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Rejoinder: Fisher Lecture: Dimension
Reduction in Regression
R. Dennis Cook

1. INTRODUCTION

I am grateful to all of the discussants for their com-
ments which raise a number of important and insight-
ful issues, and add significantly to the breadth of ideas.
Following a few introductory comments on the need
for a new regression genre that centers on dimension
reduction, I turn to the discussants’ remarks.

The development in the 1960s and early 1970s of
diagnostic methods for regression produced a major
shift in regression methodology. When a diagnostic
produces compelling evidence of a deficiency in the
current model or data it is natural to pursue remedial
action, leading to a new model and a new round of di-
agnostics, proceeding in this way until the required di-
agnostic checks are passed. By the late 1970s this type
of iterative model development paradigm was widely
represented in the applied sciences and was formal-
ized in the statistical literature by Box (1979, 1980)
and Cook and Weisberg (1982). With the availability of
desktop computing starting in the mid-1980s, it is now
possible to apply in reasonable time batteries of graph-
ical and numerical diagnostics to many regressions.

Advances in computing and other technologies now
allow scientists to routinely formulate regressions in
which the number p of predictors is considerably
larger than that normally considered in the past. Such
large-p regressions necessitate a new type of analysis
for at least two reasons. First, the standard iterative par-
adigm for model development can become untenable
when p is large. Recognizing the variety of graphi-
cal diagnostics that could be used and the possibility
of iteration, a thorough analysis might require assess-
ment of many plots in addition to various numerical
diagnostics. Experience has shown that the paradigm
can often become imponderable when applied with too
many predictors. Second, in some regressions, partic-
ularly those associated with high-throughput technolo-
gies, the sample size n may be smaller than p, lead-
ing to operational problems in addition to ponderability
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difficulties. These issues have caused a shift in the ap-
plied sciences toward a different regression genre with
the goal of reducing the dimensionality of the vector
X ∈ R

p of predictors as a first step in the analysis,
effectively raising an old idea to a position of promi-
nence.

Today, dimension reduction is ubiquitous in the
applied sciences, represented primarily by principal
component methodology. Fifteen years ago I rarely en-
countered intra-university scientists seeking help with
principal component reductions in regression. Such
settings no longer seem unusual. The reasons for this
are as indicated previously: While I occasionally see
problems with n < p, more frequently n is several
times p, while p itself is too large for a full commit-
ment to iterative model development guided by diag-
nostics. This, in addition to the reasons stated in Sec-
tion 2 of the article, leads me to conclude that the
case for dimension reduction methodology has been
made, methodology based on firm parametric founda-
tions with subsequent robust and nonparametric coun-
terparts. Whether the ideas and methodological direc-
tions I proposed will meet this goal is less clear, but I
am still convinced that they hold promise when X and
Y are jointly distributed.

In contrast to a comment by Christensen, I think
parametric dimension reduction is currently as impor-
tant, if not more important, than other forms, partly
because dimension reduction methodology has ex-
isted mostly in a world apart from core Fisherian
theory, making it difficult to appreciate what could
be achieved. For this reason I welcome Christensen’s
development of connections with multivariate linear
model theory.

2. APPLICABILITY

According to Christensen, a key issue in the devel-
opment of models (2), (5), (10) and (13) is whether
they are “broadly reasonable.” I agree. Moreover, the
emerging picture does seem to be one of broad rea-
sonableness for the reasons indicated in the following
sections.
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2.1 First Applications

As mentioned in Section 6.5 of the article, I have
used the reductive model (13) on several standard data
sets from the literature and nearly always have found
d < p, and often substantially so. Additionally, I re-
cently applied model (13) to a consulting problem with
about 35 predictors and a little less than 300 observa-
tions. Again d � p with an apparently good fit.

The logo data analyzed by Li and Nachtsheim offer
another opportunity to test the proposed methodology.
To complement their analysis I first used Grassmann
optimization to fit the reductive model (13) with d = 1
and the cubic option for fy , without predictor screen-
ing. The log likelihood ratio statistic (cf. Section 6.5)
for comparing this fit to the full model has the value
�1 = 94.02 on r(p − 1) = 63 degrees of freedom, for
a nominal p-value of 0.007. The same process with
other values of d gave �2 = 66.76, �3 = 65.1 and
�21 = 0.076 with corresponding p-values 0.26, 0.21
and 0.99. Consequently, I inferred that the sufficient
reduction �T X is two-dimensional. This analysis pro-
vides another instance in support of the possibility that
the proposed models are broadly reasonable. Grass-
mann optimization is preferable to evaluating the log
likelihood at various combinations of the eigenvectors
of �̂ or �̂fit, although the latter can sometimes provide
a useful approximation.

There are several ways in which an estimated suf-
ficient reduction �̂T X could be used to continue an
analysis, depending on application-specific require-
ments. As long as d is sufficiently small, as it is in
the logo data, the standard model-diagnostic paradigm
might be used to develop a forward model for the re-
gression of Y on �̂T X. In cases where a full forward
model is not essential, we could proceed directly to es-
timation of the forward mean function based on the re-
lation

E(Y |X = x) = E{YN(x|Y)}
E{N(x|Y)} ,

where N is the normal density of X|Y and the expecta-
tions are with respect to the marginal distribution of Y .
This can be estimated using

Ê(Y |X = x) =
∑n

i=1 yiN̂(x|yi)∑n
i=1 N̂(x|yi)

,

where N̂ denotes the estimated density obtained by
substituting parameter estimates. The estimated mean
function allows construction of residuals yi − Ê(Y |X =
xi ) that can be plotted to check the forward mean func-
tion implied by the inverse model. Here the residuals

are used as a final diagnostic check, and not necessar-
ily as an integral part of a model building process.

2.2 Supervised Principal Components

Li and Nachtsheim developed a fascinating connec-
tion between the reductive model (13) and the super-
vised principal component (SPC) setting of Bair et al.
(2006). The latent variable model used by Bair et al.
(2006, Section 2.2) and described by Li and Nacht-
sheim leads to the PFC model (5) or the reductive
model (13), depending on the restrictions placed on the
covariance matrix of the errors (ε, ε1, . . . , εp). How-
ever, Bair et al. did not pose or use (5) or (13) as their
basis for estimation, but instead used principal compo-
nents. Thus, the method of SPC’s is more in line with
the PC model (2). Conformably partition

X =
(

X1
X2

)
and � =

(
�1
�2

)
,

and assume that �2 = 0. Then under the PC model (2),
the sufficient reduction is just �T

1 X1 and the maximum
likelihood estimator of span(�1) is the span of the
first d eigenvectors of the sample version of Var(X1).
This leads to exactly the analysis suggested by Bair
et al.: Use initial screening to identify X2 and then
compute the first (or first few) principal components
for X1. I expect that PFC reductions based on model (5)
or sufficient reductions based on model (13) can do
much better than SPC’s, particularly if prior screening
is based on an information criterion like AIC or BIC
applied in the context of the inverse model.

This expectation is supported by the logo data, since
there is only a very weak relationship between the first
two principal components and the estimated sufficient
reduction based on model (13). For instance, the value
of R2 from the linear regression of the first princi-
pal component on �̂T X is only 0.11. The upper left
plot in Li and Nachtsheim’s Figure 1 was computed
using the first principal standardized component, the
first principal component computed after standardiz-
ing each predictor to have a marginal sample standard
deviation of 1 (personal communication). The value
of R2 from the linear regression of the first principal
standardized component on �̂T X is 0.60. In this ex-
ample the first principal standardized component out-
performed the first principal component, although this
need not always be so (cf. Section 7.3). The general
points in my discussion of predictor standardization
were captured nicely by Christensen’s summary: Stan-
dardization is necessary, unless the regression can be
described reasonably by the PC model (2) or the PFC
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model (5), but the common practice of marginal pre-
dictor scaling is not sufficient, and may even be coun-
terproductive.

On balance, SPC’s are based on relatively weak su-
pervision, since the response is used only in the screen-
ing phase. Models (5) and (13) allow more complete
supervision, whether used with prior screening or not.

2.3 Variance Reduction versus Bias

Consider a regression in which model (13) holds
with d = p, which is equivalent to model (17), and
that no version of model (13) holds strictly with d < p.
In that case, fitting (13) with d < p will result in bias
along with a reduction in variance. It is conjectured that
often the reduction in variance will outweigh the in-
crease in bias, resulting in a reduction in mean squared
error. In other words, there may be reason to pursue
models like (13) with d < p even when they are “in-
correct.”

2.4 Partial Least Squares

Like Christensen, I have had misgivings about par-
tial least squares and found its apparent popularity in
some areas, particularly chemometrics, to be a bit curi-
ous. However, the developments in the article are caus-
ing me to reconsider. In Section 7.4 of the article I
developed a connection between OLS and the inverse
model (17). Here I establish a connection with partial
least squares via the population relationship between
OLS and model (13) with d < p.

For notational convenience, let M = �2 + β ·
Var(fY )βT and C = Cov(X, Y ). Suppose that we
wish to estimate the population OLS coefficient vec-
tor B = �−1 Cov(X, Y ). From Proposition 4, � =
�0�

2
0�

T
0 + �M�T , and thus M−1 = (�T ��)−1 and

�−1 = �0(�
2
0)

−1�T
0 + �M−1�T . Now,

B = �−1�β Cov(fY ,Y )

= �(�T ��)−1β Cov(fY ,Y )

= P�(�)B

= �(�T ��)−1 Cov(X, Y ).

This says that B ∈ S� and that we can construct a mar-
ginal estimator of B by projecting the usual moment
estimate B̂ onto Ŝ� relative to the �̂ inner product.

The population version of the partial least squares
coefficients follows this same pattern Bpls = PK(�)B
(Helland, 1992; Helland and Almøy, 1994; Naik and
Tsai, 2000), except that S� is replaced by the cyclic
subspace SK spanned by K = (C,�C,�2C, . . . ,

�q−1C) for some integer q that is often chosen by
cross-validation in practice. Assume that C can be writ-
ten as a linear combination of at most q eigenvectors
of �. Then B ∈ SK (Naik and Tsai, 2000) and conse-
quently the marginal estimator of B from model (13)
and the PLS estimator have the same basic form, but
differ on the method of estimating an upper bound—
SK or S�—for span(B). Partial least squares estimates
can be computed without inversion of �̂, which seems
to be one of their attractions. In short, the proposed
methods inherit support from the apparent reasonable-
ness of partial least squares in some contexts.

Principal components, principal fitted components,
partial least squares and reductive methods based on
the inverse model (13) all attempt to make use of infor-
mation from the marginal distribution of X when infer-
ring about Y |X. This distinguishes them from methods
like OLS, SIR, RMAVE and the lasso that apparently
do not consider such information. The simulation re-
sults in the article show that substantial gains over for-
ward methods are possible when X contains informa-
tion on Y |X via �. It seems fair to conclude that the
models considered in the article will be broadly rea-
sonable at least within the class of regressions where X
is informative about Y |X.

3. NONCONSTANT VAR(X|Y)

The development throughout the article was based
on the assumption that Var(X|Y) is constant. If
Var(X|Y) is not constant, then the reductions described
here may no longer be sufficient, although they will
still be functions of sufficient reductions. Li and Nacht-
sheim describe an extreme case of this where the for-
ward mean function E(Y |X) is quadratic in one of
the predictors without a linear trend. For example,
when E(Y |X) = X2

1 and X1 is symmetrically distrib-
uted about 0, E(X1|Y) = 0 while Var(X1|Y) will be
nonconstant. The potential for this kind of setting can
be detected by using a numerical diagnostic for het-
eroscedasticity in the context of fitting a simple linear
model to Xj |Y , j = 1, . . . , p.

B. Li has taken an interesting first step in the study
of models that allow for nonconstant Var(X|Y). His
Theorem 2.2 shows that we can construct sufficient re-
ductions for both the conditional mean and the con-
ditional variance, and thus cover settings like that de-
scribed by L. Li and Nachtsheim. In the context of his
model (5), the methods of this article should be use-
ful for estimating span(�1), but they will not be able
to identify the part of span(�2) that is not contained
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in span(�1). However, even if span(�1) = span(�2),
there should be efficiency gains by considering mod-
els like B. Li’s (5). These gains are nicely illustrated
by Li’s examples. Additionally, analyses based on het-
eroscedastic inverse models will likely encounter infer-
ence issues not considered in the article. For instance,
it may be of interest to test if span(�2) ⊆ span(�1) or
vice versa.

4. PRINCIPAL COMPONENTS

B. Li presented an intriguing explanation for why
the response tends to have a higher correlation with
the first principal component than any other compo-
nent, but concluding that dimension reduction via X|Y
should offer substantial gains. I expect that his Conjec-
ture 1.1 is correct and that it offers a partial explanation
for the popularity of reduction to a few leading prin-
cipal components. We may be able to gain additional
insights into the situation reasoning as follows, using
Li’s notation and model. Recall that X is N(0,�),
Y = βT X + ε and X ⊥⊥ ε.

Hold fixed β with ‖β‖ = 1 and � with eigenval-
ues λ1 > · · · > λp > 0, and assume that the errors ε

are normally distributed with mean 0 and variance σ 2
ε .

Then the squared correlation coefficient between Y and
the first principal component vT

1 X can be expressed as

ρ2
1 = (βT v1)

2λ1

σ 2
ε + ∑p

j=1(β
T vj )2λj

.

If the eigenvalues λj are roughly the same, then the
magnitude of ρ1 is controlled by σ 2

ε and the angles be-
tween β and the eigenvectors vj . However, if βT v1 �= 0
and λ1 is sufficiently larger than both λ2 and σ 2

ε , then
ρ2

1 will be close to 1. This might be taken to suggest
that reduction to the first principal component is desir-
able, particularly when λ1 � λ2.

However, Y |vT
1 X is normally distributed with mean

E(Y |vT
1 X) = βT v1v

T
1 X and variance

Var(Y |vT
1 X) = σ 2

ε +
p∑

j=2

(βT vj )
2λj .

This distribution does not depend on the value of λ1.
Provided β �= v1, Var(Y |vT

1 X) > Var(Y |βT X), reflect-
ing the fact that vT

1 X is not a sufficient reduction and

consequently that conditioning on vT
1 X does not ex-

haust the information that X contains about Y , regard-
less of the magnitude of ρ1.

5. BINARY PREDICTORS

The main thrust of my article is on normal inverse
models, but I also suggested how the ideas could be ap-
plied with conditional predictors X|Y from other fami-
lies. I was particularly pleased to see that Li and Nacht-
sheim implemented an algorithm for regressions with
all binary predictors, but was simultaneously a bit dis-
appointed to see that it did not work out as crisply
as expected. Their suggestion of a majorization strat-
egy to resolve the optimization issues is excellent and
will likely produce a stable and practically useful al-
gorithm. Majorization may not be essential for sim-
ilar algorithms developed for principal fitted compo-
nents (νy = βfy), although it might still improve per-
formance.
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