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A Review of Accelerated Test Models
Luis A. Escobar and William Q. Meeker

Abstract. Engineers in the manufacturing industries have used accelerated
test (AT) experiments for many decades. The purpose of AT experiments is to
acquire reliability information quickly. Test units of a material, component,
subsystem or entire systems are subjected to higher-than-usual levels of one
or more accelerating variables such as temperature or stress. Then the AT re-
sults are used to predict life of the units at use conditions. The extrapolation
is typically justified (correctly or incorrectly) on the basis of physically mo-
tivated models or a combination of empirical model fitting with a sufficient
amount of previous experience in testing similar units. The need to extrapo-
late in both time and the accelerating variables generally necessitates the use
of fully parametric models. Statisticians have made important contributions
in the development of appropriate stochastic models for AT data [typically a
distribution for the response and regression relationships between the para-
meters of this distribution and the accelerating variable(s)], statistical meth-
ods for AT planning (choice of accelerating variable levels and allocation of
available test units to those levels) and methods of estimation of suitable re-
liability metrics. This paper provides a review of many of the AT models that
have been used successfully in this area.

Key words and phrases: Reliability, regression model, lifetime data, degra-
dation data, extrapolation, acceleration factor, Arrhenius relationship, Eyring
relationship, inverse power relationship, voltage-stress acceleration, pho-
todegradation.

1. INTRODUCTION

1.1 Motivation

Today’s manufacturers face strong pressure to de-
velop new, higher-technology products in record time,
while improving productivity, product field reliability
and overall quality. This has motivated the develop-
ment of methods like concurrent engineering and en-
couraged wider use of designed experiments for prod-
uct and process improvement. The requirements for
higher reliability have increased the need for more up-
front testing of materials, components and systems.
This is in line with the modern quality philosophy for
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producing high-reliability products: achieve high re-
liability by improving the design and manufacturing
processes; move away from reliance on inspection (or
screening) to achieve high reliability, as described in
Meeker and Hamada (1995) and Meeker and Escobar
(2004).

Estimating the failure-time distribution or long-term
performance of components of high-reliability prod-
ucts is particularly difficult. Most modern products are
designed to operate without failure for years, decades
or longer. Thus few units will fail or degrade appre-
ciably in a test of practical length at normal use con-
ditions. For example, the design and construction of a
communications satellite may allow only eight months
to test components that are expected to be in service
for 10 or 15 years. For such applications, Accelerated
Tests (ATs) are used in manufacturing industries to as-
sess or demonstrate component and subsystem relia-
bility, to certify components, to detect failure modes
so that they can be corrected, to compare different
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manufacturers, and so forth. ATs have become increas-
ingly important because of rapidly changing technolo-
gies, more complicated products with more compo-
nents, higher customer expectations for better reliabil-
ity and the need for rapid product development. There
are difficult practical and statistical issues involved in
accelerating the life of a complicated product that can
fail in different ways. Generally, information from tests
at high levels of one or more accelerating variables
(e.g., use rate, temperature, voltage or pressure) is ex-
trapolated, through a physically reasonable statistical
model, to obtain estimates of life or long-term perfor-
mance at lower, normal levels of the accelerating vari-
able(s).

Statisticians in manufacturing industries are often
asked to become involved in planning or analyzing
data from accelerated tests. At first glance, the statis-
tics of accelerated testing appears to involve little more
than regression analysis, perhaps with a few compli-
cating factors, such as censored data. The very nature
of ATs, however, always requires extrapolation in the
accelerating variable(s) and often requires extrapola-
tion in time. This implies critical importance of model
choice. Relying on the common statistical practice of
fitting curves to data can result in an inadequate model
or even nonsense results. Statisticians working on AT
programs need to be aware of general principles of AT
modeling and current best practices.

The purpose of this review paper is to outline some
of the basic ideas behind accelerated testing and espe-
cially to review currently used AT modeling practice
and to describe the most commonly used AT models.
In our concluding remarks we make explicit sugges-
tions about the potential contributions that statisticians
should be making to the development of AT models
and methods. We illustrate the use of the different mod-
els with a series of examples from the literature and our
own experiences.

1.2 Quantitative versus Qualitative
Accelerated Tests

Within the reliability discipline, the term “acceler-
ated test” is used to describe two completely different
kinds of useful, important tests that have completely
different purposes. To distinguish between these, the
terms “quantitative accelerated tests” (QuanAT) and
“qualitative accelerated tests” (QualAT) are sometimes
used.

A QuanAT tests units at combinations of higher-
than-usual levels of certain accelerating variables. The
purpose of a QuanAT is to obtain information about

the failure-time distribution or degradation distribution
at specified “use” levels of these variables. Generally
failure modes of interest are known ahead of time, and
there is some knowledge available that describes the
relationship between the failure mechanism and the ac-
celerating variables (either based on physical/chemical
theory or large amounts of previous experience with
similar tests) that can be used to identify a model that
can be used to justify the extrapolation. In this paper,
we describe models for QuanATs.

A QualAT tests units at higher-than-usual combi-
nations of variables like temperature cycling and vi-
bration. Specific names of such tests include HALT
(for highly accelerated life tests), STRIFE (stress-life)
and EST (environmental stress testing). The purpose of
such tests is to identify product weaknesses caused by
flaws in the product’s design or manufacturing process.
Nelson (1990, pages 37–39) describes such tests as
“elephant tests” and outlines some important issues re-
lated to QualATs.

When there is a failure in a QualAT it is necessary
to find and carefully study the failure’s root cause and
assess whether the failure mode could occur in actual
use or not. Knowledge and physical/chemical model-
ing of the particular failure mode is useful for helping
to make this assessment. When it is determined that
a failure could occur in actual use, it is necessary to
change the product design or manufacturing process to
eliminate that cause of failure. Nelson (1990, page 38)
describes an example where a costly effort was made to
remove a high-stress-induced failure mode that never
would have occurred in actual use.

Because the results of a QualAT are used to make
changes on the product design or manufacturing pro-
cess, it is difficult, or at the very least, very risky to
use the test data to predict what will happen in normal
use. Thus QualATs are generally thought of as being
nonstatistical.

1.3 Overview

The rest of this paper is organized as follows. Sec-
tion 2 describes the basic physical and practical ideas
behind the use of ATs and the characteristics of various
kinds of AT data. Section 3 describes the concept of
a time-transformation model as an accelerated failure-
time model, describes some commonly used special
cases and also presents several nonstandard special
cases that are important in practice. Section 4 describes
acceleration models that are used when product use
rate is increased to get information quickly. Sections
5 and 6 explain and illustrate the use of temperature
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and humidity, respectively, to accelerate failure mech-
anisms. Section 7 describes some of the special char-
acteristics of ATs for photodegradation. Section 8 ex-
plains and illustrates the use of increased voltage (or
voltage stress) in ATs with the commonly used inverse
power relationship. This section also describes how
a more general relationship, based on the Box–Cox
transformation, can be used in sensitivity analyses that
help engineers to make decisions. Section 9 describes
examples in which combinations of two or more ac-
celerating variables are used in an AT. Section 10 dis-
cusses some practical concerns and general guidelines
for conducting and interpreting ATs. Section 11 de-
scribes areas of future research in the development of
accelerated test models and the role that statisticians
will have in these developments.

2. BASIC IDEAS OF ACCELERATED TESTING

2.1 Different Types of Acceleration

The term “acceleration” has many different mean-
ings within the field of reliability, but the term gener-
ally implies making “time” (on whatever scale is used
to measure device or component life) go more quickly,
so that reliability information can be obtained more
rapidly.

2.2 Methods of Acceleration

There are different methods of accelerating a relia-
bility test:

Increase the use rate of the product. This method is
appropriate for products that are ordinarily not in con-
tinuous use. For example, the median life of a bear-
ing for a certain washing machine agitator is 12 years,
based on an assumed use rate of 8 loads per week. If
the machine is tested at 112 loads per week (16 per
day), the median life is reduced to roughly 10 months,
under the assumption that the increased use rate does
not change the cycles to failure distribution. Also, be-
cause it is not necessary to have all units fail in a life
test, useful reliability information could be obtained in
a matter of weeks instead of months.

Increase the intensity of the exposure to radiation.
Various types of radiation can lead to material degrada-
tion and product failure. For example, organic materi-
als (ranging from human skin to materials like epoxies
and polyvinyl chloride or PVC) will degrade when ex-
posed to ultraviolet (UV) radiation. Electrical insula-
tion exposed to gamma rays in nuclear power plants
will degrade more rapidly than similar insulation in

similar environments without the radiation. Modeling
and acceleration of degradation processes by increas-
ing radiation intensity is commonly done in a manner
that is similar to acceleration by increasing use rate.

Increase the aging rate of the product. Increasing
the level of experimental variables like temperature or
humidity can accelerate the chemical processes of cer-
tain failure mechanisms such as chemical degradation
(resulting in eventual weakening and failure) of an ad-
hesive mechanical bond or the growth of a conducting
filament across an insulator (eventually causing a short
circuit).

Increase the level of stress (e.g., amplitude in tem-
perature cycling, voltage, or pressure) under which test
units operate. A unit will fail when its strength drops
below applied stress. Thus a unit at a high stress will
generally fail more rapidly than it would have failed at
low stress.

Combinations of these methods of acceleration are
also employed. Variables like voltage and tempera-
ture cycling can both increase the rate of an electro-
chemical reaction (thus accelerating the aging rate) and
increase stress relative to strength. In such situations,
when the effect of an accelerating variable is compli-
cated, there may not be enough physical knowledge to
provide an adequate physical model for acceleration
(and extrapolation). Empirical models may or may not
be useful for extrapolation to use conditions.

2.3 Types of Responses

It is useful to distinguish among ATs on the basis of
the nature of the response.

Accelerated Binary Tests (ABTs). The response in
an ABT is binary. That is, whether the product has
failed or not is the only reliability information obtained
from each unit. See Meeker and Hahn (1977) for an ex-
ample and references.

Accelerated Life Tests (ALTs). The response in an
ALT is directly related to the lifetime of the prod-
uct. Typically, ALT data are right-censored because the
test is stopped before all units fail. In other cases, the
ALT response is interval-censored because failures are
discovered at particular inspection times. See Chap-
ters 2–10 of Nelson (1990) for a comprehensive treat-
ment of ALTs.

Accelerated Repeated Measures Degradation Tests
(ARMDTs). In an ARMDT, one measures degradation
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on a sample of units at different points in time. In gen-
eral, each unit provides several degradation measure-
ments. The degradation response could be actual chem-
ical or physical degradation or performance degrada-
tion (e.g., drop in power output). See Meeker and
Escobar (1998, Chapters 13 and 21) for examples of
ARMDT modeling and analysis.

Accelerated Destructive Degradation Tests
(ADDTs). An ADDT is similar to an ARMDT, except
that the measurements are destructive, so one can ob-
tain only one observation per test unit. See Escobar,
Meeker, Kugler and Kramer (2003) for a discussion of
ADDT methodology and a detailed case study.

These different kinds of ATs can be closely related
because they can involve the same underlying physi-
cal/chemical mechanisms for failure and models for ac-
celeration. They are different, however, in that different
kinds of statistical models and analyses are performed
because of the differences in the kind of response that
can be observed.

Many of the underlying physical model assump-
tions, concepts and practices are the same for ABTs,
ALTs, ARMDTs and ADDTs. There are close rela-
tionships among models for ABT, ALT, ARMD and
ADD data. Because of the different types of responses,
however, the actual models fitted to the data and meth-
ods of analysis differ. In some cases, analysts use
degradation-level data to define failure times. For ex-
ample, turning ARMDT data into ALT data generally
simplifies analysis but may sacrifice useful informa-
tion. An important characteristic of all ATs is the need
to extrapolate outside the range of available data: tests
are done at accelerated conditions, but estimates are
needed at use conditions. Such extrapolation requires
strong model assumptions.

3. STATISTICAL MODELS FOR ACCELERATION

This section discusses acceleration models and some
physical considerations that lead to these models. For
further information on these models, see Nelson (1990,
Chapter 2) and Meeker and Escobar (1998, Chap-
ter 18). Other useful references include Smith (1996),
Section 7 of Tobias and Trindade (1995), Sections
2 and 9 of Jensen (1995) and Klinger, Nakada and
Menendez (1990).

Interpretation of accelerated test data requires mod-
els that relate accelerating variables like temperature,
voltage, pressure, size, etc. to time acceleration. For
testing over some range of accelerating variables, one
can fit a model to the data to describe the effect that the

variables have on the failure-causing processes. The
general idea is to test at high levels of the accelerat-
ing variable(s) to speed up failure processes and ex-
trapolate to lower levels of the accelerating variable(s).
For some situations, a physically reasonable statistical
model may allow such extrapolation.

Physical acceleration models. For well-understood
failure mechanisms, one may have a model based on
physical/chemical theory that describes the failure-
causing process over the range of the data and pro-
vides extrapolation to use conditions. The relationship
between accelerating variables and the actual failure
mechanism is usually extremely complicated. Often,
however, one has a simple model that adequately de-
scribes the process. For example, failure may result
from a complicated chemical process with many steps,
but there may be one rate-limiting (or dominant) step
and a good understanding of this part of the process
may provide a model that is adequate for extrapolation.

Empirical acceleration models. When there is little
understanding of the chemical or physical processes
leading to failure, it may be impossible to develop a
model based on physical/chemical theory. An empir-
ical model may be the only alternative. An empiri-
cal model may provide an excellent fit to the avail-
able data, but provide nonsense extrapolations (e.g., the
quadratic models used in Meeker and Escobar, 1998,
Section 17.5). In some situations there may be exten-
sive empirical experience with particular combinations
of variables and failure mechanisms and this experi-
ence may provide the needed justification for extrapo-
lation to use conditions.

In the rest of this section we will describe the general
time-transformation model and some special accelera-
tion models that have been useful in specific applica-
tions.

3.1 General Time-Transformation Functions

A time-transformation model maps time at one level
of x, say xU, to time at another level of x. This can be
expressed as T (x) = ϒ[T (xU),x], where xU denotes
use conditions. To be a time transformation, the func-
tion ϒ(t,x) must have the following properties:

• For any x, ϒ(0,x) = 0, as in Figure 1.
• ϒ(t,x) is nonnegative, that is, ϒ(t,x) ≥ 0 for all

t and x.
• For fixed x, ϒ(t,x) is monotone increasing in t .
• When evaluated at xU , the transformation is the

identity transformation [i.e., ϒ(t,xU) = t for all t].
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FIG. 1. General failure-time transformation with xu < x.

A quantile of the distribution of T (x) can be deter-
mined as a function of x and the corresponding quan-
tile of the distribution of T (xU). In particular, tp(x) =
ϒ[tp(xU),x] for 0 ≤ p ≤ 1. As shown in Figure 1,
a plot of T (xU) versus T (x) can imply a particular
class of transformation functions. In particular,

• T (x) entirely below the diagonal line implies accel-
eration.

• T (x) entirely above the diagonal line implies decel-
eration.

• T (x) can cross the diagonal, in which case the trans-
formation is accelerating over some times and de-
celerating over other times. In this case the c.d.f.’s
of T (x) and T (xU) cross. See Martin (1982) and
LuValle, Welsher and Svoboda (1988) for further
discussion of time-transformation models.

3.2 Scale-Accelerated Failure-Time
Models (SAFTs)

A simple, commonly used model used to char-
acterize the effect that explanatory variables x =
(x1, . . . , xk)

′ have on lifetime T is the scale-accelerated
failure-time (SAFT) model. The model is ubiquitous
in the statistical literature where it is generally re-
ferred to as the “accelerated failure-time model.” It
is, however, a very special kind of accelerated failure-
time model. Some of the explanatory variables in x
are used for acceleration, but others may be of interest

for other reasons (e.g., for product design optimiza-
tion decisions). Under a SAFT model, lifetime at x,
T (x), is scaled by a deterministic factor that might
depend on x and unknown fixed parameters. More
specifically, a model for the random variable T (x) is
SAFT if T (x) = T (xU)/AF (x), where the accelera-
tion factor AF (x) is a positive function of x satisfy-
ing AF (xU) = 1. Lifetime is accelerated (decelerated)
when AF (x) > 1 [AF (x) < 1]. In terms of distribu-
tion quantiles,

tp(x) = tp(xU)

AF (x)
.(1)

Some special cases of these important SAFT models
are discussed in the following sections.

Observe that under a SAFT model, the probabil-
ity that failure at conditions x occurs at or before
time t can be written as Pr[T (x) ≤ t] = Pr[T (xU) ≤
AF (x) × t]. It is common practice (but certainly not
necessary) to assume that lifetime T (x) has a log-
location-scale distribution, with parameters (µ,σ ),

such as a lognormal distribution in which µ is a func-
tion of the accelerating variable(s) and σ is constant
(i.e., does not depend on x). In this case,

F(t;xU) = Pr[T (xU) ≤ t] = �

[
log(t) − µU

σ

]
,

where � denotes a standard cumulative distribution
function (e.g., standard normal) and µU is the location
parameter for the distribution of log[T (xU)]. Thus,

F(t;x) = Pr[T (x) ≤ t]
= �

(
log(t) − {µU − log[AF (x)]}

σ

)
.

Note that T (x) also has a log-location-scale distribu-
tion with location parameter µ = µU − log[AF (x)]
and a scale parameter σ that does not depend on x.

3.3 The Proportional Hazard Regression Model

For a continuous cdf F(t;xU) and �(x) > 0 define
the time transformation

T (x) = F−1(
1 − {1 − F [T (xU);xU ]}1/�(x);xU

)
.

It can be shown that T (x) and T (xU) have the propor-
tional hazard (PH) relationship

h(t;x) = �(x)h(t;xU).(2)

This time-transformation function is illustrated in Fig-
ure 1. In this example, the amount of acceleration (or
deceleration), T (xU)/T (x), depends on the position
in time and the model is not a SAFT. If F(t;xU)
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has a Weibull distribution with scale parameter ηU

and shape parameter βU , then T (x) = T (xU)/AF (x),
where AF (x) = [�(x)]1/βU . This implies that this
particular PH regression model is also a SAFT regres-
sion model. It can be shown that the Weibull distribu-
tion is the only distribution in which both (1) and (2)
hold. Lawless (1986) illustrates this result nicely.

3.4 Another Non-SAFT Example: The Nonconstant
σ Regression Model

This section describes acceleration models with non-
constant σ. In some lifetime applications, it is useful
to consider log-location-scale models in which both
µ and σ depend on explanatory variables. The log-
quantile function for this model is

log[tp(x)] = µ(x) + �−1(p)σ (x).

Thus
tp(xU)

tp(x)
= exp

{
µ

(
xU − µ(x)

)
+ �−1(p)[σ(xU) − σ(x)]}.

Because tp(xU)/tp(x) depends on p, this model is not
a SAFT model.

EXAMPLE 1 (Weibull log-quadratic regression mo-
del with nonconstant σ for the superalloy fatigue data).
Meeker and Escobar (1998, Section 17.5) analyze su-
peralloy fatigue data using a Weibull model in which
µ = β

[µ]
0 + β

[µ]
1 x + β

[µ]
2 x2 and log(σ ) = β

[σ ]
0 + β

[σ ]
1 x

(see Nelson, 1984 and 1990, for a similar analysis us-
ing a lognormal distribution). Figure 2 shows the log-
quadratic Weibull regression model with nonconstant
σ fit to the superalloy fatigue data.

FIG. 2. Superalloy fatigue data with fitted log-quadratic Weibull
regression model with nonconstant σ . Censored observations are
indicated by �. The response, cycles, is shown on the x-axis.

Meeker and Escobar (1998) indicate that the evi-
dence for nonconstant σ in the data is not strong. But
having σ decrease with stress or strain is typical in fa-
tigue data and this is what the data points plotted in
Figure 2 show. Thus, it is reasonable to use a model
with decreasing σ in this case, even in the absence of
“statistical significance,” especially because assuming
a constant sigma could lead to anti-conservative esti-
mates of life at lower levels of stress.

4. USE-RATE ACCELERATION

Increasing the use rate can be an effective method
of acceleration for some products. Use-rate accelera-
tion may be appropriate for products such as electri-
cal motors, relays and switches, paper copiers, print-
ers, and home appliances such as toasters and washing
machines. Also it is common practice to increase the
cycling rate (or frequency) in fatigue testing. The man-
ner in which the use rate is increased may depend on
the product.

4.1 Simple Use-Rate Acceleration Models

There is a basic assumption underlying simple use-
rate acceleration models. Useful life must be ade-
quately modeled with cycles of operation as the time
scale and cycling rate (or frequency) should not af-
fect the cycles-to-failure distribution. This is reason-
able if cycling simulates actual use and if the cycling
frequency is low enough that test units return to steady
state after each cycle (e.g., cool down).

In such simple situations, where the cycles-to-failure
distribution does not depend on the cycling rate, we
say that reciprocity holds. This implies that the un-
derlying model for lifetime versus use rate is SAFT
where AF (UseRate) = UseRate/UseRateU is the fac-
tor by which the test is accelerated. For example,
Nelson (1990, page 16) states that failure of rolling
bearings can be accelerated by running them at three
or more times the normal speed. Johnston et al. (1979)
demonstrated that the cycles-to-failure of electrical
insulation was shortened, approximately, by a factor
of AF (412) = 412/60 ≈ 6.87 when the applied AC
voltage in endurance tests was increased from 60 Hz
to 412 Hz.

ALTs with increased use rate attempt to simulate ac-
tual use. Thus other environmental factors should be
controlled to mimic actual use environments. If the cy-
cling rate is too high, it can cause reciprocity break-
down. For example, it is necessary to have test units
(such as a toaster) “cool down” between cycles of op-
eration. Otherwise, heat buildup can cause the cycles-
to-failure distribution to depend on the cycling rate.
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4.2 Cycles to Failure Depends on Use Rate

Testing at higher frequencies could shorten test times
but could also affect the cycles-to-failure distribution
due to specimen heating or other effects. In some
complicated situations, wear rate or degradation rate
depends on cycling frequency. Also, a product may
deteriorate in stand-by as well as during actual use.
Reciprocity breakdown is known to occur, for exam-
ple, for certain components in copying machines where
components tend to last longer (in terms of cycles)
when printing is done at higher rates. Dowling (1993,
page 706) describes how increased cycle rate may af-
fect the crack growth rate in per cycle fatigue testing.
In such cases, the empirical power-rule relationship
AF (UseRate) = (UseRate/UseRateU)p is often used,
where p can be estimated by testing at two or more use
rates.

EXAMPLE 2 (Increased cycling rate for low-cycle
fatigue tests). Fatigue life is typically measured in
cycles to failure. To estimate low-cycle fatigue life of
metal specimens, testing is done using cycling rates
typically ranging between 10 Hz and 50 Hz (where
1 Hz is one stress cycle per second), depending on
material type and available test equipment. At 50 Hz,
accumulation of 106 cycles would require about five
hours of testing. Accumulation of 107 cycles would re-
quire about two days and accumulation of 108 cycles
would require about 20 days. Higher frequencies are
used in the study of high-cycle fatigue.

Some fatigue tests are conducted to estimate crack
growth rates, often as a function of explanatory vari-
ables like stress and temperature. Such tests generally
use rectangular compact tension test specimens con-
taining a long slot cut normal to the centerline with a
chevron machined into the end of the notch. Because
the location of the chevron is a point of highest stress,
a crack will initiate and grow from there. Other fatigue
tests measure cycles to failure. Such tests use cylindri-
cal dog-bone-shaped specimens. Again, cracks tend to
initiate in the narrow part of the dog bone, although
sometimes a notch is cut into the specimen to initiate
the crack.

Cycling rates in fatigue tests are generally increased
to a point where the desired response can still be mea-
sured without distortion. For both kinds of fatigue tests,
the results are used as inputs to engineering models that
predict the life of actual system components. The de-
tails of such models that are actually used in practice
are usually proprietary, but are typified, for example,

by Miner’s rule (e.g., page 494 of Nelson, 1990) which
uses results of tests in which specimens are tested at
constant stress to predict life in which system compo-
nents are exposed to varying stresses. Example 15.3 in
Meeker and Escobar (1998) describes, generally, how
results of fatigue tests on specimens are used to predict
the reliability of a jet engine turbine disk.

There is a danger, however, that increased tempera-
ture due to increased cycling rate will affect the cycles-
to-failure distribution. This is especially true if there
are effects like creep-fatigue interaction (see Dowling,
1993, page 706, for further discussion). In another ex-
ample, there was concern that changes in cycling rate
would affect the distribution of lubricant on a rolling
bearing surface. In particular, if T is life in cycles and
T has a log-location-scale distribution with parameters
(µ,σ ), then µ = β0 + β1 log(cycles/unit time) where
β0 and β1 can be estimated from data at two or more
values of cycles/unit time.

5. USING TEMPERATURE TO ACCELERATE
FAILURE MECHANISMS

It is sometimes said that high temperature is the en-
emy of reliability. Increasing temperature is one of the
most commonly used methods to accelerate a failure
mechanism.

5.1 Arrhenius Relationship for Reaction Rates

The Arrhenius relationship is a widely used model
to describe the effect that temperature has on the rate
of a simple chemical reaction. This relationship can be
written as

R(temp) = γ0 exp
( −Ea

k × tempK

)
(3)

where R is the reaction rate, and tempK =
temp °C + 273.15 is thermodynamic temperature in
kelvin (K), k is either Boltzmann’s constant or the
universal gas constant and Ea is the activation en-
ergy. The parameters Ea and γ0 are product or ma-
terial characteristics. In applications involving elec-
tronic component reliability, Boltzmann’s constant k =
8.6171 × 10−5 = 1/11605 in units of electronvolt per
kelvin (eV/K) is commonly used and in this case,
Ea has units of electronvolt (eV).

In the case of a simple one-step chemical reaction,
Ea would represent an activation energy that quanti-
fies the minimum amount of energy needed to allow
a certain chemical reaction to occur. In most applica-
tions involving temperature acceleration of a failure
mechanism, the situation is much more complicated.
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For example, a chemical degradation process may have
multiple steps operating in series or parallel, with each
step having its own rate constant and activation energy.
Generally, the hope is that the behavior of the more
complicated process can be approximated, over the en-
tire range of temperature of interest, by the Arrhenius
relationship. This hope can be realized, for example, if
there is a single step in the degradation process that is
rate-limiting and thus, for all practical purposes, con-
trols the rate of the entire reaction. Of course this is
a strong assumption that in most practical applications
is impossible to verify completely. In most accelerated
test applications, it would be more appropriate to refer
to Ea in (3) as a quasi-activation energy.

5.2 Arrhenius Relationship
Time-Acceleration Factor

The Arrhenius acceleration factor is

AF (temp,tempU,Ea)

= R(temp)

R(tempU)
(4)

= exp
[
Ea

(
11605

tempU K
− 11605

tempK

)]
.

When temp> tempU , AF (temp,tempU,Ea) > 1.
When tempU and Ea are understood to be, respec-
tively, product use temperature and reaction-specific
quasi activation energy, AF (temp) = AF (temp,

tempU,Ea) will be used to denote a time-acceleration
factor. The following example illustrates how one can
assess approximate acceleration factors for a proposed
accelerated test.

EXAMPLE 3 (Adhesive-bonded power element).
Meeker and Hahn (1985) describe an adhesive-bonded
power element that was designed for use at temp =
50 °C. Suppose that a life test of this element is to be
conducted at temp = 120 °C. Also suppose that ex-
perience with this product suggested that Ea can vary
in the range Ea = 0.4 eV to Ea = 0.6 eV. Figure 3
gives the acceleration factors for the chemical reaction
when testing the power element at 120 °C and quasi-
activation energies of Ea = (0.4,0.5,0.6) eV. The cor-
responding approximate acceleration factors at 120 °C
are AF (120) = 12.9,24.5, and 46.4, respectively.

The Arrhenius relationship does not apply to all
temperature acceleration problems and will be ade-
quate over only a limited temperature range (depend-
ing on the particular application). Yet it is satisfac-
torily and widely used in many applications. Nelson

FIG. 3. Time-acceleration factors as a function of temperature
for the adhesive-bonded example with Ea = (0.4,0.5,0.6) eV.

(1990, page 76) comments that “. . . in certain applica-
tions (e.g., motor insulation), if the Arrhenius relation-
ship . . . does not fit the data, the data are suspect rather
than the relationship.”

5.3 Eyring Relationship Time-Acceleration Factor

The Arrhenius relationship (3) was discovered by
Svante Arrhenius through empirical observation in the
late 1800s. Eyring (e.g., Gladstone, Laidler and Eyring,
1941, or Eyring, 1980) gives physical theory describ-
ing the effect that temperature has on a reaction rate.
Written in terms of a reaction rate, the Eyring relation-
ship is

R(temp) = γ0 × A(temp) × exp
( −Ea

k × tempK

)

where A(temp) is a function of temperature depend-
ing on the specifics of the reaction dynamics and γ0
and Ea are constants (Weston and Schwarz, 1972, e.g.,
provides more detail). Applications in the literature
have typically used A(temp) = (tempK)m with a
fixed value of m ranging between m = 0 (Boccaletti
et al., 1989, page 379), m = 0.5 (Klinger, 1991), to
m = 1 (Nelson, 1990, page 100, and Mann, Schafer
and Singpurwalla, 1974, page 436).

The Eyring relationship temperature acceleration
factor is

AF Ey(temp,tempU,Ea)

=
(
tempK

tempU K

)m

× AF Ar(temp,tempU,Ea)
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where AF Ar(temp,tempU,Ea) is the Arrhenius ac-
celeration factor from (4). For use over practical ranges
of temperature acceleration, and for practical values
of m not far from 0, the factor outside the exponen-
tial has relatively little effect on the acceleration factor
and the additional term is often dropped in favor of the
simpler Arrhenius relationship.

EXAMPLE 4 (Eyring acceleration factor for a metal-
lization failure mode). An accelerated life test will be
used to study a metallization failure mechanism for a
solid-state electronic device. Experience with this type
of failure mechanism suggests that the quasi-activation
energy should be in the neighborhood of Ea = 1.2 eV.

The usual operating junction temperature for the device
is 90 °C. The Eyring acceleration factor for testing at
160 °C, using m = 1, is

AF Ey(160,90,1.2)

=
(

160 + 273.15

90 + 273.15

)
× AF Ar(160,90,1.2)

= 1.1935 × 491 = 586

where AF Ar(160,90,1.2) = 491 is the Arrhenius ac-
celeration factor. We see that, for a fixed value of Ea ,
the Eyring relationship predicts, in this case, an accel-
eration that is 19% greater than the Arrhenius relation-
ship. As explained below, however, this figure exagger-
ates the practical difference between these models.

When fitting models to limited data, the estimate
of Ea depends strongly on the assumed value for m

(e.g., 0 or 1). This dependency will compensate for and
reduce the effect of changing the assumed value of m.
Only with extremely large amounts of data would it be
possible to adequately separate the effects of m and Ea

using data alone. If m can be determined accurately on
the basis of physical considerations, the Eyring rela-
tionship could lead to better low-stress extrapolations.
Numerical evidence shows that the acceleration factor
obtained from the Eyring model assuming m known,
and estimating Ea from the data, is monotone decreas-
ing as a function of m. Then the Eyring model gives
smaller acceleration factors and smaller extrapolation
to use levels of temperature when m > 0. When m < 0,
Arrhenius gives a smaller acceleration factor and a con-
servative extrapolation to use levels of temperature.

5.4 Reaction-Rate Acceleration for a Nonlinear
Degradation Path Model

Some simple chemical degradation processes (first-
order kinetics) might be described by the following

path model:

D(t;temp)
(5)

= D∞ × {1 − exp[−RU × AF (temp) × t]}
where RU is the reaction rate at use temperature
tempU , RU × AF (temp) is the rate reaction at a
general temperature temp, and for temp > tempU ,
AF (temp) > 1. Figure 4 shows this function for fixed
RU , Ea and D∞, but at different temperatures. Note
from (5) that when D∞ > 0, D(t) is increasing and
failure occurs when D(t) > Df. For the example in
Figure 4, however, D∞ < 0, D(t) is decreasing, and
failure occurs when D(t) < Df = −0.5. In either case,
equating D(T ;temp) to Df and solving for failure
time gives

T (temp) = T (tempU)

AF (temp)
(6)

where

T (tempU) = −
(

1

RU

)
log

(
1 − Df

D∞

)

is failure time at use conditions. Faster degradation
shortens time to any particular definition of failure
(e.g., crossing Df or some other specified level) by a
scale factor that depends on temperature. Thus chang-
ing temperature is similar to changing the units of
time. Consequently, the time-to-failure distributions at
tempU and temp are related by

Pr[T (tempU) ≤ t]
(7)

= Pr[T (temp) ≤ t/AF (temp)].
Equations (6) and (7) are forms of the scale-accelerated
failure-time (SAFT) model introduced in Section 3.2.

FIG. 4. Nonlinear degradation paths at different temperatures
with a SAFT relationship.
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With a SAFT model, for example, if T (tempU)

(time at use or some other baseline temperature)
has a log-location-scale distribution with parameters
µU and σ , then

Pr[T ≤ t;tempU ] = �

[
log(t) − µU

σ

]
.

At any other temperature,

Pr[T ≤ t;temp] = �

[
log(t) − µ

σ

]
where

µ = µ(x) = µU − log[AF (temp)] = β0 + β1x,

x = 11605/(tempK), xU = 11605/(tempU K), β1 =
Ea and β0 = µU − β1xU . LuValle, Welsher and Svo-
boda (1988) and Klinger (1992) describe more gen-
eral physical/chemical degradation model characteris-
tics needed to assure that the SAFT property holds.

EXAMPLE 5 (Time acceleration for Device-A).
Hooper and Amster (1990) analyze the temperature-
accelerated life test data on a particular kind of elec-
tronic device that is identified here as Device-A.
The data are given in Meeker and Escobar (1998,
page 637). The purpose of the experiment was to de-
termine if Device-A would meet its failure-rate ob-
jective through 10,000 hours and 30,000 hours at its
nominal operating ambient temperature of 10 °C. Fig-
ure 5 shows the censored life data and the Arrhenius-
lognormal ML fit of the distribution quantiles versus
temperature, describing the relationship between life
and temperature. There were 0 failure out of 30 units
tested at 10 °C, 10 out of 100 at 40 °C, 9 out of 20
at 60 °C, and 14 out of 15 at 80 °C. The censored
observations are denoted in Figure 5 by �. The life-
temperature relationship plots as a family of straight

FIG. 5. Arrhenius-lognormal model fitted to the Device-A data.
Censored observations are indicated by �.

lines because temperature is plotted on an Arrhenius
axis and life is plotted on a log axis. The densities are
normal densities because the lognormal life distribu-
tions are plotted on a log axis.

5.5 Examples where the Arrhenius Model is
not Appropriate

As described in Section 5.1, strictly speaking, the
Arrhenius relationship will describe the rate of a chem-
ical reaction only under special circumstances. It is
easy to construct examples where the Arrhenius model
does not hold. For example, if there is more than one
competing chemical reaction and those chemical reac-
tions have different activation energies, the Arrhenius
model will not describe the rate of the overall chemical
reaction.

EXAMPLE 6 (Acceleration of parallel chemical re-
actions). Consider the chemical degradation path
model having two separate reactions contributing to
failure and described by

D(t;temp)

= D1∞ × {1 − exp[−R1U × AF 1(temp) × t]}
+ D2∞

× {1 − exp[−R2U × AF 2(temp) × t]}.
Here R1U and R2U are the use-condition rates of the
two parallel reactions contributing to failure. Suppose
that the Arrhenius relationship can be used to describe
temperature dependence for these rates, providing ac-
celeration functions AF 1(temp) and AF 2(temp).
Then, unless AF 1(temp) = AF 2(temp) for all
temp, this degradation model does not lead to a SAFT
model. Intuitively, this is because temperature affects
the two degradation processes differently, inducing
a nonlinearity into the acceleration function relating
times at two different temperatures.

To obtain useful extrapolation models for degrada-
tion processes having more than one step, each with its
own rate constant, it is, in general, necessary to have
adequate models for the important individual steps.
For example, when the individual processes can be ob-
served, it may be possible to estimate the effect that
temperature (or other accelerating variables) has on
each of the rate constants.

5.6 Other Units for Activation Energy

The discussion and examples of the Arrhenius and
Eyring relationships in Sections 5.2–5.4 used units of
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electronvolt for Ea and electronvolt per kelvin for k.
These units for the Arrhenius model are used most
commonly in applications involving electronics. In
other areas of application (e.g., degradation of organic
materials such as paints and coatings, plastics, food
and pharmaceuticals), it is more common to see Boltz-
mann’s constant k in units of electronvolt replaced with
the universal gas constant in other units. For example,
the gas constant is commonly given in units of kilo-
joule per mole kelvin [i.e., R = 8.31447 kJ/(mol·K)].
In this case, Ea is activation energy in units of kilo-
joule per mole (kJ/mol). The corresponding Arrhenius
acceleration factor is

AF (temp,tempU,Ea)

= exp
[
Ea

(
120.27

tempU K
− 120.27

tempK

)]
.

The universal gas constant can also be expressed in
units of kilocalorie per mole kelvin, kcal/(mol·K) [i.e.,
R = 1.98588 kcal/(mol·K)]. In this case, Ea is in units
of kilocalorie per mole (kcal/mol). The corresponding
Arrhenius acceleration factor is

AF (temp,tempU,Ea)

= exp
[
Ea

(
503.56

tempU K
− 503.56

tempK

)]
.

It is also possible to use units of kJ/(mol·K) and
kcal/(mol·K) for the Ea coefficient in the Eyring
model.

Although k is standard notation for Boltzmann’s
constant and R is standard notation for the universal
gas constant, we use k to denote either of these in the
Arrhenius relationship.

5.7 Temperature Cycling

Some failure modes are caused by temperature cy-
cling. In particular, temperature cycling causes thermal
expansion and contraction which can induce mechani-
cal stresses. Some failure modes caused by thermal cy-
cling include:

• Power on/off cycling of electronic equipment can
damage integrated circuit encapsulement and solder
joints.

• Heat generated by take-off power-thrust in jet en-
gines can cause crack initiation and growth in fan
disks.

• Power-up/power-down cycles can cause cracks in
nuclear power plant heat exchanger tubes and tur-
bine generator components.

• Temperature cycling can lead to delamination in
inkjet printhead components.

As in fatigue testing, it is possible to accelerate ther-
mal cycling failure modes by increasing either the fre-
quency or amplitude of the cycles (increasing ampli-
tude generally increases mechanical stress). The most
commonly used model for acceleration of thermal cy-
cling is the Coffin–Manson relationship which says
that the number of cycles to failure is

N = δ

(�temp)β1

where �temp is the temperature range and δ and
β1 are properties of the material and test setup. This
power-rule relationship explains the effect that temper-
ature range has on the thermal-fatigue life cycles-to-
failure distribution. Nelson (1990, page 86) suggests
that for some metals, β1 ≈ 2 and that for plastic en-
capsulements used for integrated circuits, β1 ≈ 5. The
Coffin–Manson relationship was originally developed
as an empirical model to describe the effect of temper-
ature cycling on the failure of components in the hot
part of a jet engine. See Nelson (1990, page 86) for
further discussion and references.

Letting T be the random number of cycles to fail-
ure (e.g., T = Nε where ε is a random variable). The
acceleration factor at �temp, relative to �tempU , is

AF (�temp) = T (�tempU)

T (�temp)
=

(
�temp

�tempU

)β1

.

There may be a �temp threshold below which little
or no fatigue damage is done during thermal cycling.

Empirical evidence has shown that the effect of tem-
perature cycling can depend importantly on
tempmax K, the maximum temperature in the cycling
(e.g., if tempmax K is more than 0.2 or 0.3 times a
metal’s melting point). The cycles-to-failure distribu-
tion for temperature cycling can also depend on the
cycling rate (e.g., due to heat buildup). An empirical
extension of the Coffin–Manson relationship that de-
scribes such dependencies is

N = δ

(�temp)β1
× 1

(freq)β2
× exp

(
Ea × 11605

tempmax K

)
,

where freq is the cycling frequency and Ea is a quasi-
activation energy.

As with all acceleration models, caution must be
used when using such a model outside the range of
available data and past experience.
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6. USING HUMIDITY TO ACCELERATE
REACTION RATES

Humidity is another commonly used accelerating
variable, particularly for failure mechanisms involving
corrosion and certain kinds of chemical degradation.

EXAMPLE 7 (Accelerated life test of a printed wiring
board). Figure 6 shows data from an ALT of printed
circuit boards, illustrating the use of humidity as an ac-
celerating variable. This is a subset of the larger ex-
periment described by LuValle, Welsher and Mitchell
(1986), involving acceleration with temperature, hu-
midity and voltage. A table of the data is given in
Meeker and LuValle (1995) and in Meeker and Esco-
bar (1998). Figure 6 shows clearly that failures occur
earlier at higher levels of humidity.

Vapor density measures the amount of water vapor in
a volume of air in units of mass per unit volume. Partial
vapor pressure (sometimes simply referred to as “vapor
pressure”) is closely related and measures that part of
the total air pressure exerted by the water molecules in
the air. Partial vapor pressure is approximately propor-
tional to vapor density. The partial vapor pressure at
which molecules are evaporating and condensing from
the surface of water at the same rate is the saturation
vapor pressure. For a fixed amount of moisture in the
air, saturation vapor pressure increases with tempera-
ture.

Relative humidity is usually defined as

RH= Vapor Pressure

Saturation Vapor Pressure

and is commonly expressed as a percent. For most
failure mechanisms, physical/chemical theory suggests

FIG. 6. Scatterplot of printed circuit board accelerated life test
data. Censored observations are indicated by �. There are 48 cen-
sored observations at 4078 hours in the 49.5% RH test and 11 cen-
sored observations at 3067 hours in the 62.8% RH test.

that RH is the appropriate scale in which to relate re-
action rate to humidity especially if temperature is also
to be used as an accelerating variable (Klinger, 1991).

A variety of different humidity models (mostly em-
pirical but a few with some physical basis) have been
suggested for different kinds of failure mechanisms.
Much of this work has been motivated by concerns
about the effect of environmental humidity on plastic-
packaged electronic devices. Humidity is also an im-
portant factor in the service-life distribution of paints
and coatings. In most test applications where humidity
is used as an accelerating variable, it is used in con-
junction with temperature. For example, Peck (1986)
presents data and models relating life of semiconduc-
tor electronic components to humidity and tempera-
ture. See also Peck and Zierdt (1974) and Joyce et al.
(1985). Gillen and Mead (1980) describe a kinetic ap-
proach for modeling accelerated aging data. LuValle,
Welsher and Mitchell (1986) describe the analysis of
time-to-failure data on printed circuit boards that have
been tested at higher than usual temperature, humid-
ity and voltage. They suggest ALT models based on
the physics of failure. Chapter 2 of Nelson (1990) and
Boccaletti et al. (1989) review and compare a number
of different humidity models.

The Eyring/Arrhenius temperature-humidity accel-
eration relationship in the form of (14) uses x1 =
11605/tempK, x2 = log(RH) and x3 = x1x2 where
RH is relative humidity, expressed as a proportion. An
alternative humidity relationship suggested by Klinger
(1991), on the basis of a simple kinetic model for cor-
rosion, uses the term x2 = log[RH/(1−RH)] (a logistic
transformation) instead.

In most applications where it is used as an acceler-
ating variable, higher humidity increases degradation
rates and leads to earlier failures. In applications where
drying is the failure mechanism, however, an artificial
environment with lower humidity can be used to accel-
erate a test.

7. ACCELERATION MODEL FOR
PHOTODEGRADATION

Many organic compounds degrade chemically when
exposed to ultraviolet (UV) radiation. Such degrada-
tion is known as photodegradation. This section de-
scribes models that have been used to study pho-
todegradation and that are useful when analyzing data
from accelerated photodegradation tests. Many of the
ideas in this section originated from early research into
the effects of light on photographic emulsions (e.g.,
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James, 1977) and the effect that UV exposure has on
causing skin cancer (e.g., Blum, 1959). Important ap-
plications include prediction of service life of prod-
ucts exposed to UV radiation (outdoor weathering) and
fiber-optic systems.

7.1 Time Scale and Model for Total Effective
UV Dosage

As described in Martin et al. (1996), the appropri-
ate time scale for photodegradation is the total (i.e.,
cumulative) effective UV dosage, denoted by DTot. In-
tuitively, this total effective dosage can be thought of
as the cumulative number of photons absorbed into
the degrading material and that cause chemical change.
The total effective UV dosage at real time t can be ex-
pressed as

DTot(t) =
∫ t

0
DInst(τ ) dτ(8)

where the instantaneous effective UV dosage at real
time τ is

DInst(τ ) =
∫ λ2

λ1

DInst(τ, λ) dλ

=
∫ λ2

λ1

E0(λ, τ )(9)

× {1 − exp[−A(λ)]}φ(λ)dλ.

Here E0(λ, τ ) is the spectral irradiance (or intensity)
of the light source at time τ (both artificial and natural
light sources have potentially time-dependent mixtures
of light at different wavelengths, denoted by λ), [1 −
exp(−A(λ))] is the spectral absorbance of the material
being exposed (damage is caused only by photons that
are absorbed into the material), and φ(λ) is a quasi-
quantum efficiency of the absorbed radiation (allowing
for the fact that photons at certain wavelengths have a
higher probability of causing damage than others). The
functions E0 and A in the integrand of (9) can either
be measured directly or estimated from data and the
function φ(λ) can be estimated from data. A simple
log-linear model is commonly used to describe quasi-
quantum efficiency as a function of wavelength. That
is,

φ(λ) = exp(β0 + β1λ).

The integrals over wavelength, like that in (9), are typ-
ically taken over the UV-B band (290 nm to 320 nm),
as this is the range of wavelengths over which both
φ(λ) and E0(λ, t) are importantly different from 0.
Longer wavelengths (in the UV-A band) are not ter-
ribly harmful to organic materials [φ(λ) ≈ 0]. Shorter

wavelengths (in the UV-C band) have more energy, but
are generally filtered out by ozone in the atmosphere
[E0(λ, t) ≈ 0].

7.2 Additivity

Implicit in the model (9) is the assumption of addi-
tivity. Additivity implies, in this setting, that the photo-
effectiveness of a source is equal to the sum of the
effectiveness of its spectral components. This part of
the model makes it relatively easy to conduct exposure
tests with specific combinations of wavelengths [e.g.,
by using selected band-pass filters to define E0(λ, τ )

functions as levels of spectral intensity in an exper-
iment] to estimate the quasi-quantum efficiency as a
function of λ. Then the total dosage model in (9) can
be used to predict photodegradation under other com-
binations of wavelengths [i.e., for other E0(λ, τ ) func-
tions].

7.3 Reciprocity and Reciprocity Breakdown

The intuitive idea behind reciprocity in photodegra-
dation is that the time to reach a certain level of
degradation is inversely proportional to the rate at
which photons attack the material being degraded.
Reciprocity breakdown occurs when the coefficient
of proportionality changes with light intensity. Al-
though reciprocity provides an adequate model for
some degradation processes (particularly when the
range of intensities used in experimentation and ac-
tual applications is not too broad), some examples have
been reported in which there is reciprocity breakdown
(e.g., Blum, 1959, and James, 1977).

Light intensity can be affected by filters. Sunlight
is filtered by the earth’s atmosphere. In laboratory
experiments, different neutral density filters are used
to reduce the amount of light passing to specimens
(without having an important effect on the wavelength
spectrum), providing an assessment of the degree of
reciprocity breakdown. Reciprocity implies that the
effective time of exposure is

d(t) = CF × DTot(t)

= CF ×
[∫ t

0

∫ λ2

λ1

DInst(τ, λ) dλdτ

]

where CF is an “acceleration factor.” For example,
commercial outdoor test exposure sites use mirrors to
concentrate light to achieve, say, “5 Suns” acceleration
or CF = 5. A 50% neutral density filter in a laboratory
experiment will provide deceleration corresponding to
CF = 0.5.
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When there is evidence of reciprocity breakdown,
the effective time of exposure is often modeled, em-
pirically, by

d(t) = (CF)p × DTot(t)
(10)

= (CF)p ×
[∫ t

0

∫ λ2

λ1

DInst(τ, λ) dλdτ

]
.

Model (10) has been shown to fit data well and exper-
imental work in the photographic literature suggests
that when there is reciprocity breakdown, the value
of p does not depend strongly, if at all, on the wave-
length λ. A statistical test for p = 1 can be used to
assess the reciprocity assumption.

7.4 Model for Photodegradation and UV Intensity

Degradation (or damage) D(t) at time t depends on
environmental variables like UV, temp and RH, that
may vary over time, say according to a multivariable
profile ξ(t) = [UV, temp,RH, . . .]. Laboratory tests
are conducted in well-controlled environments, usually
holding these variables constant (although sometimes
such variables are purposely changed during an exper-
iment, as in step-stress accelerated tests). Interest of-
ten centers, however, on life in a variable environment.
Figure 7 shows some typical sample paths (for FTIR
peak at 1510 cm−1, representing benzene ring mass
loss) for several specimens of an epoxy exposed to UV
radiation using a band-pass filter with a nominal center
at 306 nm. Separate paths are shown for each combi-
nation of (10, 40, 60, 100)% neutral density filters and
45 °C and 55 °C, as a function of total (cumulative)

absorbed UV-B dosage. These sample paths might be
modeled by a given functional form,

D(t) = g(z), z = log[d(t)] − µ,

where z is scaled time and g(z) would usually be sug-
gested by knowledge of the kinetic model (e.g., linear
for zeroth-order kinetics and exponential for first-order
kinetics), although empirical curve fitting may be ade-
quate for purposes where the amount of extrapolation
in the time dimension is not large. As in SAFT models,
µ can be modeled as a function of explanatory vari-
ables like temperature and humidity when these vari-
ables affect the degradation rate.

8. VOLTAGE AND VOLTAGE-STRESS
ACCELERATION

Increasing voltage or voltage stress (electric field) is
another commonly used method to accelerate failure
of electrical materials and components like light bulbs,
capacitors, transformers, heaters and insulation.

Voltage quantifies the amount of force needed to
move an electric charge between two points. Physi-
cally, voltage can be thought of as the amount of pres-
sure behind an electrical current. Voltage stress quanti-
fies voltage per unit of thickness across a dielectric and
is measured in units of volt/thickness (e.g., V/mm or
kV/mm).

8.1 Voltage Acceleration Mechanisms

Depending on the failure mode, higher voltage stress
can:

FIG. 7. Sample paths for wave number 1510 cm−1 and band-pass filter with nominal center at 306 nm for different combinations of
temperature (45 and 55 °C) and neutral density filter [passing (10, 40, 60 and 100)% of photons across the UV-B spectrum].
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• accelerate failure-causing electrochemical reactions
or the growth of failure-causing discontinuities in
the dielectric material.

• increase the voltage stress relative to dielectric
strength of a specimen. Units at higher stress will
tend to fail sooner than those at lower stress.

Sometimes one or the other of these effects will be the
primary cause of failure. In other cases, both effects
will be important.

EXAMPLE 8 (Accelerated life test of insulation for
generator armature bars). Doganaksoy, Hahn and
Meeker (2003) discuss an ALT for a new mica-based
insulation design for generator armature bars (GABs).
Degradation of an organic binder in the insulation
causes a decrease in voltage strength and this was
the primary cause of failure in the insulation. The in-
sulation was designed for use at a voltage stress of
120 V/mm. Voltage-endurance tests were conducted
on 15 electrodes at each of five accelerated voltage lev-
els between 170 V/mm and 220 V/mm (i.e., a total
of 75 electrodes). Each test was run for 6480 hours at
which point 39 of the electrodes had not yet failed. Ta-
ble 1 gives the data from these tests. The insulation
engineers were interested in the 0.01 and 0.05 quan-
tiles of lifetime at the use condition of 120 V/mm.
Figure 8 plots the insulation lifetimes against voltage
stress.

8.2 Inverse Power Relationship

The inverse power relationship is frequently used to
describe the effect that stresses like voltage and pres-
sure have on lifetime. Voltage is used in the following
discussion. When the thickness of a dielectric mater-
ial or insulation is constant, voltage is proportional to
voltage stress. Let volt denote voltage and let voltU

be the voltage at use conditions. The lifetime at stress

FIG. 8. GAB insulation data. Scatterplot of life versus voltage.
Censored observations are indicated by �.

level volt is given by

T (volt) = T (voltU)

AF (volt)
=

(
volt

voltU

)β1

T (voltU)

where β1, in general, is negative. The model has SAFT
form with acceleration factor

AF (volt) = AF (volt,voltU,β1)

= T (voltU)

T (volt)
(11)

=
(
volt

voltU

)−β1

.

If T (voltU) has a log-location-scale distribution with
parameters µU and σ , then T (volt) also has a log-
location-scale distribution with µ = β0 + β1x, where
xU = log(voltU), x = log(volt), β0 = µU − β1xU

and σ does not depend on x.

EXAMPLE 9 (Time acceleration for GAB insula-
tion). For the GAB insulation data in Example 8,
an estimate for β1 is β̂1 = −9 (methods for com-
puting such estimates are described in Meeker and

TABLE 1
GAB insulation data

Voltage stress Lifetime
(V/mm) (thousand hours)

170 15 censoreda

190 3.248, 4.052, 5.304, 12 censoreda

200 1.759, 3.645, 3.706, 3.726, 3.990, 5.153, 6.368, 8 censoreda

210 1.401, 2.829, 2.941, 2.991, 3.311, 3.364, 3.474, 4.902, 5.639, 6.021, 6.456, 4 censoreda

220 0.401, 1.297, 1.342, 1.999, 2.075, 2.196, 2.885, 3.019, 3.550, 3.566, 3.610, 3.659, 3.687, 4.152, 5.572

aUnits were censored at 6.480 thousand hours.
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FIG. 9. Time-acceleration factor as a function of voltage stress
and exponent −β1 = −7,−9,−11.

Escobar, 1998, Chapter 19). Recall that the design
voltage stress is voltU = 120 V/mm and consider
testing at volt = 170 V/mm. Thus, using β1 = β̂1,
AF (170) = (170/120)9 ≈ 23. Thus by increasing
voltage stress from 120 V/mm to 170 V/mm, one
estimates that lifetime is shortened by a factor of
1/AF (170) ≈ 1/23 = 0.04. Figure 9 plots AF ver-
sus volt for β1 = −7,−9,−11. Using direct compu-
tations or from the plot, one obtains AF (170) ≈ 11
for β1 = −7 and AF (170) ≈ 46 for β1 = −11.

EXAMPLE 10 (Accelerated life test of a mylar-
polyurethane insulation). Meeker and Escobar (1998,
Section 19.3) reanalyzed ALT data from a special
type of mylar-polyurethane insulation used in high-
performance electromagnets. The data, originally from
Kalkanis and Rosso (1989), give time to dielectric
breakdown of units tested at (100.3, 122.4, 157.1,
219.0, 361.4) kV/mm. The purpose of the ALT was to
evaluate the reliability of the insulating structure and to
estimate the life distribution at system design voltages,
assumed to be 50 kV/mm. Figure 10 shows that fail-
ures occur much sooner at high voltage stress. Except
for the 361.4 kV/mm data, the relationship between
log life and log voltage appears to be approximately
linear. Meeker and Escobar (1998), in their reanalysis,
omitted the 361.4 kV/mm data because it is clear that
a new failure mode had manifested itself at this high-
est level of voltage stress. Insulation engineers have
suggested to us that the new failure mode was likely
caused by thermal buildup that was not important at
lower levels of voltage stress.

FIG. 10. Inverse power relationship-lognormal model fitted to
the mylar-polyurethane data (also showing the 361.4 kV/mm data
omitted from the ML estimation).

8.3 Physical Motivation for the Inverse Power
Relationship for Voltage-Stress Acceleration

The inverse power relationship is widely used to
model life as a function of pressure-like accelerating
variables (e.g., stress, pressure, voltage stress). This re-
lationship is generally considered to be an empirical
model because it has no formal basis from knowledge
of the physics/chemistry of the modeled failure modes.
It is commonly used because engineers have found,
over time, that it often provides a useful description of
certain kinds of AT data.

This section presents a simple physical motivation
for the inverse power relationship for voltage-stress ac-
celeration under constant temperature situations. Sec-
tion 9.2 describes a more general model for voltage ac-
celeration involving a combination of temperature and
voltage acceleration.

This discussion here is for insulation. The ideas ex-
tend, however, to other dielectric materials, products
and devices like insulating fluids, transformers, capac-
itors, adhesives, conduits and containers that can be
modeled by a stress-strength interference model.

In applications, an insulator should not conduct an
electrical current. An insulator has a characteristic di-
electric strength which can be expected to be random
from unit to unit. The dielectric strength of an insu-
lation specimen operating in a specific environment at
a specific voltage may degrade with time. Figure 11
shows a family of simple curves to model degrada-
tion and unit-to-unit variability in dielectric strength
over time. The unit-to-unit variability could be caused,
for example, by materials or manufacturing variability.
The horizontal lines represent voltage-stress levels that
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FIG. 11. Dielectric strength degrading over time, relative to volt-
age-stress levels (horizontal lines).

might be present in actual operation or in an acceler-
ated test. When a specimen’s dielectric strength falls
below the applied voltage stress, there will be flash-
over, a short circuit, or other failure-causing damage
to the insulation. Analytically, suppose that degrading
dielectric strength at age t can be expressed as

D(t) = δ0 × t1/β1 .

Here, as in Section 5.4, failure occurs when D(t)

crosses Df, the applied voltage stress, denoted by
volt. In Figure 11, the unit-to-unit variability is in
the δ0 parameter. Equating D(T ) to volt and solving
for failure time T gives

T (volt) =
(
volt

δ0

)β1

.

Then the acceleration factor for volt versus voltU

is

AF (volt) = AF (volt,voltU,β1)

= T (voltU)

T (volt)

=
(
volt

voltU

)−β1

which is an inverse power relationship, as in (11).
To extend this model, suppose that higher voltage

also leads to an increase in the degradation rate and that
this increase is described with the degradation model

D(t) = δ0[R(volt) × t]1/γ1

where

R(volt) = γ0 exp[γ2 log(volt)].

Suppose failure occurs when D(t) crosses Df, the ap-
plied voltage stress, denoted by volt. Then equating
D(T ) to volt and solving for failure time T gives the
failure time

T (volt) = 1

R(volt)

(
volt

δ0

)γ1

.

Then the ratio of failure times at voltU versus volt
is the acceleration factor

AF (volt) = T (voltU)

T (volt)
=

(
volt

voltU

)γ2−γ1

,

which is again an inverse power relationship with β1 =
γ1 − γ2.

This motivation for the inverse power relationship
described here is not based on any fundamental un-
derstanding of what happens to the insulating mater-
ial at the molecular level over time. As we describe in
Section 11, the use of such fundamental understanding
could provide a better, more credible model for extrap-
olation.

8.4 Other Inverse Power Relationships

The inverse power relationship is also commonly
used for other accelerating variables including pres-
sure, cycling rate, electric current, stress and humidity.
Some examples are given in Section 9.

8.5 A More General Empirical Power Relationship:
Box–Cox Transformations

As shown in Section 8.2, the inverse power relation-
ship induces a log-transformation in volt giving the
model µ = β0 + β1x, where x = log(volt). There
might be other transformations of volt that could pro-
vide a better description of the data. A general, and use-
ful, approach is to expand the formulation of the model
by adding a parameter or parameters and investigating
the effect of perturbing the added parameter(s), to see
the effect on answers to questions of interest. Here this
approach is used to expand the inverse power relation-
ship model.

Suppose that X1 is a positive accelerating variable
and X2 is a collection of other explanatory variables,
some of which might be accelerating variables. Con-
sider the model µ = β0 + β1X1 + β ′

2X2, where the
β’s are unknown parameters. We start by replacing X1
with the more general Box–Cox transformation (Box
and Cox, 1964) on X1. In particular, we fit the model

µ = γ0 + γ1W1 + γ ′
2X2
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where the γ ’s are unknown parameters and

W1 =



Xλ
1 − 1

λ
, λ �= 0,

log(X1), λ = 0.
(12)

The Box–Cox transformation (Box and Cox, 1964)
was originally proposed as a simplifying transforma-
tion for a response variable. Transformation of accel-
erating and explanatory variables, however, provides
a convenient extension of the accelerating modeling
choices. The Box–Cox transformation includes all the
power transformations and because W1 is a continuous
function of λ, (12) provides a continuum of transfor-
mations for possible evaluation and model assessment.
The Box–Cox transformation parameter λ can be var-
ied over some range of values (e.g., −1 to 2) to see the
effect of different voltage-life relationships on the fit-
ted model and inferences of interest. The results from
the analysis can be displayed in a number of different
ways.

For fixed X2, the Box–Cox transformation model ac-
celeration factor is

AF BC(X1) =




[
exp

(
Xλ

1U − Xλ
1

λ

)]γ1

, if λ �= 0,(
X1U

X1

)γ1

, if λ = 0,

where X1U are use conditions for the X1 accelerating
variable. AF BC(X1) is monotone increasing in X1 if
γ1 < 0 and monotone decreasing in X1 if γ1 > 0.

EXAMPLE 11 (Spring life test data). Meeker, Es-
cobar and Zayac (2003) analyze spring accelerated
life test data. Time is in units of kilocycles to failure.
The explanatory variables are processing temperature
(Temp) in degrees Fahrenheit, spring compression dis-
placement (Stroke) in mils, and the categorical variable
Method which takes the values New or Old. Springs
that had not failed after 5000 kilocycles were coded
as “Suspended.” At the condition 50 mils, 500 °F and
the New processing method, there were no failures be-
fore 5000 kilocycles. All of the other conditions had at
least some failures, and at five of the twelve conditions
all of the springs failed. At some of the conditions, one
or more of the springs had not failed after 5000 kilocy-
cles.

Figure 12 (see Meeker, Escobar and Zayac, 2003)
is a plot of the 0.10 Weibull quantile estimates versus
λ from −1 and 2. Approximate confidence intervals
are also given. The plot illustrates the sensitivity of the
0.10 quantile estimate to the Box–Cox transformation.

FIG. 12. Plot of the ML estimate of the 0.10 quantile of spring
life at 20 mils, 600 °F, using the new method versus the Stroke dis-
placement Box–Cox transformation parameter λ with 95% confi-
dence limits.

Note that λ = 0 corresponds to the log-transformation
that is commonly used in fatigue life versus stress
models. Also, λ = 1 corresponds to no transformation
(or, more precisely, a linear transformation that affects
the regression parameter values but not the underlying
structure of the model). Figure 12 shows that fatigue
life decreases by more than an order of magnitude as
λ moves from 0 to 1. In particular, the ML estimate of
the 0.10 quantile decreases from 900 megacycles to 84
megacycles when λ is changed from 0 to 1.

Figure 13 is a profile likelihood plot for the Box–
Cox λ parameter, providing a visualization of what the
data say about the value of this parameter. In this case
the peak is at a value of λ close to 0; this is in agree-

FIG. 13. Profile likelihood plot for the Stroke Box–Cox transfor-
mation parameter λ in the spring life model.
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ment with the commonly used fatigue life/stress model.
Values of λ close to 1 are less plausible, but cannot be
ruled out, based on these data alone. The engineers,
based on experience with the same failure mode and
similar materials, felt that the actual value of λ was
near 0 (corresponding to the log-transformation) and
almost certainly less than 1. Thus a conservative de-
cision could be made by designing with an assumed
value of λ = 1. Even the somewhat optimistic evalu-
ation using λ = 0 would not meet the 500 megacycle
target life.

Meeker, Escobar and Zayac (2003) also discuss the
sensitivity to the assumed form of the temperature-life
relationship and the sensitivity to changes in the as-
sumed distribution.

9. ACCELERATION MODELS WITH MORE THAN
ONE ACCELERATING VARIABLE

Some accelerated tests use more than one acceler-
ating variable. Such tests might be suggested when
it is known that two or more potential accelerating
variables contribute to degradation and failure. Us-
ing two or more variables may provide needed time-
acceleration without requiring levels of the individual
accelerating variables to be too high. Some accelerated
tests include engineering variables that are not accel-
erating variables. Examples include material type, de-
sign, operator, and so on.

9.1 Generalized Eyring Relationship

The generalized Eyring relationship extends the
Eyring relationship in Section 5.3, allowing for one
or more nonthermal accelerating variables (such as hu-
midity or voltage). For one additional nonthermal ac-
celerating variable X, the model, in terms of reaction
rate, can be written as

R(temp,X)

= γ0 × (tempK)m × exp
( −γ1

k × tempK

)
(13)

× exp
(
γ2X + γ3X

k × tempK

)

where X is a function of the nonthermal stress. The
parameters γ1 = Ea (activation energy) and γ0, γ2, γ3
are characteristics of the particular physical/chemical
process. Additional factors like the one on the right-
hand side of (13) can be added for other nonthermal
accelerating variables.

In the following sections, following common prac-
tice, we set (tempK)m = 1, using what is essentially

the Arrhenius temperature-acceleration relationship.
These sections describe some important special-case
applications of this more general model. If the under-
lying model relating the degradation process to failure
is a SAFT model, then, as in Section 5.2, the gener-
alized Eyring relationship can be used to describe the
relationship between times at different sets of condi-
tions temp and X. In particular, the acceleration factor
relative to use conditions tempU and XU is

AF (temp,X) = R(temp,X)

R(tempU,XU)
.

The same approach used in Section 5.4 shows the effect
of accelerating variables on time to failure. For exam-
ple, suppose that T (tempU) (time at use or some other
baseline temperature) has a log-location-scale distrib-
ution with parameters µU and σ . Then T (temp) has
the same log-location-scale distribution with

µ = µU − log[AF (temp,X)]
(14)

= β0 + β1x1 + β2x2 + β3x1x2

where β1 = Ea , β2 = −γ2, β3 = −γ3, x1 = 11605/

(tempK), x2 = X and β0 = µU − β1x1U − β2x2U −
β3x1Ux2U .

9.2 Temperature-Voltage Acceleration Models

Many different models have been used to describe
the effect of the combination of temperature and volt-
age on acceleration. For instance, Meeker and Escobar
(1998, Section 17.7) analyzed data from a study re-
lating voltage and temperature to the failure of glass
capacitors. They modeled the location parameter of
log-lifetime as a simple linear function of temp °C
and volt. The generalized Eyring relationship in Sec-
tion 13 can also be used with X = log(volt), as done
in Boyko and Gerlach (1989). Klinger (1991) mod-
eled the Boyko and Gerlach (1989) data by including
second-order terms for both accelerating variables.

To derive the time-acceleration factor for the ex-
tended Arrhenius relationship with temp and volt,
one can follow steps analogous to those outlined in
Section 8.2. Using (13) with X = log(volt), one ob-
tains

R(temp,volt)

= γ0 × exp
( −Ea

k × tempK

)

× exp
[
γ2 log(volt) + γ3 log(volt)

k × tempK

]
.
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Again, failure occurs when the dielectric strength
crosses the applied voltage stress, that is, D(t) =
volt. This occurs at time

T (temp,volt) = 1

R(temp,volt)

(
volt

δ0

)γ1

.

From this, one computes

AF (temp,volt)

= T (tempU,voltU)

T (temp,volt)

= exp[Ea(x1U − x1)] ×
(
volt

voltU

)γ2−γ1

× {exp[x1 log(volt) − x1U log(voltU)]}γ3,

where x1U = 11605/(tempU K) and x1 = 11605/

(tempK). When γ3 = 0, there is no interaction be-
tween temperature and voltage. In this case,
AF (temp,volt) can be factored into two terms, one
that involves temperature only and another term that in-
volves voltage only. Thus, if there is no interaction, the
contribution of temperature (voltage) to acceleration is
the same at all levels of voltage (levels of temperature).

9.3 Temperature-Current Density
Acceleration Models

d’Heurle and Ho (1978) and Ghate (1982) studied
the effect of increased current density (A/cm2) on

electromigration in microelectronic aluminum conduc-
tors. High current densities cause atoms to move more
rapidly, eventually causing extrusion or voids that lead
to component failure. ATs for electromigration often
use increased current density and temperature to ac-
celerate the test. An extended Arrhenius relationship
could be appropriate for such data. In particular, when
T has a log-location-scale distribution, then (13) ap-
plies with x1 = 11605/tempK, x2 = log(current).
The model with β3 = 0 (without interaction) is known
as “Black’s equation” (Black, 1969).

EXAMPLE 12 [Light emitting diode (LED) reliabil-
ity]. A degradation study on a light emitting diode
(LED) device was conducted to study the effect of cur-
rent and temperature on light output over time and
to predict life at use conditions. A unit was said to
have failed if its light output was reduced to 60% of
its initial value. Two levels of current and six levels
of temperature were used in the test. Figure 14 shows
the LED light output data versus time in hours, in the
square-root scale. No units had failed during the test.
For a simple method of degradation analysis, predicted
pseudo failure times are obtained by using ordinary
least squares to fit a line through each sample path
on the square-root scale, for “Hours,” and the linear
scale for “Relative Change.” Figure 15 shows the ML
fit of the Arrhenius-inverse power relationship lognor-
mal model (with no interaction) for the pseudo failure

FIG. 14. Relative change in light output from 138 hours at different levels of temperature and current. Relative change is in the linear scale
and hours is in the square-root scale which linearizes the response as a function of time.
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FIG. 15. LED device data. Lognormal multiple probability plot showing the fitted Arrhenius-inverse power relationship lognormal model
(with no interaction) for the failure LED data. The plots also show the estimate of F(t) at use conditions, 20 °C and 20 mA.

LED data. The data at 130 °C and 40 mA were omitted
in the model fitting because it was determined that a
new failure mode had manifested itself at that highest
level of test conditions (initial efforts by engineers to
use the bad data had resulted in physically impossible
estimates of life at the use conditions). Figure 15 also
shows the estimate of F(t) at use conditions of 20 °C
and 20 mA.

9.4 Temperature-Humidity Acceleration Models

Relative humidity is another environmental variable
that can be combined with temperature to acceler-
ate corrosion or other chemical reactions. Examples
of applications include paints and coatings, electronic
devices and electronic semiconductor parts, circuit
boards, permalloy specimens, foods and pharmaceuti-
cals. Although most ALT models that include humidity
were derived empirically, some humidity models have
a physical basis. For example, Gillen and Mead (1980)
and Klinger (1991) studied kinetic models relating
aging with humidity. LuValle, Welsher and Mitchell
(1986) provided physical basis for studying the effect
of humidity, temperature and voltage on the failure of
circuit boards. See Boccaletti et al. (1989), Chapter 2
of Nelson (1990), Joyce et al. (1985), Peck (1986) and
Peck and Zierdt (1974) for ALT applications involving
temperature and humidity.

The extended Arrhenius relationship (13) applied
to ALTs with temperature and humidity uses x1 =
11605/tempK, x2 = log(RH) and x3 = x1x2 where

RH is a proportion denoting relative humidity. The case
when β3 = 0 (no temperature-humidity interaction) is
known as “Peck’s relationship” and was used by Peck
(1986) to study failures of epoxy packing. Klinger
(1991) suggested the term x2 = log[RH/(1 − RH)] in-
stead of log(RH). This alternative relationship is based
on a kinetic model for corrosion.

9.5 Modeling Photodegradation Temperature and
Humidity Effects

When modeling photodegradation, as described in
Section 7, it is often necessary to account for the effect
of temperature and humidity. The Arrhenius rate reac-
tion model (3) can be used to scale time (or dosage)
in the usual manner. Humidity is also known to affect
photodegradation rate. Sometimes the rate of degrada-
tion will be directly affected by moisture content of the
degrading material. In this case one can use a model
such as described in Burch, Martin and VanLanding-
ham (2002) to predict moisture content as a function of
relative humidity.

Combining these model terms with the log of total
effective UV dosage from (8) gives

log(d;CF,p) = log[DTot(t)] + p × log(CF),

µ = β0 + Ea

k × tempK
+ C × MC(RH),

where tempK is temperature in kelvin, MC(RH) is a
model prediction of moisture content, as a function of
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FIG. 16. Sample paths for wave number 1510 cm−1 and band-pass filter with nominal center at 306 nm for different combinations of
temperature (45 and 55) °C and neutral density filter (passing 10, 40, 60 and 100% of photons across the UV-B spectrum).

relative humidity, k is Boltzmann’s constant, Ea is a
quasi-activation energy, and β0 and C are parameters
that are characteristic of the material and the degrada-
tion process. Figure 16 shows the same data displayed
in Figure 7, except that the time scale for the data has
been adjusted for the differences in both the neutral
density filters and the two different levels of temper-
ature, bringing all data to the scale of a 100% neutral
density filter and 55 °C.

9.6 The Danger of Induced Interactions

As illustrated in Example 13 of Pascual, Meeker
and Escobar (2006) (using data related to Example 12
of this paper), interactions can cause difficulty in the
interpretation of accelerated test results. Initially, in
that example, an interaction term had been used in the
model fitting to provide a model that fits the data bet-
ter at the high levels of temperature and current den-
sity that had been used in the test. Extrapolation to the
use conditions, however, produced estimates of life that
were shorter than the test conditions! The problem was
that with the interaction term, there was a saddle point
in the response surface, outside of the range of the data.
Extrapolation beyond the saddle point resulted in non-
sensical predictions that lower temperature and current
would lead to shorter life (in effect, the extrapolation
was using a quadratic model).

It is important to choose the definition of acceler-
ated test experimental factors with care. Inappropriate
choices can induce strong interactions between the fac-
tors. Suppose, for example, that there is no interac-
tion between the factors voltage stress and specimen

thickness in an acceleration model for dielectric fail-
ure. Then

µ = β0 + β1Thickness + β2Voltage Stress

where thickness is measured in mm and Voltage
Stress = Voltage/Thickness is measured in V/mm. If
the model is written in terms of thickness and voltage,

µ = β0 + β1Thickness

+ β2Voltage Stress × Thickness.

Thus, the variables voltage and thickness would have a
strong interaction.

Similarly, if RH and temperature have no interaction
in the acceleration model for a corrosion failure mech-
anism, it is easy to show that the strong effect that tem-
perature has on saturation vapor pressure would imply
that the factors temperature and vapor pressure would
have a strong interaction.

These concerns are related to the “sliding factor”
ideas described in Phadke (1989, Section 6.4).

10. COMMENTS ON THE APPLICATION OF
ACCELERATION MODELS

10.1 Concerns About Extrapolation

All accelerated tests involve extrapolation. The use
of extrapolation in applications requires justification.
It is always best when the needed justification comes
from detailed physical/chemical knowledge of the ef-
fect of the accelerating variable on the failure mecha-
nism. As a practical matter, however, such knowledge
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is often lacking, as are time and resources for acquiring
the needed knowledge. Empirical relationships are of-
ten used as justification, but rarely are data available to
check the relationship over the entire range of interest
for the accelerating variable(s).

Evans (1977) makes the important point that the
need to make rapid reliability assessments and the fact
that accelerated tests may be “the only game in town”
are not sufficient to justify the use of the method. Jus-
tification must be based on physical models or empiri-
cal evidence. Evans (1991) describes difficulties with
accelerated testing and suggests the use of sensitiv-
ity analysis, such as that described in Meeker, Escobar
and Zayac (2003). He also comments that acceleration
factors of 10 “are not unreasonable” but that “factors
much larger than that tend to be figments of the imagi-
nation and lots of correct but irrelevant arithmetic.”

10.2 Some Basic Guidelines

Some guidelines for the use of acceleration models
include:

• ATs must generate the same failure mode occurring
in the field.

Generally, accelerated tests are used to obtain
information about one particular, relatively simple
failure mechanism (or corresponding degradation
measure). If there is more than one failure mode, it is
possible that the different failure mechanisms will be
accelerated at different rates. Then, unless this is ac-
counted for in the modeling and analysis, estimates
could be seriously incorrect when extrapolating to
lower use levels of the accelerating variables.

• Accelerating variables should be chosen to corre-
spond with variables that cause actual failures.

• It is useful to investigate previous attempts to accel-
erate failure mechanisms similar to the ones of in-
terest. There are many research reports and papers
that have been published in the physics of failure
literature. The annual Proceedings of the Interna-
tional Reliability Physics Symposium, sponsored by
the IEEE Electron Devices Society and the IEEE Re-
liability Society, contain numerous articles describ-
ing physical models for acceleration and failure.

• Accelerated tests should be designed, as much as
possible, to minimize the amount of extrapolation
required, as described in Chapters 20 and 21 of
Meeker and Escobar (1998). High levels of accel-
erating variables can cause extraneous failure modes
that would never occur at use levels of the acceler-
ating variables. If extraneous failures are not recog-
nized and properly handled, they can lead to seri-
ously incorrect conclusions. Also, the relationship

may not be accurate enough over a wide range of
acceleration.

• In practice, it is difficult or impractical to verify ac-
celeration relationships over the entire range of in-
terest. Of course, accelerated test data should be
used to look for departures from the assumed ac-
celeration model. It is important to recognize, how-
ever, that the available data will generally provide
very little power to detect anything but the most seri-
ous model inadequacies. Typically there is no useful
diagnostic information about possible model inade-
quacies at accelerating variable levels close to use
conditions.

• Simple models with the right shape have generally
proven to be more useful than elaborate multipara-
meter models.

• Sensitivity analyses should be used to assess the ef-
fect of perturbing uncertain inputs (e.g., inputs re-
lated to model assumptions).

• Accelerated test programs should be planned and
conducted by teams including individuals knowl-
edgeable about the product and its use environ-
ment, the physical/chemical/mechanical aspects of
the failure mode, and the statistical aspects of the
design and analysis of reliability experiments.

11. FUTURE RESEARCH IN THE DEVELOPMENT
OF ACCELERATED TEST MODELS

Research in the development of accelerated test
models is a multidisciplinary activity. Statisticians
have an important role to play on the teams of scientists
that develop and use accelerated test models. On such a
team engineers and scientists are primarily responsible
for:

• Identifying and enumerating possible failure modes
and, for new products, predicting all possible life-
limiting failure modes.

• Understanding the physical/chemical failure mecha-
nisms that lead to a product’s failure modes and for
identifying accelerating variables that can be used to
accelerate the failure mechanism.

• Suggesting deterministic physical/chemical mathe-
matical relationships between the rate of the failure
mechanisms and the accelerating variable(s). When
such a relationship is not available, they may be able
to provide guidance from standard practice or previ-
ous experience with similar products and materials.

Statisticians are important for:
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• Planning appropriate experiments. Accelerated test
programs often start with simple experiments to un-
derstand the failure modes that can occur and the be-
havior of mechanisms that can cause failures. Use of
traditional methods for designed experiments is im-
portant for these tests. In addition, there may be spe-
cial features of accelerated tests (e.g., censoring) that
require special test planning methods (see Chapter 6
of Nelson, 1990, and Chapter 20 of Meeker and Es-
cobar, 1998, for discussion of accelerated test plan-
ning).

• Providing expertise in the analysis of data aris-
ing from preliminary studies and the accelerated
tests themselves. Features such as censoring, mul-
tiple failure modes and models that are nonlinear
in the parameters are common. Methods for de-
tecting model departures are particularly important.
Model departures may suggest problems with the
data, sources of experimental variability that might
be eliminated or problems with the suggested model
that may suggest changes to the proposed model.

• Identifying sources of variability in experimental
data (either degradation data or life data) that reflect
actual variability in the failure mechanism. For this
purpose it is generally useful to compare field data.
In most applications there will be additional variabil-
ity in field data and it is important to understand the
differences in order to design appropriate laboratory
experiments and to be able to draw useful conclu-
sions and predictions from laboratory data.

• Working within cross-disciplinary teams to develop
statistical models of failure and acceleration based
on fundamental understanding of failure mecha-
nisms. With fundamental understanding of failure
mechanisms and knowledge of sources of vari-
ability, it is possible to develop, from first prin-
ciples, failure-time distributions and acceleration
models. Better, more credible, models for extrapola-
tion should result from such modeling efforts if the
assumptions and other inputs are accurate. Some ex-
amples of where such models have been developed
include
– Fisher and Tippett (1928) derived the asymptotic

distributions of extreme values and these results
provide fundamental motivation for use of distri-
butions such as the Weibull distribution (one of
the three distributions of minima) in reliability ap-
plications in which failure is caused by the first
of many similar possible events (e.g., the failure
of a large system with many similar possible fail-
ure points, none of which dominates in the failure
process).

– Tweedie (1956), in modeling electrophoretic mea-
surements, used the distribution of first passage
time of a Brownian motion with drift to derive the
inverse Gaussian distribution.

– Birnbaum and Saunders (1969), in modeling time
to fracture from a fatigue crack growth process,
derived a distribution that is today known as the
Birnbaum–Saunders distribution. This distribu-
tion can be thought of as a discrete-time analog
of the inverse Gaussian distribution.

– Meeker and LuValle (1995), using a kinetic model
for the growth of conducting filaments, developed
a probability distribution, dependent on the level
of relative humidity, to predict the failure time of
printed circuit boards.

– Meeker, Escobar and Lu (1998), using a kinetic
model for chemical degradation inside an elec-
tronic amplifying device, developed a probability
distribution which, when combined with the Ar-
rhenius model, could be used to predict the failure
time of the devices.

– LuValle et al. (1998) and LuValle, Lefevre and
Kannan (2004, pages 200–206) used physics-
based models to describe degradation processes.
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