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Limitation in a World Without Microdata:
A Risk-Utility Framework for Remote
Access Analysis Servers
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Abstract. Given the public’s ever-increasing concerns about data confiden-
tiality, in the near future statistical agencies may be unable or unwilling, or
even may not be legally allowed, to release any genuine microdata—data on
individual units, such as individuals or establishments. In such a world, an
alternative dissemination strategy is remote access analysis servers, to which
users submit requests for output from statistical models fit using the data, but
are not allowed access to the data themselves. Analysis servers, however, are
not free from the risk of disclosure, especially in the face of multiple, inter-
acting queries. We describe these risks and propose quantifiable measures of
risk and data utility that can be used to specify which queries can be answered
and with what output. The risk—utility framework is illustrated for regression
models.
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1. INTRODUCTION that fail to protect confidentiality may face serious con-
When disseminating microdata—on individual units, sequences. They or their employees may be SUb.JeCt 10
legal actions. They may lose the trust of the public, so

such as people or establishments—to the public, to re- h q | i - . d
searchers or to other agencies, national statistical agenfE at respondents are less willing to participate in stud-

cies face conflicting missions. They seek to release €S OF to provide accurate data.
microdata that support a wide range of statistical analy- EVeNn when identifiers such as names and addresses
ses, yet they also must safeguard the confidentiality of O Social security numbers are removed before re-

respondents’ identities and attribute values. Agencies!€@sing data, there remain serious risks of disclosure.
For example, ill-intentioned users (“intruders”) may be
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(Willenborg and de Waal, 2001). Of course, such sta- be possible for intruders to learn identities or at-
tistical disclosure limitation (SDL) techniques also re- tribute values by means of “targeted” queries. Fur-
duce the usefulness of the released data. thermore, queries that are innocuous individually may
As more external data bases become available andbroduce disclosures collectively. Because of these pos-
record linkage technologies improve, it becomes virtu- sibilities, we believe it is necessary to formulate a
ally mandatory to contemplate a world in which useful risk—utility framework (Duncan, Keller-McNulty and
microdata releases are no longer feasible. In a worldStokes, 2002), based on quantified measures of dis-
without microdata, three approaches to disseminationclosure risk and data utility, for deciding in a princi-
remain viable. The first and simplest is to release only pled way which queries can be answered by analysis
data summaries such as low-dimensional tables, graphservers. In this paper, we present such a framework,
and maps. Such summaries are less useful in some conwith an initial, specific application to servers that dis-
texts than complex analyses, and there remain disclo-seminate the results of linear regression analyses.
sure risks. For example, cell counts in a table can be The remainder of the paper is organized as fol-
bounded, possibly very accurately, from released mar-jows. Section 2 contains background on disclosure risk
ginal totals (Dobra, Karr, Sanil and Fienberg 2002; Do- and SDL techniques. Section 3 describes the statisti-
bra, Karr and Sanil, 2003). cal components of analysis servers. Section 4 suggests
The second approach is to release synthetic—thatishow users successfully can perpetrate disclosure at-
simulated—microdata (Rubin, 1993). Synthetic data tacks on servers, as well as methods for limiting the
bases can have low disclosure risks, since some Ofsyccess of these attacks. Section 5 presents quantita-
all of the released values are not genuine, but thistive measures of risk and utility for servers, illustrating
also decreases utility of the data. Both risk and util- thejr use with simulations of regression modeling. Sec-

ity depend strongly on the model used for synthesis. tion 6 concludes with an agenda for future research.
See Little (1993), Fienberg, Steele and Makov (1996),

Fienberg, Makov and Steele (1998), Raghunathan, 2 BACKGROUND ON SDL
Reiter and Rubin (2003) and Reiter (2002, 2003a, _ o _ o _ o
2005) for further discussion. This section is a primer on statistical disclosure limi-

The third approach, which is the subject of this tation. See Duncan and Lambert (1986), Federal Com-

paper, is to release the results of statistical analy- Mittee on Statistical Methodology (1994), Paass (1988)
ses of the data, such as estimated model parametergnd Willenborg and de Waal (1996, 2001) for further
and standard errors, without releasing any microdata.information.

This approach can be implemented using remote ac- There are three principal forms of disclosure for

cess analysis servers, to which users submit requestgnicrodata (Lambert, 1993). Identity disclosure occurs
for analyses and, in return, receive some form of out- when a record in the data base can be associated with

put (Keller-McNulty and Unger, 1998; Duncan and the individual unit it describes. Attribute disclosure oc-
Mukherjee, 2000; Schouten and Cigrang, 2003). In curs when the value of a sensitive attribute, such as in-
a world without microdata, the analysis dissemina- come or health status, is disclosed directly.
tion approach has advantages over the other two ap- Inferential disclosure, the principal risk addressed in
proaches. It permits a wider range of analyses thanthis paper, occurs when units are threatened not by their
does releasing only data summaries and it providesrecords but by statistical characteristics of the entire
results based on actual rather than simulated micro-data base. For example, suppose that automobile oper-
data. Several statistical agencies are developing or al-ating expenditures, which seem innocuous, are a good
ready use servers as part of their data disseminationpredictor of medical expenditures, which are not in-
strategies, including the Australian Bureau of Statis- nocuous. In some locales, such as rural areas that entail
tics, Statistics Canada, Statistics Denmark, Statisticssignificant travel to reach medical centers and where
Netherlands, Statistics Sweden, the U.S. Census Buthere is no public transportation, this is at least plausi-
reau, the U.S. National Agricultural Statistics Ser- ble. If this relationship were knowand known to be
vice, the U.S. National Center for Education Statistics a good relationship, an intruder with access to travel
and the U.S. National Center for Health Statistics expenditures could predict medical expenditures. An-
(Rowland, 2003). other example (Palley and Simonoff, 1987) occurs for
Even though they prevent direct access to the data,business data. Organizations may want relationships
analysis servers do not preclude disclosures. It maybetween salaries and nonconfidential variables to be
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protected, because otherwise, some employee could fi2003) or adding random noise to units’ values (Fuller,
a model that reveals his or her salary is less than pre-1993).
dicted. Restricted data SDL strategies can be applied with
For inferential disclosure, the mere existence of varying intensity. The amount of information released
some relationship may threaten confidentiality, but can be limited to subsets of varying sizes; aggregation
more often the threat is in the quantitative details and may be relatively fine or very coarse; relatively few or
the strength of the relationship. For example, it is ob- rather many data values may be swapped or perturbed.
vious that household income, a natural attribute to pro- Generally, the higher the SDL intensity, the greater the
tect, is positively correlated with home value, which Protection againstdisclosure risk, but the less the utility
in most jurisdictions is public information. No one Of the released data. _
can be prevented from “knowing” that the relation- At least implicitly, agencies choose SDL strate-
ship exists, but the values of either regression coeffi- gies by balancing confidentiality protection and utility

cients (the gquantitative details) or the correlation (the of the released information. We advocate use of ex-

- ; - licit risk—utility frameworks to choose SDL strategies,
trength of the relationsh b d in theP
ia:fnnegongLe relationship) may be suppressed in eas proposed by Duncan, Keller-McNulty and Stokes

To protect data confidentiality and meet users’ de- (2002). The general idea is to quantify the disclo-

) ) sure risk and data utility of possible SDL strategies,
mands for microdata, agencies and researchers havée . . . "

) and then select strategies that give the highest utility
developed an array of SDL strategies (Duncan,

. ) for acceptable confidentiality protection. Explicit ap-
de Wolf, Jabine and Straf, 1993). At the highest level, roaches have been applied successfully in a variety

SDL divides into strategies based on restricted acces f settings (Dobra et al., 2002; Dobra, Karr and Sanil
and those based on restricted data. Mechanisms for2003; Domingo-Ferrer, Mateo-Sanz and Torra, 2001

restricted access include data centers, licensing, a”‘bomatam Karr and Sanil, 2003; Yancey, Winkler and
vetting of researchers and their research plans. Reyeecy, 2002).

stricted access SDL strategies allow users to perform  Engirely different sets of issues and strategies arise
analyses directly on the underlying data, although spe-\yhen analyses involve distributed data bases that can-

cific analyses may be suppressed, either a priori, if thenot actually be integrated (Karr, Lin, Sanil and Reiter,
analysis is known to threaten confidentiality, or a pos- 2005; Sanil, Karr, Lin and Reiter, 2004a).

teriori, the output reveals a threat. These centers rely
on the honesty of researchers to protect confidentiality, 3. DESCRIPTION OF ANALYSIS SERVERS
and can be expensive for agencies and inconvenient for
researchers.

Restricted data SDL strategies alter the data in ways
that limit potential for disclosure. For example, the first
step in preventing identity disclosures is to remove ex-
plicit identifiers such as name, address and social se-3.1 Conceptual Framework
curity number, as well as implicit identifiers, such as
“Occupation= Mayor of New York.” AlImost always,

however, this is not enough. Again a broad bifurcation system that releases functions of the d&aD). These
occurs: restricted data strategies either produce infor-fynctions might include visualizations, estimates and
mation releases, such as tabular summaries and statissymmaries of distributions of variables, or estimates
tical analyses of the data, or datallk(_a releases. _AnaIyS|sof functional relationships among variables using com-
servers are an example of a restricted data informa-plex statistical models. The server receives from the
tion release SDL strategy. Restricted data datalike SDLyser a queryQ for some F(D), and it responds ei-
strategies include aggregating or coarsening the un-ther by providingF () or refusing to do so because of
derlying microdata. For example, to protect units with confidentiality or utility considerations. A more com-
high incomes, income is frequently “top-coded,” so plex response strategy would be to provide an alterna-
that one category is “More than $X.” They also include tive analysis rather than a refusal.

perturbing original values, such as by swapping data In addition to£, the components of the server in-
(Dalenius and Reiss, 1982; Gomatam, Karr and Sanil,clude:

Explicit risk and utility measures have not been de-
veloped for analysis servers. To begin our development
of such measures, we define the statistical components
of analysis servers.

Let D be the microdata collected by the agency, ei-
ther through a survey or censuss&ver is a software



166 S. GOMATAM, A. F. KARR, J. P. REITER AND A. P. SANIL

e Query space: The set@ of queries that the server One relatively well understood class of servertais
can process. For example, some servers can handléle servers (Dobra et al., 2002; Dobra, Karr and Sanil,
requests for tabular data analyses but not regressior2003; Karr, Dobra and Sanil, 2003). In this caBes a
analyses, whereas others do the opposite. The servelarge contingency table containing counts or suthis
responds to any) € @ with either the requested a partially ordered set of marginal subtablesi»fand
F (D) or arefusal to providé' (D). responses are either the requested subtable or refusal.
e Answer space: This is the set4 € @ of queries that  Even in this relatively simple case, computational and
the server answers with statistical output. We assumepolicy issues are challenging.

that the query foF (D) = D is never answered. We assume that the metadata associated wiith
e Disclosure risk measure: A real-valued function  are available to users, either directly from the server
such thatR(Qs1, ..., Qn) is the disclosure risk of  or through other sources. These metadata include at-
providing F (D) for the set of queriegQ, ..., Om}. tribute definitions, sample sizes, survey frames, re-
o Data utility measure: A real-valued function such  sponse rates, representations of missing values and
thatU(Qs1, ..., Qn) is the data utility of providing  similar information.

F (D) for the set of queriesO1, ..., .
(D) a 801 O} 3.2 Model Servers

The risk and utility measures are the components of _ _
a query mediation mechanism that determiness. The In th.e remainder of this paper, we focus on servers
query mediation mechanism must address the prob-1or Which the query space consists of requests for
lem of interaction among queries: answering several relevant output from statistical m_odels |n\_/oIV|ng are-
queries may allow users to piece together enough in-SPonse and one or more predictor variablesdn
formation to achieve disclosures. This issue has beenVe term thesemodel servers. Responses, when not

recognized by several authors (Palley and Simonoff, refusals, consist minimally of point estimates of the

2002) and is discussed further in Section 4. the coefficients and some global goodness-of-fit mea-

Servers may be either static or dynamic. In a static Sures, such as coefficients of determinatit disper-
server.s is precomputed. The underlying query medi- Sion parameters and deviances. We also assume that the
ation mechanism is typically based on either (i) opti- Means and standard deviations of all variable®iare

mization ofU (.4) subject to an upper bound constraint available.
on R(+4) or (ii) selection of 4 from a frontier of These assumptions are not without import. In partic-
undominated candidate spacas, that is, those for  ular, we believe strongly that a model should never be
which no other candidate release has both lower dis-released without at least global measures of fit and, in
closure risk and higher data utility. Both of these query most cases, as we discuss in the next paragraph, local
mediation mechanisms are illustrated in Section 5.  measures of fit. Moreover, in most cases utility con-
Dynamic servers accept queries in real time and re-siderations would militate against release of a “bad”
spond expeditiously if not immediately4 is deter- model. Therefore, areleased model can be, in the hands
mined by the queries that the server elects to answerOf an intruder, a significant threat to confidentiality.
Ultimately, a dynamic server reaches a terminal state Ideally, the response from the server should include
in which no remaining unanswered queries are answer-some way for users to check the fit of models. Obvi-
able. The disclosure risk and data utility associated ously, releasing the usual, unit-specific diagnostic sta-
with responding to a query must take into account thosetistics can disclose data values. For example, when
queries that have been answered previously. Dynamicactual residuals and predicted values are released for
servers present challenges at multiple levels. Practi-a submitted linear regression model, the user can ob-
cal issues include scalable computational implementa-tain the values of the response by simply adding the
tions. Conceptual issues include abstractions such agesiduals to the predicted values.
accounting for the fact that each answered query makes To diagnose some types of assumption violations,
others unanswerable. There are policy issues as wellhowever, the exact values of the residuals and inde-
notably user equity, to prevent a single user or group of pendent variables are not needed. Rather, the relation-
users from exerting undue influence on the trajectory ships among the residuals and independent variables
of the system. Whether dynamic servers are possibleare examined for patterns in hopes of identifying model
remains an open question. misspecifications. Thus, for remote servers it may be
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adequate to mimic patterns in the real-data diagnos-transformations, to create artificially extreme lever-
tics without releasing real-data values (Reiter, 2003b; age points and thereby learn the outcome variable for
Reiter and Kohnen, 2005). For linear regression diag- that unit from the predicted value of the fitted regres-
nostics, the basic idea is to release values of residualssion. As an example, supposg is a sensitive vari-
and independent variables simulated from distributions able unknown to the intruder who also knows that a
that approximate the relationships between the real-certain unitm in the data base has an unusual value
data residuals and independent variables. Users therX,, = x. The intruder could fit the regression &f
can treat these synthetic values like ordinary diagnos-on a simple transformation of,, to increase unit:’s
tics quantities, examining scatterplots of the synthetic leverage, for example, by using (1X,,, — x| + &) or
residuals versus the synthetic independent variables. 109(|X,, — x| + ¢), wheree is a small positive con-
stant, or by using*» whenx is large. Transformation
4. DISCLOSURES IN MODEL SERVERS of Xo (e.g., fitting a regression withto as the outcome

. _ . N variable) can further increase the influence of leverage
Our discussion of disclosures is primarily in the con- points

text of linear regression modeling, although much of it * jits need not be leverage points to be subject to

applies to other models as well. Section 4.1 describesyansformation attacks. “Dummy variables” can isolate

potential identity and attribute disclosures, and Sec- yints with unique predictor values. For instance, an

tion 4.2 describes potential inferential disclosures. intruder who knows a unique predictor valuexactly

4.1 Identity and Attribute Disclosures for can learn the associated response by including the pre-
Linear Regressions dictor 1 (X,, = x) [or by fitting two regressions, one

_ . . with 1(X,, < x) and the other with/ (X,, < x — §),
By not releasing microdata and not releasing real- yheres is a small constant].

data diagnostics such as residuals, many threats to at- ¢, categorical predictors, disclosures can occur
tribute and identity disclosure are eliminated. However, \yhen there are insufficient numbers of data cases
other threats remain. _ in the categories. For example, an intruder could
In particular, denial of access to microdata does notfit interactions among several categorical variables,
prevent identity and attribute disclosures effected by sych that some cross-classifications describe only one
transformations of variables. Transformation attacks ynit. For those cross-classifications, the outcomes can

can be used to attempt attribute disclosures when thepe learned exactly from the fitted values of the regres-
outcome is a sensitive variable and to attempt identity sjon.

disclosures when the outcome is a key identifier. The To mitigate the effects of transformation attacks’
success of these attacks depends on the user’s knowlagencies can limit the space of transformations and

edge that certain units with unique values of predictors types of models that users can submit as queries, but
are in the data base, and knowledge of these valuesthis also reduces data utility. Their effective limita-
For some data bases, such detailed knowledge will nottions on transformations should have minimal impact
be available, so that disclosures of individuals from on analyses of interest while satisfactorily controlling
transformations may not be likely. However, given the disclosure risk. Itis also desirable to specify limitations
proliferation of publicly available data, it is prudent to that can be enforced automatically by the server; per-
assume such knowledge is in the hands of intruders.  forming manual checks of every proposed analysis can
Because few operating model servers exist and thosepe time-consuming and expensive.
that do exist to our knowledge do not permit trans-  Next we propose some simple ways whereby agen-
formations, transformation attacks are primarily hypo- cies can build limitations into model servers. Not all
thetical at this point, but they could be simulated on a may be useful in any particular context, but they may
prototype server, although this would require modeling help prevent classes of transformation attacks with po-
of intruder knowledge and behavior (Fienberg, Makov tentially acceptable reductions in data utility. First, key
and Sanil, 1997). identifiers, such as age, race and sex, can be prohib-
To illustrate, units with unusual values of predictor ited as outcome variables but permitted as predictors.
variables—leverage points—can have a strong effectThis strategy eliminates identity disclosure attacks that
on the estimated regression, often resulting in small use keys as outcomes. The reduction in data utility can
residuals for these units. An intruder who knows that be small, since typically identifiers are not of interest
a certain unit is in the data base may be able, throughas outcomes. Second, SDL strategies for tabular data
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can be applied to categorical data in model servers.asXg|X1,2 3. We use the notatioX,p to denote the
For example, agencies can prohibit indicator variables collection of variables ik, U X g.
from being predictors unless at least three units with Let X denote the: x (d + 1) matrix constituting the
nonidentical outcome values satisfy the conditions de- data for the variableX (n is the number of data cases).
scribed by the indicator. The reduction in utility may For simplicity, we assume thXthas been centered: we
be small in many data sets, since usually few stronguseX; — X; for each variablé. Then for anyX,|X 5,
conclusions can be made for units in very sparsely the vector of least squares estimates of coefficients is
populated categories. Third, transformations that split by s = (Xt X 5)~1X.X
continuous variables into categories can be disallowed, alB =\ ABB Bora
thereby eliminating attacks that rely on such splits. For Any b, g, as well as its estimated covariance matrix
servers that permit generalized additive modeling or and the coefficient of determinatidile, can be com-
other methods of curve fitting, this may not substan- puted from the sample cross-product matrix
tially sacrifice data utility. Fourth, for an¥;, transfor- S (X XA (X X
mations of the formg (X; — h(X;)) can be disallowed ap = (Xa, XB)' Xa, XB).
for all h(X;) excepth(X;) = 0. This prohibits transfor-  Hence, a user who obtair® g completely from a set
mations designed to give individual values high lever- of released regressions learns all possible linear regres-
ages. Many transformations for analytical purposes, sions involvingX,p.
such asg(X;) = log(X;) or g(X;) = /X;, do use Suppose the server seeks to prevent intruders from
h(X;) =0, and so remain permissible. Agencies might learning the coefficients of some sensitive regression,
allow certaini(X;), in particulari(X;) = X;, when say X,|Xp. A naive approach is to deny (only) re-
they are innocuous. Finally, transformations can be sponses to queries fof, | X 5. However, this rule alone
disallowed when they increase the leverage values ofwill not prevent intruders from reconstructing the un-
units, or the values of th&;, beyond administrator- released regression from other, releasable regressions.
defined cutoffs. The cutoffs should be set to permit For example, suppose that the server provides regres-
common transformations while preventing outlandish sion coefficients for any query involving simple regres-
ones whose main purpose is transformation attacks. sions with X,g. For X;, X; € X,p, an intruder can
Agencies can inform users about the limitations im- solve for the cross-produ&, z[i, j] by using the vari-
posed on the answer space, although it may be wise notince of the predictor, say ;, and the released coeffi-
to disclose cutoff values. Some limitations, like those cientb;|; of X ; in the regression ok; on X ;,
in the first four points above, can be enforced by the . .
server before submitted models are even fit. Other lim- (1) Sapli, j1=biljSaslj, jl-
itations, like the fifth one above, may have to be en- By fitting simple regressions for all pairs of variables,
forced dynamically by the server. all terms inS, g are determined, so that an intruder can
reconstructX,| X g exactly.
More generally, anyn unknown off-diagonal ele-
For some data bases, agencies may seek to prevenhents ofS,z can be reproduced exactly as long as
users from fitting particular regressions. For example, the collection of released coefficients contains a sys-
an agency may not want to release the output from re-tem of m independent equations in these unknowns.
gressions that have small root mean squared errors an€learly, the coefficients for all simple regressions
sensitive dependent variables, or an agency may waninvolving X,p constitute such a collection. Other
to protect a certain relationship in the data. In this sec- examples include coefficients for the set of all re-
tion, we discuss ways that intruders can learn about un-gressions of sizé for any k (all b, c whereC C B
released regressions through released regressions arahd |C| = k) and coefficients for the set of sequen-

4.2 Inferential Disclosures for Linear Regressions

thereby attempt inferential disclosures. tial regressions,{byi, baji j, ..., ba s}, Where B =

To fix ideas, we define notation used throughout {i, j,...}. Thus, servers that release any regression as
the remainder of the paper. L& = (Xo, X1, ..., Xq) long as it has at leagt predictors, or servers that re-
be thed + 1 variables in the data bas®. For any lease only one regression for each predictor size, do
subsetB = {i, j,...} of variable indices, letXp = not protectS, .
{Xi, Xj,...}. We write the linear regression &f, on Reconstruction of some unreleas&d|Xp is not

the predictors whose indices are bhas X,| X g. For possible when at least one of the cross-producg in
example, the regressiaty on (X1, X2, X3) is written cannot be determined from released information. To
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prevent some cross-produstz[i, j] from being re- an intruder can obtain sufficiently tight boundslmnz
produced exactly, the server must deny responses tar on particular sensitive componentstipfz, inferen-
queries involvingX; and X ; simultaneously. That is, tial disclosures may occur.
the server cannot provide output for any query involv-  Variants of this approach to obtaining bounds for un-
ing one of these variables as the outcome and the othereleased coefficients can be applied to obtain approxi-
as a predictor, or any query where both variables aremate bounds in other models. Ordered categorical and
predictors. dichotomous outcomes can be treated as continuous for
Although limiting the releases can prevent exact re- purposes of using (2) and (3). Nominal variables with
construction ofS, 3, it still may be possible to bound more than two categories can be split into a series of
closely the unknown elements & . We next de-  dichotomous indicator variables, which are then used
scribe a procedure for finding upper and lower bounds in (2) and (3). Obtaining more precise bounds for other
for the unknown elements by exploiting the fact that models is a subject for future research.
S, B IS positive definite (denoted I8y, > 0).
Let KX = {(i, j):Supli, jlis knowr} be the set of 5. DISCLOSURE RISK AND UTILITY MEASURES
indices of the known elements d§,gz. For each FOR MODEL SERVERS

(i, j) € X, lets;; denote the value of its corresponding o
S.zli, j1. For any(, m) ¢ X, we can find the upper As for other SDL strategies, in the model server con-

bound forS,[1, m] by solving the optimization prob-  textitis essential to use quantitative measures of risk

lem and utility to decide what is ultimately released. This
section describes such measures generally and, as an
maxS, g, m] entry point to a much larger research effort, presents
2) Susli, j1=si; forall (i, j) € X, specific instances for a linear regression setting.
S.t { S50 In both cases, as well as in other settings such as ta-

_ o _ _ ble servers (Dobra et al., 2002; Dobra, Karr and Sanil,

Define F,,, a matrix with the same dimensions 2003), the distinction between risk and utility can be
as Sqp, as follows. If p =g, thenF,li, jl="11for  gpscure. This is the heart of the risk-utility trade-off
li.j1 = [p.q] (= lg,pD and is zero otherwise. If  proplem: legitimate users and intruders may want the

p #q, thenFyli, j1 =1/2 for [i, j1 = [p.q] and  same or nearly the same things from the data.
[i, j1=1g, p] and is zero otherwise. Then we can re-

formulate the optimization problem (2) as 5.1 General Measures

max TRF;,,Sup) As suggested in Section 4, identity disclosure risk
o can be reduced by refusing to provide output for
® ot {Tr(F”SﬂB) =sij forall G, j) € X, queries involving suspicious transformations. Hence
Sus >0, for analysis servers we focus on measures of disclosure
which is a semidefinite programming (SDP) problem risk that reflect intruders’ capability to predict accu-
expressed in standard form (Todd, 2001). Efficient al- rately such values of individual units’ attributes or re-
gorithms and software implementations for SDP prob- lationships among sensitive attributes. We propose two
lems are available (Vandenberghe and Boyd, 1996;broad classes of such risksi-sample prediction risk
Todd, 2001). The lower bound fd8,z[l, m] is also refers to intruders’ ability to predict accurately sensi-
obtained by solving the corresponding minimization tive information for units in the data base. An example
problem. is predicting an outcome for an atypical unit whose
These bounds provide the feasible range of valuesresidual is smallin some released or unreleased regres-
that each individual unknown element can take. When sion. Out-of-sample prediction risk, by contrast, refers
more than one element i®,5 is unknown, the indi-  to intruders’ capability to predict closely sensitive in-
vidual feasible ranges determine a bounding box for formation for units not in the data base. An example
the joint feasible region. It is possible to sample val- is learning, either exactly or with little uncertainty, the
ues ofS, p from the joint feasible region by sampling values of the coefficients of a regression for a sensi-
uniformly from the bounding box and then accepting tive outcome, which can then be used to predict that
or rejecting the sample point depending on whether thesensitive variable for units not in the data base.
resultingS, z is positive definite. These values 8fp Measures of utility quantify the amount of informa-
in turn provide draws of feasible valuesinfiz. When tion contained in the answer spage relative to the
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information when no restrictions are made on the an- variables ofXsypp and those ofXfee, and among the
swer space. We propose two classddume refers to variables ofXree.
the size of, for example, the number of regression  Intruders may attempt to usésypp to reproduce
models in. Satistical usefulness refers to the ex-  any of the cross-products involvingp and elements
tent to which the released information is useful for of Xsypp and hence any of the associated regression co-
statistical inference. An example is the predictive ac- efficients. Note that the strategy of predicting attributes
curacy of the models int. High statistical usefulness in Xg,pp from attributesXfee is not effective: the in-
is not necessarily equivalent to large volume: a small formation needed to do this is already available in the
answer space may well contain higher quality models ellipsoid obtained using Result 1 (see the Appendix).
than some larger one. Utility also can incorporate do- In addition to restricting the search space, using
main knowledge: for instance, to satisfy users’ needs, 4, has practical benefits. Any regression that does
agencies may decide particular relationships must benot involve Xg can be fit, which increases both vol-
released. ume and statistical usefulness. Relationships among
These classes of risk and utility measures are relatedpredictors of Xg can be examined, which increases
to the predictive accuracy of the modelsAnRiskand  statistical usefulness by facilitating checks for multi-
utility do have a distinction in our formulation: utility collinearity.
is always calculated using the information in released We search for an optimak over possible specifica-
models, whereas risk can be calculated using what istions of Xs,pp and correspondingtsupp Our specific
inferred about unreleased models. risk and utility measures are based on users’ ability to
predict the unknown cross-products betweésn and
Xsupp Using output fromAs,pp These entries, as well

_ - _ as the rest of the cross-products ma8jxcan be parti-
Risk and utility measures obviously depend on the tigned as

types of models in the query spa¢e To make the
ideas concrete and to illustrate the general notions of
risk and utility, suppose tha@ corresponds to linear
regressions and that the data b&e&ontains a single
sensitive variable that the agency does not want intrud-
ers to be able to predict too accurately from released
regressions on the other variablesin products betweeX o and Xree.

Using the notation of Section 4.2, & be the sensi- When all elements ofS are known except for

tive variable and lek, ..., X, be the other variables. the strips. the feasible values @k, must lie in
We assume the agency is using a static model server PSsupp upp

i . the interior of an ellipsoid, as shown in Result 1 in the
and thus seeks to determine an optimal answer SPaCG hpendix. We use this ellipsoid to construct specific
that results in high data utility with acceptable disclo- bp ' P P

. e measures of in-sample and out-of-sample disclosure
sure risk. For simplicity, we assume that no transfor-

mations of theX; are allowed. risk.

For this @, there are 2 queries involvingXo as Soecific risk measures. Residual risk Rres quantifies
the dependent variable, corresponding ) Rossible users’ ability to predictXq for particular subsets of
choices for. Calculating the risk and utility of all  units in the data, for example, those with atypical at-
these is infeasible even for small valuesdofThere- tribute values. The risk measure is the reciprocal of
fore, we restrict4 to a more manageable subset, which the square root of the average of the squared residu-
we call Asypp (“supp” denotes suppressed variables), als for the selected subset, obtained from the regres-

5.2 Risk and Utility Measures for a Linear
Regression Setting

whereD = {X4, ..., X4}, Ssupphas the cross-products
betweenXg and Xsypp and siee contains the cross-

defined as follows. sion Xg| Xtree.

Suppose thaKsypp< {X1, X2, ..., Xq} and Xfree = Prediction risk Rpreq quantifies users’ ability to pre-
{X1, X2,..., X4} \ Xsupp and letAsyppbe the answer  dict Xo from the largest possible regression, namely
space containing all regressioegept those withXg Xo|X1, X2, ..., Xg. When some regressions are sup-

as the response and at least one of the variablEgjg) pressed (i.e..Xsuypp # @), the user draws feasible
as a predictor, or vice versa. In this case, any user, legit-values of the unreleasesg,ppfrom the ellipsoid as de-
imate or not, can determine exactly all cross-productsscribed in Section 4, thereby generating feasible co-
betweenXy and the variables oKfee, between the  efficients forXg| X1, Xo, ..., X4. The risk measure is
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the average value at? for these feasible regressions, for Ryes the agency specifies the target set, and for
which summarizes the predictive ability of the feasible Ursqut the agency specifies weights based on domain

models. When drawingsypp from the ellipsoid uni-  knowledge.

formly, the sampling distribution of the averagé of The measures are evaluated on each of 510 possible
the feasible models can be determined analytically, asreleases; the two unevaluated regressions incKigle

is shown in Result 2 in the Appendix. on the intercept only an&g| X1, ..., Xg. Figures 1-3

These measures can be adjusted to meet particuladisplay scatterplots of the utility measures versus the
needs. FORpreq Values ofssypp can be drawn nonuni-  risk measures. Each point represents the value of the
formly, for example, to reflect domain knowledge by utility and risk functions for a particular candidate
giving more weight to feasible regions consistent with releasesypp These displays can be used to seléct
estimated coefficients available from published analy- In all figures, color indicates the dimension Xfee.
ses. The values can be drawn so that certain coeffi-
cients are always positive or always negative. Rather
than the average of the feasibR?, the measure can

Behavior of the risk and utility measures. For Data
Set | Figure 1 shows that, as expected, utility generally

be some function of the bounds on the predicted valuesNcréases asrisk increases. The precise relationship de-
of Xo implied by the feasible regressions. Similarly, pends on the risk—utility combination, suggesting that

for Ryes the residuals can be based on the feasible re-these measures capture different aspects of risk and

gressions rather than the released ones, or the measufdility for this data set. This results from the structure

can be based on the relative absolute residuals rathePf Data Set |- any release containing one or more of
than squared residuals. (X1, X2, X3) has high risk and utility, and any other

release has low risk and utility. In Figure 2, the colored
Specific utility measures. To measure volume, we  npoints (those releases for whidfee does not contain
use the dimension oKsee. For statistical usefulness any of X1, X2, X3) all lie in the low-risk, low-utility re-
we present two measurednweighted accuracy Uysq gion. The effect of X1, X2, X3) also explains why no
is the R? of Xo| Xfree. Weighted accuracy Ursqwt @dds  clear dimension effect is evident in Figure 1.
weightsw; that reflect the importance of the variables,  Eor Data Set I Figure 3 indicates a clear dimension
Ursq+ Xicfree Wi, @llowing agencies to incorporate do-  effect. This is because no predictors are strong, so that

main knowledge into utility measures. Eaah can  increasing the number of predictors raises all measures
be interpreted as theR? points” gained by including o risk and utility.

X; in Xfree Settingw; = 1 forcesX; to be in Xjree.

Setting allw; = 0 corresponds to having no domain  Selecting an optimal release. We now illustrate how

knowledge-based preferences about which variables#supp Can be determined from the risk—utility plot of

are included. the candidate releases. As mentioned in Section 3, gen-
Other utility measures targeted at estimation rather €ral approaches include optimization@f4) subject

than prediction can be devised and are associated0 an upper threshold oR(A) and selection ofsupp

closely with the bounds derived in the Appendix. from a frontier of undominated candidate spaces—
those for which no other candidate release has both

lower disclosure risk and higher data utility. These ap-
We now illustrate the risk and utility measurBgreq, proaches are displayed in Figure 4.

Rres Ursq and Ursqut Using two simulated data bases. ~ To illustrate the risk threshold approach, suppose

Both comprise 200 records, and contain one responsdghe agency seeks to prevent intruders from predict-

variable Xo and nine predictorsXy, Xo, ..., Xg. In ing Xo for the chosen target units within 5% on av-

Data Set |,X;, X» and X3 are highly correlated, and erage, which corresponds roughly to Rrsthreshold

each is highly correlated witlty. Data Set Il has no  of 0.2. Based on this, we pick the release candidate

strong relationships among the variables. with highestUysq and Rres < 0.2, yielding as the op-
For Rres We select the units with the highest 5% of timal releaseAsypp associated withXsypp= {X1}, S0

the Xg values as the target set, so that the agency isthat Xfree = {X>, X3, ..., Xo}.

protecting units with extreme values &b. For Rpred To illustrate the frontier approach, the agency first

we draw feasible values afypp uniformly from the  defines a function of risk and utility that quantifies

ellipse. ForUrsqut We set thew; to equal theR? of the “benefit” to the agency for specified values of risk

the simple linear regression dfp on X;. In reality, and utility. Contours of this function on the risk—utility

5.3 lllustrating the Measures: A Simulation Study
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FiG. 1. Risk-utility scatterplots for both risk and utility measures and corresponding univariate histograms for Data Set 1.

plane show how the agency is willing to trade risk for Data Set Il would yield very different risk—utility val-
utility for a fixed level of “benefit.” The agency then ues for the optimal release.
finds the point on the curve that connects all undomi-
nated release candidates—the frontier shown in color 6. DISCUSSION
in the right panel of Figure 4—that is the first to touch
a risk—utility trade-off contour of highest benefit. In ~ Much of our discussion of disclosure risk and data
the figure the trade-off contours are linear; benefit in- utility in model servers has been in the context of lin-
creases as the line is shifted in a southeast direction€ar regression, and our illustrative example involved
The line is moved northwest, with the slope kept con- protecting a single variable. Protecting multiple vari-
stant, until it touches a point on the frontier, and this ables and dealing with models other than linear regres-
point corresponds to the optimal release. In Data Set Isions complicate the measurement of risk and utility.
this procedure again pickgsypp defined byXsypp= We document here some of these additional challenges
{X1} as the optimal release. and suggest paths for future research.

Clearly risk—utility plots and optimal releases based In some data bases relationships involving multiple
on them will vary for different data sets. For instance, variables are subject to inferential disclosure. Release
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FIG. 2. Risk—utility scatterplots for both risk and utility measures for Data Set |. Colored points are those releases in which
{X1, X2, X3} ¢ Xfree:

decisions for individual variables necessarily interact that do not result in disclosures (see Section 4). Op-
and can affect risk and utility. For example, suppose erationally, such transformations are not a problem
X, and X, are sensitive and can be predicted closely for the server: the user can submit and receive out-
using Oth.er variables. PrOte.Ctln.‘ga by prohibiting a put from models withg(X) replacing X, and agen-
set of variables from appearing in models wkh also  ¢jes can protect relationships involving X) rather
restricts the answer model space Xy, and vice versa.  thanx. However, release strategies designed to protect
For a small number of variables, it is possible 10 o |ationships involvingg(X) do not necessarily pro-
enumerate all regressions using the sensitive var_lgt_nle%ct relationships involving other transformationssof
as outcomes, and to compute the risks and utilities . .
Clear-cut and universally acceptable transformations

for each possible release. This approach is compu- : : ,
tationally challenging for data sets with many vari- of the data can be implemented prior to the agency’s

ables. It may be possible to consider only a small set'¢léase of the data. Beyond that, one approach is to
of predictors as candidates for those that may not ap_dlsallow any transformations of the data, but at a high
pear with the sensitive variables. Developing effective COSt in data utility. A less restricted alternative is to
search strategies, as well as measures of combined riskmit the space of permissible transformations (e.g., to
and utility, is an area for further research. logarithms, squares and square roots) or to limit the
It is important from a utility perspective to pro- models that can be fit with them [e.g., wheneyek )
vide output for models involving transformatiop&X) andg(Xj,) are not allowed to appear simultaneously in
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FiG. 3. Risk-utility scatterplots for both risk and utility measures and corresponding univariate histograms for Data Set II.

models, all other transformations &f, and X are pro- plex models would have useful applications for data
hibited as well]. Finding methods to assess disclosuredissemination even outside the model server context.
risks that account for transformations, even when the It is prudent for agencies to use relevant domain
space of transformations is restricted, is an extremelyknowledge when deciding what can be released by a
challenging problem for further research. server. As touched on in Section 5, such considerations
As mentioned in Section 4.2, approximate bounds can be incorporated into the risk and utility measures.
for unreleased regression coefficients of complex Examples that incorporate domain knowledge for gen-
models—such as generalized linear models or gener-uine data would be useful blueprints for agencies con-
alized additive models—can be obtained by approxi- sidering the analysis server approach.
mating the complex model with a linear regression. It
may be possible to obtain sharper bounds on estimated APPENDIX
coefficients. For example, methods for bounding cells
of tabular data correspond to bounds on coefficients of
particular log-linear models (Dobra et al., 2002; Dobra,
Karr and Sanil, 2003). Research on bounds for com-(5) (Ssupp— ©)'B(Ssupp— ©) < 1,

ReEsuLT 1. Positive definiteness of S ensures that
Ssupplies within the ellipsoid defined by
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Selection of Optimal Release based on Risk-Utility Measures
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where B = (S11 — S125,5°S21) " Y/r, with Sp1, S,
Sp1, Sp2 being the appropriately partitioned el ements
of Sp (with partitions corresponding to the lengths of

Ssuppand Siree, respectively), r = soo — Sﬂeesg_zzsfree and
C = S12S,5 Sree IS the center of the ellipsoid.

PROOF In the partition ofS given in (4), letSp be
partitioned as

Sp = [511 512]
1522’
whereS; 1 has dimensioit x k andS;2 has dimension
(d—k)x(d—k).Let SBl have the corresponding par-
tition
1 _ [All A12:|
D A21Az ]
(SinceSp is positive definite, its inverse exists.)
WhereasS is also positive definite,
det(S) = det(Sp) detlsoo — §'S,'9),

wheres' = (Siypsee)- SinceSandSp are both strictly

positive definitesoo — §'Sp's > 0, so that
sS;ts
(6) D~ 1
500

and, therefore,

Ko SrecA22Stree + 25 oA 21Ssuppt+ Sfsupgo\llssupp -
500

1

With c = —Al_llAlzsfree, (7) can be rewritten as

S oo(A22 — A21ATI A1) Stree
500
n (Ssupp— C)tAll(Ssupp— C) -
500

(8)

1

This can be further rewritten @Ssypp— €)' A11(Ssupp—
) <r, wherer = 500 — See(A22 — A21A1_11 A12)Stree-
That is,

(9)

whereB = A11/r. Wheread\ 11 is strictly positive def-
inite andr > 0, the inequality in (9) represents the in-
terior of an ellipsoid.

Using expressions for inverses of partitioned matri-
ces (Guttman, 1982), we can rewriteandr in terms
of elements oS asc = Slzsz_zlsnee and

(Ssupp— C)IB(Ssupp— 0 <1,

(10) r =500 — #reesgzlsfree- |
NoTE1l. The volume of the ellipsoid is given by
Ve — mk/2 1
%~ I(1+k/2) /detB)
(11) L
T[k/z (SOO - greesgz Sfree)k/z

T TA+k/2 JAetALD ’
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whereI'(-) is the gamma function. Note that (11) can
be reexpressed d%, = Vi /+/det(B), whereV; is the
volume of thek-dimensional unit hypersphere.

NoTE 2. For the regression ofXg on {X4,
Xo,..., X4}, the coefficient of determinatio®? is
XhXo/ XhXo = X5 Xo/ X5 X0, which in terms of el-
ements of theS matrix is s’SBls/soo. We can see

from (6) that the interior of the ellipse defines the re-
gion (inssyppspace) where th&? is less than 1.

NoTe 3. Similarly, for the regression dfg on the
variables inXiee, the coefficient of determination, in
terms of elements of th& matrix, is sfﬂeesz‘zlsfree/soo.
We will denote this quantity by.

From (6)—(8),R? can be written as

 Shee(A22— A2AT A1) Sree
B S00
n (Ssupp— C)IAll(Ssupp— ©)
S00
_ #reesz_zlsfree‘F (Ssupp— ©)'A11(Ssupp— ©)
$00

NOTE 4.

R2

12)

Since botksgzl andA1; are positive definite, anshee
is known, R2 is minimized forss,pp= C, SO that

_ Stfree(sg_zl)sfree =p

2
Rfin =
min
S00

Hence the ellipse that defines the feasible region for

SsuppCorresponds tp < R? < 1.

RESULT 2. If sgypp is distributed uniformly over
its support [given by the ellipsoid from (9)], then the
distribution of R2, the coefficient of determination for
the regression of X on {X1, Xo, ..., X4}, has density
function

k/2 k/2—1

Sr2(u) = W(u —p)

(13)
forp<u<1

and expectation

k+2p
k+2°

PrROOFE We know that the defining condition for
the ellipsoid is given by (6), which is equivalent to
the requirement thak? < 1 (see Note 1). Moreover,
p < R? sincesyee is known (see Note 4). Let us denote
the k-dimensional ellipsoid in byé;(1). We can also

E(R? =

(14)

S. GOMATAM, A. F. KARR, J. P. REITER AND A. P. SANIL

define thek-dimensional ellipsoid that corresponds to
the conditionR? < u (with p < u) by & (u). Analo-
gous to the derivation of Result & () is defined by
(15) (Ssupp— ©)'B, (Ssupp— ©) < 1,

whereB, = A11/r,, with A1 as in Result 1 and

(16) Fy = usoo — éreesgzlsfl’ee-

If Ssupp is distributed uniformly over its support
(€x(1)), then Frz(u) = Pr(R? < u) is the ratio of the
volumes of the two ellipsoidsy (& (u))/ V (&x(L)).
From (11)

V(&)

FR2(I/£) = Pr(R2 < I/l) = m

)

r

_ <”S00 - St‘freeszzlsffee>k/2
$00 — S?reesgzl Stree

B (u _ p)k/Z
=12, )
Differentiation of (17) yields (13), and a straightfor-
ward expectation calculation yields (14)1

(17)
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