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An asymptotic viewpoint on high-dimensional

Bayesian testing

Dan J. Spitzner∗

Abstract. The Bayesian point-null testing problem is studied asymptotically
under a high-dimensional normal-means model. A noninformative prior structure
is proposed for general problems, and then refined for the specialized contexts
of goodness-of-fit testing and functional data analysis. The associated tests are
demonstrated on existing data sets and shown to provide a cornerstone for a tool-
box of detailed analysis tools. The conceptual approach is to allow the prior null
probability to vary with dimension and with prior dispersion parameters, then
to guide its parametrization so that the posterior null probability behaves in ac-
cordance with Bayesian asymptotic-consistency concepts. Among the theoretical
issues studied are the objectivity of setting the prior null probability to one-half,
the Jeffreys-Lindley paradox, and the influence of smoothness constraints.

Keywords: Bayesian testing, high-dimensional testing, rates of testing, functional
data analysis, goodness-of-fit testing

1 Introduction

This article studies the problem of testing a point-null hypothesis in high dimensions.
The model under consideration is defined componentwise according to

Yn,j = θn,j + σn,jen,j , (1)

for its j’th component, where j = 1, . . . , pn, n is an index parameter akin to “sample
size,” and pn is “dimensionality,” representing the maximum number of observable
components at a given n. The variables en,1, . . . , en,pn

are standard-normal errors, which
are independent across j (at each n), σn,1, . . . , σn,pn

are error-variance parameters, and
θn,1, . . . , θn,pn

are mean parameters. The objective is to test H0 : θn,j = 0 for all
j = 1, . . . , pn against a general alternative H1. The investigation studies the asymptotic
behavior of Bayesian test procedures as n and pn increase simultaneously and without
bound. Specific attention is given to the context where n−1

∑pn

j=1 j
2s(θn,j/σn,j)

2 is
uniformly bounded across n for some, possibly unknown, s > 1/2, and the σn,j each
shrink at the rate 1/

√
n. The former condition represents a “smoothness” assumption.

Motivation for studying this problem stems primarily from interest in goodness-of-
fit (GOF) testing and functional data analysis (FDA). However, the Bayesian testing
problem is challenging even in more basic scenarios, especially if prior information is
vague or absent, and further challenges arise if the dimensionality is high. Because the
priors used in testing place mass on a point-null hypothesis, the standard techniques
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used in estimation to construct noninformative priors lead to test procedures that are
not sensible. For instance, flat, improper priors, which are commonly used in estimation,
lead to test procedures that are sensitive to arbitrary normalizing constants. Though
various authors, e.g., Aitkin (1991) and Spiegelhalter and Smith (1982), have proposed
specific normalizing constants, and others such as Robert (1993) have proposed clever
routes around this problem, in high dimensions those solutions can lead to tests that
are insensitive to patterns in the data. An additional challenge arises in GOF-testing
and FDA in that the model (1) is there often formulated as a discrete transformation
of a “smooth” functional model. For instance, in Section 2, below, this is illustrated in
an example application which uses Fourier decomposition to discretize a set of densely
measured functions, putting it in the form of (1). The challenge this presents is how to
incorporate smoothness assumptions into the testing procedure.

In this article, a new methodology for Bayesian high-dimensional testing is pro-
posed for general analysis under (1) and for analyses specific to the GOF-testing and
FDA contexts. Its formulation exploits high-dimensionality by parametrizing the prior
so as to connect the prior null probability to prior dispersion parameters, then ap-
plies an asymptotic-consistency principle discussed in Diaconis and Freedman (1986) to
avoid the problems noted above. The resulting tests are sensitive to the data in high-
dimensions and meaningful in the sense of being proper Bayes or limits of proper Bayes
procedures. Moreover, the proposed priors are noninformative, but avoid the need to
specify arbitrary normalizing constants. To address the GOF-testing and FDA con-
texts, the asymptotic setup is further refined to accommodate smoothness assumptions.
A Bayesian “rates of testing” theory is developed, through which, by adapting ideas
from an established frequentist analogue, recommendations are made for configuring
the prior for testing under a smooth model.

The proposed tests are demonstrated on two example data sets, in which the testing
approach is shown to play a central role in a broader analysis methodology. Various the-
oretical issues are also investigated in detail. Among them are the objectivity of setting
the prior null probability to one-half, the Jeffreys-Lindley paradox in high-dimensions,
and the impact of conditioning on prior information provided by a smoothness assump-
tion. Interestingly, the latter investigation leads to a recommendation to not condition
directly on the smoothness constraints, but instead weight the prior so as induce favor-
able rates-of-testing properties.

1.1 Related work

There is extensive frequentist literature on GOF-testing and FDA, which includes the
book on “smooth” GOF testing by Rayner and Best (1989), and articles by Eubank
and Hart (1992), Eubank and LaRiccia (1992), Fan (1996), Inglot and Ledwina (1996),
Fan and Lin (1998), Eubank (2000), Aerts, Claeskens, and Hart (2000), Fan and Huang
(2001), Fan, Zhang, and Zhang (2001), Abramovich et al. (2002), Claeskens & Hjort
(2004), and Spitzner (2006). See also Eubank (1999) and Brockwell and Davis (1991) for
further discussion of Fourier-series decomposition and related techniques. Frequentist
rates of testing theory, whose Bayesian reformulation will be developed below in Section
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5.3, is discussed in Ingster (1993), Spokoiny (1996), Fan, Zhang, and Zhang (2001), and
Spitzner (2008), among others.

There is a growing Bayesian literature on the use of Bayes factors for GOF testing,
especially in the context of testing for a hypothesized distribution. Relevant papers in-
clude Verdinelli and Wasserman (1998) (in which a stated goal is to formulate a Bayesian
version of smooth GOF testing), Ghosal (2001), Petrone and Wasserman (2002), and
Robert and Rousseau (2002).

Models similar to (1) are used in other discussions to study asymptotic properties of
Bayes factors. Berger, Ghosh, and Mukhopadhyay (2003) examine details of the Laplace
approximation for purposes of establishing consistency of the BIC criterion. Among
other insights, that paper describes how the relative rates between n and pn play a
critical role on the behavior of BIC. (Rates between n and pn will play a critical role
here as well.) Other papers study Bayes factors under (possibly non-normal) models
analogous to (1) with σn,j shrinking at the rate 1/

√
n, but with pn fixed. In this

context, Johnson (2005) considers a multinomial model for GOF testing on pn fixed
categories, for which Bayes factors are derived from the asymptotic distribution of
standard contingency-table statistics. Andrews (1994) and Efron and Gous (2001) use
similar asymptotics to identify close limiting connections between Bayes factors and
frequentist p-values. The frequentist comparisons discussed below in Section 4.6 have
a similar flavor as these investigations, but their setup is markedly different in that
pn → ∞ and the errors need not shrink.

The use of improper priors in the Bayesian testing problem is considered in Aitkin
(1991) and Spiegelhalter and Smith (1982). A related solution is developed in Robert
(1993). These will be discussed in some detail in Section 3. Berger and Sellke (1987)
discuss a test procedure based on lower bounds on the posterior null probabilities given
by proper priors. Berger and Pericchi (1996) propose a data-splitting approach for the
construction of “intrinsic” priors, which are proper. See also Berger (1985 sec. 4.3.3),
Berger and Delampady (1987), and Robert (2001, sec. 5.2.5) for further discussion of
noninformative priors for testing.

1.2 Organization

The article is organized as follows. Section 2 describes three example applications which
motivate the investigation and which will be used later to demonstrate the proposed
procedures. Section 3 sets up the Bayesian testing framework, and discusses in detail
the challenges of testing in high dimensions mentioned above. Main results are given in
Sections 4 and 5. Section 4 motivates and lays out guidelines for asymptotic analysis,
then applies them to develop a test procedure for general use under the model (1).
The objectivity of setting the prior null probability to one-half and the Jeffreys-Lindley
paradox are studied in that section as well. Section 5 formulates a Bayesian rates of test-
ing theory, and configures the proposed high-dimensional procedures to accommodate
smoothness assumptions. The impact of prior conditioning on smoothness assumptions
is also studied there. Conclusions and discussion are given in Section 6, and technical
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arguments appear in the appendices.

1.3 Notation

Our notation will use boldface to indicate finite vectors and matrices. Basic quanti-
ties are Y n = [Yn,1, . . . , Yn,pn

]T , θn = [θn,1, . . . , θn,pn
]T , en = [en,1, . . . , en,pn

]T , and
Σn = diag(σ2

n,1, . . . , σ
2
n,pn

). It will be convenient to also define the scaled vectors

Y SB
n = [Y SB

n,1 , . . . , Y
SB
n,pn

]T and θSB
n = [θSB

n,1 , . . . , θ
SB
n,pn

]T , for which Y SB
n,j = Yn,j/σn,j

and θSB
n,j = θn,j/σn,j , where the superscript “SB” means “scaled for the basic model”

(An updated notation which is “scaled for the smooth model” will be defined in Sec-
tion 5.) Corresponding arrays are Y = {Yn,j : (n, j) ∈ In}, θ = {θn,j : (n, j) ∈ In},
e = {en,j : (n, j) ∈ In}, Σ = {σn,j : (n, j) ∈ In}, Y SB = {Y SB

n,j : (n, j) ∈ In}, and

θSB = {θSB
n,j : (n, j) ∈ In}, where the index set is In = {(n, j) : j = 1, . . . , pn;n =

1, 2, . . .}.
Asymptotic analysis will hold θ and Σ fixed but treat Y through the distribution of

the standardized-error array e. See Section 4.1, below, for clarification of the mode of
convergence. Associated probabilities, expectations, etc., shall be denoted P [Y ∈ A],
E[h(Y )], etc. When θ or Σ are to follow a specified prior, associated probabilities and
conditional probabilities shall be indicated using boldface and the vertical bar symbol,
e.g., P n[θ ∈ A], P n[θ ∈ A|Y n],En[h(θ)], En[h(θ)|Y n], etc. (The subscript on P n and
En is to reflect that the prior may depend on n.)

The notation ‖cn‖ = {∑j c
2
n,j}1/2 identifies the standard Euclidean norm of the

vector cn = [cn,1, . . . , cn,pn
]T ; for two vectors, cn and dn = [dn,1, . . . , dn,pn

]T , write
‖cndn‖ = {∑j c

2
n,jd

2
n,j}1/2, with obvious generalization to multiple vectors. For arrays

{an,j : (n, j) ∈ In} and {bn,j : (n, j) ∈ In}, the statement an,j = O(bn,j) will here
mean that |an,j/bn,j | is bounded; an,j � bn,j means that both an,j = O(bn,j) and
bn,j = O(an,j), and an,j = o(bn,j) means that for each ε > 0 there are indices n∗ and
j∗ such that sup{|an,j/bn,j | : n ≥ n∗, j ≥ j∗} < ε. In addition, an,j ∝ bn,j means
an,j/bn,j = c for some constant c and an ≈ bn means an/bn = 1 + o(1). The analogues
for sequences and other asymptotic contexts will be denoted in a parallel manner.

2 Relevant applications

This section describes three example applications which motivate and help to illustrate
the concepts discussed in the later sections. Novel analyses of the data in Examples 2
and 3 will be presented later in Sections 4.5 and 5.3, in which the proposed tests and
supplemental analysis tools will be demonstrated.

The first example of a simple GOF-testing scenario illustrates an asymptotic setup
which is of special interest to this investigation.

Example 1. (Fourier-series regression) Suppose n measurements X1, . . . , Xn of a noisy
regression function are taken along an equally spaced grid, tk = −π + 2kπ/n for k =
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1, . . . , n, and modeled according to Xk = µ(tk) + σεk, where µ is an underlying square-
integrable regression function on (−π, π], σ > 0, and ε1, . . . , εn are independent standard-
normal errors. The interest is a test for “no effect,” H0 : µ(t) = 0 across t against a
general alternative.

Though Xk = µ(tk) + σεk itself has the structure of (1) an interesting “coefficient
model” arises as follows. First, define the Fourier basis functions ψ1, . . . , ψn according
to: ψ1(t) = 1, ψ2j(t) = cj sin(jt), and ψ2j+1(t) = cj cos(jt), where c1, . . . , cb(n−1)/2c =√

2 and, if needed, cn/2 = 1. (bxc is the largest integer not to exceed x.) It follows that
n−1

∑n
k=1 ψj1(tk)ψj2 (tk) = Ij1,j2 and n−1

∑n
j=1 ψj(tk1

)ψj(tk2
) = Ik1,k2

where Ij,k = 1 if
j = k and 0 otherwise. (To see this, write each ψj in polar coordinates and apply the geo-
metric formula, as in Brockwell and Davis, 1991, for. 2.11.3.) Thus it becomes a simple
exercise to show that the associated Fourier coefficients Yn,j = n−1

∑n
k=1 X(tk)ψj(tk)

follow the model (1), with parameters pn = n, θn,j = n−1
∑n

k=1 µ(tk)ψj(tk), en,j =
n−1/2

∑n
k=1 εkψj(tk), and σn,j = σ/

√
n. Moreover, we have the inversion formula

X(tk) =
∑n

j=1 Yn,jψj(tk). Now θn,j →
∫ π

−π µ(t)ψj(t)dt for each j as n→ ∞, which will
not all vanish if µ(t) 6= 0 on a nontrivial subset of (−π, π]. Hence the null hypothesis
H0 : µ(t) = 0 across t translates to H0 : θn,j = 0 for every j = 1, . . . , pn. Also, σn,j → 0
for each j as n→ ∞; i.e., the magnitude of noise associated with any specific component
shrinks as pn increases.

More complicated GOF scenarios will often translate to a coefficient model in a
manner roughly paralleling the construction of this example. Such scenarios include
tests for lack of structure in the residuals of a parametric regression (cf. Fan and Huang,
2001), or might substitute an alternative set of basis function for the Fourier functions
(see, e.g., Eubank, 1999). Still more complicated scenarios involve measurements taken
on an uneven or random grid, and these may still give rise to a coefficient model,
although independence may hold in the limit only. One shared feature of these coefficient
models is an asymptotic setup similar to that of Example 1, in which increases in pn

are coupled with shrinking error-variances. In fact, Brown and Low (1996) establish
that (1), with error-variance parameters shrinking at the rate 1/

√
n, forms a canonical

asymptotic model for non-parametric regression in general. Moreover, Nussbaum (1996)
uses discrete approximation (in similar spirit as Fourier decomposition) to establish the
same canonical asymptotic model for the distribution context of GOF-testing: the null
hypothesis is that an independent and identically distributed random sampleX1, . . . , Xn

follows a specified probability density.

The next example uses similar concepts in an applied FDA testing problem.

Example 2. (Functional data analysis) Figure 1 displays scatterplots of “vertical den-
sity profiles” (VDPs) from twenty-four newly manufactured particleboards. The data
set has been divided into profiles corresponding to n1 = 20 boards manufactured during
daytime shifts (top-left panels), and n2 = 4 boards manufactured by a different team of
operators in overnight shifts (bottom-left panels). Each particleboard has a 0.628-inch
thickness, along which the corresponding VDP measures board-densities at P = 314 fixed
locations on an even grid, tk = 0.628k/P for k = 1, . . . , P . (The parameter P is distinct
from pn, which is defined below.) These were obtained by a laser device at increments
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Raw Daytime−Shift Profiles

Raw Nighttime−Shift Profiles

Centered Daytime−Shift Profiles

Centered Nighttime−Shift Profiles

Figure 1: Raw and centered density profiles for daytime and nighttime shifts. The
horizontal axis indicates location along the 0.628-inch thickness of the boards, and the
vertical axis indicates board-density. The top panels graph the density measurements
of n1 = 20 boards manufactured in daytime shifts, while the bottom panels graph those
of n2 = 4 boards manufactured in nighttime shifts. The left panels show raw density
measurements, while the right panels differences from the cross-sectional average of
the n1 = 20 daytime-shift profiles. The model assumes the left panels are stationary
Gaussian functions.

of 0.002 inches. Let g = 1, 2 indicate the respective daytime-shift and nighttime-shift
groups and denote by Xg,i(t) the density measurement of the i’th board in group g at
location t along its thickness. These raw profiles, Xg,i(t), are shown in the left panels
of Figure 1, with t forming the horizontal axis. The centered profiles shown in the right
panels are XC

g,i(t) = Xg,i(t) − X̄1(t) where X̄1(t) = n−1
1

∑n1

i=1 X1,i(t).

In a previous analysis, Walker and Wright (2002) applied techniques for generalized
additive models to measure variability in these data due to such sources as changes
in profile-specific smoothed fits and changes across shift groups. The interest here is to
formally test for differences across shift groups. It shall be assumed that for each g = 1, 2
there is a common “mean profile” µg(t) = E[Xg,i(t)], so that the null hypothesis to be
tested is H0 : µ1(t) = µ2(t) for every t, against general alternatives.

To carry out the test, Fourier-basis decomposition will first be used to translate the
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(centered) functional data XC
g,i(t) to a coefficient model. Define ψ1, . . . , ψP as in Exam-

ple 1 (with P replacing n) and set ψV DP
j (t) = ψj(−π+ 2πt/0.628). Fourier coefficients

of the individual centered curves are Xg,ij = P−1
∑P

k=1 X
C
g,i(tk)ψV DP

j (tk). Next write

X̄g,j = n−1
g

∑ng

i=1 Xg,ij , µg,j = E[Xg,ij ], Vj = V [Xg,ij ], and n = n1 + n2. The com-

ponents of model (1) are now given by Yn,j = X̄1,j − X̄2,j , θn,j = µ1,j − µ2,j , σ
2
n,j =

(n−1
1 +n−1

2 )Vj , and en,j = (Yn,j − θn,j)/σn,j . The null hypothesis H0 : µ1(t) = µ2(t) for
every t translates to H0 : θn,j = 0 for every j.

Justification for the distributional properties of the en,j derives from an assumption
that each Xg,i(t) is an observation of a Gaussian random process such that the centered
profiles XC

g,i(t) are stationary with an absolutely summable covariance function. It fol-
lows that the coefficients Xg,ij are normal and asymptotically independent (cf., Chapter
10 of Brockwell and Davis, 1991). Nevertheless, a diagnostic check will indicate that
independence among the Xg,ij across j is corrupted for very large j, which is likely
due to inaccuracies of the model at profile end-regions. A conservative assessment is
that independence is preserved for indices j ≤ 51. (These correspond to the flat basis
function ψV DP

1 along with the first 25 pairs of sine and cosine basis-functions.) One
possible remedy is to attempt to find a basis other than ψV DP

1 , . . . , ψV DP
P which better

de-correlates the data. Instead we will take pn << P , for which here it suffices to set
pn = 51. Refer to Spitzner, Marron, and Essick (2003) for more discussion of this type
of modeling complication.

This second example involves similar techniques as in Example 1, specifically in its
use of Fourier-series decomposition, but differs in its asymptotic setup. In Example 2
there are multiple samples sizes, and they are unrelated to the dimensionality parameter
pn. Nevertheless, multiple sample sizes are accommodated asymptotically by writing
σn,j = σ̃n,j/

√
n, for which σ̃2

n,j = Vj{γ(1 − γ)}−1 where γ = n1/(n1 + n2), and n =
n1 +n2. Then treating γ as a quantity independent of n (or at any rate asymptotically
constant as n → ∞), the rate at which the errors shrink is 1/

√
n, the same rate as

in the GOF problem. As for the parameter pn, consider that dimensionality is for
the most part determined by the resolution of the digitizing instrument (along with
empirical checks on the suitability of the model). Since a finer grid is always plausible
this makes pn an arbitrarily large quantity, for which pn → ∞ represents a suitable
conceptualization. There is no explicit connection between n and pn, however, so the
rate at which pn diverges relative to n is left hypothetical.

A characteristic shared by both Examples 1 and 2 is their involvement of functional
parameters (the “mean functions” µ in Example 1 and the µg in Example 2) which
might reasonably be considered continuous and “smooth.” After translating to a coef-
ficient model, a suitable technique for imposing a smoothness assumption is to require
the θn,j to satisfy n−1

∑pn

j=1 j
2s(θn,j/σn,j)

2 ≤M across n = 1, 2, . . ., for fixed “smooth-
ness parameters” s > 1/2 and M > 0. It is usually possible to translate this restriction
to a constraint on the original functional representation, requiring that the underlying
mean function has a certain number (depending on s) of derivatives. In other words, the
mean function is constrained to an element of a “Sobolev space.” (This connection is
a consequence of Parseval’s identity. For details, see Adams and Fournier, 2003.) More
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School A B C D E F G H
Xj 28 8 -3 7 -1 1 18 12
Sj 15 10 16 11 9 11 10 18

Table 1: Aptitude-test coaching data. The Xj are “effects” of a school’s coaching
program for a standardized aptitude test. The Sj are associated standard errors, which
are taken as fixed.

intuitively, it is seen that uniform boundedness of n−1
∑pn

j=1 j
2s(θn,j/σn,j)

2 restricts
high-indexed entries of the scaled mean parameters more heavily than low-indexed en-
tries. From this viewpoint, the parameters s and M play the following roles: s, controls
the strength of restrictions placed on θ and M controls the size of the space.

Among the GOF-testing and FDA literature, smoothness assumptions are some-
times alternatively formulated as a restriction to a “Besov space,” in place of a Sobolev
space. This is especially true in regard to statistical methodology based on wavelet basis
functions. (See, e.g., Abramovich et al., 2002). Nevertheless, the Sobolev constraint,
expressed through θ as above, is suitable across a wide range of applications.

The next example is simpler than the previous two, but will serve to illustrate issues
at the core of the high-dimensional testing problem.

Example 3. (Multi-sample testing) Gelman et al. (2004, sec. 5.5 and p. 185-186)
describe a study of the effect of “coaching” high-school students on a certain standard-
ized aptitude test. The data are laid out in g = 8 groups, each representing a distinct
high school that administers a coaching program for students preparing to take the test.
Subsequent to the receipt of test scores, those of students who completed the coaching
programs were compiled and passed through a statistical processing step to produce esti-
mated “effects,” X1, . . . , Xg, of the schools’ coaching programs, along with estimates of
standard deviations, S1, . . . , Sg. These are listed in Table 1. Here, as in Gelman et al.
(2004), the Xj will be assumed independent and to follow normal distributions, and the

Sj will be taken as fixed assessments of the
√

V [Xj ]. (Uncertainty in each Sj is small
as the number of students involved at each school was quite large.) That is, it shall be
assumed X ∼ N(µ,V ) where X = [X1, . . . , Xg]

T , µ = [µ1, . . . , µg ]
T with µj = E[Xj ],

and V = diag(S2
1 , . . . , S

2
g ). The interest is to test whether the coaching programs of all

eight high schools have identical effects, H0 : µj = µk for all j, k = 1, . . . , g versus a
general alternative.

Translation to a relevant version of model (1) is carried out according to Y n =

[Yn,1, . . . , Yn,pn
]T = C−1/2XD, where pn = g − 1, XD = [X1 −X2, . . . , Xg−1 −Xg]

T ,

and C is the covariance matrix of XD, which has (j, k) entry S2
j + S2

j+1 if j = k,

−S2
j if k = j − 1, −S2

j+1 if k = j + 1, and 0 otherwise. It follows that the Yn,j are

independent, normally distributed, and each has σ2
n,j = V [Yn,j ] = 1. There is also

an inversion formula, XD = C1/2Y n, from which it is seen that the null hypothesis
translates appropriately to H0 : θn,j = 0 for all j = 1, . . . , pn, where θn,j = E[Yj ]. A
relevant asymptotic setup for this example is formulated as increases in the number of
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groups, irrespective of number of students participating in the coaching programs. Thus,
n is never defined in this example; it is a spurious parameter and asymptotic analysis
is defined directly through increasing pn.

3 Challenges of high-dimensional Bayesian testing

The testing concepts applied in this investigation will follow a standard Bayesian setup
(cf. Berger, 1985, or Robert, 2001): a prior mass ρ0,n ∈ (0, 1) is placed on the null
hypothesis and a continuous distribution (1 − ρ0,n)πn(θn|H1) is placed on the alter-
native, where πn(θn|H1) is a specified density. In much of the evaluation below the
σn,j are treated as known, but in general contexts it shall be assumed there is an

array Σ̂ = {σ̂n,j : (n, j) ∈ In}, for which each Σ̂n = diag(σ̂2
n,1, . . . , σ̂

2
n,pn

) is indepen-
dent of Y n and follows a distribution that depends on Σn = diag(σ2

n,1, . . . , σ
2
n,pn

) but
not θn. The error-variances would then be treated with their own prior specification,
πn(Σn); specific forms and are discussed in Section 4.3. The evidence provided by
Y n and Σ̂n about H0 is reported as the posterior probability of H0, P n[H0|Y n, Σ̂n],
or P n[H0|Y n] when the σn,j are known. One might instead report a Bayes factor

Bn(Y n, Σ̂n) = {P n[H0|Y n, Σ̂n]/ρ0,n}/{(1 − P n[H0|Y n, Σ̂n])/(1 − ρ0,n)}, as recom-
mended by Kass and Raftery (1995); however, for most of our exposition it is simpler
to focus on P n[H0|Y n, Σ̂n], noting that equivalent interpretations are possible through
transformation. Denoting by m(Y n, Σ̂n|θn,Σn) a density for the model, the posterior
probability is calculated according to the formula

P n[H0|Y n, Σ̂n] =

[

1 +
(

ρ−1
0,n − 1

)mn(Y n, Σ̂n|H1)

mn(Y n, Σ̂n|H0)

]−1

, (2)

where

mn(Y n, Σ̂n|H0) =

∫

m(Y n, Σ̂n|0,Σ)πn(Σn)dΣn,

mn(Y n, Σ̂n|H1) =

∫ ∫

θn 6=0

m(Y n, Σ̂n|θn,Σn)πn(θn,Σn|H1)dθndΣn.

When the σn,j are known, these reduce to mn(Y n, Σ̂n|H0) = m(Y n|0) and mn(Y n, Σ̂n

| H1) = mn(Y n|H1) =
∫

θn 6=0
m(Y n|θn) πn(θn|H1)dθn, where the model and condi-

tional prior densities are now denoted m(Y n|θn) and πn(θn|H1), respectively.

Our investigation shall take as its starting point the case where the σn,j are known
and the prior on θn is specified according to θn|H1 ∼ N(ξn, τ

2
nW nΣn), where ξn =

[ξ1, . . . , ξpn
]T is a mean vector, τn is an overall scale parameter, and W n = diag(wn,1,

. . . , wn,pn
) is a diagonal matrix of weights. The model density, under (1), follows

Y n|θn ∼ N(θn,Σn) so that, unconditionally with respect to θn in H1, Y n|H1 ∼

N(ξn,Σn + τ2
nW nΣn), which defines mn(Y n|H1). Also, the full posterior distribu-

tion is such that θn|H1,Y n ∼ N({I + (τnW n)−1}−1Y n, {I + (τnW n)−1}−1Σn). In
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the analogous estimation problem, this setup reflects a standard starting point for the
construction of noninformative priors. As stated, the prior is, of course, informative as
it places the bulk of its mass in H1 near the point ξn. To modify it so as to become
noninformative, two standard approaches (in the estimation problem) are first to set
the overall scale parameter τn arbitrarily large at each fixed n, and second to place non-
informative hyperpriors on the parameters (ξn, τn). A third, unconventional approach
introduced in Robert (1993) will also be examined, which is specific to testing. None
admit a satisfactory test procedure for the high-dimensional context, but following their
logic illustrates some of the challenges at hand, and routes to suitable solutions.

3.1 Disconnect from “noninformative” priors for estimation

Let us first take ξn = 0, so that the required posterior probability (2) is

P n[H0|Y n] =



1 +
(

ρ−1
0,n − 1

)

exp







1

2
‖vn,1/2Y

SB
n ‖2 +

1

2

p
∑

j=1

log(1 − vn,j,1)











−1

(3)

where Y SB
n is defined in Section 1.3, and vn,k = [vn,1,1, . . . , vn,pn,1] has j’th entry

vn,j,k = {1 + 1/(τ2
nwn,j)}−k. (Here k = 1, but other values will be used subsequently.)

If one näively sends τn → ∞ (independently of n), the following complication is readily
seen: for fixed n and ρ0,n, each vn,j,1 → 1 as τn → ∞ and so also P n[H0|Y n] → 1
(assuming a fixed data-array, Y ). The resulting test is therefore unsatisfactory as it is
completely insensitive to the patterns in the data.

The alternative of placing flat hyperpriors on prior parameters illustrates the sensi-
tivity of the testing procedure to arbitrary normalizing constants. Consider the hyper-
prior density on (ξn, τn) which is specified according to πn(ξn, τn) = πn(ξn|τn)πn(τn) =
cnπn(τn), so that πn(ξn|τn) ∝ 1 defines an improper conditional distribution ξn|τn,
with cn its explicit normalizing constant. In the estimation problem, posterior compu-
tations are insensitive to normalizing constants such as cn. However, in the present case,
writing mn(Y n|H1) = mn(Y n|H1, ξn, τn) to indicate explicit dependence on ξn and τn,
one has mn(Y n|H1) =

∫ ∫

mn(Y n|H1, ξn, τn)πn(ξn, τn)dξndτn = cn
∫

πn(τn)dτn, and
the posterior null probability (2) is

P n[H0|Y n] = (4)


1 + cn
(

ρ−1
0,n − 1

)

{∫

πn(τn)dτ

}

exp







pn

2





1

pn
‖Y SB

n ‖2 +
1

pn

pn
∑

j=1

log(2πσ2
n,j)















−1

which clearly depends on cn. If πn(τn) is improper the problem worsens, for then
∫

πn(τn)dτn = ∞, so P n[H0|Y n] = 0 always, and the test is insensitive to patterns in
the data. (Note also that if πn(τn) is proper, formula 4 may be derived alternatively
by setting πn(θ|H1) = cn.)

There is existing discussion that seeks justification for specific choices of cn. For
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instance, Aitkin (1991) proposes a double-use of data in order to connect cn to a relevant
posterior probability. Spiegelhalter and Smith (1982) propose fixing cn at the value
that sets a Bayes factor to one when the data is “most favorable” to H0 in an imaginary
experiment of minimal sample-size. Yet even if non-arbitrary choices for cn can be found
(and πn(τn) is proper), formula (4) implies that the test may have an unreasonable
dependency on the error-variance parameters in high-dimensions. To see this, suppose
cn � 1,

∫

πn(τn)dτn = 1, ρ0,n � 1/2, and limits exist for both p−1
n

∑pn

j=1 logσ2
n,j and

p−1
n ‖θSB

n ‖2. It follows that p−1
n ‖Y SB

n ‖2 → 1+p−1
n ‖θSB

n ‖2 (where convergence is “almost
sure,” as discussed below in Section 4.1); hence P n[H0|Y n] → 1 if limn p

−1
n ‖θSB

n ‖2 <
−1−limn p

−1
n

∑pn

j=1 log(2πσ2
n,j), and P n[H0|Y n] → 0 if limn p

−1
n ‖θSB

n ‖2 >−1−limn p
−1
n

∑pn

j=1 log(2πσ2
n,j). Thus, for instance, if each σn,j > 1/

√
2π then P n[H0|Y n] → 0 always

and the test is insensitive to the patterns in the data.

3.2 Robert’s procedure

Rather than mimicking what is done in the estimation problem, Robert (1993) opens
an alternative perspective by exploiting the specific mechanisms of testing. Though we
ultimately reject Robert’s specific solution, we find his perspective extremely valuable as
it plants the seeds of the approach taken here. (The description below has been extended
slightly to the multidimensional context; Robert’s original paper works exclusively with
univariate testing.)

The key idea is to connect H0 and H1 through relevant prior parameters: ρ0,n is to
be treated as a function of τn in such a way that ρ0,n → 0 as τn → ∞. Robert (1993)
specifically proposes an “equiponderance device,” setting

ρ0,n = (1 − ρ0,n) lim
θn→0

πn(θn|H1) (5)

(assuming πn(θn|H1) is continuous in a region around H0), which he motivates by sug-
gesting that it provides θn = 0 equivalent probability under each alternative. The
“equiponderance” concept is blurry, however, and, in our opinion, lacks a proper justi-
fication. For instance, one inherent flaw in (5) is that by comparing a point mass with
a density it introduces an awkward dependency on the scale of measurement. Never-
theless, it is useful to examine the remainder of Robert’s construction. Continuing on,
under (5) the posterior probability (3) becomes

P n[H0|Y n] =



1 + (2π)pn/2 exp







1

2
‖vn,1/2Y

SB
n ‖2 +

1

2

pn
∑

j=1

log(σ2
n,jvn,j,1)











−1

(6)

which has

P n[H0|Y n] →



1 + (2π)pn/2 exp







1

2
‖Y SB

n ‖2 +
1

2

pn
∑

j=1

logσ2
n,j











−1

(7)
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as τn → ∞. The limit in (7) is (the multivariate analogue of) Robert’s proposed
noninformative solution to the testing problem. However, an immediate problem is
seen by noting that this solution is a special case of (4) with cn = 1,

∫

πn(τn)dτn = 1,
and ρ0,n = 1/2. Thus, in addition to the difficulties of interpretation noted above,
there is a problematic dependency on the error variances, and a possible insensitivity
to patterns in the data.

The present investigation resolves these difficulties by extending Robert’s idea to
connect τn and ρ0,n so that pn is also taken into account. Consider the following:
Suppose σn,j = 1. The posterior probability (3) tends to 1 whenever ρ0,n � 1/2 and τn
increases at sufficiently fast rate, even as pn increases. On the other hand, ‖Y SB

n ‖2 → ∞
(“almost surely,” see Section 4.1) and so the limit in (7) tends to 0 for increasing pn.
Thus, in order to make P n[H0|Y n] sensitive to the patterns in the data, one would want
to choose a rate of decrease for ρ0,n (with respect to τn) slower than that induced by
the equiponderance device (5), and also choose a rate of increase for τn (with respect to
pn) while keeping the rate at which ‖vn,1/2Y

SB‖2 grows in mind. A principal outcome
of this article is the development of a precise framework for balancing the rates of ρ0,n,
τn, and pn in this manner, which is described in Section 4.2.

In addition, one might consider the following version of the Jeffreys-Lindley paradox
(cf. Lindley, 1957) in which each Y SB

n,j = Yn,j/σn,j is regarded as a “z-score” in the

Neyman-Pearson testing setup. Set wn,j = w̃n,j/σ
2
n,j , so as to make the prior indepen-

dent of the σ2
n,j . Now vn,j,1 = {1 + σ2

n,j/(τ
2
nw̃n,j)}−1, for which vn,j,1 → 1 as σn,j → 0.

Thus, from (3), it is seen that if the Y SB
n,j were to remain fixed, P n[H0|Y n] → 1 when-

ever the σn,j → 0. (Note also that σn,j → 0 reflects the situation of GOF-testing and
FDA.) The “paradox” here (really a frequentist criticism) is that the frequentist might
“reject” H0 if the magnitude of Y SB

n,j is sufficiently large, even though the Bayesian
observes overwhelming evidence in its favor. It is curious that such behavior is also
exhibited in the limit in (7), suggesting that Robert’s equiponderance device does not
necessarily avoid the paradox either. The procedures developed here do avoid the para-
dox in high-dimensions, as will be shown in Section 4.6, and, in fact, do so regardless
of whether σn,j → 0.

Note we have not yet discussed the relevance of the prior weights wn,1, . . . , wn,pn
. Un-

der the type of smoothness considerations used in GOF-testing and FDA, the Bayesian
rates-of-testing theory of Section 5 will highlight an important role the weights can play.
However, it will be the case that the procedure proposed below for generic situations is
insensitive to the choice of weights (this is true for Robert’s solution as well; they drop
out of the limit in 7).

4 High-dimensional analysis of the basic model

In this section, a set of guidelines for asymptotic analysis are established, then applied
to formally develop the testing framework alluded to in Section 3.2.
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4.1 Asymptotic criteria

Asymptotic analysis is not inherently sensible in a Bayesian context, as it is in frequentist
analysis, and it is necessary to have a formal principle with which to guide our treatment
of the high-dimensional testing problem. Diaconis and Freedman (1986) provide what
is needed in their “what if” method, which scrutinizes the choice of prior by asking
whether, given a particular data set, the posterior distribution makes a meaningful
update of the prior. (The name of the method alludes to the question, “What if the
data came out that way?”) For present purposes, to check for “meaning” it is sufficient
to consider the extreme limits of the posterior null probability: P n[H0|Y n] → 1 is here
to mean “overwhelming evidence for H0” and P n[H0|Y n] → 0 is to mean “overwhelming
evidence against H0.” The limits here are “almost sure” with respect to the model (1)
for fixed θ; this mode of convergence is stronger than convergence “in probability” and
is required by the “what if” method’s focus on data rather than probabilities.

The statements of meaning lead to the following guidelines for how a test is to behave
in high-dimensions: (i.) One would want to avoid the almost-sure limit P n[H0|Y n] → 0
for θ consistent with H0; (ii.) One would instead want P n[H0|Y n] → 1 for θ consistent
with H0; (iii.) One would want P n[H0|Y n] → 0 for θ consistent with H1. These three
statements will together be referred to as “‘what if’ guidelines.” Observe that (i) is a
weaker requirement than (ii), whereas neither has a logical relation with (iii). In what
follows, guideline (i) will be treated as the more basic consideration compared to (ii)
and (iii). Moreover, Section 4.2 will show that simultaneous, strict achievement of (ii)
and (iii) is not possible, but the best one can hope for is an intelligent trade-off between
them.

Because the “what if” guidelines require almost sure limits, it is necessary to clarify
a technical aspect of the model (1) and those of Examples 1 and 2. To simplify evalua-
tion, it shall be assumed that en,j = ej for some common standardized-error sequence
{ej}, for it then follows that P n[H0|Y n] tends “almost surely” to an extreme limit if
and only if it tends “in probability” to the same extreme limit. To see this, consider
the transformation Un(Y n) = log

(

P n[H0|Y n]−1 − 1
)

, which, in light of (3), may be
written Un(Y n) =

∑pn

j=1 hn,j(en,j), for suitable hn,j . The assertion then follows from
Billingsley (1995, th. 22.7). The implication for the Examples 1 and 2 is that the orig-
inal functional models (µ in Example 1 and µ1, µ2 in Example 2) are to be understood
through the inverse transformation from the Yn,j .

Frequentists (especially) and others may object to this formulation, on the grounds
that it reflects an unrealistic scheme for repeated sampling. For instance, the inversion
formula X(t) =

∑n
j=1 Yn,jψj(t) in Example 1 would allow X(t) to vary with n. To

this objection, let us offer several comments: The first is that the asymptotic view-
point taken here, being intended for evaluation of Bayesian procedures, need not be
interpreted in the context of frequentist repeated sampling. Rather, it is a tool with
which to conceptualize the high-dimensional context. Second, in some applications the
Fourier coefficients, Yn,j , are the natural focus of analysis and the inversion formula
is just a “processing step” for data visualization. For instance, see Spitzner, Marron,
and Essick (2003) for an application in which functional data are measured on grids
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of varying sizes. Direct comparisons between functional measurements are impossible,
since the grid points do not line up, and so it is natural to treat the Fourier coefficients
as central, and the transformation to them merely as part of the measurement process.
Third, it would take us far off track to establish almost-sure limits under less objection-
able repeated-sampling schemes. Such detailed assessment would be useful to develop
modeling intuition for GOF-testing and FDA contexts, especially for applications in
which the model (1) serves only as an asymptotic approximation, but this will be left
for follow-up investigations.

4.2 Considerations for prior selection

Our evaluation will focus on tests derived from the prior θ|H1 ∼ N(0, τ2
nW nΣn), treat-

ing Σn as a known model parameter, for which the associated posterior null probability
is given by formula (3). The approach adapts Robert’s (1993) idea to impose a de-
pendency structure among the prior parameters, but now, rather than invoking an
equiponderance device (5), the correct form of the dependencies is to be determined by
the “what if” guidelines. As it turns out, the precise connection between the choice
of prior and the “what if” guidelines is made through the following parametrization in
which ρ0,n is written in terms of the remaining prior parameters:

log
(

ρ−1
0,n − 1

)

= −1

2







p
∑

j=1

log (1 − vn,j,1) + ‖vn,1/2‖2 + rn‖vn,1‖







, (8)

where rn depends neither on Y nor θ. Note this parametrization does not constrain the
prior in any way.

To observe the critical role played by (8), and the sequence {rn} in particular, first
observe

E
[

‖vn,1/2Y
SB
n ‖2

]

= ‖vn,1/2‖2 + ‖vn,1/2θ
SB
n ‖2 (9)

V
[

‖vn,1/2Y
SB
n ‖2

]

= 2‖vn,1‖2 + 4‖vn,1θ
SB
n ‖2, (10)

and define the transformation Un(Y n) = log
(

P n[H0|Y n]−1 − 1
)

of the posterior null
probability. The quantity Un(Y n) is the posterior log-odds on H1, and is more conve-
nient to work with than P n[H0|Y n] directly. Note that Un(Y n) → ∞ is equivalent to
P n[H0|Y n] → 0 and Un(Y n) → −∞ is equivalent to P n[H0|Y n] → 1. Incorporating
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(8) into (3), the posterior null probability may be understood through the expressions

Un(Y n) =
1

2

{

‖vn,1/2Y
SB
n ‖2 −

(

‖vn,1/2‖2 + rn‖vn,1‖
)

}

(11)

= ‖vn,1‖













1

2
+

(

‖vn,1/2θ
SB
n ‖

‖vn,1‖

)2

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

1/2

Tn +
1

2

(

‖vn,1/2θ
SB
n ‖2

‖vn,1‖
− rn

)






(12)

= ‖vn,1/2θ
SB
n ‖2













1

2

(

‖vn,1‖
‖vn,1/2θ

SB
n ‖2

)2

+

(

α(θn)

‖vn,1/2θ
SB
n ‖

)2

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1/2

Tn (13)

+
1

2

(

1 − rn
‖vn,1‖

‖vn,1/2θ
SB
n ‖2

)]

,

where Tn is ‖vn,1/2Y
SB
n ‖2 standardized to have mean zero and variance one (for fixed

θ), and α(θSB
n ) = ‖vn,1θ

SB
n ‖/‖vn,1/2θ

SB
n ‖, which has 0 ≤ α(θSB

n ) ≤ 1 (since vn,j,1 ≤
vn,j,1/2).

Considering the essential uniform boundedness of Tn, expression (12) identifies con-
ditions on rn by which P n[H0|Y n] behaves favorably under H0: observe that terms in
(12) involving θSB

n can be ignored (since H0 is θSB
n = 0); so it is clear that Un(Y n) → ∞

(hence P n[H0|Y n] → 0) for θ consistent with H0 if and only if rn → −∞. Following
guideline (i), this shows that one would want lim supn rn > −∞ under the parametriza-
tion (8). Similarly, (12) shows that Un(Y n) → −∞ (hence P n[H0|Y n] → 1) for θ
consistent with H0 if and only if rn → ∞. This means rn → ∞ is required to achieve
guideline (ii). Expression (13) addresses guideline (iii) by identifying θSB consistent
with H1 for which P n[H0|Y n] → 0: observe from (13) that Un(Y n) → ∞ for θSB

n 6= 0
if and only if both

‖vn,1‖
‖vn,1/2θ

SB
n ‖2

→ 0 and lim
n
rn

‖vn,1‖
‖vn,1/2θ

SB
n ‖2

< 1

(which follows since then ‖vn,1/2θ
SB
n ‖2 → ∞). This means there are θSB in a region

around H0 for which lim supn P n[H0|Y n] > 0, making clear that guideline (iii) cannot
be achieved across all of H1. These exceptional θSB will be referred to as “indistin-
guishable,” and the collection of them the “indistinguishable region.” The size of the
indistinguishable region is influenced by the parameter rn, for if rn → ∞ there are fewer
indistinguishable θSB when rn diverges at a slower rate. Together, these observations
suggest that to satisfy (i) and balance guidelines (ii) and (iii), one would want rn → ∞,
but diverging as slowly as possible.

There remains a fair bit of ambiguity in how to actually specify rn, since for each
setting there is always another that diverges at a slower rate (e.g., log rn). Perspec-
tives on the possible subjective elicitation of this parameter are discussed in Section 6.
However, it is also possible to recommend some “default” settings for rn on the basis
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of model simplicity. One basic simplification arises upon considering that there is no
apparent purpose to any direct dependence between rn and the other prior parame-
ters. In other words, nothing is lost in restricting rn to a sequence of constants that
depends neither on τn nor W n. A more drastic simplification is to specify rn so that
r = limn rn <∞, which is justified as placing rn “on the lower boundary” of sequences
that diverge (slowly) to infinity. This sacrifices the “what if” guideline (ii), and more-
over leaves ambiguous an appropriate specification of the limit r. Yet, the former issue
is not critical, and the latter can be resolved by setting rn = 0 for all p, which is justified
as a further simplification achieved by reducing the number of parameters. With this
in mind, the setting rn = 0 will be used as a default setting in the application examples
below.

For theoretical analysis, the guideline by which rn is set to diverge “as slowly as pos-
sible” creates no difficulty: any property deduced will be qualified with an assumption
that rn diverges more slowly than some given critical rate.

A possible criticism is that the precise form of the parametrization (8) might be seen
as ad hoc since its role is only illuminated in the limit. For instance, one could modify the
individual terms of (8) by introducing leading factors that tend asymptotically to one,
without substantially affecting the previous evaluation of U n(Y n) or its conclusions.
Our answer to such criticism is that (8) is not ad hoc, but is the simplest relevant
parameterization that reflects this author’s subjective understanding of the behavior of
asymptotic phenomena. Moreover, such asymptotically negligible modifications would
have little impact on the numerical values of P n[H0|Y n] if the model is truly high-
dimensional. On the other hand, should some principle arise which clarifies or explains
the properties of P n[H0|Y n] observed in this investigation, and in doing so suggests
specific leading factors, it would be sensible to modify (8) accordingly.

4.3 Impact of placing a prior on the error-variances

For the case where the error-variances are unknown, the prior structure may be ex-
tended to accommodate a prior on Σn. Suppose the array Σ̂, introduced in Section
3, is available and is such that each Σ̂n = diag(σ̂n,1, . . . , σ̂n,pn

) is independent of Y n

and νnσ̂
2
n,j/σ

2
n,j |σ2

n,j ∼ χ2
νn

, independently across j, for some sequence {νn}. Assume

that νn ≈ n, which is typical, in which case σ̂2
n,j/σ

2
n,j → 1, where convergence is “in

probability.” The “what if” guidelines require us to also assume the stronger property
that such convergence also holds “almost surely.”

Consider prior specifications on Σn such that each λ/σ2
n,j ∼ χ2

κ for κ, λ > 0, for

which densities are πn(σ2
n,j) ∝ (σ2

n,j)
−(κ/2+1) exp{−λ/(2σ2

n,j)}. Also consider the im-
proper priors of the same form but indexed with κ = 0 or λ = 0, or both. (The setting
κ = λ = 0 is a standard noninformative prior which is equivalent to a flat prior on
logσ.) The same prior on Σn is assumed for each hypothesis, so that P n[H0|Y n, Σ̂n]
is well-behaved even in the improper limit. With Y n|H1,θn,Σn ∼ N(θn,Σn) and
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θn|H1,Σn ∼ N(0, τ2
nW nΣn), as before, the posterior null probability becomes

P n[H0|Y n, Σ̂n] = (14)





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∏
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1/2



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−1

.

A derivation of (14) is given in Appendix 1. There, it is also shown that the marginal
posterior distribution has θn,j |H1, Yn,j , σ̂

2
n,j ∼ vn,j,1Yn,j + ηn,jtνn+κ+1, independently

across j, where η2
n,j = vn,j,1{(1− vn,j,1)Y

2
n,j + νnσ̂

2
n,j + λ}/(νn + κ+ 1) and tν denotes

Student’s t distribution with ν degrees of freedom.

The factor in (14) involving the Yn,j may be written

Y 2
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2
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2
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,

where Bn,j = 1/[1 + {(1 − vn,j,1)Y
2
n,j + λ}/(νnσ̂

2
n,j)] for which 0 < Bn,j < 1. Writing

σn,j = σ̃n,j/
√
n, note that (Yn,j/σ̂n,j)

2/νn ≈ (θn,j/σ̃n,j)
2 and Bn,j ≈ 1/[1 + {(1 −

vn,j,1)θ
2
n,j + λ}/σ̃2

n,j ]. Thus, since n log(1 + 1/n) < 1 and n log(1 + 1/n) ≈ 1 − 1/(2n),
this means

log
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+O(ν−1
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∑

j=1
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pn
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j=1

log (1 − vn,j,1) ,

where each Cn,j > 0 and Cn,j � Bn,jvn,j,1(θn,j/σ̃n,j)
2.

It has therefore been shown that the posterior probability (14) is asymptotically no
smaller than its analogue (3) for the case of known error-variances. Treating (14) as an
approximation to (3), its accuracy is degraded somewhat if θ2

n,j is small or σ̃2
n,j is large.

More seriously, however, the term
∑pn

j=1 Cn,j will typically explode if pn diverges at a
rate faster than n, opening the possibility of substantial inaccuracy. To accommodate,
a detailed analysis of (14) might suggest a beneficial adjustment to the parametrization
(8) in terms of the “what if” guidelines. Nevertheless, this would be quite complicated
and will be investigated elsewhere. Let us instead note that assessments based on
(14), with ρ0,n parametrized according to (8), are conservative in the sense that if one
were to look beyond the priors specified with lim supn rn > −∞, some with rn → −∞
might be found which would shrink the test’s indistinguishable region while still making
P n[H0|Y n, Σ̂n] → 1 for θ consistent with H0.
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4.4 Objectivity of ρ0,n = 1/2

In low-dimensional testing it is often argued that ρ0,n = 1/2 defines an “objective”
or “noninformative” setting, but careful examination of the parametrization (8) will
show that label may be inappropriate in high dimensions, as is now described. The key
insights derive from the following theorem.

Theorem 1. Assume (8) with rn → ∞. (i.) For fixed n, ρ0,n → 0 as τn → ∞. (ii.)
lim supn τ

2
n

∑pn

j=1 wn,j < ∞ implies limn ρn,0 = 1. (iii.) Suppose {jn} is a sequence

for which 1 ≤ jn ≤ pn and rnp
1/2
n /(pn − jn) → 0. If lim infn{infj≥jn

wn,j} > 0 then
lim supn τn > 0 implies lim infn ρ0,n = 0.

Proof. Rewrite (8) as −{pnAn + rn‖vn,1‖}/2 where An = p−1
n

∑pn

j=1{log(1 − vn,j,1) +
vn,j,1}, and note the inequality log(1 − v) + v < 0 for 0 < v < 1 implies An < 0.
Statement (i) follows immediately from vn,j,1 → 1, which is easily deduced. To prove
statement (ii), set Bn = p−1

n

∑pn

j=1 log(1 − vn,j,1) so that Bn < An < 0. Next observe

that log(1 + x) < x for x > 0 implies log(1 − vn,j,1) = − log(1 + τ2
nwn,j) > −τ2

nwn,j .
Thus −C < pnBn < pnAn < 0 for any C > 0 such that τ 2

n

∑pn

j=1 wn,j < C, hence
−{pnAn + rn‖vn,1‖}/2 > {C − rn‖vn,1‖}/2 → −∞. To prove statement (iii), observe
there is some ε > 0 for which infj≥jnk

vnk ,j,1 > ε along a subsequence {nk}; hence
supj≥jnk

log(1−vnk ,j,1)+vnk ,j,1 < D where D = log(1−ε)+ε < 0. Therefore pnk
Ank

<

(pnk
− jnk

)D and −{pnk
Ank

+ rnk
‖vnk ,1‖}/2 → ∞, since ‖vn,1‖ = O(p

1/2
n ).

Theorem 1 addresses the possibility of setting limn ρ0,n = 1/2 by solving (8) for a
suitable sequence {τn}. If lim supn

∑pn

j=1 wn,j <∞ (which implies lim infn {infj≥jn
wn,j}

= 0), then statements (i) and (ii) imply that ρ0,n → 0 if τn → ∞ at a sufficiently fast
rate, and ρ0,n → 1 if τn → ∞ at a sufficiently slow rate. Thus, in this case it is at least
plausible there is a setting for τn which achieves limn ρ0,n = 1/2. However, statement
(iii) implies that limn ρ0,n = 1/2 is impossible if lim infn{infj≥jn

wn,j} > 0 and τn → ∞.

The main consequence, therefore, of Theorem 1 is that ρ0,n = 1/2 might be achieved
with τn → ∞ only if it is possible to specify wn,1, . . . wn,pn

in such a way that lim infn

{infj≥jn
wn,j} = 0. To do this requires information, for it is necessary to first specify a

suitable ordering of the dimension indices, then, to set the wn,1, . . . wn,pn
precisely, elicit

the relative certainties of θn,j ≈ 0 for smaller versus larger j. In generic high-dimensional
settings, this clearly compromises the “noninformative” character of the prior. Left
unexplored by Theorem 1 are prior structures for which τn → 0. However, these are
immediately seen as informative since prior mass becomes increasingly concentrated
near H0.

Thus, each condition lim infn{infj≥jn
wn,j} = 0 and τn → 0 reflects a use of prior

information, and so we are led to scrutinize whether ρ0,n = 1/2 is a necessary property
of noninformative priors. Indeed, a counterargument is provided in an observation by
Robert (1993), by which, as τn → 0, prior mass becomes stretched increasingly thin
across fixed regions in H1. From this perspective, ρ0,n = 1/2 represents increasing im-
balance between H0 and the region in H1 surrounding it. In contrast, ρ0,n → 0 describes
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a sensible reallocation of mass. (Such reallocation is even more imperative here, since,
with both τn → 0 and pn → 0, mass thins out within H1 even more dramatically.)
Thus, though we have rejected Robert’s equiponderance device, his suggestion to allow
ρ0,n → 0 is reflected in the implications of Theorem 1.

As an additional note, the property lim infn{infj≥jn
wn,j} = 0 reflects a common

feature of priors used in hypothesis testing, which is that the bulk of prior mass is
allocated to alternatives “near” H0. The reason usually given for such allocations is
that H0 would not be under test without specific interest in the surrounding region of
the parameter space. (See, e.g., Berger and Sellke, 1987, rejoiner, for discussion.) The
property lim infn{infj≥jn

wn,j} = 0 can be interpreted similarly as placing “nearest” to
H0 the alternatives expressed mainly through lower-indexed dimensions. This property
will be exploited in Section 5 to accommodate smoothness assumptions.

4.5 Diffuse priors

A proposed generic procedure for high-dimensional testing is formulated as follows. Set
wn,j = 1, fix each rn independently of τn, and, as n → ∞, take τn → ∞ diverging at
an arbitrarily fast rate. The fast divergence of τn spreads mass evenly (to an arbitrarily
degree) across H1 and makes the prior noninformative. A consequence for the posterior
is that each vn,j,1 is approximated by 1 to an arbitrary accuracy, hence ρ0,n → 0 via
(8), and the posterior null probability is approximately

P ∗
n[H0|Y n] =

[

1 + exp

{

1

2

(

‖Y SB
n ‖2 − pn − rnp

1/2
n

)

}]−1

. (15)

At any n, P ∗
n[H0|Y n] is an arbitrarily close approximation to P n[H0|Y n], the formal

posterior calculation derived from a proper prior. Thus, it provides a meaningful (in
the sense of approximating a Bayesian procedure) assessment of H0 in high-dimensions.
For the case where the σn,j are unknown, the same approach will produce an analogous

limiting quantity P ∗
n[H0|Y n, Σ̂n], which gives an arbitrarily close approximation to

P n[H0|Y n, Σ̂n], as in (14), again with ρ0,n understood through (8).

Note further that P ∗
n[H0|Y n] in (15) avoids the pitfalls discussed in Section 3.2 of

Robert’s (1993) noninformative solution (7). Observe that for each fixed pn, P ∗
n[H0|Y n]

is alternatively deduced as the limit of P n[H0|Y n] as τn → ∞, in a similar manner as
Robert’s solution. The difference is that here τn and ρ0,n are connected through the
criterion (8), rather than the equiponderance device (5); hence ρ0,n → 0 converges at a

(necessary) slower rate. Next write ‖Y SB
n ‖2−pn−rnp1/2

n = {Tn−rn}p1/2
n , where, using

(9) and (10), Tn is ‖Y SB
n ‖2 standardized to have mean zero and variance one for fixed

θ = 0. Considering how this expression appears in (15) it is clear that P ∗
n[H0|Y n] → 0

for θ consistent with H0 and P ∗
n[H0|Y n] → 1 for θ outside of an indistinguishable

region; the slower rn → ∞ diverges, the smaller the indistinguishable region. Thus, the
assessment P ∗

n[H0|Y n] is sensitive to the data in the manner described in Section 4.2
of tests consistent with the “what if” guidelines.
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Gelman et al. (2004) Proposed
School 2.5% 25% 50% 75% 97.5% 2.5% 25% 50% 75% 97.5%

A -2 7 10 16 31 -0 6 9 14 47
B -5 3 8 12 23 -5 4 8 11 21
C -11 2 7 11 19 -23 3 7 10 18
D -7 4 8 11 21 -7 4 8 11 21
E -9 1 5 10 18 -12 3 7 10 16
F -7 2 6 10 28 -13 3 7 10 17
G -1 7 10 15 26 -0 6 9 13 31
H -6 3 8 13 33 -11 5 8 12 35

Table 2: Posterior quantiles for the aptitude-test coaching data. The left side lists
quantiles calculated in Gelman et al. (2005), and the right side lists those of the posterior
distribution (16).

It is also possible to construct this solution using hyperpriors, as in Section 3.1. Ob-
serve that P ∗

n[H0|Y n] is a special case of (4) with cn = (2π)−pn/2|Σn|−1/2 exp{−(pn +

rnp
1/2
n )/2},

∫

πn(τn)dτn = 1, and ρ0,n = 1/2. As we have seen, this cn avoids the
problems associated with settings for which cn � 1, and it is easily verified to be of a
different character, for if σn,j � 1, e.g., and lim infn rn > −∞, then cn → 0.

A conceptual difficulty of our precise construction of P ∗
n[H0|Y n] is that it does

not yield a sensible Bayes factor: with τn arbitrarily large, the parametrization (8)
makes ρ0,n arbitrarily close to zero at every n, hence the approximate Bayes fac-
tor, B∗

n(Y n) = {P ∗
n[H0|Y n]/ρ0,n}/{(1 − P ∗

n[H0|Y n])/(1 − ρ0,n)}, is arbitrarily large.
Nevertheless, the connection noted above to a hyperprior construction suggests an
alternative calculation. If one treats P ∗

n[H0|Y n] as a special case of (4) with cn =

(2π)−pn/2|Σn|−1/2 exp{−(pn + rnp
1/2
n )/2},

∫

πn(τn)dτn = 1, and ρ0,n = 1/2, the corre-
sponding Bayes factor is Bn(Y n) = P ∗

n[H0|Y n]/(1−P ∗
n[H0|Y n]). Though reasonable,

this does essentially make an arbitrary choice of ρ0,n (for one could always revise cn
to keep cn(ρ−1

0,n − 1) in formula 4 constant). Yet since ρ0,n = 0 is disqualified the
setting ρ0,n = 1/2 is the next sensible choice, absent other prior information, and we
recommend associating this Bayes factor with P ∗

n[H0|Y n]. The same transformation of
P ∗

n[H0|Y n, Σ̂n] provides a Bayes factor for the case when Σ̂n is unknown.

Example 3. (Multi-sample testing, continued) In analyzing the aptitude-test “coach-
ing” data, Gelman et al. (2005) argue that one would want to use a prior which finds
a suitable balance between estimating µj at the observed Xj and at the “pooled” effect,
X̄ = g−1

∑g
j=1 Xj , observed across all eight schools. That is, they argue to avoid hav-

ing to choose “between complete pooling and none at all” by considering estimators of
the form µ̂j = λjX̄ + (1 − λj)Xj , for weights 0 ≤ λj ≤ 1. With this in mind, they
specify a (continuous) hierarchical prior by which the µ1, . . . , µg are conditionally in-
dependent with each µj ∼ N(µ, τ2), given hyperparameters µ and τ ; a flat prior, with
density πn(µ, τ) ∝ 1, is specified for the hyperprior parameters. Posterior quantiles are
computed by simulation, and they list those appearing on the left side of Table 2.
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An alternative treatment which also strikes a balance between complete pooling and
none at all begins by approaching the analysis as a testing problem. Our proposed prior
on θn has θn|H1 ∼ N(0, τ2

nW n) (recalling that Σn = I in this example), which is
parametrized according to (8), with rn = 0 and τn → ∞ at a very fast rate. This
gives rise to the approximate posterior null probability (15), and also N(Y n, I) for the
approximate conditional posterior distribution of θn|H1,Y n.

Next observe that our construction of model (1) makes Y n independent of a modified
version of the pooled effect, X̃ = {

∑g
j=1 Xj/S

2
j }/{

∑g
j=1 1/S2

j }. To see this, define the
matrix A to have (j, k) entry: 1 if k = j and j < g; −1 if k = j + 1 and j < g;
0 otherwise if j < g; and {1/S2

k}/{
∑g

j=1 1/S2
j } if j = g. Then XD and X̃ are the

first pn and last 1 entries, respectively, of the vector AX, whose covariance matrix is
block-diagonal with blocks C and S̃2 = 1/{∑g

j=1 1/S2
j }.

In addition, the inversion formulas for this example may be extended to write X in
terms of X̃ and Y n, and µ in terms of µ̃ = {∑g

j=1 µj/S
2
j }/{

∑g
j=1 1/S2

j } and θn. Sub-
sequently, by placing a suitable prior on µ̃, the approximate posterior distribution on θn

may be extended to account for the whole of µ, admitting calculation of approximate pos-
terior quantiles for the µj . For this, observe the matrix-inverse of A is given by the par-
tition A−1 = [B |1 ], where 1 denotes a column of ones and B is the g× pn matrix with

(j, k) entry: {∑g
l=k+1 1/S2

l }/{
∑g

l=1 1/S2
l } if j ≤ k; and −{∑k

l=1 1/S2
l }/{

∑g
l=1 1/S2

l }
if j > k. It follows that X = X̃1 + BC1/2Y n and µ = µ̃1 + BC1/2θn. The inde-
pendence between X̃ and Y n implies that the covariance matrix of X may be written
V = S̃211T + BCBT .

We are now ready to carry out our analysis. Let us specify prior independence be-
tween µ̃ and θn, and place a flat prior on µ̃, having density πn(µ̃) ∝ 1. An approximate
posterior distribution for X now is given as the mixture

µ|X ∼̇ P ∗
n[H0|Y n]N(X̃1, S̃211T ) + (1 − P ∗

n[H0|Y n])N(X,V ). (16)

Noting that µ̃1|X̃ ∼ N(X̃1, S̃211T ), and if a flat prior were placed on µ one would have
µ|X ∼ N(X,V ), this mixture provides a sought-after balance between complete pooling
and none at all. Yet here the balance is struck between the full posterior distributions
of µ̃|X̃ and µ|X, not just the means, and P ∗

n[H0|Y n], serving as a common value for
the λj , ascribes some further meaning to the weights.

For the data of Table 1, the modified pooled effect is X̃ = 7.6856 and the posterior
null probability is P ∗

n[H0|Y n] = 0.7589, which suggests a leaning toward complete pool-
ing. The associated Bayes factor is Bn(Y n) = P ∗

n[H0|Y n]/(1−P ∗
n[H0|Y n]) = 3.1470,

which, on the scales for weight of evidence discussed in Kass and Raftery (1995), is cat-
egorized as indicating “positive” evidence for H0, but “worth [just slightly more] than a
bare mention.” Corresponding posterior quantiles are listed in the right side of Table 2.
Comparing these with Gelman’s et. al hierarchical solution, one observes a widespread
consistency and comparable degree of shrinkage toward complete pooling. Noting there
is less variability among the 50% quantiles of the present solution, one would conclude
it has emphasized complete pooling slightly more strongly. However, there are also dis-
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crepancies in the extreme quantiles, specifically between the 2.5% quantiles of Schools C,
F, and H and the 97.5% quantiles of Schools A and G, that suggest the opposite inter-
preation. Nevertheless, excepting the notable inconsistency between the 97.5% quantiles
of School A, the discrepancies between the two solutions are quite small.

4.6 Jeffreys-Lindley paradox in high dimensions

The Jeffreys-Lindley paradox is investigated in high-dimensions by comparing P n[H0|Y n]
with the frequentist p-value under the “what if” guidelines. For this, let us sup-
pose the frequentist takes P n[H0|Y n] as a “test statistic” and normalizes it as T̂n

= (‖vn,1/2Y
SB
n ‖2 − ‖vn,1/2‖2) / (

√
2‖vn,1‖). Assuming ‖vn,1/2‖2 → ∞, T̂n is approx-

imately standard normal under H0 for large pn (as discussed in Jensen and Solomon,
1972, for example). A corresponding p-value is therefore p̂n ≈ 1 − Φ(T̂n) ≈ T̂−1

n φ(T̂n),
where φ and Φ are the standard-normal density and distribution functions, respectively,
the latter approximation being valid for large |T̂n|. Assuming the parametrization (8)
with rn → ∞, and writing P n[H0|Y n] = [1 + exp{‖vn,1‖(T̂n − rn)/2}]−1, the desired
comparison is made through the approximation

P n[H0|Y n]√
2πp̂n

≈
T̂n exp

{

T̂ 2
n/2

}

1 + exp
{

‖vn,1‖
(

T̂n − rn/
√

2
)

/
√

2
} (17)

=
T̂n exp

{

T̂ 2
n

(

1 −
√

2‖vn,1‖/T̂n

)

/2 + rn/2
}

1 + exp
{

−‖vn,1‖
(

T̂n − rn/
√

2
)

/
√

2
} .

Taking pn → ∞, the middle expression in (17) shows that P n[H0|Y n]/p̂n → ∞ for data
such that T̂n → −∞. Thus, for p-values near one, both the Bayesian and frequentist
would conclude very little evidence against H0, but P n[H0|Y n] would be closer to one
than p̂n. A similar, though slightly more complex, comparison is made for small p-values.
For data such that T̂n → ∞, both P n[H0|Y n] → 0 and p̂n → 0, but the comparison is
different depending on the rate at which T̂n grows. The last expression in (17) shows
that P n[H0|Y n]/p̂n → ∞ if limn ‖vn,1‖/T̂n ≤ 1/

√
2 and P n[H0|Y n]/p̂n → 0 otherwise.

Thus it is seen there is a cutoff point at which the comparison changes, and its presence
indicates a region of possible data for which some evidence is exhibited against H0 and
for which P n[H0|Y n] and p̂n take very similar values. (An exact description of this
region depends on rn, in order that (17) takes an intermediate limit.) The nature of
the Jeffreys-Lindley paradox is therefore changed in high-dimensions, alleviating much
of what makes it paradoxical.

Robert (1993) observes a similar phenomenon in the univariate case, noting that for
pn = 1 and σn,1 = 1, the frequentist p-value closely matches his solution, the limit in (7),
at the critical range of values near 0.05. (It is even suggested this phenomenon accounts
for the historical survival of the p-value, since it behaves like a Bayesian procedure
when evidence about H0 is most difficult to discern.) However, recall from Section 3
that Robert’s solution does not avoid the version of the paradox that fixes Y SB

n,j , sets
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wn,j = w̃n,j/σ
2
n,j , and takes σn,j → 0. Curiously, solutions parametrized via (8) do,

provided each rn is independent of the σn,j . To see this, fix Y SB
n,j and use (11) to deduce,

under (8), that P n[H0|Y n] → P ∗
n[H0|Y n] as each σn,j → 0.

5 High-dimensional analysis of the smooth model

This section treats the high-dimensional testing problem in a context that accommo-
dates the approaches to GOF-testing and FDA outlined in Section 2.

5.1 Updated notation for the smooth model

Asymptotic analysis will here make critical use of the “sample size” parameter n. The
magnitudes of error are parametrized as σn,j = σ̃n,j/

√
n, for an array Σ̃ = {σ̃n,j :

(n, j) ∈ In} such that σ̃n,j � 1 uniformly across n and j. Other elements of the

notation defined in Section 3 are updated accordingly: Set Σ̃n = diag(σ̃n,1, . . . , σ̃n,pn
),

and write Y SS
n = [Y SS

n,1 , . . . , Y
SS
n,pn

]T and θSS
n = [θSS

n,1, . . . , θ
SS
n,pn

]T , with Y SS
n,j = Yn,j/σ̃n,j

and θSS
n,j = θn,j/σ̃n,j . The superscript “SS” means “scaled for the smooth model.”

Corresponding arrays are Y SS = {Y SS
n,j : (n, j) ∈ In} and θSS = {θSS

n,j : (n, j) ∈ In}.

5.2 Incorporating a smoothness assumption

Recall from Section 2 that a central issue in GOF-testing and FDA is how to incorporate
the smoothness assumption of an underlying functional model. From the discussion
following Example 2, a suitable means of imposing this assumption is to restrict the
model so that each θSS

n is an element of the space

Bn,s,M =







θ = [θ1, . . . , θpn
]T :

pn
∑

j=1

j2sθ2j ≤M







, (18)

where s > 1/2 and M > 0. To reflect this assumption in the prior, πn(θn|H1) might be
reformulated so that θSS

n |H1 ∼ N(0, τ2
nW nΣn), as before, but conditional on Bn,s,M .

Under the parametrization (8), the posterior null probability (2) then becomes

P n[H0|Y n,Bn,s,M ] =
[

1 +

(

P n[Qn,2 ≤M |Y n]

P n[Qn,1 ≤M ]

)

exp

{

1

2

(

n‖vn,1/2Y
SS
n ‖2 − ‖vn,1/2‖2 − rn‖vn,1‖

)

}]−1

(19)

where

Qn,1 =
1

n

pn
∑

j=1

j2svn,j,1Z
2
n,j/(1 − vn,j,1) (20)
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and

Qn,2 =
1

n

pn
∑

j=1

j2svn,j,1

{

Zn,j + vn,j,1/2

√
nY SS

n,j

}2
, (21)

for an array {Zn,j} of independent standard normal random variables. A derivation of

(19) is provided in Appendix 2, where it is shown that P n[Qn,1 ≤ M ] = P n[θSS
n ∈

Bn,s,M |H1] and P n[Q2 ≤M |Y n] = P n[θSS
n ∈ Bn,s,M |H1, Y ].

The quantity SF (Y n) = P n[Qn,2 ≤ M |Y n]/P n[Qn,1 ≤ M ] in (19) is the sole
factor that distinguishes (19) from the formulas for P n[H0|Y n] considered in Section
4. It therefore determines the impact of prior conditioning on Bn,s,M , and so will be
referred to as the “smoothness factor.” The present evaluation of the smooth model will
consider two cases. First, the smoothness factor is ignored, and the evaluation treats the
formula (19) as if SF (Y n) = 1, which is the correct expression under the unconditional-
prior formulation of Section 4. The restriction to θn ∈ Bn,s,M is nevertheless assumed
in asymptotic analysis, and the goal to identify favorable settings of the wn,1, . . . , wn,pn

under the “what if” guidelines. This is carried out in Section 5.3. The second part of
the evaluation takes both SF (Y n) and the assumption θn ∈ Bn,s,M fully into account.
Section 5.4 treats this case, and shows that, while conditioning on Bn,s,M is appealing
from the point of view of eliciting assumptions, any advantage under the “what if”
guidelines is absent.

5.3 Rates of testing

Recall from Section 4.2 the notion of an indistinguishable region, which collects the θ
consistent with H1 which do not yield P n[H0|Y n] → 0 almost surely. Previously, the
objective to keep the indistinguishable region small led to the guideline that rn should
diverge as slowly as possible. The same objective will now be considered for the purpose
of selecting wn,1, . . . , wn,pn

under a smooth model. One consequence of this approach
is to set up a mathematical framework similar to the frequentist rates of testing theory
developed in Ingster (1993) and Spokoiny (1996). Much of the following discussion
draws from that theory and its associated terminology.

To begin, let us refine and update the description of the indistinguishable region
given in Section 4.2. Consider sequences δn → 0 satisfying

sup
θSS

n ∈H1,n(δn/δ∗n)

P n[H0|Y n] → 0 for every δ∗n → 0, (22)

where H1,n(δ) = {θ ∈ Bn,s,M : ‖θ‖ ≥ δ}. Associated with this criterion is the following

optimality concept. Suppose (22) holds for some sequence δ̂n → 0, and furthermore

every δn → 0 for which (22) also holds satisfies δ̂n = O(δn). The rate of δ̂n will then be
referred to as a “rate of testing” of a given prior specification. These rates provide the
kind of description we want: δ̂n gives the boundary of the indistinguishable region, and
so a faster rate of testing identifies a smaller indistinguishable region. Thus, the most
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favorable settings for wn,1, . . . , wn,pn
are those for which the associated rates of testing

are as fast as possible.

Next let us ignore the smoothness factor SF (Y n) of formula (19) (or set it to one)
and follow deductions paralleling those of Section 4.2. A reanalysis of expression (13)
will show, noting θSS

n =
√
nθSB

n , that the criterion determining (22) is

sup
θSS

n ∈H1,n(δn/δ∗n)

‖vn,1‖
n‖vn,1/2θSS‖2

→ 0 for every δ∗n → 0, (23)

provided rn diverges so slowly that

lim sup
n

{

sup
θSS

n ∈H1,n(δn/δ∗n)

rn
‖vn,1‖

n‖vn,1/2θSS‖2

}

< 1 for every δ∗n → 0.

This criterion makes a fortunate connection to the mathematics of frequentist rates of
testing theory, specifically to the properties of frequentist tests derived from weighted
quadratic forms, which are studied in Spitzner (2008). The detailed route of this con-
nection is provided in Appendix 3. What follows below is a summary of its implications
to the present problem.

It will be helpful to first remark on general performance bounds implied by the
results of Ingster (1993) and Spokoiny (1996). These are relevant not just under the
criterion (23), but under any prior specification subject to the “what if” guidelines
(i) and (iii). First, it is implied from Ingster (1993) that the fastest rate of testing

that can be achieved by any prior is δ̂n = n−2s/s̃, where s̃ = 4s + 1, and s is the
parameter specified in Bn,s,M . However, an associated result is that to achieve this rate
it is necessary that the prior depends on the parameter s. Unfortunately, it is often
difficult to elicit a precise value of s and so Ingster’s result is usually irrelevant for
applications. To avoid this problem, Spokoiny (1996) formulates an “adaptive” rates
of testing framework in which performance is considered simultaneously for s across a
finite range of values, s∗ < s < s∗ say. In the present context, the adaptive framework
amounts to the goal of finding a single prior, which may depend on s only through
s∗ and s∗, for which no other prior induces uniformly faster rates of testing across
s∗ < s < s∗. Spokoiny’s results imply that such adaptive rates of testing can be no
faster than δ̂n = {n2(log log n)−1}−s/s̃.

Spitzner (2008) studies these ideas in a restricted (frequentist) context where the
only tests considered are those which use a quadratic form as a test statistic. As shown
in Appendix 3, this is mathematically parallel to the present problem where the data
appear in P n[H0|Y n] through the quadratic form ‖vn,1/2Y

SS
n ‖2. Relevant results are

now stated as implications for the setup leading to (23).

The rate of pn plays a critical role. For simplicity, let us assume that log pn/ logn
either has a limit or diverges to infinity, and set L = limn{s̃ log pn/(2 logn)}. From
Spitzner (2008), it is known that if L < 1, the criterion (22) cannot hold for any

δ̂n → 0. On the other hand, the setting L = 1 yields Ingster’s optimal rate of testing
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whenever vn,j,1 = j−γ1/2 for any 0 < γ1 < 1 (also γ1 = 0, but that setting is impossible
here). However, observe that to set L = 1 requires a precise value of s, and this means
the setting L = 1 is not valid in the adaptive context. Yet if 1 < L < B for some B > 1,
the rate of testing δ̂n = {n2(log n)−1}−s/s̃ is achieved by prior settings such that

vn,j,1 = j−1/2(log j)−(1−γ2)/2, (24)

for j > 1 and some constant γ2 ≥ 0 (among which γ2 = 1 might be preferred for
simplicity). Moreover, Theorem 3 of Spitzner (2008) implies that this rate is adaptively
optimal among tests based on quadratic forms. The property (24) therefore achieves
the objective stated at the beginning of this section: it identifies favorable settings of
the prior that, from an adaptive rates-of-testing viewpoint, reduce the indistinguishable
region to the greatest extent possible.

It is easy to restate (24) in terms of the wn,1, . . . , wn,pn
rather than the entries of vn,1:

if the setting vn,j,1 = v∗j is desired for some sequence v∗1 , v
∗
2 . . ., then straightforward

algebra will show an equivalence with the weight settings wn,j = {τ2
n(v∗−1

j − 1)}−1.

For such wn,j , the τ2
n cancels in τ2

nW n, and the conditional prior may be written
θn|H1 ∼ N(0, (V ∗−1

n − I)−1Σn), where V ∗
n = diag(ṽ∗1 , . . . , ṽ

∗
pn

). Also, the posterior
distribution has θn|H1,Y n ∼ N(V ∗

nY n,V
∗
nΣn).

One technical note is that the setting vn,1,1 = 1, according to (24), must be treated
as an approximation to a specification for which τnwn,j is arbitrarily large. How-
ever, this can create a problem in calculating a Bayes factor, for then ρ0,n through
the parametrization (8), is arbitrarily close to zero and the Bayes factor Bn(Y n) =
{P n[H0|Y n]/ρ0,n}/{(1 − P n[H0|Y n])/(1 − ρ0,n)} becomes arbitrarily large. To avoid
this problem, an ad hoc adjustment is recommended by which the vn,j,1 are set by
(24) for j ≥ 2 but vn,1,1 = vn,2,1. If no Bayes factor is required, this adjustment is
unnecessary.

It is interesting to consider (24) in the context of Section 4.4, where the concern
is over the setting ρ0,n = 1/2. It is relevant that limj wn,j = 0 under (24), for
the discussion following Theorem 1 suggests the possibility of solving for τn so that
limn ρ0,n = 1/2. Nevertheless, in fact, ρ0,n → 0 under the guideline that rn → ∞
diverges “as slowly as possible.” This is easily deduced from the properties v−1{1 +
v−1 log(1 − v)} → −1/2 as v → 0 and

∑p
j=1 vn,j,2 → ∞, applied to (8) under (24),

provided rn = O(‖vn,1−t‖2/‖vn,1‖) for some 0 < t < 1/2.

Example 2. (Functional data analysis, continued) For analysis of the VDP data, there
are statistics Σ̂n = diag(σ̂2

n,1, . . . , σ̂
2
n,pn

) available for use in specifying a prior on the

Σn. Set V̂ =
∑2

g=1

∑ng

i=1(Xg,ij − X̄g,j)
2, νn = n − 2 (= n1 + n2 − 2) and define

σ̂2
n,j = (n−1

1 + n−1
2 )V̂j . It is a well known property that Σ̂n and Y n are independent

and νnσ̂
2
n,j/σ

2
n,j ∼ χ2

νn
, as is required for the formulation discussed in Section 4.3.

Our proposed prior on (θn,Σn) has θn|H1,Σn ∼ N(0, (V ∗−1
n − I)−1Σn) for V ∗

n =

diag(1, 2−1/2, . . . , p
−1/2
n ), which is parametrized via (8), with rn = 0. An improper prior

is selected for Σn, with densities given by πn(σ2
n,j) ∝ (σ2

n,j)
−(κ/2+1) exp{−λ/(2σ2

n,j)}
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Figure 2: Marginal probabilities P n[θn,j > 0|Y n, Σ̂n] and P n[θn,j < 0|Y n, Σ̂n] for the
VDP data. The former are plotted above the reference line at zero, with larger values
more toward the top, and the latter plotted below the reference line, with larger values
more toward the bottom. Observe how the structure smooths out at the higher indices.

Index P n[θn,j < 0|Y n, Σ̂n] P n[θn,j > 0|Y n, Σ̂n] max. rank
4 0.05 0.94 0.94 1
2 0.91 0.08 0.91 2
19 0.88 0.11 0.88 3
12 0.11 0.88 0.88 4
22 0.87 0.12 0.87 5
10 0.85 0.14 0.85 6
20 0.14 0.85 0.85 7
16 0.15 0.84 0.84 8
8 0.16 0.83 0.83 9
32 0.16 0.83 0.83 10

Table 3: Indices j in θn,j with the largest values of P n[θn,j > 0|Y n, Σ̂n] or P n[θn,j <

0|Y n, Σ̂n]. Only one index in these top ten is odd.

for κ = 0 and λ = 0.

Under this specification, the posterior null probability (14), calculated on just the first
pn = 51 components, is P n[H0|Y n, Σ̂n] = 0.0094. If V ∗

n is adjusted so that its first diag-
onal entry is 2−1/2 (matching the second), the posterior null probability reduces slightly
to P n[H0|Y n, Σ̂n] = 0.0090, the prior null probability is ρ0,n = 0.1804, by (8), and

the Bayes factor is Bn(Y n, Σ̂n) = {P n[H0|Y n, Σ̂n]/ρ0,n}/{(1−P n[H0|Y n, Σ̂n])/(1−
ρ0,n)} = 0.0411. Kass and Raftery (1995) categorize this Bayes-factor value as indicat-
ing “strong” evidence for H1.

To examine the apparent differences between shift groupings more closely, marginal
posterior probabilities of P n[θn,j > 0|Y n, Σ̂n] and P n[θn,j < 0|Y n, Σ̂n] are calculated
from the full posterior distribution. These probabilities are charted in Figure 2, in which
a tendency is seen for the larger probabilities to appear at even index values. In addition,
consider Table 3, which lists the index values of the ten largest P n[θn,j > 0|Y n, Σ̂n] and

P n[θn,j < 0|Y n, Σ̂n]; among these, only one index is odd. Noting that the Fourier basis-
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functions with even indices correspond to ψ2j(t) = cj sin(jt), which are asymmetric
on (−π, π], our analysis therefore suggests that the greatest differences between shift
groupings are exhibited as asymmetric attributes of the profiles.

Another interesting pattern in Figure 2 is that the charted values even out at the
higher indices. This reflects a “smoothing” effect of the procedure by which the choice
of wn,1, . . . , wn,pn

emphasizes the structure in the lower-indexed components.

5.4 Impact of prior conditioning

The analysis of the smooth model has thus far identified favorable settings for wn,1, . . . ,
wn,pn

while ignoring the smoothness factor, SF (Y n); i.e., the prior has been treated
as if unconditional on Bn,s,M . The impact of prior conditioning on Bn,s,M will now
be considered by examining the influence of SF (Y n) on the asymptotic behavior of
P n[H0|Y n].

There are various conceptual and practical hurdles involved in calculating SF (Y n)
which limit the extent to which prior conditioning is even an option in practice. (Hence
one might interpret the present discussion as seeking primarily to assess what might be
missed by not conditioning.) The main conceptual problem is that SF (Y n) depends
s and M , which are usually difficult to pin down. The main practical problem, on
the other hand, is that näive approximations of SF (Y n) can be subject to substantial
error. To see this, observe that both Qn,1 and Qn,2|Y n are typically of order pn and
so SF (Y n) involves probability calculations at these distributions’ extreme lower tails.
Thus, numerical simulation would be unstable, and the more elementary approximation
formulas would be inaccurate. Instead, a high-accuracy method such as saddlepoint
approximation would be required to calculate any reasonably reliable value of SF (Y n).
Accordingly, saddlepoint approximation will form the basis of the theoretical evaluation
carried out here. To be clear, this means that SF (Y n) will not be evaluated directly,
but only through its saddlepoint approximation, and it is admitted that this relaxes
the rigor of the argument. Nevertheless, such evaluation is still quite relevant given
the likely possibility that no better approximation to SF (Y n) would be available in
practice. Refer to Barndorff-Nielsen and Cox (1989, ch. 4), Reid (1988), and Kuonen
(1999), among others, for good, general discussion of this method, and to Jensen (1995)
for detailed discussion of their accuracy.

The most relevant case has both P n[Qn,2 ≤ M |Y n] → 0 and P n[Qn,1 ≤ M ] → 0,
which occurs under the recommended settings (24) of the last section. In that case,
SF (Y n) takes an indeterminant form and L’Hospital’s rule provides that it may be
studied asymptotically as

√

κn,2,2(Y n)fn,2(M |Y n)
√
κn,1,2fn,1(M)

, (25)

where fn,1 and fn,2(·|Y n) are densities of Qn,1 and Qn,2|Y n, respectively, and κn,1,2 and
κn,2,2(Y n) are their corresponding variances. Saddlepoint approximations to fn,1(M)
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and fn,2(M |Y n) are given by

fn,1(M) ≈ exp{Kn,1(λ̂n,1) − λ̂n,1M}
{2πnK ′′

n,1(λ̂n,1)}1/2

and

fn,2(M |Y n) ≈ exp{Kn,2(λ̂n,2(Y n)|Y n) − λ̂n,2(Y n)M}
{2πnK ′′

n,2(λ̂n,2(Y n)|Y n)}1/2
,

where Kn,1 and Kn,2(·|Y n) are the cumulant generating functions of Qn,1 and Qn,2|Y n,

respectively, and λ̂n,1 and λ̂n,2(Y n) are the respective values of t such that K ′
n,1(t) = M

and K ′
n,2(t|Y n) = M .

The assertion made at the beginning of this section is made precise by the following
theorem, whose proof is provided in Appendix 4.

Theorem 2. Suppose limn log pn/ logn > 2/3, wn,j and τn are such that γ = sup{t :
vn,j,1 = o(bn,j), where bn,j = j−t} > 0, and rn is such that P n[H0|Y n,Bn,s,M ] → 0
is avoided for θ consistent with H0. Suppose further that both P n[Qn,2 ≤ M |Y n] →
0 and P n[Qn,1 ≤ M ] → 0 so that (25) approximates SF (Y n), asymptotically. If

δ4n = O(pn/n
2) and δ∗n → 0 then there is a sequence of θSS

n ∈ H1,n(δn/δ
∗
n) for which

lim infn P n[H0|Y n,Bn,s,M ] > 0.

Theorem 2 immediately dismisses the possibility of achieving Ingster’s minimax rate,
δ̂n = n−2s/s̃, since that rate has n2δ̂4n/pn = n2/s̃/pn → 0 when limn log pn/ logn > 2/3.

The optimal adaptive rate for quadratic forms, δ̂n = {n2(logn)−1}−s/s̃, is similarly
disqualified. Thus it is seen that the indistinguishable region is made larger under the
prior formulated conditionally on Bn,s,M . Moreover, if n2/pn → 0, Theorem 2 estab-
lishes that (22) cannot hold for any δn → 0, indicating a possible severe negative impact
of prior conditioning. An interpretation of the latter case is that with pn increasing so
quickly the “size” of Bn,s,M relative to high-dimensional space is essentially that of a
point. The conditional prior in effect reduces to a point mass, making it impossible to
discern points within Bn,s,M .

6 Conclusions and discussion

A new methodology for high-dimensional Bayesian testing has been developed, which
is formulated in such a way that the underlying prior structure may be interpreted
as noninformative. The proposed methodology is suitable for general high-dimensional
testing problems, but a specialized version has also been proposed for the contexts of
GOF-testing and FDA, where smoothness assumptions are an important consideration.
Demonstrations on two interesting data sets have also been carried out and discussed,
and new analysis tools based on the proposed tests have been introduced.

A number of interesting conceptual aspects of the problem have been observed.
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Under the basic model, absent any smoothness assumption, the notion that ρ0,n = 1/2
represents a noninformative setting has been weakened, since in high dimensions that
requires one to order and weight dimensionality. The nature of the Jeffreys-Lindley
paradox has also been weakened: it is less paradoxical, as the Bayesian posterior null
probability and the frequentist p-value have been shown to behave consistently in high-
dimensions. Investigation of the smooth model has led to a Bayesian formulation of rates
of testing theory, and through this a favorable dimensionality-weighting configuration
for the prior. In studying the effects of prior conditioning on Bn,s,M , it has been shown
that, surprisingly, the unconditional formulation yields the more favorable behavior.

Both the cases of known and unknown error-variance parameters have been explored,
though the primary focus has been on the former. Scaled inverse-χ2 priors on the
σ2

n,j have shown to produce a test which is conservative, but not wholly inaccurate.
Improvements in accuracy is a goal of future work.

Among issues that remain for discussion, there are questions of how ρ0,n is to be
interpreted in a context where it is connected to other prior parameters and to dimen-
sionality. Robert (1993) casts his arguments leading to the equiponderance device (5)
as an interest in balancing the sizes of H0 and H1. In light of present results, however,
it seems that high-dimensionality complicates whatever balance might be achieved, as
indicated in particular by the role of the parameter rn. What has become blurred is
the traditional sense by which ρ0,n represents subjective belief in H0. The results here
suggest that any probabilistic interpretation of ρ0,n must be considered against the back-
drop of geometry. Specifically, any program for eliciting ρ0,n subjectively would need
to adjust for such issues as the total number and ordering of dimensions, the relative
importance of individual dimensions, and possibly geometric constraints such as (18).

Much further exploration of the Bayesian rates-of-testing context remains to be done.
In particular, Spokoiny’s (1996) performance bound on adaptive rates is not achieved
by the normal prior, and it remains an open question whether this gap can be closed
by a Bayesian testing procedure.

Finally, though the recommendations made here readily apply to FDA applications
involving orthogonal basis decomposition, the details of how they apply to GOF-testing
remain somewhat unclear. In particular, it is difficult to make comparisons with the
many established GOF tests whose underlying models appear on the surface very differ-
ent from (1). By viewing (1) as a canonical asymptotic model, however, as suggested in
Section 2, it is hoped such translation and comparison becomes possible, opening new
doors to further development of this interesting topic.
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Appendices

1 Derivation of the posterior null probability with a prior

on the error-variances

A joint model density is

m(Y nΣ̂n|θn,Σ) = Apn
n |Σ̂n|νn/2−1|Σn|−(νn+1)/2

× exp







−
pn
∑

j=1

(Yn,j − θn,j)
2 + νnσ̂

2
n,j

2σ2
n,j







.

and a joint conditional prior density is

πn(θn,Σn|H1) = Bpn
n τ−pn/2|W n|−1/2|Σn|−(κ+3)/2 exp







−
pn
∑

j=1

θ2/(τnwn,j) + λ

2σ2
n,j







.

where An = (2π)−1/2(νn/2)νn/2/Γ(νn/2) and Bn = 2−(κ+1)/2π−1/2λκ/2/Γ(κ/2), with
Γ(α) =

∫∞

0
tα−1 exp{−t}dt. The identity (Yn,j−θn,j)

2+θ2/(τnwn,j) = (1−vn,j,1)Y
2
n,j +

vn,j,1{θn,j − (1 − vn,j,1)Yn,j}2 along with
∫∞

−∞
exp{−(t − α)2/β}dt = (πβ)1/2 and

∫∞

0 t−(α+1) exp {−β/t}dt = β−αΓ(α) provide

mn(Y nΣ̂n|H1) = (26)

Cpn
n |Σ̂n|νn/2−1

pn
∏

j=1

[

(1 − vn,j,1)
{

(1 − vn,j,1)Y
2
n,j + νnσ̂

2
n,j + λ

}−(νn+κ+1)
]1/2

,

where Cn = {Γ((νn + κ + 1)/2)π−1/2ν
νn/2
n λκ/2}/{Γ(νn/2)Γ(κ/2)}. A similar manipu-

lation leads to

mn(Y nΣ̂n|H0) = Cpn
n |Σ̂n|νn/2−1

pn
∏

j=1

{

Y 2
n,j + νnσ̂

2
n,j + λ

}−(νn+κ+1)/2
,

which, together with (26), yields (14). The identities leading to (26) also lead to the
marginal posterior density

πn(θn,j |H1, Yn,j , σ̂
2
n,j) ∝

{

1 +
1

νn + κ+ 1

(

θn,j − vn,j,1Yn,j

ηn,j

)2
}−(νn+κ+2)/2

,

where ηn,j is as defined below (14). This defines the vn,j,1Yn,j +ηn,jtνn+κ+1 distribution.
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2 Derivation of the smooth prior and posterior null prob-

ability

A prior density associated with θn|H1 ∼ N(0, τ2
nW nΣn)|Bn,s,M is calculated as

πn(θn|H1,Bn,s,M ) = (27)

(2π)−pn/2IBn,s,M
(θSS

n )

P n[Qn,1 ≤M ]

pn
∏

j=1

(τ2
nwn,jσ

2
n,j)

−1/2 exp







−1

2

pn
∑

j=1

θ2n,j/(τ
2
nwn,jσ

2
n,j)







,

where IBn,s,M
is an indicator function for Bn,s,M . To see this, observe that by writing

Zn,j = {n/(τ2
nwn,j)}1/2θSS

n,j , Qn,1 in (20) is
∑

j j
2s{θSS

n,j}2, the norm defining Bn,s,M .

Its distributional properties are as claimed given that θn|H1 ∼ N(0, τ2
nW nΣn), uncon-

ditionally, since then the Zn,j are independent and standard normal. Thus, P n[Qn,1 ≤
M ] = P [θSS

n ∈ Bn,s,M |H1], and (27) is calculated from πn(θn|H1,Bn,s,M ) = πn(θn|H1)

× IBn,s,M
(θSS

n ) / P n[θSS
n ∈ Bn,s,M |H1].

The posterior probability P n[H0|Y n,Bn,s,M ] is calculated from the formula (2),
but with mn(Y n|H1,Bn,s,M ) =

∫

θn 6=0
m(Y n|θn,Σn)πn(θn|H1,Bn,s,M )dθn replacing

mn(Y n|H1). Under (1) and (27), an application of Bayes’s theorem provides that

mn(Y n|H1,Bn,s,M ) =
mn(Y n|H1)

P n[Qn,1 ≤M ]

∫

Bn,s,M

πn(θn|Y n)dθn,

where mn(Y n|H1) is as in the basic model, and πn(θn|Y n) is a multivariate nor-
mal density with mean vector {I + (τnW n)−1}−1Y n and covariance matrix {I +
(τnW n)−1}−1Σn. NowQn,2|Y n in (20) is

∑

j j
2s{θSS

n,j}2 for Zn,j =
√
n[vn,j,−1/2{θSS

n,j}2−
vn,j,1/2{Y SS

n,j }2]. Conditioning on Y n, the Zn,j are independent and standard normal

when θn|Y n ∼ πn(θn|Y n), and so
∫

Bn,s,M
πn(θn|Y n)dθn = P n[Qn,2 ≤M |Y n], which

establishes (19).

3 Connection to frequentist rates of testing

The following argument admits use of the frequentist rates of testing theory developed
in Spitzner (2008), through criterion (23). Working in a manner similar to Section
4.6, let us take a frequentist perspective on the Bayesian testing problem by treating
P n[H0|Y n] as a “test statistic.” As before, with SF (Y n) ignored, this is normalized
as T̂n = (n‖vn,1/2Y

SS
n ‖2 − ‖vn,1/2‖2)/(

√
2‖vn,1‖). Frequentist rates of testing theory

replaces (22) with

inf
θSS

n ∈H1,n(δ̂n/δn)
P [T̂n > c] → 1 for every δn → 0,
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provided there is an α < 1 for which lim supn P [T̂n > c] ≤ α when θ = 0. The latter
condition is identical to P n[H0|Y n] → 1 for any rn → ∞ for θ consistent with H0. To
see that P [T̂n > c] → 1 is equivalent to (23), use (9,10) to write

P [T̂n > c] = P



Tn > −n‖vn,1/2θ
SS
n ‖2/

√

2‖vn,1‖2 + c
√

1 + 2n‖vn,1θ
SS
n ‖2/‖vn,1‖2



 ,

where Tn is ‖vn,1/2Y
SS
n ‖2 standardized to have mean zero and variance one. Thus,

P [T̂n > c] → 1 is equivalent to the conditions n‖vn,1/2θ
SS
n ‖2/‖vn,1‖ → ∞ and n1/2 ×

‖vn,1/2θ
SS
n ‖2 / ‖vn,1θ

SS
n ‖ → ∞. The former is (23) rewritten; it implies the latter since

‖vn,1/2θ
SS
n ‖ ≥ ‖vn,1θ

SS
n ‖ and so n1/2‖vn,1/2θ

SS
n ‖2/‖vn,1θ

SS
n ‖ ≥ n1/2‖vn,1/2θ

SS
n ‖,

which diverges to infinity when (23) holds.

4 Proof of Theorem 2

It will be convenient to adopt the following vector notation for this section. With
the exception of the data vectors Y SS

n and parameter vectors θSS
n , every vector will

have a double subscript and the entries of any vector will be triple-subscripted, in the
manner of the previously-defined vector vn,k = [vn,1,k, . . . , vn,pn,k]T , for which vn,j,k =
{1+ σ̃2

n,j(τ̃
2
nwn,j)

−1}−k. The first index of a vector-entry is n, the second shall indicate
its place, and the third a power to which the vector-entry has been raised. All entries of
the same vector shall share the same third-subscript value, matching that of the vector
itself. Thus, for instance, one might define cn,1 = [cn,1,1, . . . , cn,pn,1]

T in which case
cn,k = [cn,1,k, . . . , cn,pn,k]T is equivalent to cn,k = [ckn,1,1, . . . , c

k
n,pn,1]

T . Some special
vectors which will be used in the proof are: un,k, defined by entries un,j,1 = j2s; ṽn,k,
defined by entries ṽn,j,1 = vn,j,1(1 − vn,j,1)

−1; and an,k and ãn,k defined by respective
entries an,j,1 = {1 + (n/pn)/(Cj2svn,j,1)}−1 and ãn,j,1 = {1 + (nn/p)/(Cj

2sṽn,j,1)}−1,
where C is a scalar argument yet to be given.

See Johnson and Kotz (1970) to verify that the cumulant generating functions of
Qn,1 and Qn,2|Y n are given by

Kn,1(t) =
1

2



−
pn
∑

j=1

log
(

1 − 2n−1j2sṽn,j,1t
)





Kn,2(t|Y n) =
1

2

pn
∑

j=1

[

− log
(

1 − 2n−1j2svn,j,1t
)

+
nvn,j,1{Y SS

n,j }2

1 − 2n−1j2svn,j,1t

]

−n
2
‖vn,1/2Y

SS
n ‖2.

Let us parametrize the relevant saddlepoints as λ̂n,1 = −Cn,1pn/2 and λ̂n,2(Y n) =
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−Cn,2pn/2, and furthermore write

K ′
n,1(−Cpn/2) =

1

C

{

1 − n

Cp2
n

‖un,−1/2vn,−1/2an,1/2‖2

}

(28)

+
n

C2p2
n

‖un,−1/2an,1‖2 +
n2

C3p3
n

‖un,−1an,1ãn,1/2‖2,

K ′
n,2(−Cpn/2|Y n) =

1

C

{

1 − n

Cp2
n

‖un,−1/2vn,−1/2an,1/2‖2

}

(29)

+
n

C2p2
n

‖un,−1/2an,1‖2 +
n2

C2p2
n

‖un,−1/2an,1θ
SS
n ‖2

+
n

C2p2
n

Tn,1

√

2‖un,−1an,2‖2 + 4n‖un,−1an,2θ
SS
n ‖2,

where C defines an,k and ãn,k, and Tn,1 is ‖un,−1/2an,1Y
SS
n ‖2 standardized to have

mean zero and variance one, conditioning on C, and is calculated using (9,10). (Formula
28 follows from the identities (an,j,1/vn,j,1) − (ãn,j,1/ṽn,j,1) = an,j,1ãn,j,1 and ãn,j,1 −
an,j,1 = {n/(Cpn)}un,j,−1an,j,1ãn,j,1.) When C is replaced by Cn,1 or Cn,2, denote by

a
(1)
n,k and ã

(1)
n,k or a

(2)
n,k and ã

(2)
n,k, respectively, the corresponding values of an,k and ãn,k.

Since γ > 0 and s > 1/2, one has ‖un,−kan,l‖2 = O(1), ‖un,−kvn,−kan,l‖2 = O(1),

and ‖un,−kan,lãn,l/2‖2 = O(1) for each k ≥ 1/2 and l ≥ 0, and θSS
n ∈ Bn,s,M implies

‖un,−kan,lθ
SS
n ‖2 is bounded above byM . Moreover, the assumption limn log pn/ logn >

2/3 implies (n2/p3
n) → 0, hence also (n/p2

n) = (n2/p4
n)1/2 → 0.

Thus, it is clear from (28) that K ′
n,1(λ̂n,1) = M implies Cn,1 → 1/M . Similarly,

(29) shows immediately that K ′
n,2(λ̂n,1|Y n) = M implies Cn,2 → 1/M for the cases

n/pn → 0 or θ = 0. If pn/n = O(1) and θSS
n 6= 0, the Cn,2 for whichK ′

n,2(λ̂n,1|Y n) = M

is bounded above and Cn,2 ≥ 1/M . To see this, observe that ‖un,−1/2an,1θ
SS
n ‖2 is

maximized for θSS
n ∈ Bn,s,M when {θSS

n,ĵn
}2 = Mĵ−2s

n for some ĵn = 1, . . . , pn. This

means {n/(Cpn)}2‖u−1/2a1θ
SS‖2 ≤ M{C(pn/n)ĵ2s

n + ĵr
n}−2 ≤ M , which, through

(29), yields the assertion.

A saddlepoint approximation to P n[H0|Y n,Bn,s,M ] is deduced as follows. Set An,1

= log{κn,2,2(Y n)/κn,1,2} + log{K ′′
n,1(λ̂n,1)/K

′′
n,2(λ̂n,2(Y n)|Y n)} and write

Kn,2(λ̂n,2(Y n)|Y n) −Kn,1(λ̂n,1) − λ̂n,2(Y n)M + λ̂n,1M (30)

=
1

2

[

An,2 +An,3 +An,4 + n‖vn,1/2Y
SS
n ‖2

]
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where

An,2 =

pn
∑

j=1

log

{

1 − (Cn,2 − Cn,1) − Cn,1ṽn,j,1

Cn,2 + (n/pn)/(j2svn,j,1)

}

,

An,3 = M(Cn,2 − Cn,1)pn, (31)

An,4 =
n

Cn,2pn

{

‖un,−1/2a
(2)
n,1/2‖

2 + n‖un,−1/2a
(2)
n,1/2θ

SS
n ‖2

+ Tn,2

√

2‖un,−1a
(2)
n,1‖2 + 4n‖un,−1a

(2)
n,1θ

SS
n ‖2

}

,

where Tn,2 is ‖un,−1/2a
(2)
n,1/2Y

SS
n ‖2 standardized to have mean zero and variance one,

conditional on Cn,2. The term n‖vn,1/2Y
SS
n ‖2 in (30) cancels in the formula (19), and

the approximation becomes

P n[H0|Y n,Bn,s,M ] ≈ (32)
[

1 + exp

{

1

2

(

An,1 +An,2 +An,3 +An,4 − ‖vn,1/2‖2 − rn‖vn,1‖
)

}]−1

.

Under the “what if” guidelines, it is to be assumed the sequence rn is such that
P n[H0| Y n, Bn,s,M ] → 0 is avoided for θ consistent with H0. Subsequently, (32) indicates
that a condition equivalent (under the saddlepoint approximation) to (22) is

inf
θSS

n ∈H1,n(δn/δ∗n)

{

(An,1 +An,2 +An,3 +An,4)|θSS
n − (An,1 +An,2 +An,3 +An,4)|0

}

(33)

→ ∞ for every δ∗n → 0,

where “•|θSS
n ” indicates the term “•” is to be considered at a particular value of θSS

n , and
0 is the vector with each entry zero. The criterion (33) will be evaluated by considering
the differences An,k|θSS

n − An,k|0 individually.

To evaluate An,1|θSS
n − An,1|0, first write An,1 = log{C2

n,2‖ã
(1)
n,1/2‖2‖un,1vn,1‖2A11}

− log{C2
n,1‖un,1ṽn,1‖2A12}, where

An,11 = 1 + 2
‖un,1vn,3/2‖2

‖un,1vn,1‖2
+ 2n

‖un,1vn,3/2θ
SS
n ‖2

‖un,1vn,1‖2

+
Tn,3

‖un,1vn,1‖2

√

2‖un,2vn,3‖2 + 4n‖un,2vn,3θ
SS
n ‖2,

An,12 = ‖a(2)
n,1/2‖2 + 2

n

Cn,2pn
‖un,−1/2a

(2)
n,3/2‖2 + 2

n2

Cn,2pn
‖un,−1/2a

(2)
n,3/2θ

SS
n ‖2

+2
n2

Cn,2pn
Tn,4

√

2‖un,−1a
(2)
n,3‖2 + 4n‖un,−1a

(2)
n,3θ

SS
n ‖2
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and Tn,3 and Tn,4 are respectively n‖un,1vn,3/2Y
SS
n ‖2 and ‖un,−1/2a

(2)
n,3/2Y

SS
n ‖2 stan-

dardized to have mean zero and variance one, conditional on Cn,2. Thus it is seen that

An,1|θSS − An,1|0 →∞ only if n‖un,1vn,3/2θ
SS
n ‖2 / ‖un,1vn,1‖2 →∞, for any sequence

of θSS
n ∈ Bn,s,M . Now, ‖un,1vn,3/2θ

SS
n ‖2 is maximized for θSS

n ∈ Bn,s,M when {θSS
n,ĵn

}2

= Mĵ−2s
n for some ĵn = 1, . . . , pn, which means n‖un,1vn,3/2θ

SS
n ‖2 ≤ Mnp

2s−3(γ−ε)
n

for any ε > 0 and sufficiently large pn. Also ‖un,1vn,1‖−2 = O(p
−4s+2(γ+ε)−1
n ) for

any ε > 0 and sufficiently large pn. Setting 0 < ε ≤ (2s + γ − 1/2)/5 then provides

n‖un,1vn,3/2θ
SS
n ‖2 / ‖un,1vn,1‖2 = O(n/p2s+γ+1−5ε

n ) = O(n/p
3/2
n ) → 0, hence An,1|θSS

n

− An,1|0 = O(1) for any sequence of θSS
n ∈ H1,n(δn/δ

∗
n).

To evaluate An,2|θSS
n − An,2|0, first write M(Cn,2 − Cn,1) = Cn,2K

′
n,2(−Cn,2pn/2)

− Cn,1K
′
n,1(−Cn,1pn/2), and consider (28) and (29) to see that

M(Cn,2 − Cn,1) =
n2

Cn,2p2
n

‖un,−1/2a
(2)
n,1θ

SS
n ‖2 − n2

C2
n,1p

3
n

‖un,−1a
(1)
n,1ã

(1)
n,1/2‖

2 (34)

+
n

Cn,2p2
n

Tn,1

√

2‖un,−1a
(2)
n,2‖2 + 4n‖un,−1a

(2)
n,2θ

SS
n ‖2.

It follows that {Cn,2 − Cn,1}|0 is possibly negative, but {Cn,2 − Cn,1}|θSS
n is positive

for sufficiently large n. Also (29) indicates that Cn,2|0 ≤ Cn,2|θSS
n , for sufficiently large

n. Thus by considering the form of An,2 in (31), it is seen that An,2|θSS
n − An,2|0 =

O(1) for any sequence of θSS
n ∈ H1,n(δn/δ

∗
n).

It has been shown that (33) is satisfied only if

inf
θSS

n ∈H1,n(δn/δ∗n)

{

(An,3 +An,4)|θSS
n − (An,3 +An,4)|0

}

→ ∞ for every δ∗n → 0. (35)

The combination of (31) and (34), and the property

0 < ‖un,−1/2a
(2)
n,1θ

SS
n ‖/‖un,−1/2a

(2)
n,1/2θ

SS
n ‖ ≤ 1,

provides that (35) holds only if {n2/(Cn,2pn)}‖un,−1/2a
(2)
n,1/2θ

SS
n ‖2 → ∞ for each se-

quence of θSS
n ∈ H1,n(δn/δ

∗
n) and any δ∗n → 0. Set ĵn to the largest integer not to exceed

{δn/(δ∗n
√
M)}−1/s, and define θSS

n according to {θSS
n,ĵ

}2 = Mĵ−2s
n and {θSS

n,j}2 = 0 if

j 6= ĵn. Therefore, θSS
n ∈ H1,n(δn/δ

∗
n) and

n2

Cn,2pn
‖un,−1/2a

(2)
n,1/2θ

SS
n ‖2 = M

nvn,ĵ,1

Cn,2(pn/n)ĵ4s
n vn,ĵn,1 + ĵ2s

n

= O

(

n2

pn
δ4n

)

,

which completes the proof.
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