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Data Dissemination and Disclosure
Limitation in a World Without Microdata:
A Risk–Utility Framework for Remote
Access Analysis Servers
S. Gomatam, A. F. Karr, J. P. Reiter and A. P. Sanil

Abstract. Given the public’s ever-increasing concerns about data confiden-
tiality, in the near future statistical agencies may be unable or unwilling, or
even may not be legally allowed, to release any genuine microdata—data on
individual units, such as individuals or establishments. In such a world, an
alternative dissemination strategy is remote access analysis servers, to which
users submit requests for output from statistical models fit using the data, but
are not allowed access to the data themselves. Analysis servers, however, are
not free from the risk of disclosure, especially in the face of multiple, inter-
acting queries. We describe these risks and propose quantifiable measures of
risk and data utility that can be used to specify which queries can be answered
and with what output. The risk–utility framework is illustrated for regression
models.
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microdata, regression server, remote access server, statistical disclosure lim-
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1. INTRODUCTION

When disseminating microdata—on individual units,
such as people or establishments—to the public, to re-
searchers or to other agencies, national statistical agen-
cies face conflicting missions. They seek to release
microdata that support a wide range of statistical analy-
ses, yet they also must safeguard the confidentiality of
respondents’ identities and attribute values. Agencies
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that fail to protect confidentiality may face serious con-
sequences. They or their employees may be subject to
legal actions. They may lose the trust of the public, so
that respondents are less willing to participate in stud-
ies or to provide accurate data.

Even when identifiers such as names and addresses
or social security numbers are removed before re-
leasing data, there remain serious risks of disclosure.
For example, ill-intentioned users (“intruders”) may be
able to link released records to external data bases,
which are proliferating at all levels of government as
well as in the private sector. For example, many towns
and cities sell or make available on-line data bases
containing voter registrations, and Sweeney (1997)
showed that 97% of the records in a medical data base
for Cambridge, MA could be identified by birth date
and 9-digit ZIP code by linking them to a voter regis-
tration list.

To reduce disclosure risks, agencies typically al-
ter the original data before release, for example,
by perturbing, coarsening or swapping data values
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(Willenborg and de Waal, 2001). Of course, such sta-
tistical disclosure limitation (SDL) techniques also re-
duce the usefulness of the released data.

As more external data bases become available and
record linkage technologies improve, it becomes virtu-
ally mandatory to contemplate a world in which useful
microdata releases are no longer feasible. In a world
without microdata, three approaches to dissemination
remain viable. The first and simplest is to release only
data summaries such as low-dimensional tables, graphs
and maps. Such summaries are less useful in some con-
texts than complex analyses, and there remain disclo-
sure risks. For example, cell counts in a table can be
bounded, possibly very accurately, from released mar-
ginal totals (Dobra, Karr, Sanil and Fienberg 2002; Do-
bra, Karr and Sanil, 2003).

The second approach is to release synthetic—that is,
simulated—microdata (Rubin, 1993). Synthetic data
bases can have low disclosure risks, since some or
all of the released values are not genuine, but this
also decreases utility of the data. Both risk and util-
ity depend strongly on the model used for synthesis.
See Little (1993), Fienberg, Steele and Makov (1996),
Fienberg, Makov and Steele (1998), Raghunathan,
Reiter and Rubin (2003) and Reiter (2002, 2003a,
2005) for further discussion.

The third approach, which is the subject of this
paper, is to release the results of statistical analy-
ses of the data, such as estimated model parameters
and standard errors, without releasing any microdata.
This approach can be implemented using remote ac-
cess analysis servers, to which users submit requests
for analyses and, in return, receive some form of out-
put (Keller-McNulty and Unger, 1998; Duncan and
Mukherjee, 2000; Schouten and Cigrang, 2003). In
a world without microdata, the analysis dissemina-
tion approach has advantages over the other two ap-
proaches. It permits a wider range of analyses than
does releasing only data summaries and it provides
results based on actual rather than simulated micro-
data. Several statistical agencies are developing or al-
ready use servers as part of their data dissemination
strategies, including the Australian Bureau of Statis-
tics, Statistics Canada, Statistics Denmark, Statistics
Netherlands, Statistics Sweden, the U.S. Census Bu-
reau, the U.S. National Agricultural Statistics Ser-
vice, the U.S. National Center for Education Statistics
and the U.S. National Center for Health Statistics
(Rowland, 2003).

Even though they prevent direct access to the data,
analysis servers do not preclude disclosures. It may

be possible for intruders to learn identities or at-
tribute values by means of “targeted” queries. Fur-
thermore, queries that are innocuous individually may
produce disclosures collectively. Because of these pos-
sibilities, we believe it is necessary to formulate a
risk–utility framework (Duncan, Keller-McNulty and
Stokes, 2002), based on quantified measures of dis-
closure risk and data utility, for deciding in a princi-
pled way which queries can be answered by analysis
servers. In this paper, we present such a framework,
with an initial, specific application to servers that dis-
seminate the results of linear regression analyses.

The remainder of the paper is organized as fol-
lows. Section 2 contains background on disclosure risk
and SDL techniques. Section 3 describes the statisti-
cal components of analysis servers. Section 4 suggests
how users successfully can perpetrate disclosure at-
tacks on servers, as well as methods for limiting the
success of these attacks. Section 5 presents quantita-
tive measures of risk and utility for servers, illustrating
their use with simulations of regression modeling. Sec-
tion 6 concludes with an agenda for future research.

2. BACKGROUND ON SDL

This section is a primer on statistical disclosure limi-
tation. See Duncan and Lambert (1986), Federal Com-
mittee on Statistical Methodology (1994), Paass (1988)
and Willenborg and de Waal (1996, 2001) for further
information.

There are three principal forms of disclosure for
microdata (Lambert, 1993). Identity disclosure occurs
when a record in the data base can be associated with
the individual unit it describes. Attribute disclosure oc-
curs when the value of a sensitive attribute, such as in-
come or health status, is disclosed directly.

Inferential disclosure, the principal risk addressed in
this paper, occurs when units are threatened not by their
records but by statistical characteristics of the entire
data base. For example, suppose that automobile oper-
ating expenditures, which seem innocuous, are a good
predictor of medical expenditures, which are not in-
nocuous. In some locales, such as rural areas that entail
significant travel to reach medical centers and where
there is no public transportation, this is at least plausi-
ble. If this relationship were knownand known to be
a good relationship, an intruder with access to travel
expenditures could predict medical expenditures. An-
other example (Palley and Simonoff, 1987) occurs for
business data. Organizations may want relationships
between salaries and nonconfidential variables to be



DATA DISSEMINATION AND DISCLOSURE LIMITATION 165

protected, because otherwise, some employee could fit
a model that reveals his or her salary is less than pre-
dicted.

For inferential disclosure, the mere existence of
some relationship may threaten confidentiality, but
more often the threat is in the quantitative details and
the strength of the relationship. For example, it is ob-
vious that household income, a natural attribute to pro-
tect, is positively correlated with home value, which
in most jurisdictions is public information. No one
can be prevented from “knowing” that the relation-
ship exists, but the values of either regression coeffi-
cients (the quantitative details) or the correlation (the
strength of the relationship) may be suppressed in the
name of SDL.

To protect data confidentiality and meet users’ de-
mands for microdata, agencies and researchers have
developed an array of SDL strategies (Duncan,
de Wolf, Jabine and Straf, 1993). At the highest level,
SDL divides into strategies based on restricted access
and those based on restricted data. Mechanisms for
restricted access include data centers, licensing, and
vetting of researchers and their research plans. Re-
stricted access SDL strategies allow users to perform
analyses directly on the underlying data, although spe-
cific analyses may be suppressed, either a priori, if the
analysis is known to threaten confidentiality, or a pos-
teriori, the output reveals a threat. These centers rely
on the honesty of researchers to protect confidentiality,
and can be expensive for agencies and inconvenient for
researchers.

Restricted data SDL strategies alter the data in ways
that limit potential for disclosure. For example, the first
step in preventing identity disclosures is to remove ex-
plicit identifiers such as name, address and social se-
curity number, as well as implicit identifiers, such as
“Occupation= Mayor of New York.” Almost always,
however, this is not enough. Again a broad bifurcation
occurs: restricted data strategies either produce infor-
mation releases, such as tabular summaries and statis-
tical analyses of the data, or datalike releases. Analysis
servers are an example of a restricted data informa-
tion release SDL strategy. Restricted data datalike SDL
strategies include aggregating or coarsening the un-
derlying microdata. For example, to protect units with
high incomes, income is frequently “top-coded,” so
that one category is “More than $X.” They also include
perturbing original values, such as by swapping data
(Dalenius and Reiss, 1982; Gomatam, Karr and Sanil,

2003) or adding random noise to units’ values (Fuller,
1993).

Restricted data SDL strategies can be applied with
varying intensity. The amount of information released
can be limited to subsets of varying sizes; aggregation
may be relatively fine or very coarse; relatively few or
rather many data values may be swapped or perturbed.
Generally, the higher the SDL intensity, the greater the
protection against disclosure risk, but the less the utility
of the released data.

At least implicitly, agencies choose SDL strate-
gies by balancing confidentiality protection and utility
of the released information. We advocate use of ex-
plicit risk–utility frameworks to choose SDL strategies,
as proposed by Duncan, Keller-McNulty and Stokes
(2002). The general idea is to quantify the disclo-
sure risk and data utility of possible SDL strategies,
and then select strategies that give the highest utility
for acceptable confidentiality protection. Explicit ap-
proaches have been applied successfully in a variety
of settings (Dobra et al., 2002; Dobra, Karr and Sanil,
2003; Domingo-Ferrer, Mateo-Sanz and Torra, 2001;
Gomatam, Karr and Sanil, 2003; Yancey, Winkler and
Creecy, 2002).

Entirely different sets of issues and strategies arise
when analyses involve distributed data bases that can-
not actually be integrated (Karr, Lin, Sanil and Reiter,
2005; Sanil, Karr, Lin and Reiter, 2004a).

3. DESCRIPTION OF ANALYSIS SERVERS

Explicit risk and utility measures have not been de-
veloped for analysis servers. To begin our development
of such measures, we define the statistical components
of analysis servers.

3.1 Conceptual Framework

Let D be the microdata collected by the agency, ei-
ther through a survey or census. Aserver is a software
system that releases functions of the data,F(D). These
functions might include visualizations, estimates and
summaries of distributions of variables, or estimates
of functional relationships among variables using com-
plex statistical models. The server receives from the
user a queryQ for someF(D), and it responds ei-
ther by providingF(D) or refusing to do so because of
confidentiality or utility considerations. A more com-
plex response strategy would be to provide an alterna-
tive analysis rather than a refusal.

In addition toD , the components of the server in-
clude:
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• Query space: The setQ of queries that the server
can process. For example, some servers can handle
requests for tabular data analyses but not regression
analyses, whereas others do the opposite. The server
responds to anyQ ∈ Q with either the requested
F(D) or a refusal to provideF(D).

• Answer space: This is the setA ⊆ Q of queries that
the server answers with statistical output. We assume
that the query forF(D) = D is never answered.

• Disclosure risk measure: A real-valued function
such thatR(Q1, . . . ,Qm) is the disclosure risk of
providingF(D) for the set of queries{Q1, . . . ,Qm}.

• Data utility measure: A real-valued function such
thatU(Q1, . . . ,Qm) is the data utility of providing
F(D) for the set of queries{Q1, . . . ,Qm}.
The risk and utility measures are the components of

a query mediation mechanism that determinesA. The
query mediation mechanism must address the prob-
lem of interaction among queries: answering several
queries may allow users to piece together enough in-
formation to achieve disclosures. This issue has been
recognized by several authors (Palley and Simonoff,
1987; Duncan and Mukherjee, 2000; Dobra et al.,
2002) and is discussed further in Section 4.

Servers may be either static or dynamic. In a static
server,A is precomputed. The underlying query medi-
ation mechanism is typically based on either (i) opti-
mization ofU(A) subject to an upper bound constraint
on R(A) or (ii) selection of A from a frontier of
undominated candidate spacesAc, that is, those for
which no other candidate release has both lower dis-
closure risk and higher data utility. Both of these query
mediation mechanisms are illustrated in Section 5.

Dynamic servers accept queries in real time and re-
spond expeditiously if not immediately;A is deter-
mined by the queries that the server elects to answer.
Ultimately, a dynamic server reaches a terminal state
in which no remaining unanswered queries are answer-
able. The disclosure risk and data utility associated
with responding to a query must take into account those
queries that have been answered previously. Dynamic
servers present challenges at multiple levels. Practi-
cal issues include scalable computational implementa-
tions. Conceptual issues include abstractions such as
accounting for the fact that each answered query makes
others unanswerable. There are policy issues as well,
notably user equity, to prevent a single user or group of
users from exerting undue influence on the trajectory
of the system. Whether dynamic servers are possible
remains an open question.

One relatively well understood class of servers ista-
ble servers (Dobra et al., 2002; Dobra, Karr and Sanil,
2003; Karr, Dobra and Sanil, 2003). In this caseD is a
large contingency table containing counts or sums,Q is
a partially ordered set of marginal subtables ofD and
responses are either the requested subtable or refusal.
Even in this relatively simple case, computational and
policy issues are challenging.

We assume that the metadata associated withD
are available to users, either directly from the server
or through other sources. These metadata include at-
tribute definitions, sample sizes, survey frames, re-
sponse rates, representations of missing values and
similar information.

3.2 Model Servers

In the remainder of this paper, we focus on servers
for which the query spaceQ consists of requests for
relevant output from statistical models involving a re-
sponse and one or more predictor variables inD .
We term thesemodel servers. Responses, when not
refusals, consist minimally of point estimates of the
model coefficients, the estimated covariance matrix of
the coefficients and some global goodness-of-fit mea-
sures, such as coefficients of determinationR2, disper-
sion parameters and deviances. We also assume that the
means and standard deviations of all variables inD are
available.

These assumptions are not without import. In partic-
ular, we believe strongly that a model should never be
released without at least global measures of fit and, in
most cases, as we discuss in the next paragraph, local
measures of fit. Moreover, in most cases utility con-
siderations would militate against release of a “bad”
model. Therefore, a released model can be, in the hands
of an intruder, a significant threat to confidentiality.

Ideally, the response from the server should include
some way for users to check the fit of models. Obvi-
ously, releasing the usual, unit-specific diagnostic sta-
tistics can disclose data values. For example, when
actual residuals and predicted values are released for
a submitted linear regression model, the user can ob-
tain the values of the response by simply adding the
residuals to the predicted values.

To diagnose some types of assumption violations,
however, the exact values of the residuals and inde-
pendent variables are not needed. Rather, the relation-
ships among the residuals and independent variables
are examined for patterns in hopes of identifying model
misspecifications. Thus, for remote servers it may be
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adequate to mimic patterns in the real-data diagnos-
tics without releasing real-data values (Reiter, 2003b;
Reiter and Kohnen, 2005). For linear regression diag-
nostics, the basic idea is to release values of residuals
and independent variables simulated from distributions
that approximate the relationships between the real-
data residuals and independent variables. Users then
can treat these synthetic values like ordinary diagnos-
tics quantities, examining scatterplots of the synthetic
residuals versus the synthetic independent variables.

4. DISCLOSURES IN MODEL SERVERS

Our discussion of disclosures is primarily in the con-
text of linear regression modeling, although much of it
applies to other models as well. Section 4.1 describes
potential identity and attribute disclosures, and Sec-
tion 4.2 describes potential inferential disclosures.

4.1 Identity and Attribute Disclosures for
Linear Regressions

By not releasing microdata and not releasing real-
data diagnostics such as residuals, many threats to at-
tribute and identity disclosure are eliminated. However,
other threats remain.

In particular, denial of access to microdata does not
prevent identity and attribute disclosures effected by
transformations of variables. Transformation attacks
can be used to attempt attribute disclosures when the
outcome is a sensitive variable and to attempt identity
disclosures when the outcome is a key identifier. The
success of these attacks depends on the user’s knowl-
edge that certain units with unique values of predictors
are in the data base, and knowledge of these values.
For some data bases, such detailed knowledge will not
be available, so that disclosures of individuals from
transformations may not be likely. However, given the
proliferation of publicly available data, it is prudent to
assume such knowledge is in the hands of intruders.

Because few operating model servers exist and those
that do exist to our knowledge do not permit trans-
formations, transformation attacks are primarily hypo-
thetical at this point, but they could be simulated on a
prototype server, although this would require modeling
of intruder knowledge and behavior (Fienberg, Makov
and Sanil, 1997).

To illustrate, units with unusual values of predictor
variables—leverage points—can have a strong effect
on the estimated regression, often resulting in small
residuals for these units. An intruder who knows that
a certain unit is in the data base may be able, through

transformations, to create artificially extreme lever-
age points and thereby learn the outcome variable for
that unit from the predicted value of the fitted regres-
sion. As an example, supposeX0 is a sensitive vari-
able unknown to the intruder who also knows that a
certain unitm in the data base has an unusual value
Xm = x. The intruder could fit the regression ofX0
on a simple transformation ofXm to increase unitm’s
leverage, for example, by using 1/(|Xm − x| + ε) or
log(|Xm − x| + ε), whereε is a small positive con-
stant, or by usingeXm whenx is large. Transformation
of X0 (e.g., fitting a regression witheX0 as the outcome
variable) can further increase the influence of leverage
points.

Units need not be leverage points to be subject to
transformation attacks. “Dummy variables” can isolate
points with unique predictor values. For instance, an
intruder who knows a unique predictor valuex exactly
can learn the associated response by including the pre-
dictor I (Xm = x) [or by fitting two regressions, one
with I (Xm ≤ x) and the other withI (Xm ≤ x − δ),
whereδ is a small constant].

For categorical predictors, disclosures can occur
when there are insufficient numbers of data cases
in the categories. For example, an intruder could
fit interactions among several categorical variables,
such that some cross-classifications describe only one
unit. For those cross-classifications, the outcomes can
be learned exactly from the fitted values of the regres-
sion.

To mitigate the effects of transformation attacks,
agencies can limit the space of transformations and
types of models that users can submit as queries, but
this also reduces data utility. Their effective limita-
tions on transformations should have minimal impact
on analyses of interest while satisfactorily controlling
disclosure risk. It is also desirable to specify limitations
that can be enforced automatically by the server; per-
forming manual checks of every proposed analysis can
be time-consuming and expensive.

Next we propose some simple ways whereby agen-
cies can build limitations into model servers. Not all
may be useful in any particular context, but they may
help prevent classes of transformation attacks with po-
tentially acceptable reductions in data utility. First, key
identifiers, such as age, race and sex, can be prohib-
ited as outcome variables but permitted as predictors.
This strategy eliminates identity disclosure attacks that
use keys as outcomes. The reduction in data utility can
be small, since typically identifiers are not of interest
as outcomes. Second, SDL strategies for tabular data
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can be applied to categorical data in model servers.
For example, agencies can prohibit indicator variables
from being predictors unless at least three units with
nonidentical outcome values satisfy the conditions de-
scribed by the indicator. The reduction in utility may
be small in many data sets, since usually few strong
conclusions can be made for units in very sparsely
populated categories. Third, transformations that split
continuous variables into categories can be disallowed,
thereby eliminating attacks that rely on such splits. For
servers that permit generalized additive modeling or
other methods of curve fitting, this may not substan-
tially sacrifice data utility. Fourth, for anyXi , transfor-
mations of the formg(Xi − h(Xi)) can be disallowed
for all h(Xi) excepth(Xi) = 0. This prohibits transfor-
mations designed to give individual values high lever-
ages. Many transformations for analytical purposes,
such asg(Xi) = log(Xi) or g(Xi) = √

Xi , do use
h(Xi) = 0, and so remain permissible. Agencies might
allow certainh(Xi), in particularh(Xi) = X̄i , when
they are innocuous. Finally, transformations can be
disallowed when they increase the leverage values of
units, or the values of theXi , beyond administrator-
defined cutoffs. The cutoffs should be set to permit
common transformations while preventing outlandish
ones whose main purpose is transformation attacks.

Agencies can inform users about the limitations im-
posed on the answer space, although it may be wise not
to disclose cutoff values. Some limitations, like those
in the first four points above, can be enforced by the
server before submitted models are even fit. Other lim-
itations, like the fifth one above, may have to be en-
forced dynamically by the server.

4.2 Inferential Disclosures for Linear Regressions

For some data bases, agencies may seek to prevent
users from fitting particular regressions. For example,
an agency may not want to release the output from re-
gressions that have small root mean squared errors and
sensitive dependent variables, or an agency may want
to protect a certain relationship in the data. In this sec-
tion, we discuss ways that intruders can learn about un-
released regressions through released regressions and
thereby attempt inferential disclosures.

To fix ideas, we define notation used throughout
the remainder of the paper. LetX = (X0,X1, . . . ,Xd)

be thed + 1 variables in the data baseD . For any
subsetB = {i, j, . . . } of variable indices, letXB =
{Xi,Xj , . . . }. We write the linear regression ofXa on
the predictors whose indices are inB asXa|XB . For
example, the regressionX0 on (X1,X2,X3) is written

asX0|X{1,2,3}. We use the notationXaB to denote the
collection of variables inXa ∪ XB .

Let X denote then × (d + 1) matrix constituting the
data for the variablesX (n is the number of data cases).
For simplicity, we assume thatX has been centered: we
useXi − X̄i for each variablei. Then for anyXa|XB ,
the vector of least squares estimates of coefficients is

ba|B = (Xt
BXB)−1Xt

BXa.

Any ba|B , as well as its estimated covariance matrix
and the coefficient of determinationR2

a|B , can be com-
puted from the sample cross-product matrix

SaB = (Xa,XB)t (Xa,XB).

Hence, a user who obtainsSaB completely from a set
of released regressions learns all possible linear regres-
sions involvingXaB .

Suppose the server seeks to prevent intruders from
learning the coefficients of some sensitive regression,
say Xa|XB . A naive approach is to deny (only) re-
sponses to queries forXa|XB . However, this rule alone
will not prevent intruders from reconstructing the un-
released regression from other, releasable regressions.
For example, suppose that the server provides regres-
sion coefficients for any query involving simple regres-
sions with XaB . For Xi,Xj ∈ XaB , an intruder can
solve for the cross-productSaB[i, j ] by using the vari-
ance of the predictor, sayXj , and the released coeffi-
cientbi|j of Xj in the regression ofXi onXj ,

SaB[i, j ] = bi|j SaB[j, j ].(1)

By fitting simple regressions for all pairs of variables,
all terms inSaB are determined, so that an intruder can
reconstructXa|XB exactly.

More generally, anym unknown off-diagonal ele-
ments ofSaB can be reproduced exactly as long as
the collection of released coefficients contains a sys-
tem of m independent equations in these unknowns.
Clearly, the coefficients for all simple regressions
involving XaB constitute such a collection. Other
examples include coefficients for the set of all re-
gressions of sizek for any k (all ba|C whereC ⊂ B

and |C| = k) and coefficients for the set of sequen-
tial regressions,{ba|i ,ba|i,j , . . . ,ba|B}, where B =
{i, j, . . . }. Thus, servers that release any regression as
long as it has at leastk predictors, or servers that re-
lease only one regression for each predictor size, do
not protectSaB .

Reconstruction of some unreleasedXa|XB is not
possible when at least one of the cross-products inSaB

cannot be determined from released information. To
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prevent some cross-productSaB[i, j ] from being re-
produced exactly, the server must deny responses to
queries involvingXi andXj simultaneously. That is,
the server cannot provide output for any query involv-
ing one of these variables as the outcome and the other
as a predictor, or any query where both variables are
predictors.

Although limiting the releases can prevent exact re-
construction ofSaB , it still may be possible to bound
closely the unknown elements ofSaB . We next de-
scribe a procedure for finding upper and lower bounds
for the unknown elements by exploiting the fact that
SaB is positive definite (denoted bySaB � 0).

Let K = {(i, j) : SaB[i, j ] is known} be the set of
indices of the known elements ofSaB . For each
(i, j) ∈ K , let sij denote the value of its corresponding
SaB[i, j ]. For any(l,m) /∈ K , we can find the upper
bound forSaB[l,m] by solving the optimization prob-
lem

maxSaB[l,m]
(2)

s.t.
{ SaB[i, j ] = sij for all (i, j) ∈ K,

SaB � 0.

Define Fpq , a matrix with the same dimensions
as SaB , as follows. If p = q, then Fpq[i, j ] = 1 for
[i, j ] = [p,q] (= [q,p]) and is zero otherwise. If
p �= q, then Fpq[i, j ] = 1/2 for [i, j ] = [p,q] and
[i, j ] = [q,p] and is zero otherwise. Then we can re-
formulate the optimization problem (2) as

maxTr(FlmSaB)

(3)
s.t.

{
Tr(Fij SaB) = sij for all (i, j) ∈ K,

SaB � 0,

which is a semidefinite programming (SDP) problem
expressed in standard form (Todd, 2001). Efficient al-
gorithms and software implementations for SDP prob-
lems are available (Vandenberghe and Boyd, 1996;
Todd, 2001). The lower bound forSaB[l,m] is also
obtained by solving the corresponding minimization
problem.

These bounds provide the feasible range of values
that each individual unknown element can take. When
more than one element inSaB is unknown, the indi-
vidual feasible ranges determine a bounding box for
the joint feasible region. It is possible to sample val-
ues ofSaB from the joint feasible region by sampling
uniformly from the bounding box and then accepting
or rejecting the sample point depending on whether the
resultingSaB is positive definite. These values ofSaB

in turn provide draws of feasible values ofba|B . When

an intruder can obtain sufficiently tight bounds onba|B
or on particular sensitive components ofba|B , inferen-
tial disclosures may occur.

Variants of this approach to obtaining bounds for un-
released coefficients can be applied to obtain approxi-
mate bounds in other models. Ordered categorical and
dichotomous outcomes can be treated as continuous for
purposes of using (2) and (3). Nominal variables with
more than two categories can be split into a series of
dichotomous indicator variables, which are then used
in (2) and (3). Obtaining more precise bounds for other
models is a subject for future research.

5. DISCLOSURE RISK AND UTILITY MEASURES
FOR MODEL SERVERS

As for other SDL strategies, in the model server con-
text it is essential to use quantitative measures of risk
and utility to decide what is ultimately released. This
section describes such measures generally and, as an
entry point to a much larger research effort, presents
specific instances for a linear regression setting.

In both cases, as well as in other settings such as ta-
ble servers (Dobra et al., 2002; Dobra, Karr and Sanil,
2003), the distinction between risk and utility can be
obscure. This is the heart of the risk–utility trade-off
problem: legitimate users and intruders may want the
same or nearly the same things from the data.

5.1 General Measures

As suggested in Section 4, identity disclosure risk
can be reduced by refusing to provide output for
queries involving suspicious transformations. Hence
for analysis servers we focus on measures of disclosure
risk that reflect intruders’ capability to predict accu-
rately such values of individual units’ attributes or re-
lationships among sensitive attributes. We propose two
broad classes of such risks.In-sample prediction risk
refers to intruders’ ability to predict accurately sensi-
tive information for units in the data base. An example
is predicting an outcome for an atypical unit whose
residual is small in some released or unreleased regres-
sion.Out-of-sample prediction risk, by contrast, refers
to intruders’ capability to predict closely sensitive in-
formation for units not in the data base. An example
is learning, either exactly or with little uncertainty, the
values of the coefficients of a regression for a sensi-
tive outcome, which can then be used to predict that
sensitive variable for units not in the data base.

Measures of utility quantify the amount of informa-
tion contained in the answer spaceA relative to the
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information when no restrictions are made on the an-
swer space. We propose two classes.Volume refers to
the size ofA, for example, the number of regression
models inA. Statistical usefulness refers to the ex-
tent to which the released information is useful for
statistical inference. An example is the predictive ac-
curacy of the models inA. High statistical usefulness
is not necessarily equivalent to large volume: a small
answer space may well contain higher quality models
than some larger one. Utility also can incorporate do-
main knowledge: for instance, to satisfy users’ needs,
agencies may decide particular relationships must be
released.

These classes of risk and utility measures are related
to the predictive accuracy of the models inA. Risk and
utility do have a distinction in our formulation: utility
is always calculated using the information in released
models, whereas risk can be calculated using what is
inferred about unreleased models.

5.2 Risk and Utility Measures for a Linear
Regression Setting

Risk and utility measures obviously depend on the
types of models in the query spaceQ. To make the
ideas concrete and to illustrate the general notions of
risk and utility, suppose thatQ corresponds to linear
regressions and that the data baseD contains a single
sensitive variable that the agency does not want intrud-
ers to be able to predict too accurately from released
regressions on the other variables inD .

Using the notation of Section 4.2, letX0 be the sensi-
tive variable and letX1, . . . ,Xd be the other variables.
We assume the agency is using a static model server
and thus seeks to determine an optimal answer space
that results in high data utility with acceptable disclo-
sure risk. For simplicity, we assume that no transfor-
mations of theXi are allowed.

For this Q, there are 2d queries involvingX0 as
the dependent variable, corresponding to 22d

possible
choices forA. Calculating the risk and utility of all
these is infeasible even for small values ofd. There-
fore, we restrictA to a more manageable subset, which
we call Asupp (“supp” denotes suppressed variables),
defined as follows.

Suppose thatXsupp⊆ {X1,X2, . . . ,Xd} andXfree =
{X1,X2, . . . ,Xd} \ Xsupp, and letAsuppbe the answer
space containing all regressionsexcept those withX0
as the response and at least one of the variables inXsupp
as a predictor, or vice versa. In this case, any user, legit-
imate or not, can determine exactly all cross-products
betweenX0 and the variables ofXfree, between the

variables ofXsupp and those ofXfree, and among the
variables ofXfree.

Intruders may attempt to useAsupp to reproduce
any of the cross-products involvingX0 and elements
of Xsupp, and hence any of the associated regression co-
efficients. Note that the strategy of predicting attributes
in Xsupp from attributesXfree is not effective: the in-
formation needed to do this is already available in the
ellipsoid obtained using Result 1 (see the Appendix).

In addition to restricting the search space, using
Asupp has practical benefits. Any regression that does
not involve X0 can be fit, which increases both vol-
ume and statistical usefulness. Relationships among
predictors ofX0 can be examined, which increases
statistical usefulness by facilitating checks for multi-
collinearity.

We search for an optimalA over possible specifica-
tions of Xsupp and correspondingAsupp. Our specific
risk and utility measures are based on users’ ability to
predict the unknown cross-products betweenX0 and
Xsupp using output fromAsupp. These entries, as well
as the rest of the cross-products matrixS, can be parti-
tioned as

S =



s00 st
suppst

free

ssupp
sfree

SD


 ,(4)

whereD = {X1, . . . ,Xd}, ssupp has the cross-products
betweenX0 and Xsupp, and sfree contains the cross-
products betweenX0 andXfree.

When all elements ofS are known except for
the stripssupp, the feasible values ofssupp must lie in
the interior of an ellipsoid, as shown in Result 1 in the
Appendix. We use this ellipsoid to construct specific
measures of in-sample and out-of-sample disclosure
risk.

Specific risk measures. Residual risk Rres quantifies
users’ ability to predictX0 for particular subsets of
units in the data, for example, those with atypical at-
tribute values. The risk measure is the reciprocal of
the square root of the average of the squared residu-
als for the selected subset, obtained from the regres-
sionX0|Xfree.

Prediction risk Rpred quantifies users’ ability to pre-
dict X0 from the largest possible regression, namely
X0|X1,X2, . . . ,Xd . When some regressions are sup-
pressed (i.e.,Xsupp �= ∅), the user draws feasible
values of the unreleasedssuppfrom the ellipsoid as de-
scribed in Section 4, thereby generating feasible co-
efficients forX0|X1,X2, . . . ,Xd . The risk measure is
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the average value ofR2 for these feasible regressions,
which summarizes the predictive ability of the feasible
models. When drawingssupp from the ellipsoid uni-
formly, the sampling distribution of the averageR2 of
the feasible models can be determined analytically, as
is shown in Result 2 in the Appendix.

These measures can be adjusted to meet particular
needs. ForRpred values ofssupp can be drawn nonuni-
formly, for example, to reflect domain knowledge by
giving more weight to feasible regions consistent with
estimated coefficients available from published analy-
ses. The values can be drawn so that certain coeffi-
cients are always positive or always negative. Rather
than the average of the feasibleR2, the measure can
be some function of the bounds on the predicted values
of X0 implied by the feasible regressions. Similarly,
for Rres the residuals can be based on the feasible re-
gressions rather than the released ones, or the measure
can be based on the relative absolute residuals rather
than squared residuals.

Specific utility measures. To measure volume, we
use the dimension ofXfree. For statistical usefulness
we present two measures.Unweighted accuracy Ursq

is theR2 of X0|Xfree. Weighted accuracy Ursqwt adds
weightswi that reflect the importance of the variables,
Ursq+∑

i∈freewi , allowing agencies to incorporate do-
main knowledge into utility measures. Eachwi can
be interpreted as the “R2 points” gained by including
Xi in Xfree. Settingwi = 1 forcesXi to be inXfree.
Setting allwi = 0 corresponds to having no domain
knowledge-based preferences about which variables
are included.

Other utility measures targeted at estimation rather
than prediction can be devised and are associated
closely with the bounds derived in the Appendix.

5.3 Illustrating the Measures: A Simulation Study

We now illustrate the risk and utility measuresRpred,
Rres, Ursq andUrsqwt using two simulated data bases.
Both comprise 200 records, and contain one response
variable X0 and nine predictorsX1,X2, . . . ,X9. In
Data Set I,X1,X2 andX3 are highly correlated, and
each is highly correlated withX0. Data Set II has no
strong relationships among the variables.

For Rres we select the units with the highest 5% of
the X0 values as the target set, so that the agency is
protecting units with extreme values ofX0. For Rpred
we draw feasible values ofssupp uniformly from the
ellipse. ForUrsqwt we set thewi to equal theR2 of
the simple linear regression ofX0 on Xi . In reality,

for Rres the agency specifies the target set, and for
Ursqwt the agency specifies weights based on domain
knowledge.

The measures are evaluated on each of 510 possible
releases; the two unevaluated regressions includeX0
on the intercept only andX0|X1, . . . ,X9. Figures 1–3
display scatterplots of the utility measures versus the
risk measures. Each point represents the value of the
utility and risk functions for a particular candidate
release,Asupp. These displays can be used to selectA.
In all figures, color indicates the dimension ofXfree.

Behavior of the risk and utility measures. For Data
Set I Figure 1 shows that, as expected, utility generally
increases as risk increases. The precise relationship de-
pends on the risk–utility combination, suggesting that
these measures capture different aspects of risk and
utility for this data set. This results from the structure
of Data Set I: any release containing one or more of
(X1,X2,X3) has high risk and utility, and any other
release has low risk and utility. In Figure 2, the colored
points (those releases for whichXfree does not contain
any ofX1,X2,X3) all lie in the low-risk, low-utility re-
gion. The effect of(X1,X2,X3) also explains why no
clear dimension effect is evident in Figure 1.

For Data Set II Figure 3 indicates a clear dimension
effect. This is because no predictors are strong, so that
increasing the number of predictors raises all measures
of risk and utility.

Selecting an optimal release. We now illustrate how
Asupp can be determined from the risk–utility plot of
the candidate releases. As mentioned in Section 3, gen-
eral approaches include optimization ofU(A) subject
to an upper threshold onR(A) and selection ofAsupp
from a frontier of undominated candidate spaces—
those for which no other candidate release has both
lower disclosure risk and higher data utility. These ap-
proaches are displayed in Figure 4.

To illustrate the risk threshold approach, suppose
the agency seeks to prevent intruders from predict-
ing X0 for the chosen target units within 5% on av-
erage, which corresponds roughly to anRres threshold
of 0.2. Based on this, we pick the release candidate
with highestUrsq andRres < 0.2, yielding as the op-
timal releaseAsupp associated withXsupp= {X1}, so
thatXfree= {X2,X3, . . . ,X9}.

To illustrate the frontier approach, the agency first
defines a function of risk and utility that quantifies
the “benefit” to the agency for specified values of risk
and utility. Contours of this function on the risk–utility
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FIG. 1. Risk–utility scatterplots for both risk and utility measures and corresponding univariate histograms for Data Set I.

plane show how the agency is willing to trade risk for
utility for a fixed level of “benefit.” The agency then
finds the point on the curve that connects all undomi-
nated release candidates—the frontier shown in color
in the right panel of Figure 4—that is the first to touch
a risk–utility trade-off contour of highest benefit. In
the figure the trade-off contours are linear; benefit in-
creases as the line is shifted in a southeast direction.
The line is moved northwest, with the slope kept con-
stant, until it touches a point on the frontier, and this
point corresponds to the optimal release. In Data Set I
this procedure again picksAsupp defined byXsupp=
{X1} as the optimal release.

Clearly risk–utility plots and optimal releases based
on them will vary for different data sets. For instance,

Data Set II would yield very different risk–utility val-
ues for the optimal release.

6. DISCUSSION

Much of our discussion of disclosure risk and data
utility in model servers has been in the context of lin-
ear regression, and our illustrative example involved
protecting a single variable. Protecting multiple vari-
ables and dealing with models other than linear regres-
sions complicate the measurement of risk and utility.
We document here some of these additional challenges
and suggest paths for future research.

In some data bases relationships involving multiple
variables are subject to inferential disclosure. Release
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FIG. 2. Risk–utility scatterplots for both risk and utility measures for Data Set I. Colored points are those releases in which
{X1,X2,X3} /∈ Xfree.

decisions for individual variables necessarily interact
and can affect risk and utility. For example, suppose
Xa andXb are sensitive and can be predicted closely
using other variables. ProtectingXa by prohibiting a
set of variables from appearing in models withXa also
restricts the answer model space forXb, and vice versa.

For a small number of variables, it is possible to
enumerate all regressions using the sensitive variables
as outcomes, and to compute the risks and utilities
for each possible release. This approach is compu-
tationally challenging for data sets with many vari-
ables. It may be possible to consider only a small set
of predictors as candidates for those that may not ap-
pear with the sensitive variables. Developing effective
search strategies, as well as measures of combined risk
and utility, is an area for further research.

It is important from a utility perspective to pro-
vide output for models involving transformationsg(X)

that do not result in disclosures (see Section 4). Op-
erationally, such transformations are not a problem
for the server: the user can submit and receive out-
put from models withg(X) replacingX, and agen-
cies can protect relationships involvingg(X) rather
thanX. However, release strategies designed to protect
relationships involvingg(X) do not necessarily pro-
tect relationships involving other transformations ofX.
Clear-cut and universally acceptable transformations
of the data can be implemented prior to the agency’s
release of the data. Beyond that, one approach is to
disallow any transformations of the data, but at a high
cost in data utility. A less restricted alternative is to
limit the space of permissible transformations (e.g., to
logarithms, squares and square roots) or to limit the
models that can be fit with them [e.g., wheneverg(Xa)

andg(Xb) are not allowed to appear simultaneously in
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FIG. 3. Risk–utility scatterplots for both risk and utility measures and corresponding univariate histograms for Data Set II.

models, all other transformations ofXa andXb are pro-
hibited as well]. Finding methods to assess disclosure
risks that account for transformations, even when the
space of transformations is restricted, is an extremely
challenging problem for further research.

As mentioned in Section 4.2, approximate bounds
for unreleased regression coefficients of complex
models—such as generalized linear models or gener-
alized additive models—can be obtained by approxi-
mating the complex model with a linear regression. It
may be possible to obtain sharper bounds on estimated
coefficients. For example, methods for bounding cells
of tabular data correspond to bounds on coefficients of
particular log-linear models (Dobra et al., 2002; Dobra,
Karr and Sanil, 2003). Research on bounds for com-

plex models would have useful applications for data
dissemination even outside the model server context.

It is prudent for agencies to use relevant domain
knowledge when deciding what can be released by a
server. As touched on in Section 5, such considerations
can be incorporated into the risk and utility measures.
Examples that incorporate domain knowledge for gen-
uine data would be useful blueprints for agencies con-
sidering the analysis server approach.

APPENDIX

RESULT 1. Positive definiteness of S ensures that
ssupp lies within the ellipsoid defined by

(ssupp− c)tB(ssupp− c) < 1,(5)
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FIG. 4. Risk–utility plots for selecting an optimal release. Left: release based on a risk threshold; right: release based on a risk–utility
frontier.

where B = (S11 − S12S−1
22 S21)

−1/r , with S11,S12,

S21,S22 being the appropriately partitioned elements
of SD (with partitions corresponding to the lengths of
ssuppand sfree, respectively), r = s00− st

freeS
−t
22sfree and

c = S12S−1
22 sfree is the center of the ellipsoid.

PROOF. In the partition ofS given in (4), letSD be
partitioned as

SD =
[

S11 S12
S21 S22

]
,

whereS11 has dimensionk × k andS22 has dimension
(d − k)× (d − k). Let S−1

D have the corresponding par-
tition

S−1
D =

[
A11 A12
A21 A22

]
.

(SinceSD is positive definite, its inverse exists.)
WhereasS is also positive definite,

det(S) = det(SD)det(s00 − stS−1
D s),

wherest = (st
supps

t
free). SinceS andSD are both strictly

positive definite,s00 − stS−1
D s > 0, so that

stS−1
D s

s00
< 1(6)

and, therefore,

st
freeA22sfree+ 2st

freeA21ssupp+ st
suppA11ssupp

s00
< 1.(7)

With c = −A−1
11 A12sfree, (7) can be rewritten as

st
free(A22 − A21A−1

11 A12)sfree

s00
(8)

+ (ssupp− c)tA11(ssupp− c)
s00

< 1.

This can be further rewritten as(ssupp− c)tA11(ssupp−
c) < r, wherer = s00 − st

free(A22 − A21A−1
11 A12)sfree.

That is,

(ssupp− c)tB(ssupp− c) < 1,(9)

whereB = A11/r . WhereasA11 is strictly positive def-
inite andr > 0, the inequality in (9) represents the in-
terior of an ellipsoid.

Using expressions for inverses of partitioned matri-
ces (Guttman, 1982), we can rewritec andr in terms
of elements ofS asc = S12S−1

22 sfree and

r = s00 − st
freeS

−1
22 sfree.(10) �

NOTE 1. The volume of the ellipsoid is given by

VEk
= πk/2

�(1+ k/2)

1√
det(B)

(11)

= πk/2

�(1+ k/2)

(s00 − st
freeS

−1
22 sfree)

k/2

√
det(A11)

,
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where�(·) is the gamma function. Note that (11) can
be reexpressed asVEk

= Vk/
√

det(B), whereVk is the
volume of thek-dimensional unit hypersphere.

NOTE 2. For the regression ofX0 on {X1,

X2, . . . ,Xd}, the coefficient of determinationR2 is
X̂t

0X̂0/Xt
0X0 = Xt

0X̂0/Xt
0X0, which in terms of el-

ements of theS matrix is stS−1
D s/s00. We can see

from (6) that the interior of the ellipse defines the re-
gion (in ssuppspace) where theR2 is less than 1.

NOTE 3. Similarly, for the regression ofX0 on the
variables inXfree, the coefficient of determination, in
terms of elements of theS matrix, isst

freeS
−1
22 sfree/s00.

We will denote this quantity byρ.

NOTE 4. From (6)–(8),R2 can be written as

R2 = st
free(A22 − A21A−1

11 A12)sfree

s00

+ (ssupp− c)tA11(ssupp− c)
s00

(12)

= st
freeS

−1
22 sfree+ (ssupp− c)tA11(ssupp− c)

s00
.

Since bothS−1
22 andA11 are positive definite, andsfree

is known,R2 is minimized forssupp= c, so that

R2
min = st

free(S
−1
22 )sfree

s00
= ρ.

Hence the ellipse that defines the feasible region for
ssuppcorresponds toρ ≤ R2 < 1.

RESULT 2. If ssupp is distributed uniformly over
its support [given by the ellipsoid from (9)], then the
distribution of R2, the coefficient of determination for
the regression of X0 on {X1,X2, . . . ,Xd}, has density
function

fR2(u) = k/2

(1− ρ)k/2(u − ρ)k/2−1

(13)
for ρ ≤ u < 1

and expectation

E(R2) = k + 2ρ

k + 2
.(14)

PROOF. We know that the defining condition for
the ellipsoid is given by (6), which is equivalent to
the requirement thatR2 < 1 (see Note 1). Moreover,
ρ ≤ R2 sincesfree is known (see Note 4). Let us denote
the k-dimensional ellipsoid in byEk(1). We can also

define thek-dimensional ellipsoid that corresponds to
the conditionR2 < u (with ρ ≤ u) by Ek(u). Analo-
gous to the derivation of Result 1,Ek(u) is defined by

(ssupp− c)tBu(ssupp− c) < 1,(15)

whereBu = A11/ru, with A11 as in Result 1 and

ru = us00 − st
freeS

−1
22 sfree.(16)

If ssupp is distributed uniformly over its support
(Ek(1)), thenFR2(u) = Pr(R2 ≤ u) is the ratio of the
volumes of the two ellipsoids,V (Ek(u))/V (Ek(1)).
From (11)

FR2(u) = Pr(R2 ≤ u) = V (Ek(u))

V (Ek(1))

=
(

ru

r

)k/2

(17)

=
(

us00 − st
freeS

−1
22 sfree

s00 − st
freeS

−1
22 sfree

)k/2

=
(

u − ρ

1− ρ

)k/2

.

Differentiation of (17) yields (13), and a straightfor-
ward expectation calculation yields (14).�
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