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Abstract: Recently, Giraitis et al. (2003, [10]) proposed the V/S statistic
for testing long memory in random sequences. We generalize this statistic
to the setting of random fields. The null hypothesis is concerned with short
memory random fields while the alternative contains a very large family of
long memory random fields. Contrary to most of the previous works dealing
with long-range dependence, no assumption is made about the isotropy of
the strong dependence. Some simulations are presented in order to assess
the power of the test according to the kind of long memory in presence.
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1. Introduction

A stationary random field X = (Xn)n∈Zd is usually said to exhibit long mem-
ory when its covariance function r(n), n ∈ Z

d, is not absolutely summable:∑
n∈Zd |r(n)| = ∞. An alternative definition relates on spectral properties: A

random field is said to exhibit long memory if its spectral density is unbounded.
These two points of view are closely related but not equivalent. In this paper,
the concepts of “strong dependence” and “long-range dependence” are the same
as “long memory”.

Most of the previous studies on long memory random fields (see [6, 7, 18])
assume that the strong dependence occurs with the same intensity in all direc-
tions. Indeed, these works are concerned with isotropic long memory according
to the following definition.

Definition 1. A stationary random field exhibits isotropic long memory if it
admits a spectral density which is continuous everywhere except at 0 where

f(x) ∼ ||x||α−d b

(
x

||x||

)
L

(
1

||x||

)
, 0 < α < d,

where ||.|| denotes the Euclidean norm, where L is slowly varying at infinity and
b is a continuous function on the unit sphere in R

d.
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However, it is easy to construct non-isotropic long memory random fields.
In [14], such fields arise from particular filterings of a white noise, from the
aggregation of weakly dependent random fields, or from systems of statistical
mechanics in phase transition.

Our aim is to construct a procedure for discriminating between weak depen-
dent random fields and strong dependent ones, regardless of the isotropy.

In dimension d = 1, several tests for long memory are available. They are
mostly based on an estimation of the variations of the partial sums process of
X. For all these tests, the alternative hypothesis consists in parametric families
of long memory processes, typically FARIMA time series. Lo (1991, [17]) first
developed a test based on the R/S statistic, which estimates the range of the
partial sums process of X. The KPSS test was initially developed by Kwiatkovski
et al. (1992, [12]) for testing stationarity (under weak dependence assumptions)
against the presence of a trend or a unit root. A variant of the KPSS test, based
on an estimation of the second order moments of the partial sums of X, was
proposed by Lee and Schmidt (1996, [16]) in order to test long memory. From
the same idea, Giraitis et al. (2003, [10]) introduced the V/S statistic, based
on an estimation of the variance of the partial sums of X. It appears that this
test is more powerful than the R/S test and than the KPSS test for detecting
strong dependence.

Note that the behavior of the partial sums of X is not the unique way to test
long memory in dimension d = 1. Goodness-of-fit tests for long range dependent
time series have been developed (cf. [1, 9] and [4]). To the best of our knowledge,
in dimension d > 1, there exists no generic model able to exhibit different situa-
tions such as isotropic or non-isotropic long memory. A goodness-of-fit approach
seems therefore too restrictive in our framework.

In this paper, we generalize the V/S test to the setting of random fields.
Since this test is based on the partial sums of X, we summarize in Section 2
what is known about their limiting behavior under short memory and long
memory. This will allow us to specify our testing hypothesis. Section 3 proves
the consistency of the test through asymptotic results. Some simulations are
presented in Section 4 when d = 2. They reveal that the power of the test is
strongly related to the anisotropy of the long memory.

2. Test hypotheses

Let X be a second order stationary real random field. We want to test the
null hypothesis: X is weakly dependent against the alternative assumption: X
exhibits long memory. The V/S test that we extend in this paper does not rely
exactly on these testing hypotheses. It rather focuses on the behavior of the
partial sums process, defined for all t ∈ [0, 1]d by

∑

k∈An(t)

Xk,
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with An(t) = Z
d ∩∏d

i=1[1, ⌊(n− 1)ti⌋+1], where ⌊x⌋ denotes the integral value
of x and n is a positive integer. Indeed, there is a close relation between the
dependency of X and the asymptotic behavior of its partial sums.

When X is a centered and weakly dependent random field, i.e. when its
covariance function is absolutely summable, it is well known that if σ2 :=∑

h∈Zd r(h) 6= 0, a functional central limit theorem generally holds:

1

σnd/2

∑

k∈An(t)

Xk
D([0,1]d)−→ B(t). (2.1)

Here, B denotes the Brownian Sheet, i.e. the centered Gaussian process such
that E(B(t)B(s)) =

∏d
i=1 ti ∧ si. The convergence takes place in D([0, 1]d),

the Skorokhod space of cadlag functions defined on [0, 1]d (see [2] for instance).
This result has been proved by different authors according to the kind of weak
dependence of X, among others: Wichura (1969, [20]) when X is an i.i.d process,
Dedecker (2001, [5]) under a weak projective assumption.

On the other hand, when X is long-range dependent, (2.1) is generally false.
More precisely, when the spectral density of X exhibits at least one singularity
located at zero, then, under some structural hypotheses on X, it has been proved
that

1

nγ

∑

k∈An(t)

Xk
D([0,1]d)−→ Y (t), (2.2)

where γ > d/2 and Y is a random field different from the Brownian Sheet
(not even necessarily Gaussian). This result is shown in [6] for functionals of
Gaussian fields, extended in [18] to functionals of linear fields, when the long
memory is isotropic according to Definition 1. In the case of linear fields which
exhibit anisotropic long memory, (2.2) is proved in [15].

Let us now precise the testing hypotheses.

H0: Short memory hypothesis. The second order random field X is sta-
tionary, with a covariance function r, such that SM1, SM2 and SM3 below are
satisfied.

SM1 ∑

j∈Zd

|r(j)| < ∞ and σ2 :=
∑

j∈Zd

r(j) > 0. (2.3)

SM2

1

σnd/2

∑

k∈An(t)

(Xk − E(X0))
D([0,1]d)−→ B(t),

where B is the Brownian Sheet.
SM3

sup
i∈Zd

∑

(j,k)∈Z2d

|c4(i, j, k)| < ∞,

where c4 represents the fourth order cumulants of X: Denoting X̃i = Xi−
E(Xi), c4(i, j, k) = E[X̃0X̃iX̃jX̃k]−r(i)r(k−j)−r(j)r(k−i)−r(k)r(j−i).
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H1: Long memory hypothesis. The second order random field X is sta-
tionary and satisfies LM1 and LM2 below.

LM1

1

nγL(n)

∑

k∈An(t)

(Xk − E(X0))
D([0,1]d)−→ Y (t), (2.4)

with γ > d/2, where L is a slowly varying function at infinity and Y is
some measurable and non-degenerated random field.

LM2

V ar

( ∑

k∈An(1)

Xk

)
= O(n2γL2(n)). (2.5)

Remark 1. The null hypothesis H0 deals with short memory as suggested by
assumption SM1. Assumption SM2 claims that a functional central limit the-
orem holds, as expected in the short memory setting. However, SM1 does not
imply SM2. For instance, some counter-examples are available in Theorems 7
and 8 in [11]. Finally, SM3 is needed for technical reasons.

As explained above, (2.4) holds for a large family of long memory fields
and it can be reasonably chosen as the alternative hypothesis. However, when
the strong dependence involves non zero spectral singularities, then (2.1) may
remain true (cf. [15], Theorem 2 and Theorem 4). Then, there is no chance
for this particular situation of long memory to be detected by the test. Notice
that the same restriction exists in dimension 1 in all the long memory testing
procedures based on the behavior of the partial sums. Assumption LM2 is
convenient for technical reasons and appears to be a weak restriction to LM1.

3. The testing procedure

3.1. Test statistic

We generalize the V/S statistic to d > 1. Let us first introduce some notations.
For all positive integer n, let An ≡ An(1). We denote, for all positive integer j,

S∗
n,j =

∑

i∈Aj

(
Xi − Xn

)
, (3.1)

where Xn = n−d
∑

j∈An
Xj. Let q be an integer in [1, n]. An estimator of σ2,

defined by (2.3), is

ŝ2
n =

∑

j∈Bq−1

ωq,j r̂(j), (3.2)

with Bq = {−q, . . . , q}d. Here ωq,j =
∏d

i=1(1−
|ji|
q ) are some weights leading to

the positivity of ŝ2
n (see for instance [3] p360) and r̂ is the empirical covariance

function:

r̂(j) =
1

nd

n−|j1|∑

k1=1

· · ·
n−|jd|∑

kd=1

(
Xk1,...,kd

− Xn

) (
Xk1+|j1|,...,kd+|jd| − Xn

)
.
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The statistic V/S is defined by

Mn = n−d
V̂ ar

(
S∗

n,j , j ∈ An

)

ŝ2
n

,

where V̂ ar
(
S∗

n,j, j ∈ An

)
= n−d

∑
j∈An

(
S∗

n,j − S∗
n

)2
and S∗

n = n−d
∑

j∈An
S∗

n,j.
One can rewrite Mn as

Mn =
n−2d

ŝ2
n

[∑

j∈An

S∗
n,j

2 − n−d

(∑

j∈An

S∗
n,j

)2
]
. (3.3)

3.2. Consistency of the test

In what follows, the integer q involved in Definition 3.2 is actually a function
qn depending on n. The following proposition establishes the consistency of the
test when the sequence qn is properly chosen.

Proposition 1. If limn→∞ qn = ∞ and limn→∞ qn/n = 0, then,
(i) Under H0,

Mn
L−→
∫

|0,1]d

(
B(t)−

(
d∏

i=1

ti

)
B(1)

)2

dt−
[∫

[0,1]d

(
B(t)−

(
d∏

i=1

ti

)
B(1)

)
dt

]2

,

(3.4)

where B is the Brownian Sheet on [0, 1]d and
L−→ denotes the convergence in

law.
(ii) Under H1,

Mn
P−→ ∞, (3.5)

where
P−→ denotes the convergence in probability.

The testing procedure is the following: Given a significance level α ∈ [0, 1],
one rejects the null hypothesis H0 if Mn, given by (3.3), is greater than c(α),
where c(α) is such that

P (Ud > c(α)) = α,

where Ud is distributed according to the asymptotic law involved in (3.4). Propo-
sition 1 guarantees that the significance level of the test is asymptotically correct
and that the power of the test goes to 1.

Remark 2. To our knowledge, the theoretical form of the asymptotic law Ud

in (3.4) is unknown for d > 1. When d = 1, the distribution function of U1 is
FK(π

√
x), where FK denotes the Kolmogorov distribution function (see [10]).

This identification comes from Watson (1961, [19]) and is not easy to extend
to d > 1. It is however straightforward to obtain E(Ud) = (1/2)d + (1/4)d −
2(1/3)d. For d = 2, a simulation of the density distribution of U2 is presented
in Section 4.1 (cf. Figure 1).
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Proof. Notice that if k
n ≤ t1 < k+1

n , then

S∗
n(⌊nt1⌋+ 1, . . . , ⌊ntd⌋ + 1) = S∗

n(k + 1, ⌊nt2⌋ + 1, . . . , ⌊ntd⌋ + 1),

where S∗
n(j) ≡ S∗

n,j is defined for all j ∈ An in (3.1). Therefore

n−d
∑

j∈An

S∗
n,j =

∫

[0,1]d
S∗

n(⌊nt1⌋ + 1, . . . , ⌊ntd⌋ + 1)dt.

The same equality holds with respect to S∗
n

2 and expression (3.3) of Mn becomes

Mn =
n−d

ŝ2
n

[∫

[0,1]d
S∗

n
2(⌊nt1⌋ + 1, . . . , ⌊ntd⌋+ 1)dt

−
(∫

[0,1]d
S∗

n(⌊nt1⌋ + 1, . . . , ⌊ntd⌋ + 1)dt

)2
]
.

Let Sn(t) = n−d/2
∑

k∈An(t) Xk, then Mn can be expressed as

Mn =
1

ŝ2
n

[∫

[0,1]d

(
Sn+1(t) −

d∏

i=1

⌊nti⌋ + 1

n
Sn(1)

)2

dt

−
(∫

[0,1]d
Sn+1(t) −

d∏

i=1

⌊nti⌋ + 1

n
Sn(1)dt

)2 ]
.

Hence ŝ2
nMn is of the form Φ(Sn(.)), where Φ is a continuous map.

As a consequence, under SM2 and from the continuous mapping theorem,

ŝ2
n

σ2
Mn

L−→
∫

|0,1]d

(
B(t) −

(
d∏

i=1

ti

)
B(1)

)2

dt

−
[∫

[0,1]d

(
B(t) −

(
d∏

i=1

ti

)
B(1)

)
dt

]2

.

Besides, under LM1,

ŝ2
n

nd

n2γL(n)2
Mn

L−→
∫

|0,1]d

(
Y (t) −

(
d∏

i=1

ti

)
Y (1)

)2

dt

−
[∫

[0,1]d
Y (t) −

(
d∏

i=1

ti

)
Y (1)dt

]2

.

The proof is concluded thanks to the following lemma.
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Lemma 1. If limn→∞ qn = ∞ and limn→∞ qn/n = 0, then,
(i) Under H0,

ŝ2
n

P−→ σ2.

(ii) Under H1,
nd

n2γL(n)2
ŝ2
n

P−→ 0.

Proof of Lemma 1.
The demonstration is an adaptation from Giraitis et al. (2003, [10]) to the

random field framework.
Denote k = (k1, . . . , kd) and |j| = (|j1|, . . . , |jd|),

r̃(j) =
1

nd

n−|j1|∑

k1=1

· · ·
n−|jd|∑

kd=1

(Xk − µ)
(
Xk+|j| − µ

)
,

where µ is the expectation of X. We split ŝ2
n as

ŝ2
n =

∑

j∈Bq−1

ωq,j r̃(j) +
∑

j∈Bq−1

ωq,j (r̂(j) − r̃(j)) := un + vn. (3.6)

We first show that, under H0, E(|vn|) → 0 when n → ∞, while under H1,
E(|vn|) = o(n2γ−dL(n)2) when n → ∞.

Some computations lead to

r̂(j) − r̃(j) =

d∏

i=1

(
1 − |ji|

n

)(
Xn − µ

)2 − n−d
(
Xn − µ

)

n−|j1|∑

k1=1

· · ·
n−|jd|∑

kd=1

(
(Xk − µ) + (Xk+|j| − µ)

)
.

From the Cauchy-Schwartz inequality

E(|vn|) ≤
∑

j∈Bq−1

E |r̂(j) − r̃(j)|

≤
∑

j∈Bq−1





E
(
Xn −µ

)2
+n−d

√
E
(
Xn −µ

)2




√√√√√E




n−|j1|∑

k1=1

· · ·
n−|jd|∑

kd=1

(Xk −µ)




2

+

√√√√√E




n∑

k1=|j1|
· · ·

n∑

kd=|jd|
(Xk − µ)




2







.

Since r is bounded, if si < ti, for all i = 1 . . . d,

E

(
t1∑

i1=s1

· · ·
td∑

id=sd

(Xi − µ)

)2

=

t1∑

i1,i′
1
=s1

· · ·
td∑

id,i′
d
=sd

r(i − i′) ≤ c

d∏

i=1

(ti − si),
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where c is a positive constant. Therefore

E(|vn|) ≤ c
∑

j∈Bq−1

(
E
(
Xn − µ

)2
+ 2n−d

√
E
(
Xn − µ

)2 d∏

i=1

√
n − |ji|

)

≤ c
∑

j∈Bq−1

(
E
(
Xn − µ

)2
+ 2n−d/2

√
E
(
Xn − µ

)2
)

. (3.7)

Under SM1, E
(
Xn − µ

)2 ≤ cn−d, while under LM2, E
(
Xn − µ

)2 ≤
cn2γ−2dL2(n). Since q/n goes to 0, it is then straightforward to conclude that,
under H0, E(|vn|) vanishes and, under H1, E(|vn|) = o(n2γ−dL2(n)).

Now, we turn to the asymptotic behavior of un.
Let us first show that under H0, un, defined by (3.6), converges in probability

to σ2 when n goes to infinity. Notice that

E(un) =
∑

j∈Bq−1

ωq,j

(
d∏

i=1

n − |ji|
n

)
r(j) → σ2.

According to (3.6), ŝ2
n converges in probability to σ2 if E (un − E(un))

2
con-

verges to 0.

E (un − E(un))
2

= E

( ∑

j∈Bq−1

ωq,j [r̃(j) − E (r̃(j))]

)2

=
∑

j,j′∈B2

q−1

ωq,jωq,j′cov(r̃(j), r̃(j′))

≤
∑

j,j′∈B2

q−1

|cov(r̃(j), r̃(j′))|

≤ 1

n2d

∑

j,j′∈B2

q−1

∑

k,k′∈A2
n

∣∣cov
(
(Xk − µ)(Xk+|j| − µ), (Xk′ − µ)(Xk′+|j′| − µ)

)∣∣ .

We split the sum above in two terms involving on one side the cumulants and
on the other side the covariance function. Indeed

cov
(
(Xk − µ)(Xk+|j| − µ), (Xk′ − µ)(Xk′+|j′| − µ)

)

= cum(Xk, Xk+|j|, X
′
k, Xk′+|j′|)

+ r(k − k′)r(k′ − k + |j′| − |j|) + r(k − k′ − |j′|)r(k − k′ + |j|).
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First, thanks to SM3,

1

n2d

∑

j,j′∈B2

q−1

∑

k,k′∈A2
n

∣∣cum(Xk, Xk+|j|, X
′
k, Xk′+|j′|)

∣∣

≤ 1

n2d

∑

j∈Bq−1

∑

k∈An

∑

i,i′∈B2n

∣∣cum(X0 , X|j|, Xi, Xi′)
∣∣

≤ 1

nd

∑

j∈Bq−1

∑

i,i′∈B2n

|c4(|j|, i, i′)|

≤ c
( q

n

)d

,

where c is a positive constant.
Then,

1

n2d

∑

j,j′∈B2

q−1

∑

k,k′∈A2
n

|r(k− k′)r(k′ − k + |j′| − |j|)+ r(k− k′− |j′|)r(k− k′ + |j|)|

≤ 1

n2d

∑

j∈Bq−1

∑

k∈An

∑

i,i′∈B2n

2 |r(i)r(i′)|

≤ c
( q

n

)d

,

where c is a positive constant.
Finally E (un − E(un))

2
converges to 0 if q/n → 0 and this completes the

proof of (i).
For proving (ii), recall that

E(un) =
∑

j∈Bq−1

ωq,j

(
d∏

i=1

n − |ji|
n

)
r(j).

According to LM2, E(un) ≤ q−d
∑

j∈Bq−1

(∏d
i=1(q − |ji|)

)
r(j) = O(q2γ−d ×

L2(q)). Therefore, from (3.6) and (3.7), E(|ŝ2
n|) = E(ŝ2

n) = E(un) + E(vn) =
o(n2γ−dL2(n)) + O(q2γ−dL2(q)) and (ii) of Lemma 1 follows because q/n van-
ishes when n goes to infinity.

4. Simulations in dimension d = 2

The following simulations give an idea of the power of the test under different
situations of strong dependence. First, one has to approach the asymptotic law
of the test statistic Mn under the null hypothesis. This is done in subsection 4.1.
We then focus on the choice of q when n = 128 and n = 256 to guarantee a
proper size of the test. In subsection 4.3, the power of the test is assessed.
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Several kinds of long memory random fields are simulated and submitted to the
testing procedure. As these simulations are highly time consuming, we restrict
ourselves to random fields of size 128×128 and 256×256. The simulations results
reveal a close relation between the power and the kind of strong dependence
encountered. The power depends on the strength of the long memory but also
on its anisotropy.

4.1. Asymptotic law under H0

The first step to implement the test consists in simulating the asymptotic law
of Mn under the null hypothesis. According to Proposition 1, this is the law of

∫

|0,1]2

(
B(t) −

(
2∏

i=1

ti

)
B(1)

)2

dt −
[∫

[0,1]2

(
B(t) −

(
2∏

i=1

ti

)
B(1)

)
dt

]2

,

(4.1)
where B is the Brownian Sheet on [0, 1]2. After some computations, (4.1) can
be written
∫

|0,1]2
B(t1 , t2)

2dt1dt2 − 2B(1, 1)

∫

|0,1]2
t1t2B(t1, t2)dt1dt2

−
(∫

|0,1]2
B(t1, t2)dt1dt2

)2

+
B(1, 1)

2

∫

|0,1]2
B(t1, t2)dt1dt2 +

7

144
B(1, 1)2.

To simulate a sample under this law, each integral above is approximated by a
Riemann sum, for instance

∫

|0,1]2
t1t2B(t1, t2)dt1dt2 ≈ 1

n2

n∑

k1=1

n∑

k2=1

k1

n

k2

n
B

(
k1

n
,
k2

n

)
,

where a realization of
(
B
(

k1

n , k2

n

))
1≤k1,k2≤n

is given by

B

(
k1

n
,
k2

n

)
=

1

n

k1∑

j1=1

k2∑

j2=1

εj1,j2 , ∀(k1, k2) ∈ {1, . . . , n}2,

with (εj)j∈Z2 a Gaussian white noise.
For n = 7000, 10000 realizations of the law (4.1) have been computed. The

histogram of the sample is shown in Figure 1.
From the simulated sample, an estimated mean of 0.0897 is obtained, the

empirical variance is 0.0018 and the empirical quantiles of order 90% and 95%
are respectively 0.1448 and 0.1692.

4.2. Choice of q

The sample size n being fixed, one has to choose the value of q involved in
definition (3.3) of Mn. This choice is not easy. We decide to choose it so that
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Fig 1. Estimated density function of the limiting law (4.1).

the size of the test is optimized. This reduces to check that the p-values under
H0 are uniformly distributed on [0, 1].

Small values of q lead to an increase of the probability of rejecting H0. So,
in order to maximize the power of the test, we have to find the smallest q such
that the size is correct.

To achieve this choice, we compute the test for different autoregressive fields
Xk1,k2

defined by
(1 − aL1)(1 − aL2)Xk1,k2

= εk1,k2
, (4.2)

where ε is a Gaussian white noise, where 0 < a < 1 and Li represents the lag
operator on the i-th index. The simulation of such an autoregressive field is done
by filtering a white noise as in [8].

Clearly, the size of the test will increase with a. As a consequence, in the
simulations below, we choose to quote only two situations: a = 0.5 and a = 0.8.
The last case corresponds to a memory close to strong dependence and a worse
size in this case might be acceptable. Indeed, it will be impossible to find q such
that, uniformly on a, the size of the test is strictly the one expected.

4.2.1. Case n = 128

Figure 2 represents the empirical distribution of the p-values, computed on 1000
realizations of Mn, in the case n = 128, when q = 28, q = 30 and q = 32. The
line with crosses stands for a = 0.8 and the line with circles for a = 0.5. The
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Fig 2. Cumulative distribution function of the p-values on [0,0.1] for model (4.2) with a = 0.8
(crosses) and a = 0.5 (circles) when n = 128 and q = 28 (a), q = 30 (b), q = 32 (c).

diagonal line is added for sake of comparison. The representations are zoomed
in on [0, 0.1].

The value q = 30 is chosen. For this value, the size associated with a = 0.8 is
larger than expected (for instance 15% instead of 10%). This error is acceptable
since the dependence of an autoregressive field (4.2) with a = 0.8 is close to
long memory. The choice of a larger q reduces this error but on the other hand,
this may create a bias for smaller values of a (as seen in Figure 2 for q = 32 and
a = 0.5), and consequently the test becomes less powerful.

4.2.2. Case n = 256

Figure 3 represents the empirical distribution of the p-values in the case n = 256
when q = 35, q = 40 and q = 45. The line with crosses stands for a = 0.8 and
the line with circles for a = 0.5.

The value q = 40 is chosen for the same reasons as before: The error for
a = 0.8 seems acceptable in comparison with the loss of power that the choice
of a larger q would yield.



F. Lavancier/The V/S test of long-range dependence in random fields 1385

0.0 0.02 0.04 0.06 0.08 0.1
0.00

0.05

0.10

0.15

0.20

0.25

a=0.8

a=0.5

y=x

0.0 0.02 0.04 0.06 0.08 0.1
0.00

0.05

0.10

0.15

0.20

0.25

a=0.8

a=0.5

y=x

(a) (b)

0.0 0.02 0.04 0.06 0.08 0.1
0.00

0.05

0.10

0.15

0.20

0.25

a=0.8

a=0.5

y=x

(c)

Fig 3. Cumulative distribution function of the p-values on [0,0.1] for model (4.2) with a = 0.8
(crosses) and a = 0.5 (circles) when n = 256 and q = 35 (a), q = 40 (b), q = 45 (c).

4.3. Power under different alternatives

We implement the test on different Gaussian long memory random fields. The
power is assessed according to the type of memory. First, the case when the long
memory is of tensorial product type is studied: That is when the spectral density
f(x1 , x2) of the field, defined on [−π, π]2, is equivalent at 0 to |x1|α1|x2|α2, −1 <
α1 < 0, −1 < α2 < 0. The range of α1 and α2 guarantees the integrability of
f . Notice that this spectral density does not follow the property of Definition 1.
Then, we report the case when the long memory is isotropic: That is when the
spectral density is equivalent at 0 to (x2

1+x2
2)

α/2, where, for integrability reasons,
−2 < α < 0. In the last simulations, we focus on the effect of anisotropy on the
power. For this purpose, we simulate Gaussian fields whose spectral densities
are equivalent at 0 to |x1 + kx2|α, −1 < α < 0, k ∈ Z. This is an extreme case
of anisotropic field since f exhibits only one line of singularity. For all these
examples, assumption H1 holds with γ = 1− (α1 + α2)/2 for the product-type
case, and γ = 1 − α/2 for the two other examples (see [14] or [15]).

All of the above fields are simulated thanks to the spectral method (cf. [13])
which consists in the following algorithm:

1. Generate N independent random variables (Z
(1)
1 , Z

(1)
2 ), . . . , (Z

(N)
1 , Z

(N)
2 )

on [−π, π]2 according to the spectral measure µ (viewed, up to a normal-
ization, as a probability distribution);
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2. Generate N independent random variables U1, . . . , UN uniformly on [0, 1];

3. Compute for all (i, j), Xi,j =
√

2
N

∑N
k=1 cos(Z

(k)
1 i + Z

(k)
2 j + 2πUk).

According to the central limit theorem, the resulting field X is Gaussian with
spectral measure µ when N is large. In practice, the value N = 5000 is fixed.

4.3.1. Tensorial product type long memory

The power of the test is assessed for Gaussian fields with a spectral density
equivalent at 0 to |x1|α1|x2|α2, −1 < α1 < 0, −1 < α2 < 0. Figure 4 shows a
simulation of such fields on a 256 × 256 grid using the spectral method, when,
from left to right, α1 = α2 = −0.25, α1 = α2 = −0.5 and α1 = α2 = −0.75.
These cases correspond respectively in (2.5) to γ = 1.25, γ = 1.5 and γ = 1.75.

The empirical c.d.f. of the p-values of the test is represented on Figure 5.
Each curve is computed on 500 simulated fields. On the left, the simulations

Fig 4. Gaussian fields with product-type long memory where γ = 1.25 (left), γ = 1.5 (middle)
and γ = 1.75 (right).

Fig 5. C.d.f. of the p-values when γ = 1.25 (crosses), γ = 1.5 (circles) and γ = 1.75 (trian-
gles), where n = 128 (left) and n = 256 (right).
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correspond to fields of size 128×128, while on the right n = 256. The parameter
q has been chosen according to subsection 4.2, that is q = 30 when n = 128 and
q = 40 when n = 256. In each case, three curves are represented, corresponding
to α1 = α2 = −0.25 (crosses), α1 = α2 = −0.5 (circles) and α1 = α2 = −0.75
(triangles). We observe logically that the power of the test increases with the
strength of the memory (quantified by γ) and with the size of the sample.

4.3.2. Isotropic long memory

Now, the power of the test is assessed on isotropic long memory fields. Their
spectral density is equivalent at 0 to (x2 + y2)α/2, −2 < α < 0. A simulation
of such fields is presented on Figure 6 when α = −0.5, α = −1 and α = −1.5,
which correspond to γ = 1.25, γ = 1.5 and γ = 1.75 in (2.5).

Figure 7 represents the same c.d.f as in Figure 5 but for the isotropic case
when α = −0.5 (crosses), α = −1 (circles) and α = −1.5 (triangles). These

Fig 6. Gaussian fields with isotropic long memory when γ = 1.25 (left), γ = 1.5 (middle)
and γ = 1.75 (right).

Fig 7. C.d.f. of the p-values when γ = 1.25 (crosses), γ = 1.5 (circles) and γ = 1.75 (trian-
gles), where n = 128 (right) and n = 256 (left).
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choices correspond to the same strengths of long memory (i.e. the same γ) as in
Figure 5. The power follows a similar behavior: It increases with the strength
of the memory and with the sample size. However, the power for the isotropic
case is smaller than in the product-type setting studied before. This is due to
the form of the statistic Mn (see Section 3.1): The empirical variance of S∗

n,j

is computed using quadrants Aj ’s. This suits better product-type fields than
isotropic ones for detecting long memory. Indeed, in the product-type setting,
this empirical variance will tend to return higher values. This sensitivity to
anisotropy is studied further in the last subsection.

4.3.3. The effect of anisotropy on the power

As seen before, the power for the isotropic long memory case is smaller than
for the product-type setting. To assess properly the sensitivity to anisotropy, we
focus on one-direction long memory fields in the sense that their spectral density
behaves at zero as |x1+kx2|α, k ∈ Z. Note that this form of the spectral density
demands −1 < α < 0 to be integrable. This yields the restriction γ < 1.5 in
(2.5). Figure 8 shows a simulation on a 256× 256 grid when k = −1 and k = 0
and when α = −0.5, corresponding to γ = 1.25 in (2.5). As we can see on
Figure 8, the worst case, in terms of computation using quadrants, should be
k = −1 while the most suitable situation should be k = 0.

Figure 9 shows the power of the test when k = −1 (solid line) and k = 0
(dotted line) for n = 128 (left) and n = 256 (right). This representation confirms
the effect of anisotropy. Therefore, from a practical point of view, it seems better
to study first the isotropy of the dependence before testing the presence of long
memory, in order to rotate the image sample if necessary.

Fig 8. Gaussian fields with one-direction long memory (γ = 1.25) when k = −1 (left) and
k = 0 (right).



F. Lavancier/The V/S test of long-range dependence in random fields 1389

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k=−1

k=0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k=−1

k=0

Fig 9. C.d.f. of the p-values when k = −1 (solid line) and k = 0 (dotted line) for γ = 1.25
and where n = 128 (left) and n = 256 (right).
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