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1. GENERAL REMARKS

Let K be areversible Markov kernel on a measurable
space (S, 8) with stationary distribution P. Regard K
as a linear operator, K : Lo(P) — Lo(P), and suppose
that L, (P) admits an orthonormal basis of (real) eigen-
functions ¢g, ¢1, ... for K. Thus, ¢g =1 and

Ko;(s) =/¢,~(r>1<<s,dr>=ﬂjsoj<s),
ses, j=1,2,...,

for some (real) eigenvalue B;. Under mild additional
conditions,

(1) 41K (s,) = PI> <Y Bi'9i(s) forallses,
j>0

where || - || is total variation norm and K¢ the £th iter-
ate of K. Using (1) is quite natural in MCMC where
information on the convergence rate is crucial. For the
2-component Gibbs sampler, however, one drawback is
that K is generally not reversible.

Diaconis, Khare and Saloff Coste (DKS, in the se-
quel) go through this problem by noting that the mar-
ginal chains (the x-chain and the 6-chain) are re-
versible, and bounding the marginal chains yields
bounds on the bivariate chain. More importantly, in
a few examples, DKS are able to diagonalize the mar-
ginal kernels, that is to evaluate their eigenvalues and
eigenfunctions. A basic fact is that, in such examples,
the eigenfunctions agree with the orthogonal polyno-
mials corresponding to the marginals of P.
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Following this route, DKS give explicit sharp esti-
mates, both lower and upper, on the convergence rate
of a 2-component Gibbs sampler. Their results are in-
teresting, elegant and promising of some generaliza-
tions. On the other hand, since an explicit diagonal-
ization is required, they cover a few particular cases
only. In real problems, when sampling from P, the
available information is usually not enough for a di-
agonalization. Moreover, it is not clear how to handle
the k-component Gibbs sampler for £ > 2 using DKS’s
argument. Thus, in addition to DKS’s bounds, it could
be useful to have other estimates of the convergence
rate, possibly less sharp but with a broader scope.

Here, we adopt the latter point of view and look for
estimates based on classical drift conditions. In a sense,
we investigate the extent of DKS’s words in Section 1:
“Finding useful V and ¢ is currently a matter of art”
(where V and g are the ingredients of a drift condition).
We will play the devil’s advocate, of course.

2. PLAIN ERGODICITY

As far as possible, our notation agrees with DKS’s.
Thus, (X, ¥) and (©, §) are measurable spaces, with
F and § countably generated, and P is a probability
measure on the product o-field ¥ ® §. We let

X XxO®—=>X and T: X xO—>0O

denote the canonical projections. It is assumed that P
has a density f with respect to ; x 7, where w is a
o-finite measure on & and 7 = P o T~ is the prior.
Also,m(x) = [ f(x,0)7(d6) is the density of P oX~!
with respect to u. As DKS, we assume 0 < m(x) < oo
for all x € X.

We always refer to the Gibbs sampler with kernel

J((x,6),C)

= ! 1 b b b)yu(d db
_W// c(a.b) f(x. b) f(a. b)u(da)m (db)

where (x,0) € X x ® and C € F ® §. Loosely speak-
ing, this is the version of the Gibbs sampler where the
initial state (x, 6) is first updated into (x, b) and then
into (a, b). Abusing notation, since J only depends
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on x, we write J (x, -) instead of J((x, #), -). Note that
DKS denote our J by K.

A first point to be settled, before discussing rates of
convergence, is ergodicity. Indeed, for Gibbs sampling
to make sense, J should be ergodic, in the sense that

|J¢(x, )= P|| =0 forallx € X as £ — oo.

A simple equivalent condition is in Berti, Pratelli and

Rigo (2008, Theorem 4.5). Letting N = {C € F ®

G:P(C) =0}, J is ergodic if and only if

2) cX)No(T)y=N

where (X)) =0 (6(X)UN) and o(T) = o (o (T) U

MN'). A more transparent version of (2) is

P(Xe€eA)=0 or P(TeB)=0

whenever A € ¥, B € § and
P(A x B)=P(A° x B)=0.

Moreover, a working sufficient condition for (2) is

{XeA}Nn{T e B} Cc{f >0}
(3)
C{XeA}U{T € B}
for some A € ¥, B € § with P(A x B) > 0; see Berti,
Pratelli and Rigo (2008), Corollary 3.7.

3. UNIFORM ERGODICITY

Let K be a Markov kernel on (S, 8) with station-
ary distribution P. If K (s, ) > €Q(-), s € S, for some
€ > 0 and probability Q on B, then ||K¢(s, ) — P| <
(1—e€)t,s€eS. Coming back to the Gibbs sampler, this
fact implies:

PROPOSITION 1. Ifm is bounded, then

l
174G, ) — Pl < (1 _ ) forallx e X

supm

where u = zlégn(B)xeg(}r,lgeB f(x,0).

PROOF. This is essentially Remark 4.6 of Berti,
Pratelli and Rigo (2008). For definiteness, we repeat
the calculations here. Let (S, B) = (X x 0, F ® §),
K =J and u(B) =n(B)infyx«p f. It can be assumed
u(B) > 0 for some B € § (otherwise, u = 0 and the
Proposition 1 holds trivially). Fix one such B and de-
fine e =u(B)/supm and Q(-) = P(-| T € B). Then,

J(x,C)>=J(x,CN{T € B})
1
- m/fIc(a,b)IB(b)f(x,b)f(a,b)
. u(da)m(db)

inf
> XxB f
supm

P(CN{T e B})=€Q(C)

forall x e X and C € ¥ ® 4. Since P is stationary
for J, it follows that

u(B)
supm

l
178, — P < (1 _ ) forall x € X.

Taking sup over B concludes the proof. [J

By Proposition 1, if m is bounded and # > 0 then J
is uniformly ergodic, in the sense that || J¢(x, ) — P| <
q,oz, x € X, for some constants g and p € (0, 1) (here,
g=1land p=1-— Sugm). To fix ideas, this happens
in case X is compact, ® a Polish space, m bounded,
and f strictly positive and continuous. An example of

DKS falls in this class.

EXAMPLE 4.1.1 (BETA/BINOMIAL). Let m be
uniform, so that m(x) = 1/(n + 1) for all x € X =
{0,1,...,n}. Taking sup over those B of the form

. 1
B=1[51-6],0<8<1/2,yields u > 57 (55575)"
Thus, Proposition 1 gives I7¢(x, ) — P|| < p* forall x

with
n n
p - ] B (7) '
2(n+1)

Instead, DKS obtain bounds for x = n only; see Propo-
sition 1.1. More precisely,

Lgt <ty — P < B B
SP1 = n,- =gt
1
2
where 1 =1 — ——.
n+2

Hence, DKS’s estimate of the convergence rate, that
is B1, is (much) better than our p for large values of n.

4. GEOMETRIC ERGODICITY
We first recall a general result on Markov chains.

THEOREM 2 [Rosenthal (1995)]. Let K be an er-
godic Markov kernel on (S, 8) with stationary distri-
bution P. Suppose
“4) Kg(s) <a+ Bg(s),
for some measurable function g:S — R* and con-
stants o and B € (0,1). Fix d > 2a/(1 — B), define
D ={s e S:g(s) <d} and suppose also that
&) K(s,")=€Q(), seD,

for some € > 0 and probability Q on 8B. Then, for all
re,1)ands € S,

ses,

K6 =PI = (= 4 (14 2 50
(1420 +2Bd)" (1 + 20+ Bd)' "
where t = .
A+d)—
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In a Gibbs sampling framework, Theorem 2 turns
into:

PROPOSITION 3. Suppose condition (2) holds and

(6) Jo(x) =a+ Bo(x),

for some measurable function ¢:X — R* and con-
stants a and B € (0,1). Fix d > 2a/(1 — B), define
A={x e X:¢(x) <d} and suppose also that

xeX,

supm < oo and

inf 0
A 141ng>

(7
for some B € § with P(A x B) > 0.

Then, for all r € (0, 1) and x € X,

17Cx, ) = P
<(1-e +t£(1 + ﬁ +¢>(X)>
. ) _ a(B)infaxp f
with t as in Theorem 2 and € = WAMB

PROOF. By (2), J is ergodic. By (6), condition (4)
holds with K = J and g(x,0) = ¢ (x). By (7), there is
B e g withinfsxp f >0and n(B) > P(A x B) > 0.
Since sup 4 m < 0o, the same calculation as in the proof
of Proposition 1 yields

n(B)infyxp f
supy m
foralxe AandC e ¥ ® §.

J(x,C) > P(C|T e B)

; _ n(B)infaxp f _
Thus, (5) holds with € = % and Q(-) = P(-|

T € B). An application of Theorem 2 concludes the
proof. [

Proposition 3 applies to most DKS’s examples pro-
viding reasonable estimates. Note that: (i) Condi-
tion (2) holds (in fact, (3) holds) in such examples.
(>i1) If (7) holds for all d, then ¢ can be made arbitrarily
close to B for suitable r, d. There is a trade-off, how-
ever, since the choice of r, d affects (1 — €)"¢. (iii) Let-
ting ¥ =14 o/(1 — B) + ¢, one has

Y (x) <e ¢ whenever £ > {c + log ¥ (x)}/|log?|

for all x € X and ¢ > 0. This can serve to estimate the
impact of the initial state x. It is roughly of the same
order of some DKS’s estimates.

EXAMPLE 4.2.1 (POISSON/GAMMA). Let 7 be
standard exponential, so that m(x) = 271 for x €
X ={0,1,...}. We take ¢ (x) = x. In that case, the set

A = {¢ < d} meets condition (7) for all d > 0. As to
(6), it suffices noting that

1
Io) = s / / af (@, byu(da) f (x. by (db)
=21 /OOO bf (x,b)e"db

— 2x+1 /Oobx+162bdb:x+l
x! Jo 2

Hence, Proposition 3 applies with o = 8 = 1/2. Now,
acting on r, d, upper bounds on the convergence rate
can be easily obtained. At this stage, using numerical
evaluations is convenient.

EXAMPLE 4.3 (GAUSSIAN). Suppose o2 + 72 =
1/2 and 7 is N(O, 72), so that the posterior distribu-
tion 7 (- | x) is N(2t%x, 2t%02). We take ¢ (x) = |x|.
Again, A = {¢ < d} meets (7) for all d > 0. Recalling
E|N(0, 1)| = 4/2/m, one obtains

J¢(x)=//|a|f(a,b)dan(db|x)
< [l +0\/2/m}wian | v

<o0,/2/m +207 2/ +2r2|x|
=« +2r2|x|,

say. Since 272 < 2(62 + %) = 1, condition (6) holds
with 8 = 272. Again, acting on r, d, one gets estimates
(even if non optimal) of the convergence rate.

5. HIGHER COMPONENT PROBLEMS AND
CONCLUDING REMARKS

Apparently, DKS’s argument does not apply to the
k-component Gibbs sampler when k > 2. On the other
hand, Propositions 1 and 3 can be adapted to any value
of k. We illustrate this point with regard to Proposi-
tion 1 for k = 3. To this end, notation needs to be up-
dated. Suppose (X, ) is the product of two measur-
able spaces (X1, 1), (X2, ¥2) and P has a density f
with respect to w1 X u2 X 7w, where u; is a o-finite
measure on ¥;, i = 1, 2. The marginal densities of the
pairs x = (x1, x2), (x1,60) and (x3,0) are assumed fi-
nite and strictly positive everywhere. Also, & denotes
the density of (x1,6). Then, Proposition 1 takes the
form:

PROPOSITION 4. Let J be the Markov kernel of the
3-component Gibbs sampler. If m and h are bounded,
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then

?
1750, ) — Pl < (1 _ ) forallx € X

supm

o o
where v = 12(%2) sup 7(B) {infrex 0ep f(x,0)} ‘
Beg SUPy ex; 0e (X1, 0)

Incidentally, we note that w(X»2) < oo whenever
infyxp f > 0 for some B € § with #(B) > 0.

Next, we would like to draw the Authors’ attention
to an issue that might potentially enlarge the scope of
their argument. Consonni and Veronese (2001) intro-
duced the concept of conditionally reducible natural
exponential families. Basically, they are multivariate
natural exponential families whose densities can be ex-
pressed as a product of lower dimensional (possibly
univariate) conditional exponential families, each be-
ing indexed by its own natural parameter. The underly-
ing idea is intimately related to that of a cut. Examples
include the multinomial and Wishart sampling fami-
lies. We wonder whether the methods described by the
Authors could be applied recursively to conditionally
reducible families admitting a factorization in terms of

univariate exponential families, such as the multino-
mial family.

To sum up, DKS’s estimates behave excellently, in-
deed very close to optimum, in those examples for
which they are thought. One further merit is that lower
bounds are provided as well. On the other hand, Propo-
sitions 1 and 3, presented in this discussion, have a
broader scope, can be applied for any initial state x
(while DKS’s bounds are sometimes available for cer-
tain x only), but can provide less sharp bounds.
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