
are exponential, i.e., �S1(x) = �S2(x) = e−ax for some a > 0, and θ = 1 we find
(cf. [5], Example 3.11) for z > 0,

�S(z) = e−az

(
2

eaz + 1
+ 1

e−az + 1

)

+ 1

2
e−(1/2)az(arctan

(
e(1/2)az) − arctan

(
e−(1/2)az))

= 3 + 2e−az + eaz

(eaz + 1)(e−az + 1)

+ 1

2
e−(1/2)az(arctan

(
e(1/2)az) − arctan

(
e−(1/2)az))

∼ e−az

(
1 + π

2
e−(1/2)az

)
, z → ∞.
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FIG. 1. Simulations of CPPes (X1,X2) with expo(1)-distributed jump sizes and dependence mod-
eled by a Clayton–Lévy copula for θ = 0.3, θ = 2 and θ = 10; left-hand side: sample paths of CPP,
right-hand side: CPP as marked point process. When θ increases, then the number of single jumps
�P 1,�P 2, cf. (3.4), decreases and the number of common jumps �P 3 increases. Further, for in-
creasing θ , the dependence between jump sizes of X1 and X2 increases.
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This implies that asymptotically for large z the joint jumps dominate.

5.3.4. Nonhomogeneous Archimedean Lévy copula. In the spectrally positive
situations of Section 4, we have η = 1 and for z > 0,

�S(z) = �S1(z)

(
1 − λ2

�S1(z) + λ2 + ζ

)

+ �S2(z)

(
1 − λ1

�S2(z) + λ1 + ζ

)
(5.14)

+
∫ ∞

0

�S2(0 ∨ (z − x))2 + ζ�S2(0 ∨ (z − x))

(�S1(x) + �S2(0 ∨ (z − x)) + ζ )2
�S1(dx).

In Section 4.1, Theorem 4.1 and Corollary 4.2 hold with

λ = λ1 + λ2 − λ1λ2

λ1 + λ2 + ζ
and F(z) = 1

λ
�S(z), z > 0,

and in Section 4.2, Corollary 4.4 holds with FH(dz) = 1/μS�S(z) dz. Contrary
to the Clayton–Lévy copula, increasing the dependence parameter ζ yields that
the tail integrals of the single jumps increase and those of the common jumps
decrease. Further, the jump intensity λ increases due to more single jumps. Since
Lemma 5.6 does not cover the case of the nonhomogeneous Lévy copula for the
CPP, we calculate the following quotient explicitly:

�P 1(z)

�S1(z)
= 1 − lim

y↓0

�S2(y)

�S1(z) + �S2(y) + ζ

= 1 − λ2

�S1(z) + λ2 + ζ
→ ζ

λ2 + ζ
, z → ∞.

In contrast to the homogeneous Lévy copulas, the single jump Lévy measures are
tail-equivalent to the Lévy measures of the components. Consequently, the Lévy
measure of the sum process can or cannot be dominated by the common jumps.
We present two different examples.

Take two CPPes with the same exponential marginal Lévy measures given by
�S1(x) = �S2(x) = e−ax for some a > 0 and ζ > 2. Then for z > 0 we get

�P 1(z) = �P 2(z) = e−az e−az + ζ

e−az + 1 + ζ
∼ ζ

1 + ζ
e−az, z → ∞.

It remains to calculate �P 3 :

�P 3(z) = a

∫ z

0

e−2a(z−x) + ζe−a(z−x)

(e−ax + e−a(z−x) + ζ )2 e−ax dx

+ a

∫ ∞
z

1 + ζ

(e−ax + 1 + ζ )2 e−ax dx =: I (z) + II(z).



THE FIRST PASSAGE EVENT FOR SUMS OF DEPENDENT LÉVY PROCESSES 2069

We substitute y = eax and calculate both integrals separately.

II(z) =
∫ ∞
eaz

1 + ζ

(1 + y(1 + ζ ))2 dy = 1

1 + eaz(1 + ζ )
∼ 1

1 + ζ
e−az, z → ∞.

For ζ 2 − 4e−az > 0, we get

I (z) =
∫ eaz

1

e−2azy2 + ζe−azy

(1 + e−azy2 + ζy)2 dy

= e−azζ(1 − e−az)

(4e−az − ζ 2)(1 + ζ + e−az)
+ e−az(2e−az − ζ 2)

(4e−az − ζ 2)

√
ζ 2 − 4e−az

× ln
((2 + ζ −

√
ζ 2 − 4e−az)(2e−az + ζ +

√
ζ 2 − 4e−az)

(2 + ζ +
√

ζ 2 − 4e−az)(2e−az + ζ −
√

ζ 2 − 4e−az)

)
.

Applying l’Hospital’s lemma to the last term yields I (z) ∼ (a/ζ )ze−az as z → ∞
and, hence,

�S(z) ∼ a

ζ
ze−az as z → ∞.

This implies that for large z the joint jumps dominate.
As a heavy-tailed example, we consider standard Pareto margins, i.e., �S1(x) =

�S2(x) = x−1 for x ≥ 1. Then we get for z > 1

�P 1(z) = �P 2(z) = ζ + z−1

1 + z(1 + ζ )
∼ ζ

1 + ζ
z−1 as z → ∞,

and for z > 2

�P 3(z) = 2z2ζ + 6z − 2zζ − 4

(4 + zζ )(−ζ + zζ + z)z

+ 2(2 + zζ )

(4 + zζ )z
√

zζ(4 + zζ )
ln

(∣∣∣∣zζ − 2ζ + √
zζ(4 + zζ )

zζ − 2ζ − √
zζ(4 + zζ )

∣∣∣∣
)

∼ 2

1 + ζ
z−1 as z → ∞.

Hence,

�S(z) ∼ 2 + ζ

1 + ζ
z−1 as z → ∞

and in contrast to the light-tailed example, common and single jumps determine
�S(z) for large z.
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6. Applications to insurance risk theory. We consider the situation as in
[5], where the total insurance risk process of an insurance company is modelled
as the sum of the components of a d-dimensional spectrally positive compound
Poisson risk process of different business lines, which may be dependent. Our
present model allows for a general spectrally positive Lévy process. This situation
has been considered in [17, 18] for a one-dimensional risk model.

The company’s total risk process X describes the net balance of the insurance
business given (for d = 2) by X = X1 + X2, which may involve a Gaussian base-
line component and a drift, usually due to a linear premium income. The jump
part

S = S1 + S2

of X models the total amount of claims in all business lines. Ruin of the company
happens, if the first hitting time τ+

x given in (1.3) is finite. We suppose throughout
this section that the net profit condition

lim
t→∞Xt = −∞ a.s.(6.1)

holds. Then the probability of first upwards passage over the barrier x decreases
to 0, when x ↑ ∞, and our results allow us a very precise description of the ruin
event caused by a jump.

Since X is spectrally positive, we can choose the descending ladder process
(L̂−1, Ĥ ) such that Û (dx) = dx and, under the normalization condition (3.8), we
get (as in the proof of Theorem 4.3) equation (7.3); i.e.,

�H(u) =
∫ ∞
u

�S(z) dz, u > 0.(6.2)

This implies that the integral in (6.2) and so E[X1] is finite.
We will first investigate, which business line is most likely to cause ruin. Recall

P k from (3.4) and the representation of their tail integrals in Corollary 5.5.
Invoking our quintuple law, we obtain precise asymptotic results on the ruin

event. For this result, we need that �H is subexponential; we write �H ∈ S . If
�S is finite and has infinite support, this is implied by the d.f. of the increment
S1 = S1

1 + S2
1 to belong to the class S ∗ as introduced in Klüppelberg [16].

Next, we recall that subexponential distributions or d.f.s in S ∗ can belong to two
different maximum domains of attraction MDA(�α) for some α > 0 or MDA(�).
The first class covers the regular variation case, which has been investigated in [9].
From Theorem 3.1 of that paper, we know that S1 = S1

1 + S2
1 is regularly varying,

provided that the marginals are regularly varying in combination with a homoge-
neous Lévy copula. The second class contains subexponentials with lighter tails
like lognormal or heavy-tailed Weibull distributions. For details see [11], Chap-
ter 3.
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THEOREM 6.1. Suppose that (X1,X2) is a spectrally positive Lévy process
such that X = X1 +X2 satisfies the net profit condition (6.1). Assume that either:

(i) �S ∈ RV−α for α > 1 or
(ii) �S ∈ MDA(�) ∩ S and �H ∈ S .

Then the ruin probability is subexponential, i.e., P(τ+· < ∞) ∈ S .
[In case (i), we have P(τ+· < ∞) ∈ RV−α+1.]
Let a(x) ∼ ∫ ∞

x �S(z) dz/�S(x) as x → ∞ and suppose that the Lévy copula
satisfies (5.9). Then for k = 1,2 and u, v > 0, we have

lim
x→∞ P

(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v,�Xτ+

x
= �P k

τ+
x

∣∣∣ τ+
x < ∞

)
= 0,(6.3)

lim
x→∞P(�Xτ+

x
= �P k

τ+
x

| τ+
x < ∞) = 0(6.4)

and

lim
x→∞ P

(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v,�Xτ+

x
= �P 3

τ+
x

∣∣∣ τ+
x < ∞

)
= GPD(u + v),

lim
x→∞ P(�Xτ+

x
= �P 3

τ+
x

| τ+
x < ∞) = 1.(6.5)

In case (i), GPD(u+v) = (1+ u+v
α

)−α and a(x) ∼ x/α; in case (ii), GPD(u+v) =
e−(u+v).

REMARK 6.2. (i) Theorem 6.1 generalizes the CPP situation in [5], Corol-
lary 3.6, where the ruin probability was calculated for Pareto distributed jump
sizes and a Clayton–Lévy copula.

(ii) By [18], Remark 4.3(iii), ruin can asymptotically occur for subexponential
�H only by a jump. In the situation of Theorem 6.1, relation (6.5) means that ruin
occurs asymptotically only by a common jump, i.e., a claim that applies to both
business lines at the same time.

The next result considers the barrier x = 0.

COROLLARY 6.3. Suppose that (X1,X2) is a spectrally positive Lévy process
such that 0 is irregular for (0,∞) with respect to X = X1 + X2.

(a) If the dependence is modeled by a Clayton–Lévy copula Ĉθ , then

lim
θ→∞P(�Xτ+

0
= �P k

τ+
0

| τ+
0 < ∞) =

{
0, for k = 1,2,
1, for k = 3.

(b) If the dependence is modeled by the nonhomogeneous Lévy copula Ĉζ , then

lim
ζ→∞P(�Xτ+

0
= �P k

τ+
0

| τ+
0 < ∞) =

⎧⎨
⎩

μSk

μS

, for k = 1,2,

0, for k = 3.
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7. Proofs.

PROOF OF THEOREM 3.1. Case 1. S1 + S2 is of bounded variation.
Let m,k,f, g and h be positive continuous functions with compact support sat-

isfying f (0) = g(0) = h(0) = 0. The condition f (0) = g(0) = h(0) = 0 is to ex-
clude the case of first passage by creeping, i.e., the event {Xτ+

x
= x}, because we

consider only the case, when the overshoot Xτ+
x

− x is a.s. positive. Since S1 + S2

is of bounded variation, we decompose it as in (3.3) into

S1 + S2 = P 1 + P 2 + P 3 + P 4 + P 5 + S1,− + S2,− + S−−.

Let JS1+S2 denote the Poisson random measure associated with the jumps of S1 +
S2. Then

JS1+S2 = JP 1 + JP 2 + JP 3 + JP 4 + JP 5 + JS1,− + JS2,− + JS−−,

where JP k denotes the Poisson random measure associated with the jumps of P k

given in (3.3). As P 1, P 2, P 3, P 4, P 5, S1,−, S2,− and S−− are independent, JP 1 ,
JP 2 , JP 3 , JP 4 , JP 5 , JS1,− , JS2,− and JS−− have disjoint support with probability
one. JP k has intensity measure �P k(dx) dt and analogously to Step 1 of the proof
of Theorem 3 in [8] we obtain for k = 1, . . . ,5,∫

u>0,y∈[0,x],v≥y,s≥0,t≥0
m(t)k(s)f (u)g(v)h(y)

× P(τ+
x − Gτ+

x − ∈ dt,Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du,

x − Xτ+
x − ∈ dv, x − Xτ+

x − ∈ dy,�Xτ+
x

= �P k

τ+
x
)

=
∫
y∈[0,x]

∫
s∈[0,∞)

∫
v∈[y,∞)

∫
t∈[0,∞)

m(t)k(s)h(y)g(v)

×
∫
(0,∞)

f (u)�P k(du + v)Û (dt, dv − y)U (ds, x − dy).

Case 2. S1 + S2 is of unbounded variation.
We start with the truncated process (S1,ε, S2,ε) for ε > 0 as given in (3.2). Then

S1,ε + S2,ε is of bounded variation and we can decompose its sample paths ac-
cording to its jump behavior like in (3.3). The unbounded variation of X implies
that 0 is regular for (0,∞) and (−∞,0); see [19], Theorem 6.5(i). Therefore,
U ({0}, {0}) = Û ({0}, {0}) = 0. We apply the result of Case 1 above dropping the
point 0 from integration, which yields∫

u>0,y∈[0,x],v≥y,u+v>ε,s≥0,t≥0
m(t)k(s)f (u)g(v)h(y)

× P(τ+
x − Gτ+

x − ∈ dt,Gτ+
x − ∈ ds,

Xτ+
x

− x ∈ du, x − Xτ+
x − ∈ dv,
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x − Xτ+
x − ∈ dy,�Xτ+

x
= �P

k,ε

τ+
x

)

=
∫
φ∈(0,∞)

∫
t∈(0,∞)

∫
ξ∈(0,x]

∫
s∈(0,∞)

m(t)k(s)h(x − ξ)g(x + φ − ξ)

×
∫
(x+φ−ξ,∞)

f
(
η − (x + φ − ξ)

)
�P k,ε (dη)U (ds, dξ)Û (dt, dφ)

=
∫
y∈[0,x)

∫
s∈(0,∞)

∫
v∈(y,∞)

∫
t∈(0,∞)

m(t)k(s)h(y)g(v)

×
∫
(v,∞)

f (η − v)�P k,ε (dη)Û (dt, dv − y)U (ds, x − dy).

For ε ↓ 0, the processes P k,ε converge a.s. to P k and, hence, in distribution. More-
over, for all v > 0 the function f̃ (η) := f (η − v)1{η>v} is bounded and continuous
and vanishes on [0, v]. By [21], Theorem 8.7, for all v > 0

lim
ε↓0

∫
(v,∞)

f (η − v)�P k,ε (dη) =
∫
(0,∞)

f (u)�P k(du + v)

and (3.9) follows. �

PROOF OF COROLLARY 3.2. Since X is not a CPP, its maxima are obtained
at unique times, so Gτ+

0 − = sup{s < τ+
0 :Xs = 0} = 0 a.s. The proof for case (I) is

analogous to Case 1 of the proof of Theorem 3.1. �

PROOF OF THEOREM 4.3. To calculate U and Û in Theorem 3.1 explicitly,
we have to specify the local time at maximum and at minimum such that the nor-
malization condition (3.8) is satisfied. Since X is spectrally positive, we choose
the local time at the minimum as

L̂t = −Xt = c

∫ t

0
1{Xs=Xs} ds,

where X is defined in (1.2). The unkilled descending ladder process is for t ≥ 0,

(L̂−1
t , Ĥt ) = (inf{s > 0 :Xs < −t}, X̂

L̂−1
t

) = (τ−−t , t).(7.1)

Thus, by (3.7), we obtain

Û (ds, dx) =
∫ ∞

0
P(L̂−1

t ∈ ds, Ĥt ∈ dx)dt = P(L̂−1
x ∈ ds) dx

(7.2)
= P(τ−−x ∈ ds) dx,

Û ([0,∞), dx) = dx and κ̂(0, β) = β , see (3.5). When the normalization condition
(3.8) is satisfied, by Vigon [22], Proposition 3.3, it follows for z > 0,

�H(z) =
∫ ∞
z

�S(x)Û ([0,∞), dx) =
∫ ∞
z

�S(x) dx.(7.3)
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Due to the irregularity of 0 for [0,∞) and following [19], Theorem 6.7(ii), we
choose the local time at the maximum as

Lt =
nt∑

k=0

e
(k)
ζ with nt = #{0 < s ≤ t :Xs = Xs}

for an arbitrary parameter ζ > 0 and i.i.d. e
(k)
ζ

d= expo(ζ ). Further, due to con-
dition (4.5), the ascending ladder process is killed, i.e., there is a bivariate CPP
(L−1, H) with jump intensity ζ and q > 0 such that

{(L−1
t ,Ht ) : t < L∞} d= {(L−1

t , Ht ) : t < eq}
and (L−1

t ,Ht ) = (∞,∞) for t ≥ L∞ d= eq . H is a CPP with intensity ζ and with
(7.3) the normalization condition (3.8) is satisfied if and only if ζ = �H(R) = μS .
From (3.5), we obtain

κ(0,−iθ) = q +
∫ ∞

0
(1 − eiθx)�H(dx)

and with (4.4) and the Wiener–Hopf factorization, see [19], equation (6.21), it
becomes

κ(0,−iθ) = k′ �X(θ)

κ̂(0, iθ)
= k′

iθ

(
icθ +

∫ ∞
0

(1 − eiθx)�S(dx)

)
.

Since H is of bounded variation and limx↓0 x�S(x) = 0 by (7.3), partial integra-
tion results in

κ(0,−iθ) = k′
(
(c − μS) +

∫ ∞
0

(1 − eiθx)�S(x) dx

)
.

From (7.3), we conclude k′ = 1 and q = c − μS . Since eq
d= expo(q) with q =

c − μS is independent of (L−1, H) and Nt = #{0 < s ≤ t :�Ht �= 0} is a Poisson
process with intensity ζ = μS , we get with FL−1 H = 1

μS
�L−1 H for s ≥ 0, x ≥ 0

U (ds, dx) =
∫ ∞

0
P(t < eq, L−1

t ∈ ds, Ht ∈ dx)dt

(7.4)

= 1

c

∞∑
n=0

(
μS

c

)n

Fn∗
L−1 H(ds, dx).

Finally, from the quintuple law (3.1) with (7.2) and (7.4), we obtain for u > 0,
y ∈ [0, x], v ≥ y, s ≥ 0, t ≥ 0 and for k = 1,2,3,

P(τ+
x − Gτ+

x − ∈ dt,Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv,

x − Xτ+
x − ∈ dy,�Xτ+

x
= �P k

τ+
x
)

= �P k(du + v)Û (dt, dv − y)U (ds, x − dy)
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= �P k(du + v)P
(
τ−
−(v−y) ∈ dt

)
1{v−y≥0} dv

× 1

c

∞∑
n=0

(
μS

c

)n

Fn∗
L−1 H(ds, x − dy).

According to [8], Corollary 6, we have

�L−1 H(dt, dh) =
∫
[0,∞)

�S(dh + θ)Û (dt, dθ)

and with (7.2) and the normalization condition expression (4.7) results. �

PROOF OF COROLLARY 4.4. Integrating out time in (4.6) yields (4.8). Rela-
tion (4.11) follows from (7.3) with the normalization condition and the decompo-
sition (3.3). The identity (4.9) results from (4.8) by integrating out u, v and y. By
integrating out s, t and v in the quintuple law in [8], Theorem 3, we obtain

P(Xτ+
x

− x ∈ du, x − Xτ+
x

∈ dy) = U (x − dy)�H(du + y)

and with (7.4) we obtain

P(τ+
x < ∞) =

∫ x

0
�H(y)U (x − dy)

=
∞∑

n=0

(
μS

c

)n+1 ∫ x

0
F H(y)F n∗

H (x − dy)

=
∞∑

n=0

(
μS

c

)n+1(
Fn∗

H (x) − F
(n+1)∗

H (x)
)

=
(

1 − μS

c

) ∞∑
n=1

(
μS

c

)n

Fn∗
H (x).

�

PROOF OF COROLLARY 4.6. For the barrier x = 0, we obtain under the nor-
malization condition (3.8) with (3.10) and (7.4)

P(τ+
0 ∈ dt,Xτ+

0
∈ du,−Xτ+

0 − ∈ dv,�Xτ+
0

= �P k

τ+
0
)

= �P k(du + v)Û (dt, dv)U ({0}, {0})
= �P k(du + v)P(τ−−v ∈ dt) dv

1

c
.

The identities (4.13) and (4.14) follow from (4.12) by integrating out t , u and v.
Equation (4.15) results by summing up (4.14) for k = 1,2,3. �

PROOF OF THEOREM 5.4. The tail integral of (S1, S2) is given by

�(x1, x2) = Ĉ(�S1(x1),�S2(x2)), x1, x2 ∈ R \ {0}.
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So, we get for z > 0,

�P 1(z) = �S1(z) − lim
y↓0

Ĉ(�S1(z),�S2(y)) + lim
y↑0

Ĉ(�S1(z),�S2(y)).

Analogous calculations give �P 2 .
For the common jump measures, we obtain for z > 0

�P 3(z) = �
({(x, y) ∈ (0,∞) × (0,∞) :x + y > z}),(7.5)

�P 4(z) = �
({(x, y) ∈ (0,∞) × (−∞,0) :x + y > z}),(7.6)

�P 5(z) = �
({(x, y) ∈ (−∞,0) × (0,∞) :x + y > z}).(7.7)

Since Ĉ is twice continuously differentiable, we have (cf. [6], page 148)

�(dx, dy) = ∂2Ĉ(u, v)

∂u∂v

∣∣∣∣
u=�

S1 (x),v=�
S2 (y)

�S1(dx)�S2(dy).(7.8)

So the r.h.s. of (7.5) is given by∫ ∞
0

∫ ∞
(z−x)∨0

�(dx, dy)

=
∫ ∞

0

∫ ∞
(z−x)∨0

∂2Ĉ(u, v)

∂u∂v

∣∣∣∣
u=�

S1 (x),v=�
S2 (y)

�S2(dy)�S1(dx)

=
∫ ∞

0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=�

S1 (x),v=�
S2 ((z−x)∨0)

�S1(dx),

since Ĉ(u,0) = 0 for all u ∈ R. The r.h.s. of (7.6) and (7.7) are calculated analo-
gously. �

PROOF OF LEMMA 5.6. With Corollary 5.5, we get by homogeneity,

�P 1(z)

�S1(z)
= 1 − lim

y↓0
Ĉ

(
1,

�S2(y)

�S1(z)

)
, z ≥ 0,

which is equal to 1 for all z ≥ 0 in the case of independence. Otherwise, by left-
continuity in ∞,

lim
z→∞

�P 1(z)

�S1(z)
= 1 − lim

z→∞ lim
y↓0

Ĉ

(
1,

�S2(y)

�S1(z)

)
= 1 − Ĉ(1,∞) = 0.

The proof for P 2 is analogous. �

PROOF OF THEOREM 5.7. (1) Equation (5.10) holds by

λ = �S((0,∞)) = �([0,∞)2)

= �S1((0,∞)) + �S2((0,∞)) − �((0,∞)2) = λ1 + λ2 − lim
x↓0

�(x,x)
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and equation (5.11) results from (4.2) with Corollary 5.5.
(2) Equation (4.11) and Corollary 5.5 yield relation (5.12). �

PROOF OF THEOREM 6.1. From [18], Lemma 3.5, we have for �H ∈ S the
relation

lim
x→∞

P(τ+
x < ∞)

�H(x)
= U ([0,∞)) = 1

|E[X1]| .(7.9)

In case (i) the assumption �S ∈ RV−α and Karamata’s theorem ([3], Theo-
rem 1.5.11(ii)) to (6.2) yields �H ∈ RV−α+1 ⊂ S . So, the first assertion results.

From Theorem 3.1, it follows for u∗, v∗ > 0

P(Xτ+
x

− x > u∗, x − Xτ+
x − > v∗,�Xτ+

x
= �P 1

τ+
x
)

=
∫
y∈[0,x]

μ1
(
u∗ + (v∗ ∨ y)

)
U (x − dy),

where μ1(z) := ∫ ∞
z �P 1(s) ds. For u, v > 0, defining u∗ := a(x)u, v∗ := x +

a(x)v, we have

P

(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v,�Xτ+

x
= �P 1

τ+
x

)

= U ([0, x))μ1
(
x + a(x)(u + v)

)
.

With (7.9), we obtain

lim
x→∞P

(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v,�Xτ+

x
= �P 1

τ+
x

∣∣∣ τ+
x < ∞

)
(7.10)

= lim
x→∞

U ([0, x))μ1(x + a(x)(u + v))

U ([0,∞))�H(x)
≤ lim

x→∞
U ([0, x))μ1(x)

U ([0,∞))�H(x)
.

Now, recall that

μ1(x)

�H(x)
=

∫ ∞
x �P 1(s) ds∫ ∞
x �S(s) ds

.(7.11)

Since by Lemma 5.6,

�P 1(x)

�S(x)
≤ �P 1(x)

�S1(x)
→ 0 as x → ∞

holds, the right-hand side of (7.11) tends to 0 as x → ∞ by l’Hospital’s lemma,
and hence, the right-hand bound of (7.10) is 0. The analogous result holds for P 2.
This implies (6.3) and (6.4). By [17], Theorems 1 and 2, we get for u, v > 0

lim
x→∞ P

(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v

∣∣∣ τ+
x < ∞

)
= GPD(u + v).
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Therefore, the last two relations result. �

PROOF OF COROLLARY 6.3. If 0 is irregular for (0,∞), we get with Corol-
lary 3.2

P(�Xτ+
0

= �P k

τ+
0
) =

∫ ∞
0

�P k(z) dz U ({0})

and P(τ+
0 < ∞) = μS U ({0}) where S denotes the jump part of X and μS = E[S1].

Note that U ({0}) > 0, if 0 is irregular for (0,∞). So

P(�Xτ+
0

= �P k

τ+
0

| τ+
0 < ∞) = μP k

μS

,

where μP k = ∫ ∞
0 �P k(z) dz. From Section 5.3.3, we know that limθ→∞ �P k(z) =

0 for k = 1,2. Furthermore, increasing the dependence parameter ζ of the non-
homogeneous Lévy copula lowers the tail integral of the common jump, i.e.,
limζ→∞ �P 3(z) = 0 and limζ→∞ �P k(z) = �Sk for k = 1,2. Thus, the assertions
follow. �
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