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Comment: Struggles with Survey
Weighting and Regression Modeling
Danny Pfeffermann

This is an intriguing paper that raises important ques-
tions, and I feel privileged for being invited to discuss
it. The paper deals with a very basic problem of sample
surveys: how to weight the survey data in order to esti-
mate finite population quantities of interest like means,
differences of means or regression coefficients.

The paper focuses for the most part on the com-
mon estimator of a population mean, ȳw = ∑n

i=1 wiyi/∑n
i=1 wi , and discusses different approaches to con-

structing the weights by use of linear regression mod-
els. These models vary in terms of the number and na-
ture of the regressors in the model and in the assump-
tions regarding the regression coefficients, whether
fixed or random with prespecified distributions. The
idea behind regression weighting is to include in the
regression model all the variables and interactions that
are related to the outcome values and affect the sam-
ple selection and the response probabilities, such that
the sampling and response mechanisms are ignorable
in the sense that the model fitted to the observed data is
the same as the population model before sampling. As-
suming that all the important regressors affecting the
sample selection and response are discrete, the set of
all possible combinations of categories of these vari-
ables defines poststratification cells, which in turn de-
fine the dummy independent variables in the regression
model. The target population parameter of interest can
be written then as θ = ∑J

j=1 Njθj/
∑J

j=1 Nj , where
θj is the parameter for cell j (say the true cell mean,
Ȳj ),Nj is the cell size and J is the number of cells.
The regression estimator has the general form θ̂PS =∑J

j=1 Nj θ̂j /
∑J

j=1 Nj . For example, the estimator of

the population mean is ˆ̄Y PS = ∑J
j=1 Nj ȳj /

∑J
j=1 Nj ,

where ȳj is the sample mean in cellj .
The discussion that follows is divided into two parts.

In the first part I comment on the proposed weighting
approach and some of the statements made in the arti-
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cle. In the second part I consider another approach for
analyzing survey data that are subject to unequal sam-
ple selection probabilities and nonresponse, and com-
pare it to the approach taken in this paper.

1. REMARKS ON THE PAPER

• The first obvious remark, that is also made already
in the Abstract, is that the number of poststratification
cells can be extremely large, with inevitably very small
or no samples in many of the cells. Having small or no
samples in some or even most of the cells is theoreti-
cally not a problem under the model with random re-
gression coefficients considered later, but it is not clear
what should be done in such a case under the standard
regression model with fixed coefficients. Note in par-
ticular the problems arising if the zero sample sizes
are due to nonresponse. Deleting these cells from the
regression model may violate the sample ignorability
assumption. It is stated in Section 3.1 that it is not re-
quired to include in the model all the cells, but this
raises the question of which cells to exclude and based
on what criteria. It may imply also including different
cells (interactions) for different outcome variables of
interest.

• It is assumed that the cell sizes are known. This
could be a strong assumption in a large-scale survey
with many small cells. Also, it is often the case that the
cell sizes are known to the person drawing the sam-
ple, but not necessarily to the person analyzing the
data, who has limited access to the original files due to
confidentiality restrictions or other reasons. The argu-
ment that the cell sizes can be estimated using iterative
proportional fitting or other related procedures is well
taken, but this raises questions of the effect of using
estimated sizes on the performance of the estimators
and how to estimate the variances, accounting for this
source of variability.

• A third problem and in a way the most difficult
one to handle is the implicit assumption that the ana-
lyst knows all the variables affecting the sample selec-
tion and nonresponse. Here again a distinction should
be made between the person drawing the sample who
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should at least know all the variables that affect the
sample selection, and the person analyzing the data
who may not even have that information. When it
comes to nonresponse, both persons can only hypothe-
size which variables explain the nonresponse. I should
add to this that the paper implicitly assumes that the
missing data are missing at random (MAR), which of
course may not be the case in practice. The alternative
approach described later overcomes in principle these
problems but it requires modeling the sample inclusion
probabilities as a function of the observed data.

• It is mentioned that computing the variances of
weighted estimators may not be trivial, because the
weights are generally random variables that depend on
the data. I can see that weighting cells that account
for nonresponse are “data driven,” but for given cells,
the computation of the variances should not be com-
plicated, even though the response probabilities are
only estimated. Thus, a distinction should be made be-
tween conditional and unconditional variances. A more
crucial distinction, however, is between variances and
mean square errors, because as already implied by my
previous comment, the main issue is whether the cells
are defined correctly and the nonresponse is indeed
MAR.

• The paper proposes a two-step procedure for esti-
mating the regression of y on z. The first step consists
of regressing y on z and X and interactions between
them, where X represents the variables affecting the
sample inclusion probabilities; the second step consists
of regressing X on z in order to obtain the regression
of y on z alone [(4) in the paper]. I have no problem
with this approach, but as the paper repeatedly empha-
sizes the regression (averaging) in the second step must
be adjusted for the population distribution of X. If this
distribution is unknown, which may well be the case
in practice, one is bound to use some sort of weighting
in the back door. Thus, an alternative “weighted regres-
sion” procedure favored by survey analysts is to regress
y on z alone, but use weighted regression with the
weights defined by the inverse of the sample inclusion
probabilities. Consider the example in the paper of re-
gressing log earning against ethnicity (white/nonwhite)
in order to estimate the difference E(y|white = 1) −
E(y|white = 0). Suppose that the survey oversamples
males. It is argued that the model should include in this
case as additional regressors “gender” and the interac-
tion between white and male, and then obtain the re-
gression of log earning on ethnicity by applying the
second step described above. This model accounts for
possible differences between the effects of the two

genders on the log earning for a given ethnicity, and
is thus the “correct model,” irrespective of the sam-
ple inclusion probabilities. Application of the weighted
regression approach to the example consists in this
case of regressing y against z (defined by two dummy
variables representing “white” and “nonwhite”) and
weighting each sample value by the inverse of the
sample inclusion probability. Denoting the sample of
“white” by S1 and the sample of “nonwhite” by S2,
the resulting estimator is (

∑
i∈S1

wiyi1/
∑

i∈S1
wi) −

(
∑

i∈S2
wiyi1/

∑
i∈S2

wi). Clearly, if the model with the
gender variable and the interaction term is the correct
model, the model without them is the wrong model and
weighting the sample observations does not correct the
model. However, as long as the weights are estimated
appropriately (accounting for the sample selection and
response probabilities), the use of this procedure yields
a consistent estimator for the difference of interest.
I believe that many analysts would use weighted re-
gression even when fitting the “correct model,” so as to
protect against other possible model misspecifications.

• It is mentioned in Section 3.1 that the full post-
stratification estimator of the population mean, θ̂PS =∑J

j=1 Nj ȳj /
∑J

j=1 Nj , can be viewed as a classical re-
gression estimator by including indicators for all the
poststratification cells. How are the sizes Nj captured
by the regression model? Is it not a weighted regression
estimator?

• It is stated that weighted regression is not flexible
and that it is not clear how to apply the weights. I do
not think that this is correct. The use of pseudo likeli-
hood methods, for example (see the discussion and ref-
erences in Pfeffermann, 1993), is well established and
very common. See also below for a model-based jus-
tification for weighted regression. The use or nonuse
of the weights has nothing to do with the use of mod-
els for small area estimation problems, as seems to be
suggested in Section 4.

• As pointed out in the paper, the use of hierarchical
models implies different sets of weights for different
outcome variables. Statistical bureaus do not like this
and usually insist on a single weight for a given sample
unit, even at the risk of loss of efficiency. To highlight
this problem a bit further, suppose that one is interested
in three variables, y1, y2 and y3 = g(y1, y2) for some
function g. Say y1 is total earnings in a given month,
y2 is the number of hours worked and y3 is the mean
earning per hour. Fitting a hierarchical model to each of
the three variables separately would imply three differ-
ent sets of weights, which some would argue does not
make sense in this case, beyond not being practical.
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• The use of the normal model with independent ran-
dom effects for the J cell means does not seem ap-
propriate if the cells are defined by interactions of the
regressors that account for the sample selection and
nonresponse. Some of these cells are “close” to each
other, say the cells defined by given categories of gen-
der, ethnicity and level of education, and adjacent cate-
gories of age, and other cells are very apart. Thus, it is
more appropriate in this case to fit a model with spatial
correlations between the random effects that reflect the
distance between the corresponding cells. The compu-
tation of the weights under the model is neat. Note that
with many cells and very small sample sizes within the
cells, the cell predictor θ̂k in (10) will often be close to
the synthetic estimator µ̂ in (11), which is then also ap-
proximately the estimator of the population mean. As
a result, the weight will be approximately constant.

2. ALTERNATIVE APPROACHES

As discussed above, a major problem with the appli-
cation of the approach proposed in this article is that
it requires knowledge of all the important variables
affecting the sample selection or nonresponse (the X

variables). As argued by Alexander (1987), “no model
will include all the relevant variables and few analysts
will wish to include in the model all the geographic and
operational variables which determine sampling rates.
The theoretical and empirical tasks of fitting and val-
idating such models seem formidable for many sur-
veys.”

One way to deal with this problem, considered by
Rubin (1985), is to use the vector of sample inclusion
probabilities as a surrogate for the variables in X, but
as further discussed in Smith (1988), this approach is
not always valid and in the case of nonresponse, the
true inclusion probabilities are unknown and need to
be estimated. Skinner (1994) models the outcomes in
the sample as a function of the model covariates and
the sampling weights, and the sampling weights in
the sample as a function of the model covariates, and
shows how to obtain the model for the outcomes in the
population from these two models.

In what follows I outline briefly the basic ideas
of another approach for estimating population mod-
els and predicting finite population quantities. This ap-
proach models the sample data and bases the infer-
ence on the sample model. See the references below
for more details with examples and applications. I con-
sider for convenience single stage sampling and as-
sume that the sample selection and response are inde-
pendent between the sampling units. As before, denote

by y the outcome variable and suppose first that one is
interested in identifying and estimating the population
model fp(y|z), where z is a set of covariates. Follow-
ing Pfeffermann, Krieger and Rinott (1998), the sample
model is defined as

fs(yi |zi)
def= f (yi |zi, i ∈ s)

= Pr(i ∈ s|yi, zi)fp(yi |zi)

Pr(i ∈ s|zi)
(1)

= Ep(πi |yi, zi)fp(yi |zi)

Ep(πi |zi)
,

where πi = Pr(i ∈ s) is the sample inclusion probabil-
ity (probability to be selected and respond).

REMARK 1. By (1), the sample model is the same
as the population model if Pr(i ∈ s|yi, zi) = Pr(i ∈
s|zi) ∀yi , in which case the sampling process is ignor-
able.

REMARK 2. Pr(i ∈ s|yi, zi) is generally not the
same as πi , which may depend on the variables in
X and possibly also on the y-values in the case of
NMAR nonresponse. However, the use of the sam-
ple model only requires modeling Pr(i ∈ s|yi, zi) or
Ep(πi |yi, zi), thus circumventing the need to know
the variables X and incorporate them in the model.
Note that the sample model resulting from modeling
the sample inclusion probabilities can be tested using
standard goodness-of-fit test statistics, since the sample
model refers to the sample data.

The following relationship between the population
model and the sample model is established in Pfef-
fermann and Sverchkov (1999), where wi = 1/πi and
Es(·) is the expectation under the sample model:

fp(yi |zi) = Es(wi |yi, zi)fs(yi |zi)

Es(wi |zi)
.(2)

Thus, one can identify and estimate the population
model by fitting the sample model to the sample data
and estimating the expectations Es(wi |yi, zi), again
using the sample data. Clearly, both the sample model
and the expectations Es(wi |yi, zi) depend in general
on unknown parameters. Pfeffermann and Sverchkov
(2003) discuss alternative approaches of estimating
these parameters, with examples. Note in this respect
that if the outcomes are independent under the popula-
tion model, they are also “asymptotically independent”
under the sample model when increasing the popula-
tion size but holding the sample size fixed. See Pfeffer-
mann, Krieger and Rinott (1998) for details.
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REMARK 3. For likelihood- or Bayesian-based in-
ference, one can employ the “full likelihood” of the
sample data and the sample membership indicators,

f (s, ys |zs, zs̃) = ∏
i∈s

Pr(i ∈ s|yi, zi)fp(yi |zi)

(3)
· ∏
j /∈s

[1 − Pr(j ∈ s|zj )],

where Pr(j ∈ s|zj ) = ∫
Pr(j ∈ s|yj , zj )fp(yj |zj ) dyj

is the propensity score for unit j ; see, for example,
Gelman et al. (2004) and Little (2004). The use of (3)
has the advantage of employing the information on
the sample selection probabilities for units outside the
sample, but it requires knowledge of the covariates for
every unit in the population, unlike the use of the sam-
ple likelihood that is based on the sample model. Mod-
eling the joint distribution of the covariates and inte-
grating them out of the likelihood is often too compli-
cated.

REMARK 4. I mentioned before that the use of
weighted regression can be justified theoretically. Sup-
pose that the population model is yi = z′

iβ + εi ;
Ep(εi |zi) = 0, Ep(ε2

i |zi) = σ 2
ε . By (2),

β = arg min
β̃

Ep(yi − z′
i β̃)2

= arg min
β̃

Es

[
wi(yi − z′

i β̃)2

Es(wi)

]
(4)

= arg min
β̃

Es[wi(yi − z′
i β̃)2],

noting that Es(wi) = [N/E(n)] = const . Replacing
the sample expectation in the right-hand side of (4) by
the sample mean yields the weighted regression esti-
mator bw = [∑i∈s wiziz

′
i]−1 ∑

i∈s wiziyi as the opti-
mal (least squares) solution.

REMARK 5. By conditioning on zi and hence

minimizing Es[wi(yi−z′
i β̃)2

Es(wi |zi)
|zi], one obtains the esti-

mator bq = [∑i∈s qiziz
′
i]−1 ∑

i∈s qiziyi , where qi =
wi/Es(wi |zi). The weights {qi} account for the net
sampling effects on the conditional target distribution
fp(yi |zi), and the estimator bq is therefore less vari-
able than bw . See Pfeffermann and Sverchkov (1999)
for further discussion and empirical comparisons be-
tween the two estimators.

How can the sample model be used for estimating
finite population totals or means? For this we need to

define the sample-complement model,

fc(yi |zi)
def= f (yi |zi, i /∈ s)

= Pr(i /∈ s|yi, zi)fp(yi |zi)

Pr(i /∈ s|zi)
(5)

= · · · = Es[(wi − 1)|yi, zi]fs(yi |zi)

Es[(wi − 1)|zi] ,

with the last equality shown in Sverchkov and Pfeffer-
mann (2004). Note that the sample-complement model
is again a function of the sample model and the expec-
tation Es(wi |zi), and thus can be estimated from the
sample data. The optimal predictor of the population
total under a quadratic loss function is,

Ŷ = ∑
i∈s

yi + ∑
j /∈s

E(yj |zj , j /∈ s)

= ∑
i∈s

yi + ∑
j /∈s

Ec(yj |zj )(6)

= ∑
i∈s

yi + ∑
j /∈s

Es[(wj − 1)yj |zj ]
Es[(wj − 1)|zj ] .

The last equality follows from (5), with the sample ex-
pectations in the numerator and the denominator ei-
ther being modeled based on the sample data or sim-
ply estimated by the corresponding sample means by
application of the method of moments. As shown in
Sverchkov and Pfeffermann (2004), familiar estima-
tors of finite population means such as the estima-
tor ȳw = ∑n

i=1 wiyi/
∑n

i=1 wi studied in the present
paper are obtained as special cases of this theory by
specifying appropriate population or sample models.
Pfeffermann and Sverchkov (2007) use the sample and
sample-complement models for small area estimation
under informative sampling of areas and within the ar-
eas.

To summarize, the alternative approach outlined
above has the advantage of not requiring incorporating
in the model the variables affecting the sample selec-
tion and response, unless they are part of the covariates
that define the target model of interest. It can be ap-
plied also in situations where the response process is
NMAR. However, it requires modeling the expectation
Es(wi |yi, zi), which may not be easy in the presence of
nonresponse. On the other hand, as mentioned before,
the resulting sample model can be tested using classi-
cal goodness-of-fit statistics, since the sample model
refers to the sample data.
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