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Comment: Gibbs Sampling, Exponential
Families and Orthogonal Polynomials
Patrizia Berti, Guido Consonni, Luca Pratelli and Pietro Rigo

1. GENERAL REMARKS

Let K be a reversible Markov kernel on a measurable
space (S,B) with stationary distribution P . Regard K

as a linear operator, K :L2(P ) → L2(P ), and suppose
that L2(P ) admits an orthonormal basis of (real) eigen-
functions ϕ0, ϕ1, . . . for K . Thus, ϕ0 = 1 and

Kϕj(s) =
∫

ϕj (t)K(s, dt) = βjϕj (s),

s ∈ S, j = 1,2, . . . ,

for some (real) eigenvalue βj . Under mild additional
conditions,

4‖K�(s, ·) − P‖2 ≤ ∑
j>0

β2�
j ϕ2

j (s) for all s ∈ S,(1)

where ‖ · ‖ is total variation norm and K� the �th iter-
ate of K . Using (1) is quite natural in MCMC where
information on the convergence rate is crucial. For the
2-component Gibbs sampler, however, one drawback is
that K is generally not reversible.

Diaconis, Khare and Saloff Coste (DKS, in the se-
quel) go through this problem by noting that the mar-
ginal chains (the x-chain and the θ -chain) are re-
versible, and bounding the marginal chains yields
bounds on the bivariate chain. More importantly, in
a few examples, DKS are able to diagonalize the mar-
ginal kernels, that is to evaluate their eigenvalues and
eigenfunctions. A basic fact is that, in such examples,
the eigenfunctions agree with the orthogonal polyno-
mials corresponding to the marginals of P .
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Following this route, DKS give explicit sharp esti-
mates, both lower and upper, on the convergence rate
of a 2-component Gibbs sampler. Their results are in-
teresting, elegant and promising of some generaliza-
tions. On the other hand, since an explicit diagonal-
ization is required, they cover a few particular cases
only. In real problems, when sampling from P , the
available information is usually not enough for a di-
agonalization. Moreover, it is not clear how to handle
the k-component Gibbs sampler for k > 2 using DKS’s
argument. Thus, in addition to DKS’s bounds, it could
be useful to have other estimates of the convergence
rate, possibly less sharp but with a broader scope.

Here, we adopt the latter point of view and look for
estimates based on classical drift conditions. In a sense,
we investigate the extent of DKS’s words in Section 1:
“Finding useful V and q is currently a matter of art”
(where V and q are the ingredients of a drift condition).
We will play the devil’s advocate, of course.

2. PLAIN ERGODICITY

As far as possible, our notation agrees with DKS’s.
Thus, (X,F ) and (�,G) are measurable spaces, with
F and G countably generated, and P is a probability
measure on the product σ -field F ⊗ G. We let

X :X × � → X and T :X × � → �

denote the canonical projections. It is assumed that P

has a density f with respect to μ × π , where μ is a
σ -finite measure on F and π = P ◦ T −1 is the prior.
Also, m(x) = ∫

f (x, θ)π(dθ) is the density of P ◦X−1

with respect to μ. As DKS, we assume 0 < m(x) < ∞
for all x ∈ X.

We always refer to the Gibbs sampler with kernel

J ((x, θ),C)

= 1

m(x)

∫ ∫
IC(a, b)f (x, b)f (a, b)μ(da)π(db)

where (x, θ) ∈ X×� and C ∈ F ⊗G. Loosely speak-
ing, this is the version of the Gibbs sampler where the
initial state (x, θ) is first updated into (x, b) and then
into (a, b). Abusing notation, since J only depends
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on x, we write J (x, ·) instead of J ((x, θ), ·). Note that
DKS denote our J by K̃ .

A first point to be settled, before discussing rates of
convergence, is ergodicity. Indeed, for Gibbs sampling
to make sense, J should be ergodic, in the sense that

‖J �(x, ·) − P‖ → 0 for all x ∈ X as � → ∞.

A simple equivalent condition is in Berti, Pratelli and
Rigo (2008, Theorem 4.5). Letting N = {C ∈ F ⊗
G :P(C) = 0}, J is ergodic if and only if

σ(X) ∩ σ(T ) = N(2)

where σ(X) = σ(σ(X) ∪ N ) and σ(T ) = σ(σ(T ) ∪
N ). A more transparent version of (2) is

P(X ∈ A) = 0 or P(T ∈ B) = 0

whenever A ∈ F ,B ∈ G and

P(A × B) = P(Ac × Bc) = 0.

Moreover, a working sufficient condition for (2) is

{X ∈ A} ∩ {T ∈ B} ⊂ {f > 0}
(3)

⊂ {X ∈ A} ∪ {T ∈ B}
for some A ∈ F , B ∈ G with P(A × B) > 0; see Berti,
Pratelli and Rigo (2008), Corollary 3.7.

3. UNIFORM ERGODICITY

Let K be a Markov kernel on (S,B) with station-
ary distribution P . If K(s, ·) ≥ εQ(·), s ∈ S, for some
ε > 0 and probability Q on B, then ‖K�(s, ·) − P‖ ≤
(1−ε)�, s ∈ S. Coming back to the Gibbs sampler, this
fact implies:

PROPOSITION 1. If m is bounded, then

‖J �(x, ·) − P‖ ≤
(

1 − u

supm

)�

for all x ∈ X

where u = sup
B∈G

π(B) inf
x∈X,θ∈B

f (x, θ).

PROOF. This is essentially Remark 4.6 of Berti,
Pratelli and Rigo (2008). For definiteness, we repeat
the calculations here. Let (S,B) = (X × �,F ⊗ G),
K = J and u(B) = π(B) infX×B f . It can be assumed
u(B) > 0 for some B ∈ G (otherwise, u = 0 and the
Proposition 1 holds trivially). Fix one such B and de-
fine ε = u(B)/ supm and Q(·) = P(· | T ∈ B). Then,

J (x,C) ≥ J (x,C ∩ {T ∈ B})
= 1

m(x)

∫ ∫
IC(a, b)IB(b)f (x, b)f (a, b)

· μ(da)π(db)

≥ infX×B f

supm
P(C ∩ {T ∈ B}) = εQ(C)

for all x ∈ X and C ∈ F ⊗ G. Since P is stationary
for J , it follows that

‖J �(x, ·) − P‖ ≤
(

1 − u(B)

supm

)�

for all x ∈ X.

Taking sup over B concludes the proof. �
By Proposition 1, if m is bounded and u > 0 then J

is uniformly ergodic, in the sense that ‖J �(x, ·)−P‖ ≤
qρ�, x ∈ X, for some constants q and ρ ∈ (0,1) (here,
q = 1 and ρ = 1 − u

supm
). To fix ideas, this happens

in case X is compact, � a Polish space, m bounded,
and f strictly positive and continuous. An example of
DKS falls in this class.

EXAMPLE 4.1.1 (BETA/BINOMIAL). Let π be
uniform, so that m(x) = 1/(n + 1) for all x ∈ X =
{0,1, . . . , n}. Taking sup over those B of the form
B = [δ,1 − δ], 0 < δ < 1/2, yields u ≥ 1

n+1( n
2(n+1)

)n.

Thus, Proposition 1 gives ‖J �(x, ·)−P‖ ≤ ρ� for all x

with

ρ = 1 −
(

n

2(n + 1)

)n

.

Instead, DKS obtain bounds for x = n only; see Propo-
sition 1.1. More precisely,

1

2
β�

1 ≤ ‖J �(n, ·) − P‖ ≤ β
−1/2
1

1 − β2�−1
1

β�
1

where β1 = 1 − 2

n + 2
.

Hence, DKS’s estimate of the convergence rate, that
is β1, is (much) better than our ρ for large values of n.

4. GEOMETRIC ERGODICITY

We first recall a general result on Markov chains.

THEOREM 2 [Rosenthal (1995)]. Let K be an er-
godic Markov kernel on (S,B) with stationary distri-
bution P . Suppose

Kg(s) ≤ α + βg(s), s ∈ S,(4)

for some measurable function g :S → R
+ and con-

stants α and β ∈ (0,1). Fix d > 2α/(1 − β), define
D = {s ∈ S : g(s) ≤ d} and suppose also that

K(s, ·) ≥ εQ(·), s ∈ D,(5)

for some ε > 0 and probability Q on B. Then, for all
r ∈ (0,1) and s ∈ S,

‖K�(s, ·) − P‖ ≤ (1 − ε)r� + t�
(

1 + α

1 − β
+ g(s)

)

where t = (1 + 2α + 2βd)r(1 + 2α + βd)1−r

(1 + d)1−r
.
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In a Gibbs sampling framework, Theorem 2 turns
into:

PROPOSITION 3. Suppose condition (2) holds and

Jφ(x) ≤ α + βφ(x), x ∈ X,(6)

for some measurable function φ :X → R
+ and con-

stants α and β ∈ (0,1). Fix d > 2α/(1 − β), define
A = {x ∈ X :φ(x) ≤ d} and suppose also that

sup
A

m < ∞ and inf
A×B

f > 0

(7)
for some B ∈ G with P(A × B) > 0.

Then, for all r ∈ (0,1) and x ∈ X,

‖J �(x, ·) − P‖
≤ (1 − ε)r� + t�

(
1 + α

1 − β
+ φ(x)

)

with t as in Theorem 2 and ε = π(B) infA×B f
supA m

.

PROOF. By (2), J is ergodic. By (6), condition (4)
holds with K = J and g(x, θ) = φ(x). By (7), there is
B ∈ G with infA×B f > 0 and π(B) ≥ P(A × B) > 0.
Since supA m < ∞, the same calculation as in the proof
of Proposition 1 yields

J (x,C) ≥ π(B) infA×B f

supA m
P(C | T ∈ B)

for all x ∈ A and C ∈ F ⊗ G.

Thus, (5) holds with ε = π(B) infA×B f
supA m

and Q(·) = P(· |
T ∈ B). An application of Theorem 2 concludes the
proof. �

Proposition 3 applies to most DKS’s examples pro-
viding reasonable estimates. Note that: (i) Condi-
tion (2) holds (in fact, (3) holds) in such examples.
(ii) If (7) holds for all d , then t can be made arbitrarily
close to β for suitable r, d . There is a trade-off, how-
ever, since the choice of r, d affects (1 − ε)r�. (iii) Let-
ting ψ = 1 + α/(1 − β) + φ, one has

t�ψ(x) ≤ e−c whenever � ≥ {c + logψ(x)}/| log t |
for all x ∈ X and c > 0. This can serve to estimate the
impact of the initial state x. It is roughly of the same
order of some DKS’s estimates.

EXAMPLE 4.2.1 (POISSON/GAMMA). Let π be
standard exponential, so that m(x) = 2−x−1 for x ∈
X = {0,1, . . .}. We take φ(x) = x. In that case, the set

A = {φ ≤ d} meets condition (7) for all d > 0. As to
(6), it suffices noting that

Jφ(x) = 1

m(x)

∫ ∫
af (a, b)μ(da)f (x, b)π(db)

= 2x+1
∫ ∞

0
bf (x, b)e−b db

= 2x+1

x!
∫ ∞

0
bx+1e−2b db = x + 1

2
.

Hence, Proposition 3 applies with α = β = 1/2. Now,
acting on r, d , upper bounds on the convergence rate
can be easily obtained. At this stage, using numerical
evaluations is convenient.

EXAMPLE 4.3 (GAUSSIAN). Suppose σ 2 + τ 2 =
1/2 and π is N(0, τ 2), so that the posterior distribu-
tion π(· | x) is N(2τ 2x,2τ 2σ 2). We take φ(x) = |x|.
Again, A = {φ ≤ d} meets (7) for all d > 0. Recalling
E|N(0,1)| = √

2/π , one obtains

Jφ(x) =
∫ ∫

|a|f (a, b) daπ(db | x)

≤
∫ {|b| + σ

√
2/π

}
π(db | x)

≤ σ
√

2/π + √
2στ

√
2/π + 2τ 2|x|

= α + 2τ 2|x|,
say. Since 2τ 2 < 2(σ 2 + τ 2) = 1, condition (6) holds
with β = 2τ 2. Again, acting on r, d , one gets estimates
(even if non optimal) of the convergence rate.

5. HIGHER COMPONENT PROBLEMS AND
CONCLUDING REMARKS

Apparently, DKS’s argument does not apply to the
k-component Gibbs sampler when k > 2. On the other
hand, Propositions 1 and 3 can be adapted to any value
of k. We illustrate this point with regard to Proposi-
tion 1 for k = 3. To this end, notation needs to be up-
dated. Suppose (X,F ) is the product of two measur-
able spaces (X1,F1), (X2,F2) and P has a density f

with respect to μ1 × μ2 × π , where μi is a σ -finite
measure on Fi , i = 1,2. The marginal densities of the
pairs x = (x1, x2), (x1, θ) and (x2, θ) are assumed fi-
nite and strictly positive everywhere. Also, h denotes
the density of (x1, θ). Then, Proposition 1 takes the
form:

PROPOSITION 4. Let J be the Markov kernel of the
3-component Gibbs sampler. If m and h are bounded,
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then

‖J �(x, ·) − P‖ ≤
(

1 − v

supm

)�

for all x ∈ X

where v = μ2(X2) sup
B∈G

π(B)
{infx∈X,θ∈B f (x, θ)}2

supx1∈X1,θ∈B h(x1, θ)
.

Incidentally, we note that μ2(X2) < ∞ whenever
infX×B f > 0 for some B ∈ G with π(B) > 0.

Next, we would like to draw the Authors’ attention
to an issue that might potentially enlarge the scope of
their argument. Consonni and Veronese (2001) intro-
duced the concept of conditionally reducible natural
exponential families. Basically, they are multivariate
natural exponential families whose densities can be ex-
pressed as a product of lower dimensional (possibly
univariate) conditional exponential families, each be-
ing indexed by its own natural parameter. The underly-
ing idea is intimately related to that of a cut. Examples
include the multinomial and Wishart sampling fami-
lies. We wonder whether the methods described by the
Authors could be applied recursively to conditionally
reducible families admitting a factorization in terms of

univariate exponential families, such as the multino-
mial family.

To sum up, DKS’s estimates behave excellently, in-
deed very close to optimum, in those examples for
which they are thought. One further merit is that lower
bounds are provided as well. On the other hand, Propo-
sitions 1 and 3, presented in this discussion, have a
broader scope, can be applied for any initial state x

(while DKS’s bounds are sometimes available for cer-
tain x only), but can provide less sharp bounds.
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