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New Nonparametric Tests of Multivariate
Locations and Scales Using Data Depth
Jun Li and Regina Y. Liu

Abstract. Multivariate statistics plays a role of ever increasing importance
in the modern era of information technology. Using the center-outward rank-
ing induced by the notion of data depth, we describe several nonparametric
tests of location and scale differences for multivariate distributions. The tests
for location differences are derived from graphs in the so-called DD plots
(depth vs. depth plots) and are implemented through the idea of permutation
tests. The proposed test statistics are scale-standardized measures for the lo-
cation difference and they can be carried out without estimating the scale or
variance of the underlying distributions. The test for scale differences intro-
duced in Liu and Singh (2003) is a natural multivariate rank test derived from
the center-outward depth ranking and it extends the Wilcoxon rank-sum test
to the testing of multivariate scale. We discuss the properties of these tests,
and provide simulation results as well as a comparison study under normality.
Finally, we apply the tests to compare airlines’ performances in the context
of aviation safety evaluations.

Key words and phrases: Data depth, DD plot, multivariate location differ-
ence, multivariate scale difference, permutation test, multivariate rank test,
Wilcoxon rank-sum test.

1. INTRODUCTION

Recent advances in computer technology have fa-
cilitated the collection of massive multivariate data in
many industries. The demand for effective multivariate
analyses has never been greater. Most existing multi-
variate analysis still relies on the assumption of nor-
mality, which is often difficult to justify in practice.
Using the center-outward ranking induced by the no-
tion of data depth, we describe several nonparametric
tests for location and scale differences in multivariate
distributions. These tests are completely nonparametric
and have broader applicability than the existing tests.
They can even be moment-free and thus valid for test-
ing parameters which are not defined using moments,
such as the locations of Cauchy distributions.

For testing location differences, our test statistics are
constructed from the graphs observed in the DD plots
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(depth vs. depth plots). The DD plot, introduced by
Liu, Parelius and Singh (1999), is a two-dimensional
graph which can serve as a simple diagnostic tool for
visual comparisons of two samples of any dimension.
Different distributional differences, such as location,
scale, skewness or kurtosis differences, are associated
with different graphical patterns in DD plots. In this
paper, we focus on the pattern associated with the lo-
cation difference in the DD plots and we propose two
tests for testing possible location differences between
two samples. Since the data depth is affine-invariant,
it provides a scale-standardized measure of the po-
sition of any data point relative to the center of the
distribution. This property allows us to view our depth-
based test statistics as scale-standardized measures for
the location difference. Consequently, the tests can
be carried out without the difficulty of estimating the
variance of the null sampling distributions. Instead, we
derive the decision rules by obtainingp-values using
the idea of permutation.

For testing multivariate scales, we review a new
rank test proposed by Liu and Singh (2003). This rank
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test is derived from the center-outward ranking in-
duced by data depth assigned to the combined sam-
ple. It is constructed in a way similar to the Wilcoxon
rank-sum test and can be carried out using either the
Wilcoxon rank-sum table or simulations. It is a com-
pletely nonparametric test for testing the scale expan-
sion or contraction. It includes the Ansari–Bradley and
the Siegel–Tukey tests as special cases for testing the
equality of variances in the univariate setting.

The tests discussed in this paper are appealing since
they are guided visually by the DD plot and admit a
full theoretical justification. Most importantly, they are
easy to implement regardless of the dimensionality of
the data. For all the proposed tests, we present several
simulation studies, including power comparisons be-
tween our proposed nonparametric tests and some ex-
isting parametric tests. The performance of our tests
is generally comparable to the parametric tests under
the multivariate normal setting, with only minor loss of
efficiency. However, our tests dramatically outperform
the parametric tests under the multivariate Cauchy set-
ting. This is in part because our tests are moment-free
and thus are more suitable for dealing with parameters
not derived from moments, such as those in the case of
Cauchy distributions.

The rest of the paper is organized as follows. In Sec-
tion 2 we give a brief review of the notion of data depth,
depth-induced multivariate rankings and DD plots. In
Section 3 we describe two tests for location differ-
ences. These tests are referred to as theT -based test
and theM-based test, and they are derived from the
graphs in DD plots which reflect location changes be-
tween two distributions. We then carry out the tests by
using Fisher’s permutation test to determinep-values.
We justify the validity of the tests by showing that
the distribution of the obtainedp-values follows ap-
proximately the uniform distribution U[0,1] under the
null hypothesis and also that it decreases to 0 under
the alternative hypothesis. Results from several simu-
lation studies are presented. Under the normality as-
sumption, our tests are comparable to the HotellingT 2

test. We devote Section 4 to the scale comparison of
two multivariate distributions, which includes a depth-
induced multivariate rank test introduced in Liu and
Singh (2003) and a graphical display of scale curve
(Liu, Parelius and Singh, 1999). In Section 5 we ap-
ply our tests to compare the performance of 10 air-
lines using the airline performance data collected by
the Federal Aviation Administration (FAA). Finally,
we provide some concluding remarks in Section 6.

2. NOTATION AND BACKGROUND MATERIAL

We begin with a brief description of the notion of
data depth and its properties.

2.1 Data Depth and Center-Outward Ranking of
Multivariate Data

A data depth is a way to measure the “depth” or
“outlyingness” of a given point with respect to a mul-
tivariate data cloud or its underlying distribution. It
gives rise to a naturalcenter-outward ordering of the
sample points in a multivariate sample. This ordering
gives rise to new and easy ways to quantify the many
complex multivariate features of the underlying distri-
bution, includinglocation, quantiles, scale, skewness
and kurtosis. This ordering in effect turn provides a
new nonparametric multivariate inference scheme (cf.
Liu, Parelius and Singh, 1999), which includes sev-
eral graphical methods for comparing multivariate dis-
tributions or samples. Some of the methods in Liu,
Parelius and Singh (1999) motivated the comparison
methods presented in this paper. Before we show how
the depth and its ordering can be used to construct mul-
tivariate nonparametric tests, we first use the simpli-
cial depth proposed by Liu (1990) as an example of
depth measure (1) to describe the general concept of
data depth and its corresponding center-outward order-
ing, and (2) to introduce necessary notation.

The word “depth” was first used by Tukey (1975)
to picture data, and the far reaching ramifications of
depth in ordering and analyzing multivariate data was
observed and elaborated by Liu (1990), Donoho and
Gasko (1992), Liu, Parelius and Singh (1999) and oth-
ers. Many existing notions of data depth were listed in
Liu, Parelius and Singh (1999).

Let {Y1, . . . , Ym} be a random sample from the dis-
tribution G(·) in R

k , k ≥ 1. We begin with the bivari-
ate settingk = 2. Let�(a, b, c) denote a triangle with
verticesa, b andc. Let I (·) be the indicator function,
that is,I (A) = 1 if A occurs andI (A) = 0 otherwise.
Given the sample{Y1, . . . , Ym}, the sample simplicial
depth ofy ∈ R2 is defined as

DGm(y) =
(

m

3

)−1 ∑
(∗)

I
(
y ∈ �(

Yi1, Yi2, Yi3

))
,(2.1)

which is the fraction of the triangles generated from
the sample that contain the pointy. Here (∗) runs
over all possible triplets of{Y1, . . . , Ym}. A large value
of DGm(y) indicates thaty is contained in many tri-
angles generated from the sample, and thus it lies
deep within the data cloud. On the other hand, a small
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DGm(y) indicates an outlying position ofy. ThusDGm

is a measure of the depth (or outlyingness) ofy w.r.t.
the data cloud{Y1, . . . , Ym}.

The above simplicial depth can be generalized to any
dimensionk as

DGm(y)

(2.2)

=
(

m

k + 1

)−1 ∑
(∗)

I
(
y ∈ s

[
Yi1, . . . , Yik+1

])
,

where(∗) runs over all possible subsets of{Y1, . . . , Ym}
of sizek + 1. Heres[Yi1, . . . , Yik+1] is the closed sim-
plex whose vertices are{Yi1, . . . , Yik+1}, that is, the
smallest convex set determined by{Yi1, . . . , Yik+1}.
When the distributionG is known, then the simplicial
depth ofy w.r.t. toG is defined as

DG(y) = PG{y ∈ s[Y1, . . . , Yk+1]},(2.3)

where Y1, . . . , Yk+1 are k + 1 random observations
fromG. DepthDG(y) measures how deepy is w.r.t.G.
A fuller motivation together with the basic properties
of DG(·) can be found in Liu (1990). In particular, it
is shown thatDG(·) is affine-invariant and thatDGm(·)
converges uniformly and strongly toDG(·). The affine
invariance ensures that our proposed inference meth-
ods are coordinate-free, and the convergence ofDGm

to DG allows us to approximateDG(·) by DGm(·)
whenG is unknown.

For the given sample{Y1, Y2, . . . , Ym}, we calcu-
late all the depth valuesDGm(Yi) and then order the
Yi ’s according to their ascending depth values. De-
noting by Y[j ] the sample point associated with the
j th smallest depth value, we obtain the sequence
{Y[1], Y[2], . . . , Y[m]} which is the depth order statistics
of theYi ’s, whereY[m] is thedeepest point andY[1] is
the most outlying point. Here, a smaller rank is associ-
ated with a more outlying position w.r.t. the underlying
distribution G. Note that the order statistics derived
from depth are different from the usual order statis-
tics in the univariate case, since the latter are ordered
from the smallest sample point to the largest, while the
former starts from themiddle sample point and moves
outward in all directions. This property is illustrated in
Figure 1, which shows the depth ordering of a random
sample of 500 points drawn from a bivariate normal
distribution. The plus (+) marks the deepest point, and
the most inner convex hull encloses the deepest 20%
of the sample points. The convex hull expands further
to enclose the next deepest 20% by each expansion.
Such nested convex hulls, determined by the decreas-
ing depth value, also indicate that the depth ordering is
from the center outward.

FIG. 1. Depth contours for a bivariate normal sample.

When the distributionG is known,DG(y) leads to
an ordering of all points inRk from the deepest point
outward. The deepest point here is the maximizer of
DG(·) (or the average of the maximizers if there is
more than one), which is denoted byµ∗. Clearly,µ∗
can be viewed as a location parameter of the distribu-
tion G, and it coincides with the mean (and the center
of symmetry) ifG is symmetric.

2.2 DD Plots for Graphical Comparisons of
Multivariate Samples

Let {X1, . . . ,Xn} (= X) and {Y1, . . . , Ym} (= Y)

be two random samples drawn, respectively, from
F andG, whereF andG are two continuous distri-
butions inR

k . Comparisons of the two samples can be
conveniently studied in the framework of testing the
null hypothesis

H0 :F = G.

Depending on the specific difference we seek between
F andG, we can choose a proper alternative hypothe-
sis to carry out the test. The so-calleddepth vs. depth
plots were proposed by Liu, Parelius and Singh (1999)
for graphical comparisons of two multivariate samples.
Specifically, the DD plot is the plot ofDD(Fn,Gm),
where

DD(Fn,Gm)

(2.4)
= {(

DFn(x),DGm(x)
)
, x ∈ {X ∪ Y}}.

This is the empirical version of

DD(F,G)

(2.5) = {(
DF (x),DG(x)

)
, for all x ∈ R

k}.
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(a) (b)

FIG. 2. DD plots of (a) identical distributions and (b) location shift.

Note thatDD(F,G) as well asDD(Fn,Gm) are al-
ways subsets ofR2 no matter how large is the dimen-
sionk of the data. The two-dimensional graphs of DD
plots are easy to visualize and they turn out to be con-
venient tools for graphical comparison of multivari-
ate samples. IfF = G, thenDF (x) = DG(x) for all
x ∈ R

k , and thus the resultingDD(F,G) is simply a
line segment on the 45◦ line in the DD plot, from(0,0)

to (maxt DF (t),maxt DG(t)). This is illustrated by the
simulation result in Figure 2(a), which is the DD plot
of two samples drawn from the bivariate normal distri-
bution with mean(0,0). Deviations from the 45◦ line
segment in DD plots would suggest that there are dif-
ferences between the distributionsF andG. As it turns

out, each particular pattern of deviation from the diago-
nal line can be attributed to a specific type of difference
between the two distributions. For example, as shown
in Figure 2(b), in presence of a location shift in the two
samples, the DD plot generally has a leaf-shaped fig-
ure, with the leaf stem anchoring at the lower left cor-
ner point(0,0) and the cusp lying on the diagonal line
pointing toward the upper right corner. (The variations
of the leaf shape reflect the magnitude of the location
shift as well as the symmetry of the underlying dis-
tributions, as we discuss further in Section 3.) Figures
3(a) and (b) shows yet different patterns of DD plots
(the half-moon pattern and the wedge-like pattern) that
are indicative, respectively, of scale and skewness dif-
ferences.

(a) (b)

FIG. 3. DD plots of (a) scale increase and (b) skewness difference.
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(a) (b)

FIG. 4. (a)Two distributions with a location shift. (b) DD plot of large location shift.

3. TESTS OF LOCATION DIFFERENCES USING
DD PLOTS

As described above, DD plots can serve as diagnos-
tic tools for detecting visually the difference between
two samples of any dimension. To make DD plots rig-
orous testing tools, we need to construct test statistics
which can capture deviation patterns in DD plots and
establish the null distributions for those statistics. In
this section, we focus specifically on deriving test sta-
tistics from DD plots for testing location differences.
Some brief comments on testing other distributional
differences are made in the concluding remarks.

Recall thatX ≡ {X1, . . . ,Xn} ∼ F andY ≡ {Y1, . . . ,

Ym} ∼ G are two given samples inRk . For conve-
nience, we assume thatn = m, although the inference
methods described in this paper remain valid other-
wise. Assume thatF and G are identical except for
a possible location shiftθ [i.e., G(·) = F(· − θ)]. The
hypotheses of interest are then

H0 : θ = 0 vs. Ha : θ 	= 0.

Note thatF andG are not required to be symmetric.
If they are, their deepest points (i.e., the location para-
meters) coincide with the centers of symmetry (as well
as the means).

UnderH0, the DD plotDD(Fn,Gm) should be clus-
tered along the diagonal line, as seen in Figure 2(a). In
case there is a location shift fromF to G, the DD plot
exhibits a leaf shape with its tip pulling away from
the upper right corner point along the diagonal line to-
ward the lower left corner point(0,0). Note that, us-
ing the simplicial depth,(maxt DF (t),maxt DG(t)) =

(2−k,2−k), the maximum DD value achievable by the
deepest point under the null hypothesis. For exam-
ple, whenk = 2, 1/4 is the achievable maximum for
DF (·) andDG(·). The larger the location shift is, the
closer the tip of the leaf is pulled diagonally downward
to (0,0). Figure 4(a) illustrates this phenomenon in a
simple univariate setting, using two symmetric density
functions with a location shift. The crossing of the two
densities occurs at the pointt . The cusp point of the
leaf-shaped DD plot in Figure 2(b), marked by a solid
dot, corresponds to(DF (t),DG(t)). If there are no lo-
cation shifts, then the two densities coincide andt is
the deepest point for bothF andG. Hence,DF (t) =
DG(t) = 1/2 and the cusp point hits exactly the right
upper corner point. If the location shift widens, then
the cusp point pulls further toward(0,0), as seen in the
DD plots in Figures 2(b) and 4(b).

3.1 T -Based Test: Monitor Shrinking Cusp Point

The above observation suggests that the closer the
cusp point is to(0,0), the more likely there is a lo-
cation shift between the two underlying distributions.
This suggests considering the distance between the
cusp point and(0,0) as our testing statistic. Before we
define this distance more precisely, we note that the
sample versions of depthDFn andDGn are both dis-
crete, and thus the cusp point of the DD plot may not
fall exactly on the diagonal line, especially ifm 	= n.
Therefore, we first introduce the following notation to
define the relative positions of any two points inR

2 and
to derive a convenient approximation of the cusp point.



TESTS OF MULTIVARIATE LOCATIONS AND SCALES 691

For (a1, b1) and(a2, b2) in R
2, we define

(a1, b1) 
 (a2, b2) if a1 ≥ a2 andb1 ≥ b2,

(a1, b1) ≺ (a2, b2) otherwise.

Define the set

Q ≡ {
Z ∈ X ∪ Y : there does not existW ∈ X ∪ Y

s.t.
(
DFn(W),DGn(W)

) 
 (
DFn(Z),DGn(Z)

)}
.

Then the cusp point is identified or approximated by
the point (DFn(Zc),DGn(Zc)) that satisfiesZc ∈ Q
and |DFn(Zc) − DGn(Zc)| ≤ |DFn(Z) − DGn(Z)| for
all Z ∈ Q. Let

Tn = (
DFn(Zc) + DGn(Zc)

)
/2.(3.1)

Then the distance from the cusp point to(0,0) is ap-
proximately equal to

√
2Tn. This is equivalent to work-

ing with Tn. Intuitively, the larger the location shift
between the two distributions, the smaller theTn value
and thus the stronger the evidence againstH0. To de-
termine whenTn is small enough to rejectH0 deci-
sively, we need to derive the null distribution ofTn. The
derivation of this null distribution turns out to be quite
demanding and we plan to carry it out as a separate
project in the future. Alternatively, we propose here to
use Fisher’s permutation test to determine the follow-
ing p-value and complete our test procedure. (The idea
of using Fisher’s permutation test to obtain thep-value
of a test is well known; for reference see, e.g., Chap-
ter 15 of Efron and Tibshirani, 1993.)

Let

pT
n = PH0(Tn < Tobs),(3.2)

whereTobs is the observed value ofTn based on the
given sampleX ∪ Y. ThepT

n is also referred to as the
achieved significance level.

REMARK 3.1. If the sample size is sufficiently
large, the definition ofTn in (3.1) can be approximated
by

Tn = max
Z∈X∪Y

{
DFn(Z) :DFn(Z) = DGn(Z)

}
.(3.3)

REMARK 3.2. If the underlying distributions
F andG are symmetric, the population version ofTn,
denoted byT , is the depth (under eitherF or G) of
the midpoint of the line segment that connects the
two centers of symmetry. In the setting of Figure 4(a),
T = DF (t).

Without the null distribution ofTn, we can proceed
and use the permutation method to approximate the
T -basedp-value defined in (3.2). The procedure is as
follows.

1. Permute the combined sampleX ∪ Y B times.
Here B is sufficiently large. For each permuta-
tion, we treat the firstn elements as theX sam-
ple and the remaining elements as theY sample.
Denote the outcome of theith permutation by
X∗

i = {X∗
i1, . . . ,X

∗
in} and Y∗

i = {Y ∗
i1, . . . , Y

∗
in} for

i = 1, . . . ,B.
2. Obtain the DD plot for eachX∗

i ∪ Y∗
i and evalu-

ate the correspondingTn value [following (3.1) or
(3.3)], which is then denoted byT ∗

i , i = 1, . . . ,B.

The empirical distribution ofT ∗
i , i = 1, . . . ,B, can

be used as an approximate of the null distribution ofTn.
Consequently, underH0, thepT

n defined in (3.2) can be
approximated by

pT
n,B =

B∑
i=1

I{T ∗
i ≤Tobs}/B.(3.4)

The above permutation procedure contains, in prin-
ciple, alln! permutations. Ifn is not too large or com-
putational speed is not a concern, then we letB = n!.

In theory, for any testing procedure, a validp-value
follows a uniform distribution on[0,1], U[0,1], un-
derH0. It is clear that ourp-value,pT

n,B , is valid, since
it is derived from the permutation test. Our simula-
tion results also show that, underH0, the histograms
of pT

n,B are reasonably close to U[0,1].
We have shown that theT -based test described

above works well under the null hypothesis and al-
lows us to control the type I error using U[0,1]. We
now proceed to evaluate the power of this test under
the alternative hypothesis. Ideally, the power of the
T -based test grows (or, equivalently,pT

n,B decreases)
as the location shift increases. To this end, we conduct
some simulation experiments under both bivariate nor-
mal and exponential distributions. Figure 5 shows the
histograms ofpT

n,B for the bivariate normal case, where
F = N((0,0), I) and G = N((µ,µ), I) with (µ,µ)

equal to (0.1,0.1), (0.2,0.2) and (0.3,0.3) for G,
respectively, from top down. Clearly, as the location
shift grows larger, the histograms from top down be-
come more skewed to the right and thepT

n,B value
leans more toward 0. This shows that the power of
theT -based test grows as the location shift increases,
which is a desirable property. Similar patterns of his-
tograms ofpT

n,B are observed for the bivariate expo-
nential case, where the mean forF is (1,1) and is
(0.9,0.9), (0.75,0.75) and (0.5,0.5) for G. In both
settings, we letn = 100, B = 500 and use the sim-
plicial depth to obtain DD plots. For each case, the
experiment is repeated 100 times to obtain 100 corre-
spondingpT

n,B ’s.
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FIG. 5. Histograms of pT
n,B under Ha , where H0 : (µ,µ) = (0,0)

and Ha : (µ,µ) = (0.1,0.1), (0.2,0.2) and (0.3,0.3) (bivariate
normal case).

3.2 M-Based Test: Monitor the Maximum
Depth Points

We next propose another test based on the DD plot
for detecting a location change in two multivariate dis-
tributions. This test statistic is more in the form of a
location estimator. In the context of data depth, the
location parameter of a distribution is defined as the
deepest point (see, e.g., Liu, Parelius and Singh, 1999).
If the two distributionsF and G are identical, they
should have the same deepest point. On the other hand,
if there is a location change, the deepest point of the
distributionF would no longer be the deepest point of
the distributionG and thus it attains a smaller depth
value w.r.t.G. The larger the location change is, the
smaller this depth becomes. This trend can also be ob-
served from the DD plots in Figures 2(b) and 4(b). This
observation motivates our second test below, in which
the test statistic monitors directly the depth values of
the deepest points of the underlying distributions. Let

Mn = min
{
DFn

(
ZGn

)
,DGn

(
ZFn

)}
,(3.5)

where ZGn and ZFn are the deepest points among
X ∪ Y with respect toGn andFn, respectively.

REMARK 3.3. In theory, we may also consider
other functions of the two depths such as the maxi-
mum in (3.5). However, we choose to work with the
minimum of the two depths, because the minimum is
more sensitive to the location change and it can achieve
more power.

We now proceed and carry out the test by determin-

ing its achieved significance level, defined as

pM
n = PH0(Mn < Mobs).(3.6)

Again, we turn to Fisher’s permutation test to estimate
the p-value pM

n . The procedure consists of the two
steps outlined for theT -based test, except that each
permutation replication is now used to evaluate theMn

as defined in (3.5). Denote byM∗
i the Mn value ob-

tained in theith permutation. Thep-valuepM
n is then

approximated by

pM
n,B =

B∑
i=1

I{M∗
i ≤Mobs}/B.(3.7)

Discussions of the validity and power of theT -based
test in terms of the proposedp-value apply similarly
to the proposedpM

n,B based on theM-based test de-
scribed above. Again, the histograms of the 100 simu-
lated pM

n,B ’s under the standard bivariate normal and
exponential distributions appear close to U[0,1] un-
derH0, and they skew more to the right as the location
shift widens, as observed in Figure 5.

3.3 Power Comparisons: T and M Tests versus
Hotelling T 2

Since bothT - and M-based tests are completely
nonparametric, it should be interesting to compare
them to known parametric tests to see their loss of
efficiency, if any. The first comparison is with the
Hotelling (1947)T 2 test under the normality assump-
tion where F = N((0,0), I) and G = N((µ,µ), I).
Each test is repeated 1000 times and the simplicial
depth is used to compute needed depth values. The
power of the T -based (orM-based) tests is esti-
mated by the proportion of the simulatedpT

n,B ’s (or
pM

n,B ’s) which are less than the nominal type I er-
ror α = 0.05. Table 1 lists the estimated power for
µ = 0,0.1,0.2,0.3,0.4,0.5. The results clearly show
that bothT - andM-based tests perform comparably to
the HotellingT 2 test, even though the former are com-
pletely nonparametric and do not utilize the normality
assumption.

TABLE 1
Power comparison under bivariate normal distributions

µ 0 0.1 0.2 0.3 0.4 0.5

T -based 0.054 0.109 0.373 0.714 0.933 0.993
M-based 0.060 0.113 0.386 0.710 0.921 0.988
HotellingT 2 0.059 0.124 0.410 0.765 0.953 0.995
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TABLE 2
Power comparison under bivariate Cauchy distributions

µ 0 0.1 0.2 0.3 0.4 0.5

T -based 0.052 0.060 0.114 0.154 0.214 0.350
M-based 0.046 0.072 0.118 0.214 0.324 0.522
HotellingT 2 0.020 0.010 0.020 0.034 0.022 0.052

We also conducted the same comparison study for
the bivariate Cauchy distributions with the location pa-
rameter(µ,µ). Clearly, bothT - and M-based tests
outperform the HotellingT 2. This can be attributed to
the fact that the first two tests using the simplicial depth
are moment-free approaches and thus more suitable for
testing location parameters not derived from moments,
such as in the case of Cauchy distributions. The results
in Table 2 seem to suggest also that theM-based test
is more powerful than theT -based test in the Cauchy
case. We plan to investigate further the difference be-
tween theT - andM-based tests, including their robust-
ness properties as well as their capability to cope with
asymmetric underlying distributions.

4. RANK TESTS FOR SCALE EXPANSION
OR CONTRACTION

Let, again,X ≡ {X1, . . . ,Xn} ∼ F andY ≡ {Y1, . . . ,

Ym} ∼ G be two given samples inRk . Assume that
F andG are identical except for a possible scale dif-
ference. For simplicity, assume that we are interested
in testing if G has a larger scale in the sense that the
scale ofG is an expansion of that ofF . In other words,
the hypotheses of interest are

H0 :F andG have the same scale
(4.1)

Ha :G has a larger scale.

Combine the two samples, that is, letW ≡ {W1,W2,

. . . ,Wn+m} ≡ {X1, . . . ,Xn,Y1, . . . , Ym}. If G has a
larger scale, then theXi ’s are more likely to clus-
ter tightly around the center of the combined sample,
while the Yi ’s are more likely to scatter at outlying
positions. This outlyingness can be easily captured by
data depth. Following this observation, Liu and Singh
(2003) developed depth-induced rank tests to compare
scales among two or multiple multivariate samples. In
this paper we provide a brief review of their rank test
for two samples. Detailed discussions and justifications
can be found in Liu and Singh (2003).

4.1 Larger Scale—More Outlying Data—
Smaller Ranks

Using any measure of depth, we can compute the
depth values of the points in the combined sampleW.
We then assign ranks to the combined sampleW ac-
cording to the ascending depth values, namely, lower
ranks to the points with lower depth values. Specif-
ically, we let r(Yi) be the center-outward rank ofYi

within the combined sample, that is,

r(Yi) = #{Wj ∈ W :Dn+m(Wj) ≤ Dn+m(Yi),

(4.2)
j = 1,2, . . . , n + m},

and we let the sum of the ranks for the sampleY be

R(Y) =
m∑

i=1

r(Yi).(4.3)

Here,Dn+m(•) is the sample depth value of• mea-
sured w.r.t.{W1,W2, . . . ,Wn+m}. UnderH0, if there
are no ties,{r(Y1), . . . , r(Ym)} can be viewed as a ran-
dom sample of sizem drawn without replacement from
the set{1, . . . , n+m}. If Ha is true, then theYi ’s tend to
be more outlying, and thus assume smaller depth val-
ues and thus smaller ranks. In other words, we should
rejectH0 if the rank sumR(Y) is too small. The critical
values for carrying out this test can be implemented us-
ing the Wilcoxon rank-sum procedure as if one is test-
ing a negative location shift in the univariate setting.
For a review of the Wilcoxon rank-sum test and its tab-
ulated distributions for different sample size combina-
tions, see, for example, Hettmansperger (1984). When
n and m are sufficiently large, following the large-
sample approximation, we can rejectH0 if R∗ ≤ zα for
anα-level test. Here

R∗ = R(Y) − {m(n + m + 1)/2}
{nm(n + m + 1)/12}1/2 .(4.4)

The depth ranking of sample points, due to its center-
outward nature, often leads to ties, especially in high
dimension cases. To use the tables provided for the
Wilcoxon rank-sum test, we may consider the random
tie-breaking scheme. However, we can actually carry
out the test and obtain itsexact p-value without break-
ing ties by the following approach. Since powerful
computing facilities are easily available nowadays, we
can use computers to obtain the exact distributions for
the observed ranks, with or without ties. Specifically,
we permute all the observed ranks (possibly including
ties), calculate the sum of the firstm ranks in each per-
mutation, and finally tabulate such rank sums and their
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corresponding frequencies in the total number of per-
mutations. This distribution allows us to determine the
exactp-value of our test, which is simply the propor-
tion of the rank sums which are less than or equal to the
observed rank sum in (4.3). As an illustrative example,
we assume thatn = m = 2 and that the ranks for the
combined sample turn out to be{1,2,2,4} with a tie.
The sampling distribution of the rank sumR ≡ R(Y)

is

P(R = 3) = 8/24, P (R = 4) = 4/24,
(4.5)

P(R = 5) = 4/24, P (R = 6) = 8/24.

Therefore, if the observed rank sum is 4, then the
p-value is P(R ≤ 4) = 0.5. For large samples, the
distribution of the rank sum can be approximated by
considering large enough numbers of permutations. In
Table 3, we present some simulation results to examine
the power of the rank test. Here the samples are from
three bivariate distributions: Cauchy, normal and expo-
nential, each with the component varianceσ 2. We as-
sumen = m, and considern = 20 andn = 30. In each
case 5000 random permutations of the observed ranks
were used to approximate the sampling null distribu-
tion, and the rank test at significance level 0.05 was
repeated 1000 times.

The results in Table 3 show that the power achieved
by the rank test for scale expansions is quite re-
spectable, especially in the nonnormal cases. A power
comparison between the above rank test and aχ2 test
under the normality assumption can be found in Liu
and Singh (2003). The results there show some minor
loss of efficiency of the rank test in the normal case.
Liu and Singh (2003) also discussed in detail the prop-
erties of this rank test as well as several approaches for
dealing with large numbers of ties in the depth rank-
ing. Moreover, they also generalized the rank test to
the case of multiple samples.

Note that the rank test described above can be
viewed as the multivariate generalization of Ansari–
Bradley and Siegel–Tukey tests for testing the equality

TABLE 3
Simulated power of the rank test for scale expansions (α = 0.05)

n = 30 n = 20

σ Cauchy Normal Exp Cauchy Normal Exp

1–1 0.056 0.044 0.049 0.054 0.051 0.043
1–1.2 0.345 0.325 0.218 0.261 0.242 0.188
1–2 0.996 0.994 0.940 0.966 0.940 0.813

of variance in the univariate setting. Both tests try to
assign smaller ranks to the data points which are more
outlying toward two tails, although the Siegel–Tukey
test avoids ties by alternating ranks.

If we are interested in testing whether or notG has
a smaller (contracted) scale, then we should reject the
null when the rank sum is too large.

The rank test above is easily implementable and is
completely nonparametric. Itsp-value yields a decisive
decision rule. The test result can be independently veri-
fied visually by two graphical tools: One is the DD plot
[see Figure 3(a) and the discussion in Section 2.2]; the
other is the scale curve introduced by Liu, Parelius and
Singh (1999). The sample scale curve derived from a
sample of sizen is defined as

Sn(p) = volume{Cn,p} for 0≤ p ≤ 1.(4.6)

Here Cn,p is the convex hull that contains the�np�
deepest points. Roughly speaking, the scale curve
measures the volume expansion of the nested depth
contours, as seen in Figure 1, as the contours grow to
enclose more probability mass. This plot ofSn(p) ver-
susp shows the scale of the distribution as a simple
curve in the plane, which is easily visualized and in-
terpreted. When comparing the scales of two samples,
if one scale curve is consistently above the other, then
the sample with the higher scale curve is more spread
out and thus has a larger or expanded scale.

5. APPLICATION TO AIRLINE
PERFORMANCE DATA

We apply all tests described so far to an analysis of
an airline performance data set collected by the FAA.
It consists of several monthly performance measures of
the top 10 air carriers from July 1993 to May 1998. The
performance measures include the fractions of noncon-
formity in airworthiness and operation surveillance.
A small nonconformity fraction is a desirable feature.
Several depth-induced multivariate control charts (Liu,
1995; Cheng, Liu and Luxhøj, 2000) have been used
to monitor and compare the performances of all 10
airlines. For illustration, theT - and M-based tests
are used to determine whether there is a significant
difference in location (referred to as expected target
performance in the aviation safety domain) in the dis-
tributions that underlie two air carriers. In comparing
air carriers 1 and 4, their scatter plots in Figure 6(a)
show a clear location shift to the upper right in car-
rier 4. The deepest point of carrier 4, marked by a solid
triangle, is more to the upper right than that of carrier 1,
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(a) (b)

FIG. 6. (a)Scatter plot and (b) DD plot for carriers 1 and 4.

marked by•. The DD plot for the two carriers in Fig-
ure 6(b) has the cusp point pulled down toward(0,0) to
the midrange of the plot and clearly indicates a location
difference in the two distributions. Using bothT - and
M-based tests, we found the approximatedp-values to
be nearly 0, which confirms a significant location shift
in the two distributions.

In judging airline performance, in addition to ex-
amining the expected target performance (i.e., the lo-
cation of the distribution) of the airlines, the stability
of the performance within the airlines is also a major
concern. This measure of stability is simply the mea-
sure of scale or variation of the performance distrib-
ution. Thus, comparing performance stability amounts
to comparing the scales of distributions. Larger or more
expanded scales mean less stable performance. We pro-

ceed and compare the scales of carriers 1 and 4. The
p-value is 0.00038 using the test statistic in (4.3),
which clearly supports the conclusion that carrier 4 has
a larger scale than carrier 1. In other words, the per-
formances of carrier 4 are more scattered and hence
less stable. This same conclusion can also be reached
by examining the two graphs in Figure 7. Figure 7(a)
is the DD plot of carriers 1 and 4 after centering the
data respectively at their deepest points, removing the
effect of location difference. It shows a pattern which
combines Figure 3(a) and (b). This suggests that there
are both scale and skewness differences between the
two carriers. Figure 7(b) displays the scale curves, as
defined in (4.6), of four carriers. Obviously, the scale
curve of carrier 4 lies consistently above all others,
including that of carrier 1. The findings are also sup-

(a) (b)

FIG. 7. (a)DD plot for carriers 1 and 4 after centering. (b) Scale curves for air carriers.
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ported by the scatter plots in Figure 6(a), which show
more scattered data for carrier 4. In summary, the per-
formance of carrier 4 is inferior to that of carrier 1, in
that carrier 4 has significantly higher target nonconfor-
mity ratios and it is also much less stable overall. Possi-
ble causes should be identified and corrective measures
should be taken.

6. CONCLUDING REMARKS

Although our illustrative examples are inR2, all tests
discussed in this paper apply to any dimension.

The DD plot of the rank test in Section 3 can be con-
structed using any notion of data depth which is affine-
invariant. Some notions of depth may be more suitable
than others in capturing a certain feature of a distri-
bution. For example, if the underlying distribution is
close to elliptical, then it is more efficient to use the
Mahalanobis depth. Otherwise, more geometric depths
such as the simplicial depth or the half-space depth
(Tukey, 1975) may be more desirable since they do
not require specific distributional structures or moment
conditions. Details on some of these conditions for dif-
ferent depths can be found in Liu and Singh (1993) and
Zuo and Serfling (2000). Note that it can be shown that
theM-based test using Mahalanobis (1936) depth is as-
ymptotically equivalent to the HotellingT 2 test when
comparing elliptical distributions. In other cases, the
M-based test is more robust.

Concerning the issue of computational feasibility in
computing depth, although the exact sample simpli-
cial depth value in any dimension can be computed
by solving a system of linear equations, more efficient
algorithms are desirable. Rousseeuw and Ruts (1996)
provided an efficient algorithm for computing both the
simplicial and the half-space depths inR

2. Developing
efficient algorithms in the case of higher dimensions
has recently generated much interest in computational
geometry. It is reasonable to expect rapid progress in
this direction.

Some depth rank tests have been proposed by Liu
and Singh (1993) for testing simultaneously location
and scale changes. It may be worthwhile to compare
these rank tests separately with theT -based andM-
based tests for testing location changes, and with the
rank test described in (4.3) for testing scale changes.

Several graphical diagnostic tools stemming from
DD plots for the two-sample problem have been pro-
posed by Hettmansperger, Oja and Visuri (1999) and
Liu, Parelius and Singh (1999). Their associated infer-
ences need to be developed to make the graphical tools
rigorous tests. Combining proper statistics derived
from graphical tools with the permutation test idea may
prove to be a helpful step in developing these tests.
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