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RANK-BASED INFERENCE FOR BIVARIATE
EXTREME-VALUE COPULAS

BY CHRISTIAN GENEST1 AND JOHAN SEGERS2

Université Laval and Université catholique de Louvain and Tilburg University

Consider a continuous random pair (X,Y ) whose dependence is char-
acterized by an extreme-value copula with Pickands dependence function A.
When the marginal distributions of X and Y are known, several consistent
estimators of A are available. Most of them are variants of the estimators due
to Pickands [Bull. Inst. Internat. Statist. 49 (1981) 859–878] and Capéraà,
Fougères and Genest [Biometrika 84 (1997) 567–577]. In this paper, rank-
based versions of these estimators are proposed for the more common case
where the margins of X and Y are unknown. Results on the limit behavior
of a class of weighted bivariate empirical processes are used to show the
consistency and asymptotic normality of these rank-based estimators. Their
finite- and large-sample performance is then compared to that of their known-
margin analogues, as well as with endpoint-corrected versions thereof. Ex-
plicit formulas and consistent estimates for their asymptotic variances are also
given.

1. Introduction. Let (X,Y ) be a pair of continuous random variables with
joint and marginal distribution functions defined for all x, y ∈ R by

H(x,y) = P(X ≤ x,Y ≤ y), F (x) = P(X ≤ x),
(1.1)

G(y) = P(Y ≤ y),

respectively. Let also U = F(X) and V = G(Y), and for all u, v ∈ R, write
C(u, v) = P(U ≤ u,V ≤ v). As shown by Sklar (1959), C is the unique copula
for which H admits the representation

H(x,y) = C{F(x),G(y)}(1.2)

for all x, y ∈ R. The dependence between X and Y is characterized by C.
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This paper is concerned with the estimation of C under the assumption that it is
an extreme-value copula, that is, when there exists a function A : [0,1] → [1/2,1]
such that for all (u, v) ∈ (0,1)2,

C(u, v) = (uv)A{log(v)/ log(uv)}.(1.3)

It was shown by Pickands (1981) that C is a copula if and only if A is convex and
max(t,1− t) ≤ A(t) ≤ 1 for all t ∈ [0,1]. By reference to this work, the function A

is often referred to as the “Pickands dependence function.”
The interest in extreme-value copulas stems from their characterization as the

large-sample limits of copulas of componentwise maxima of strongly mixing sta-
tionary sequences [Deheuvels (1984) and Hsing (1989)]. More generally, these
copulas provide flexible models for dependence between positively associated
variables [Cebrián, Denuit and Lambert (2003), Ghoudi, Khoudraji and Rivest
(1998) and Tawn (1988)].

Parametric and nonparametric estimation methods for A are reviewed in Sec-
tion 9.3 of Beirlant et al. (2004). Nonparametric estimation based on a ran-
dom sample (X1, Y1), . . . , (Xn,Yn) from H has been considered successively
by Pickands (1981), Deheuvels (1991), Capéraà, Fougères and Genest (1997),
Jiménez, Villa-Diharce and Flores (2001), Hall and Tajvidi (2000) and Segers
(2007). In these papers, the margins F and G are assumed to be known, so that
in effect, a random sample (F (X1),G(Y1)), . . . , (F (Xn),G(Yn)) from C is avail-
able. In their multivariate extension of the Capéraà–Fougères–Genest (CFG) es-
timator, Zhang, Wells and Peng (2008) also assume knowledge of the marginal
distributions.

In practice, however, margins are rarely known. A natural way to proceed is
then to estimate F and G by their empirical counterparts Fn and Gn, and to base
the estimation of C on the pseudo-observations (Fn(X1),Gn(Y1)), . . . , (Fn(Xn),

Gn(Yn)). This amounts to working with the pairs of scaled ranks. This avenue was
recently considered by Abdous and Ghoudi (2005), but only from a computational
point of view. No theory was provided.

Rank-based versions of the Pickands and CFG estimators of A are defined in
Section 2. Endpoint corrections in the manner of Deheuvels and Hall–Tajvidi are
also considered, but in contrast with the case of known margins, they have no ef-
fect asymptotically. Weak consistency and asymptotic normality of the rank-based
estimators are established in Section 3. Explicit formulas and consistent estimates
for their asymptotic variances are also given. Large-sample comparisons reported
in Section 4 show that the rank-based estimators are more efficient than the un-
corrected versions based on the true, known margins. Extensive numerical work
also suggests that the CFG estimator is generally preferable to the Pickands esti-
mator. A small simulation study reported in Section 5 provides evidence that the
conclusions remain valid in small samples, and a few closing comments are made
in Section 6.
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In order to ease reading, all technical arguments are relegated to Appen-
dices A–F. The developments rely heavily on a limit theorem for weighted bi-
variate empirical processes, which may be of independent interest. A statement
and proof of the latter result are given in Appendix G.

The following notational conventions are used in the sequel. For x, y ∈ R, let
x ∧y = min(x, y) and x ∨y = max(x, y). The arrow � means weak convergence,
and 1(E) stands for the indicator function of the event E. Given a univariate cu-
mulative distribution function F , its left-continuous generalized inverse is denoted
by F←. Furthermore, C([0,1]) represents the space of continuous, real-valued
functions on [0,1], while �∞(W) is the space of bounded, real-valued functions
on the set W ; both are equipped with the topology of uniform convergence.

2. Estimators of the dependence function. Consider a pair (X,Y ) of contin-
uous random variables whose joint distribution function H has margins F and G,
as per (1.1). Assume that the unique function C implicitly defined by (1.2) belongs
to the class (1.3) of extreme-value copulas.

Let U = F(X) and V = G(Y). The pair (U,V ) is then distributed as C. Ac-
cordingly, the variables S = − logU and T = − logV are exponential with unit
mean. For all t ∈ (0,1), write

ξ(t) = S

1 − t
∧ T

t

and set ξ(0) = S, ξ(1) = T . Note that for any t ∈ [0,1] and x ≥ 0, one has

P{ξ(t) > x} = P{S > (1 − t)x, T > tx}
= P

{
U < e−(1−t)x, V < e−tx} = e−xA(t).

Thus, ξ(t) is an exponential random variable with

E{ξ(t)} = 1/A(t) and E{log ξ(t)} = − logA(t) − γ,(2.1)

where γ = − ∫ ∞
0 log(x)e−x dx ≈ 0.577 is Euler’s constant. These observations

motivate the following estimators of A.

2.1. Pickands and CFG estimators. Let (X1, Y1), . . . , (Xn,Yn) be a random
sample from H . For i ∈ {1, . . . , n}, let Ui = F(Xi), Vi = G(Yi), Si = − log(Ui) =
ξi(0) and Ti = − log(Vi) = ξi(1), and for all t ∈ (0,1), write

ξi(t) = Si

1 − t
∧ Ti

t
.

When the margins F and G are known, the estimation of A(t) for arbitrary
t ∈ (0,1) can be based on the sample ξ1(t), . . . , ξn(t). In view of (2.1), two obvious
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solutions are defined implicitly by

1/AP
n,u(t) = 1

n

n∑
i=1

ξi(t),

logACFG
n,u (t) = −γ − 1

n

n∑
i=1

log ξi(t).

The first estimator was proposed by Pickands (1981). As shown by Segers (2007),
the second is an uncorrected form of the estimator due to Capéraà, Fougères
and Genest (1997). The index “u” is used to distinguish these estimators from
endpoint-corrected versions introduced in Section 2.3.

2.2. Rank-based versions of the Pickands and CFG estimators. When the
margins F and G are unknown, a natural solution is to rely on their empirical coun-
terparts, Fn and Gn. This leads to pairs (Fn(X1),Gn(Y1)), . . . , (Fn(Xn),Gn(Yn))

of pseudo-observations for C. To avoid dealing with points at the boundary of
the unit square, however, it is more convenient to work with scaled variables
Ûi = nFn(Xi)/(n + 1) and V̂i = nGn(Yi)/(n + 1) defined explicitly for every
i ∈ {1, . . . , n} by

Ûi = 1

n + 1

n∑
j=1

1(Xj ≤ Xi), V̂i = 1

n + 1

n∑
j=1

1(Yj ≤ Yi).

The pair (Ûi, V̂i), whose coordinates are scaled ranks, can be regarded as a
sample analogue of the unobservable pair (Ui,Vi) = (F (Xi),G(Yi)). For every
i ∈ {1, . . . , n} and for arbitrary t ∈ (0,1), let

Ŝi = − log Ûi = ξ̂i (0), T̂i = − log V̂i = ξ̂i (1), ξ̂i(t) = Ŝi

1 − t
∧ T̂i

t
.

Rank-based versions of AP
n,u(t) and ACFG

n,u (t) are then given by

1/AP
n,r(t) = 1

n

n∑
i=1

ξ̂i (t),(2.2)

logACFG
n,r (t) = −γ − 1

n

n∑
i=1

log ξ̂i (t).(2.3)

It is these estimators that are the focus of the present study. Before proceeding,
however, endpoint corrections will be discussed briefly.

2.3. Endpoint corrections to the Pickands estimator. The Pickands estimator
does not satisfy the endpoint constraints

A(0) = A(1) = 1.(2.4)
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In order to overcome this defect, Deheuvels (1991) introduced the estimator

1/AP
n,c(t) = 1/AP

n,u(t) − (1 − t){1/AP
n,u(0) − 1} − t{1/AP

n,u(1) − 1}.
More generally, Segers (2007) considered endpoint corrections of the form

1/AP
n,ab = 1/AP

n,u(t) − a(t){1/AP
n,u(0) − 1} − b(t){1/AP

n,u(1) − 1},
where a, b : [0,1] → R are arbitrary continuous mappings. He showed how to
select (and estimate) a and b so as to minimize the asymptotic variance of the
endpoint-corrected estimator at every t ∈ [0,1]. In particular, he showed that
a(t) = 1 − t , b(t) = t are optimal at independence. For arbitrary A, the Pickands
estimator with optimal correction is denoted AP

n,opt hereafter.
Similar strategies can be used to ensure that the rank-based estimator AP

n,r ful-
fills conditions (2.4). Note, however, that whatever the choice of mappings a and b,
the endpoint-corrected estimator is then asymptotically equivalent to AP

n,r, because

1/AP
n,r(0) = 1/AP

n,r(1) = 1

n

n∑
i=1

log{(n + 1)/i} = 1 + O(n−1 logn).(2.5)

An alternative correction inspired by Hall and Tajvidi (2000) is given by

1/AHT
n,r (t) = 1

n

n∑
i=1

ξ̄i (t),

where for all t ∈ [0,1] and i ∈ {1, . . . , n},

ξ̄i (t) = S̄i

1 − t
∧ T̄i

t

with S̄i = nŜi/(Ŝ1 + · · · + Ŝn) and T̄i = nT̂i/(T̂1 + · · · + T̂n).
By construction, one has AHT

n,r (0) = AHT
n,r (1) = 1, but an additional merit of this

estimator is that AHT
n,r (t) ≥ t ∨ (1 − t) for all t ∈ [0,1]. Note, however, that because

AHT
n,r = AP

n,r/A
P
n,r(0), this estimator is again asymptotically indistinguishable from

AP
n,r in view of (2.5).

2.4. Endpoint corrections to the CFG estimator. In order to meet con-
straints (2.4), Capéraà, Fougères and Genest (1997) consider estimators of the
form

logACFG
n,c (t) = logACFG

n,u (t) − p(t) logACFG
n,u (0) − {1 − p(t)} logACFG

n,u (1),

where p : [0,1] → R is an arbitrary continuous mapping. They use p(t) = 1 − t as
an expedient when the margins are known. The more general choice,

logACFG
n,ab (t) = logACFG

n,u (t) − a(t) logACFG
n,u (0) − b(t) logACFG

n,u (1)
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is investigated by Segers (2007), who identified the optimal functions a and b. The
resulting estimator is hereafter denoted ACFG

n,opt.

When the margins are unknown, however, the correction to the estimator ACFG
n,r

(and hence the choices of p, a and b) has no impact on the asymptotic distribution
of this rank-based statistic, because

− logACFG
n,r (0) = − logACFG

n,r (1)

= 1

n

n∑
i=1

log log{(n + 1)/i} −
∫ 1

0
log log(1/x) dx

= O{n−1(logn)2}.

3. Asymptotic results. The limiting behavior of the estimators AP
n,r and ACFG

n,r
(and of their asymptotically equivalent variants) can be determined once they have
been expressed as appropriate functionals of the empirical copula Cn, defined for
all u, v ∈ [0,1] by

Ĉn(u, v) = 1

n

n∑
i=1

1(Ûi ≤ u, V̂i ≤ v).(3.1)

Note that this definition is somewhat different from the original one given by De-
heuvels (1979). From inequality (B.1) in Appendix B, one can see that the differ-
ence between the two versions is O(n−1) as n → ∞ almost surely.

The following lemma is proved in Appendix A.

LEMMA 3.1. For every t ∈ [0,1], one has

1/AP
n,r(t) =

∫ 1

0
Ĉn(u

1−t , ut )
du

u
,(3.2)

logACFG
n,r (t) = −γ +

∫ 1

0
{Ĉn(u

1−t , ut ) − 1(u > e−1)} du

u logu
.(3.3)

Note that replacing Ĉn(u
1−t , ut ) by C(u1−t , ut ) = uA(t) in (3.2) and (3.3) yields

1/A(t) and logA(t), respectively. Therefore, both AP
n,r and ACFG

n,r can be expected
to yield consistent and asymptotically unbiased estimators of A. More generally,
the asymptotic behavior of the processes

AP
n,r = n1/2(AP

n,r − A) and ACFG
n,r = n1/2(ACFG

n,r − A)

is a function of the limit, C, of the empirical copula process

Cn = n1/2(Ĉn − C).(3.4)
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3.1. Limiting behavior of AP
n,r and ACFG

n,r . As shown under various conditions
by Rüschendorf (1976), Stute (1984), Fermanian, Radulović and Wegkamp (2004)
and Tsukahara (2005), the weak limit C of the process Cn is closely related to a
bivariate pinned C-Brownian sheet α, that is, a centered Gaussian random field on
[0,1]2 whose covariance function is defined for every value of u, v,u′, v′ ∈ [0,1]
by

cov{α(u, v),α(u′, v′)} = C(u ∧ u′, v ∧ v′) − C(u, v)C(u′, v′).

Denoting Ċ1(u, v) = ∂C(u, v)/∂u and Ċ2(u, v) = ∂C(u, v)/∂v, one has

C(u, v) = α(u, v) − Ċ1(u, v)α(u,1) − Ċ2(u, v)α(1, v)

for every pair (u, v) ∈ [0,1]2. The weak limits of the rank-based processes AP
n,r

and ACFG
n,r are then, respectively, defined at each t ∈ [0,1] by

A
P
r (t) = −A2(t)

∫ 1

0
C(u1−t , ut )

du

u
,(3.5)

A
CFG
r (t) = A(t)

∫ 1

0
C(u1−t , ut )

du

u logu
.(3.6)

This fact, which is the main result of the present paper, is stated formally below
under the assumption that A is twice continuously differentiable. This hypothesis
could possibly be relaxed, but at the cost of an extension of the strong approxima-
tion results in Stute (1984) and Tsukahara (2005).

THEOREM 3.2. If A is twice continuously differentiable, then AP
n,r � A

P
r and

ACFG
n,r � A

CFG
r as n → ∞ in the space C([0,1]) equipped with the topology of

uniform convergence.

This result, which is proved in Appendix B, is to be contrasted with the case of
known margins, where one has access to the pairs (Ui,Vi) = (F (Xi),G(Yi)) for
all i ∈ {1, . . . , n}. As shown by Segers (2007), the estimators AP

n,u and ACFG
n,u are

then of the same form as in (3.2) and (3.3), but with Ĉn replaced by the empirical
distribution function

Cn(u, v) = 1

n

n∑
i=1

1(Ui ≤ u,Vi ≤ v).

The asymptotic behavior of the estimators is then as in Theorem 3.2, but with the
process C in (3.5) and (3.6) replaced by the C-Brownian sheet α. In what follows,
the weak limits of the processes n1/2(AP

n,u − A) and n1/2(ACFG
n,u − A) are denoted

A
P
u and A

CFG
u , respectively.
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3.2. Asymptotic variances of AP
n,r and ACFG

n,r . Fix u, v, t ∈ [0,1] and let

σ(u, v; t) = cov{C(u1−t , ut ),C(v1−t , vt )}.
In view of Theorem 3.2, the asymptotic variances of the estimators AP

n,r(t) and
ACFG

n,r (t) of A(t) are given by

var A
P
r (t) = A4(t)

∫ 1

0

∫ 1

0
σ(u, v; t) du

u

dv

v
,

var A
CFG
r (t) = A2(t)

∫ 1

0

∫ 1

0
σ(u, v; t) du

u logu

dv

v logv
.

Closed-form expressions for the latter are given next in terms of

μ(t) = A(t) − tȦ(t), ν(t) = A(t) + (1 − t)Ȧ(t),

where Ȧ(t) = dA(t)/dt ∈ [−1,1] for all t ∈ (0,1). The asymptotic variance of
ACFG

n,r also involves the dilogarithm function L2, defined for x ∈ [−1,1] by

L2(x) = −
∫ x

0
log(1 − z)

dz

z
=

∞∑
k=1

xk

k2 .

The proof of the following result is presented in Appendix C.

PROPOSITION 3.3. For t ∈ [0,1], let A1(t) = A(t)/t , A2(t) = A(t)/(1 − t),
μ̄(t) = 1 − μ(t) and ν̄(t) = 1 − ν(t). Then, A−2(t)var A

P
r (t) is given by

2 − {μ(t) + ν(t) − 1}2 − 2μ(t)μ̄(t)A2(t)

2A2(t) − 1
− 2ν(t)ν̄(t)A1(t)

2A1(t) − 1

+ 2μ(t)ν(t)A1(t)A2(t)

∫ 1

0
{A(s) + sA1(t) + (1 − s)A2(t) − 1}−2 ds

− 2μ(t)A1(t)A2(t)

∫ t

0
[A(s) + (1 − s){A2(t) − 1}]−2 ds

− 2ν(t)A1(t)A2(t)

∫ 1

t
[A(s) + s{A1(t) − 1}]−2 ds,

while A−2(t)var A
CFG
r (t) equals

{1 + μ2(t) + ν2(t) − μ(t) − ν(t)}L2(1)

− 2μ(t)μ̄(t)L2{−1 + 1/A2(t)} − 2ν(t)ν̄(t)L2{−1 + 1/A1(t)}
− 2μ(t)ν(t)

∫ 1

0
log

{
1 − t (1 − t)

A(t)

1 − A(s)

t (1 − s) + (1 − t)s

}
ds

s(1 − s)

+ 2μ(t)

∫ t

0
log

[
1 − t (1 − t)

A(t)

1 − A(s) + s{A1(t) − 1}
t (1 − s) + (1 − t)s

]
ds

s(1 − s)

+ 2ν(t)

∫ 1

t
log

[
1 − t (1 − t)

A(t)

1 − A(s) + (1 − s){A2(t) − 1}
t (1 − s) + (1 − t)s

]
ds

s(1 − s)
.
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As stated below, great simplifications occur at independence. The proof of this
result is given in Appendix D.

COROLLARY 3.4. If A ≡ 1, then μ ≡ ν ≡ 1, and for all t ∈ [0,1],

var A
P
r (t) = 3t (1 − t)

(2 − t)(1 + t)
,

var A
CFG
r (t) = 2L2(−1) − 2L2(t − 1) − 2L2(−t).

3.3. Consistent estimates of the asymptotic variances. Proposition 3.3 can be
used to construct consistent estimates of var A

P
r (t) and var A

CFG
r (t) for arbitrary

t ∈ [0,1]. The latter is useful, for example, for the construction of asymptotic con-
fidence intervals for the Pickands dependence function.

Specifically, suppose that (An) is any sequence of consistent estimators for A,
that is, suppose that ‖An − A‖ → 0 in probability as n → ∞, where ‖ · ‖ is the
supremum norm on C([0,1]). Put

Ân = greatest convex minorant of (An ∧ 1) ∨ I ∨ (1 − I ),

where I denotes the identity function. One can then invoke a lemma of Mar-
shall (1970) to deduce that ‖Ân − A‖ ≤ ‖An − A‖ and, hence, that (Ân) is also
a consistent sequence of estimators. Furthermore, Ân is itself a Pickands depen-
dence function. See Fils-Villetard, Guillou and Segers (2008) for another way of
converting a pilot estimate An into a Pickands dependence function.

Let Â′
n denote the right-hand side derivative of Ân. Because Ân is convex for

every n ∈ N, it is not hard to see that if A is continuously differentiable in t ∈
(0,1), then Â′

n(t) → Ȧ(t) in probability as n → ∞. Consequently, if A is replaced
by Ân in Proposition 3.3, it can be seen that the resulting expressions converge in
probability. In other words,

nvar ÂP
n,r(t) → var A

P
r (t) and nvarACFG

n,r (t) → var A
CFG
r (t).

4. Efficiency comparisons. Which of the rank-based estimators AP
n,r and

ACFG
n,r is preferable in practice? When the margins are known, how do they fare

compared with their uncorrected, corrected and optimal competitors? These issues
are considered next in terms of asymptotic efficiency.

Figure 1 summarizes the findings, based either on mathematical derivations or
on numerical calculations. In the diagram, an arrow E1 → E2 between estimators
E1 and E2 means that the latter is asymptotically more efficiency than the former,
that is, σ 2

E2
(t) ≤ σ 2

E1
(t) for all t ∈ [0,1].
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P–opt ←− P–c ←− P–u −→ P–r
↓∗ ↓∗ ↑

CFG–opt ←− CFG–c ←− CFG–u −→ CFG–r

FIG. 1. Comparisons of estimators. An arrow E1 → E2 between estimators E1 and E2
means that the latter is asymptotically more efficiency than the former, that is, σ 2

E2
≤ σ 2

E1
.

Notation: P = Pickands; CFG = Capéraà–Fougères–Genest; −u = known margins, uncor-
rected; −c = known margins, endpoint-corrected; −opt = known margins, optimal correction;
−r = rank-based. No arrow can be drawn between P–r and CFG–r, between P–c and P–r, or between
CFG–c and CFG–r. An asterisk (∗) marks a conjecture based on extensive numerical computations.

4.1. Uncorrected versus corrected estimators. For all u, v, t ∈ [0,1], let

σ0(u, v; t) = cov{α(u1−t , ut ), α(v1−t , vt )} = (u ∧ v)A(t) − (uv)A(t).(4.1)

It follows from the work of Segers (2007) that the asymptotic variances of the raw
estimators AP

n,u(t) and ACFG
n,u (t) are given by

var A
P
u(t) = A4(t)

∫ 1

0

∫ 1

0
σ0(u, v; t) du

u

dv

v
= A2(t),

var A
CFG
u (t) = A2(t)

∫ 1

0

∫ 1

0
σ0(u, v; t) du

u logu

dv

v logv
= L2(1)A2(t),

respectively. As L2(1) = π2/6, Pickands’ original estimator AP
n,u is more efficient

than the uncorrected CFG estimator, ACFG
n,u , that is, CFG–u → P–u.

Formulas for the asymptotic variances of the endpoint-corrected versions AP
n,c

and ACFG
n,c are more complex. They can be derived from the fact, also established

by Segers (2007), that for all choices of continuous mappings a, b : [0,1] → R,
the weak limit A

P
ab of the process n1/2(AP

n,ab − A) satisfies

A
P
ab(t) = A

P
u(t) − a(t)AP

u(0) − b(t)AP
u(1)(4.2)

for all t ∈ [0,1]. A similar result holds for the limit of n1/2(ACFG
n,opt − A).

Using these facts, one can show that asymptotic variance reduction results from
the application of the endpoint correction a(t) = 1 − t , b(t) = t , both for the
Pickands and CFG estimators. In other words, one has P–u → P–c and CFG–u
→ CFG–c. This fact is formally stated below.

PROPOSITION 4.1. For all choices of A and t ∈ [0,1], one has

var A
P
c (t) ≤ var A

P
u(t) and var A

CFG
c (t) ≤ var A

CFG
u (t).

The proof of this result may be found in Appendix E. Of course, it is trivial that
P–c → P–opt and CFG–c → CFG–opt.
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4.2. Rank-based versus uncorrected estimators. Somewhat more surprising,
perhaps, is the fact that the rank-based versions of the Pickands and CFG esti-
mators are asymptotically more efficient than their uncorrected, known-margin
counterparts, that is, P–u → P–r and CFG–u → CFG–r. This observation is a
consequence of the following more general result, whose proof may be found in
Appendix F.

PROPOSITION 4.2. For all choices of A and u, v, t ∈ [0,1], one has

cov{C(u1−t , ut ),C(v1−t , vt )} ≤ cov{α(u1−t , ut ), α(v1−t , vt )}.
Consequently, the use of ranks improves the asymptotic efficiency of any esti-

mator of A whose limiting variance depends on σ0 as defined in (4.1) through an
expression of the form ∫ 1

0

∫ 1

0
σ0(u, v; t)f (u, v) dudv,

where f is nonnegative. See Henmi (2004) for other cases where efficiency is
improved through the estimation of nuisance parameters whose value is known.
Typically, this phenomenon occurs when the initial estimator is not semiparamet-
rically efficient. Apparently, such is the case here, both for AP

n,u and ACFG
n,u . As will

be seen below, however, the phenomenon does not persist when endpoint-corrected
estimators are considered.

4.3. Ranked-based versus optimally corrected estimators. Although effi-
ciency comparisons between ranked-based and uncorrected versions of the
Pickands and CFG estimators are interesting from a philosophical point of view,
endpoint-corrected versions are preferable to the uncorrected estimators when mar-
gins are known. For this reason, comparisons between rank-based and corrected
estimators are more relevant.

To investigate this issue, plots of the asymptotic variances of

AP
n,c, AP

n,opt, AP
n,r, ACFG

n,c , ACFG
n,opt, ACFG

n,r

were drawn for the following extreme-value copula models:

(a) The independence model, that is, A(t) = 1 for all t ∈ [0,1].
(b) The asymmetric logistic model [Tawn (1988)], namely,

A(t) = (1 − ψ1)(1 − t) + (1 − ψ2)t + [(ψ1t)
1/θ + {ψ2(1 − t)}1/θ ]θ

with parameters θ ∈ (0,1], ψ1,ψ2 ∈ [0,1]. The special case ψ1 = ψ2 = 1 cor-
responds to the (symmetric) model of Gumbel (1960).

(c) The asymmetric negative logistic model [Joe (1990)], namely,

A(t) = 1 − [{ψ1(1 − t)}−1/θ + (ψ2t)
−1/θ ]−θ

with parameters θ ∈ (0,∞), ψ1,ψ2 ∈ (0,1]. The special case ψ1 = ψ2 = 1
gives the (symmetric) negative logistic of Galambos (1978).
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(d) The asymmetric mixed model [Tawn (1988)], namely,

A(t) = 1 − (θ + κ)t + θt2 + κt3

with parameters θ and κ satisfying θ ≥ 0, θ + 3κ ≥ 0, θ + κ ≤ 1, θ + 2κ ≤ 1.
The special case κ = 0 and θ ∈ [0,1] yields the (symmetric) mixed model
[Tiago de Oliveira (1980)].

(e) The bilogistic model [Coles and Tawn (1994) and Joe, Smith and Weiss-
man (1992)], namely,

A(t) =
∫ 1

0
max{(1 − β)w−β(1 − t), (1 − δ)(1 − w)−δt}dw

with parameters (β, δ) ∈ (0,1)2 ∪ (−∞,0)2.
(f) The model of Hüsler and Reiss (1989), namely,

A(t) = (1 − t)�

(
λ + 1

2λ
log

1 − t

t

)
+ t�

(
λ + 1

2λ
log

t

1 − t

)
,

where λ ∈ (0,∞) and � is the standard normal distribution function.
(g) The t-EV model [Demarta and McNeil (2005)], in which

A(w) = wtχ+1(zw) + (1 − w)tχ+1(z1−w),

zw = (1 + χ)1/2[{w/(1 − w)}1/χ − ρ](1 − ρ2)−1/2

with parameters χ > 0 and ρ ∈ (−1,1), where tχ+1 is the distribution function
of a Student-t random variable with χ + 1 degrees of freedom.

Figure 2 corresponds to the case of independence. One can see from it that
when A ≡ 1, the rank-based versions of the Pickands and CFG estimators are more
efficient than the corresponding optimal, endpoint-corrected versions, even though
the latter use information about the margins. As illustrated in Figure 3, however,
the rank-based estimators are not always superior. The paradoxical phenomenon
mentioned in Section 4.2 thus vanishes. Further, note the following:

(a) When A is symmetric, one would expect the asymptotic variance of an esti-
mator to reach its maximum at t = 1/2. Such is not always the case, however,
as illustrated by the t-EV model.

(b) In the asymmetric negative logistic model, the asymptotic variance of the rank-
based and optimally endpoint-corrected estimators is close to zero for all t ∈
[0,0.3]. This is due to the fact that A(t) ≈ 1− t on this interval when θ = 1/10,
ψ1 = 1/2 and ψ2 = 1 in this model.

4.4. Comparison between the Pickands and CFG estimators. In view of Fig-
ure 3, neither of the two rank-based estimators dominates the other one in terms
of asymptotic efficiency. In most cases, however, the CFG estimator is superior to
the Pickands estimator. In the figure, ACFG

n,opt is also seen to be systematically more
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FIG. 2. Graph, as a function of t , of the asymptotic variances of the estimators AP
n,c(t) = AP

n,opt(t),

AP
n,r(t), ACFG

n,c (t), ACFG
n,opt(t) and ACFG

n,r (t) in case of independence, A ≡ 1.

efficient than AP
n,opt. This observation was confirmed for a wide range of models

and parameter values through extensive numerical studies. It was also seen to hold
for the endpoint-corrected estimators AP

n,c and ACFG
n,c originally proposed by De-

heuvels (1991) and by Capéraà, Fougères and Genest (1997), respectively. It may
be conjectured, therefore, that

P–c
∗→ CFG–c and P–opt

∗→ CFG–opt.

5. Simulations. A vast Monte Carlo study was used to confirm that the con-
clusions of Section 4 remain valid in finite-sample settings. For brevity, the results
of a single experiment are reported here for illustration purposes.

Specifically, 5000 random samples of size n = 100 were generated from the
t-EV copula with one degree of freedom and various values of ρ chosen in such a
way that the tail coefficient 2{1−A(0.5)} ranges over the set {i/10 : i = 0, . . . ,10}.
For each sample, the Hall–Tajvidi and the CFG estimators were computed when
the margins are known and unknown. For each estimator, the empirical version of
the mean integrated squared error,

MISE = E
[∫ 1

0
{Ân(t) − A(t)}2 dt

]
,

was computed by averaging out over the 5000 samples.
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FIG. 3. Graph, as a function of t , of the asymptotic variances of the estimators AP
n,c(t), AP

n,opt(t),

AP
n,r(t), ACFG

n,c (t), ACFG
n,opt(t) and ACFG

n,r (t) for six extreme-value copula models.
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FIG. 4. MISE(×100) of the estimators AHT
n and ACFG

n with correction p(t) = 1 − t , based on
5000 samples of size n = 100 from the t-EV copula with χ = 1 degree of freedom and ρ ∈ [−1,1]
chosen in such a way that 2{1 − A(0.5)} ∈ {i/10 : i = 0, . . . ,10}, when the margins are either known
(left) or unknown (right).

In Figure 4, the normalized MISE (i.e., multiplied by n) is plotted as a function
of 2{1 − A(0.5)}. Similar results were obtained for many other extreme-value de-
pendence models. In all cases, the CFG estimator was superior to the Hall–Tajvidi
estimator. In addition, the use of ranks led to higher accuracy, although the gain
diminished as the level of dependence increased. In the case of perfect positive
dependence, C(u, v) = u ∧ v, the MISE of all estimators vanishes; indeed, it can
be checked readily that their rate of convergence is then op(n−1/2).

6. Conclusion. This paper has proposed rank-based versions of several non-
parametric estimators for the Pickands dependence function of a bivariate extreme-
value copula. The new estimators were shown to be asymptotically normal and un-
biased. Explicit formulas and consistent estimates for their asymptotic variances
were also provided.

In contrast with the existing estimators, the new ones can be used regardless of
whether the margins are known or unknown. It is interesting to note that the rank-
based versions are generally more efficient than their uncorrected counterparts,
even when the margins are known. In practice, however, only the endpoint cor-
rected versions would be used. While the rank-based estimators no longer have
a distinct advantage, they clearly remain competitive. The extensive numerical
work presented herein also suggests that the CFG estimator is preferable to the
Pickands estimator when (possibly optimal) endpoint corrections are applied to
both of them.

A solution to this conjecture would clearly be of practical importance. In fu-
ture work, it would also be of interest to assess more fully the impact of sample
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size, level and form of dependence (e.g., symmetry or lack thereof) on the preci-
sion of the various rank-based estimators proposed herein. Multivariate extensions
could also be developed along similar lines as in Zhang, Wells and Peng (2008).
Finally, the problem of constructing a truly semi-parametric efficient estimator of
a Pickands dependence function remains open.

APPENDIX A: PROOF OF LEMMA 3.1

To express the Pickands estimator in the form (3.2), use Definition (2.2) and the
substitution u = e−x to get

1/AP
n,r(t) = 1

n

n∑
i=1

∫ ∞
0

1{ξ̂i (t) ≥ x}dx

= 1

n

n∑
i=1

∫ ∞
0

1{Ŝi ≥ (1 − t)x, T̂i ≥ tx}dx

= 1

n

n∑
i=1

∫ ∞
0

1
{
Ûi ≤ e−(1−t)x, V̂i ≤ e−tx}

dx

= 1

n

n∑
i=1

∫ 1

0
1(Ûi ≤ u1−t , V̂i ≤ ut)

du

u
=

∫ 1

0
Ĉn(u

1−t , ut )
du

u
.

In the case of the CFG estimator, the substitution u = e−x yields

log(z) =
∫ ∞

1
1(x ≤ z)

dx

x
−

∫ 1

0
1(x > z)

dx

x

=
∫ ∞

0
{1(x ≤ z) − 1(x ≤ 1)} dx

x

= −
∫ 1

0
[1{− log(u) ≤ z} − 1(u ≥ e−1)] du

u logu
.

Now, in light of Definition (2.3), one can write

−γ − logACFG
n,r (t) = 1

n

n∑
i=1

log ξ̂i (t)

= 1

n

n∑
i=1

∫ 1

0
[1(u ≥ e−1) − 1{− log(u) ≤ ξ̂i (t)}] du

u logu
.

Further, note that ξ̂i (t) ≥ − log(u) if and only if − log Ûi ≥ −(1 − t) log(u) and
− log V̂i ≥ −t log(u). The rest of the argument is along the same lines as in the
case of the Pickands estimator.
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APPENDIX B: PROOF OF THEOREM 3.2

Before proceeding with the proof, recall that in Deheuvels (1979) the empirical
copula is defined for all u, v ∈ [0,1] by

ĈD
n (u, v) = Hn{F←

n (u),G←
n (v)}

in terms of the empirical marginal and joint distribution functions Fn, Gn and Hn

of the sample (X1, Y1), . . . , (Xn,Yn). Elementary calculations imply that, in the
absence of ties (which occur with probability zero when the margins are continu-
ous), the difference between ĈD

n and the empirical copula Ĉn in (3.1) is asymptot-
ically negligible, namely,

sup
(u,v)∈[0,1]2

|ĈD
n (u, v) − Ĉn(u, v)| ≤ 4

n
.(B.1)

Let Cn be the empirical distribution function of the (unobservable) random sam-
ple (U1,V1), . . . , (Un,Vn), and set αn = n1/2(Cn − C). Further, define the (ran-
dom) remainder term Rn(u, v) implicitly by

n1/2{Ĉn(u, v) − C(u, v)}
(B.2)

= αn(u, v) − Ċ1(u, v)αn(u,1) − Ċ2(u, v)αn(1, v) + Rn(u, v).

Now if Ĉn is replaced by ĈD
n in the left-hand side of (B.2), results in Stute

[(1984), page 371] and Tsukahara [(2005), middle of page 359] imply that

sup
(u,v)∈[0,1]

|Rn(u, v)| = O{n−1/4(logn)1/2(log logn)1/4}(B.3)

almost surely as n → ∞, provided that the second-order partial derivatives of C

exist and are continuous. This condition is automatically satisfied if A is twice
continuously differentiable, and hence in view of (B.1), the bound (B.3) remains
valid for Rn defined via Ĉn.

PROOF OF THEOREM 3.2.

PICKANDS ESTIMATOR. Recall the empirical copula process Cn defined in
(3.4), and for every t ∈ [0,1], let

B
P
n,r(t) = n1/2{1/AP

n,r(t) − 1/A(t)}.
It will be shown that B

P
n,r � B = −A

P
r /A2 as n → ∞, which implies that

A
P
n,r = −A2

B
P
n,r

1 + n1/2BP
n,r

� A
P
r

as a consequence of the functional version of Slutsky’s lemma given in van der
Vaart and Wellner [(1996), Examples 1.4.7, page 32].
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Put kn = 2 log(n + 1) and use identity (3.2) to see that

B
P
n,r(t) =

∫ 1

0
Cn(u

1−t , ut )
du

u
=

∫ ∞
0

Cn

(
e−s(1−t), e−st )ds.

One can then write B
P
n,r(t) = I1,n(t) + I2,n(t), where for each t ∈ [0,1],

I1,n(t) =
∫ ∞
kn

Cn

(
e−s(1−t), e−st )ds, I2,n(t) =

∫ kn

0
Cn

(
e−s(1−t), e−st )ds.

Note that the contribution of I1,n(t) is asymptotically negligible. For, if s > kn,
then e−s(1−t) ∧ e−st ≤ 1/(n + 1), and hence

Cn

(
e−s(1−t), e−st ) = −n1/2C

(
e−s(1−t), e−st ) = −n1/2e−sA(t).

Thus, for all t ∈ [0,1],

|I1,n(t)| = n1/2
∫ ∞
kn

e−sA(t) ds ≤ n1/2
∫ ∞
kn

e−s/2 ds = n1/2

n + 1
≤ 1

n1/2 .(B.4)

Consequently, the asymptotic behavior of B
P
n,r is determined entirely by I2,n. In

turn, one can use Stute’s representation (B.2) to write I2,n = J1,n + · · · + J4,n,
where for each t ∈ [0,1],

J1,n(t) =
∫ kn

0
αn

(
e−s(1−t), e−st )ds,

J2,n(t) = −
∫ kn

0
αn

(
e−s(1−t),1

)
Ċ1

(
e−s(1−t), e−st )ds,

J3,n(t) = −
∫ kn

0
αn(1, e−st )Ċ2

(
e−s(1−t), e−st )ds,

J4,n(t) =
∫ kn

0
Rn

(
e−s(1−t), e−st )ds.

From (B.3), the contribution of J4,n(t) becomes negligible as n → ∞, because
with probability one,

sup
t∈[0,1]

|J4,n(t)| = O{n−1/4(logn)3/2(log logn)1/4}.

Accordingly, the identity I2,n(t) = J1,n(t) + J2,n(t) + J3,n(t) + o(1) holds almost
surely and uniformly in t ∈ [0,1] when n → ∞.

To complete the proof, it remains to show that the terms Ji,n(t) with i = 1,2,3
have a suitable joint limit. To this end, fix ω ∈ (0,1/2) and write qω(t) = tω(1 −
t)ω for all t ∈ [0,1]. Let also Gn,ω(u, v) = αn(u, v)/qω(u∧ v) for all u, v ∈ [0,1].
A simple substitution then shows that each Ji,n(t) is a continuous functional of the
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weighted empirical process Gn,ω, namely,

J1,n(t) =
∫ kn

0
Gn,ω

(
e−s(1−t), e−st )K1(s, t) ds,(B.5)

J2,n(t) = −
∫ kn

0
Gn,ω

(
e−s(1−t),1

)
K2(s, t) ds,(B.6)

J3,n(t) = −
∫ kn

0
Gn,ω(1, e−st )K3(s, t) ds(B.7)

with K1(s, t) = qω(e−s(1−t) ∧ e−st ), K2(s, t) = qω(e−s(1−t))Ċ1(e
−s(1−t), e−st )

and K3(s, t) = qω(e−st )Ċ2(e
−s(1−t), e−st ) for all s ∈ (0,∞) and t ∈ [0,1].

The conclusion will then follow from Theorem G.1 and the continuous map-
ping theorem, provided that for i = 1,2,3, there exists an integrable function
K∗

i : (0,∞) → R such that Ki(s, t) ≤ K∗
i (s) for all s and t . For K1, this is im-

mediate because K1(s) ≤ qω(e−s/2) ≤ e−ωs/2. For K2, note that

Ċ1
(
e−s(1−t), e−st ) = e−s{A(t)−(1−t)}μ(t),

where μ(t) = A(t) − tȦ(t). Recalling also that A(t) ≥ t ∨ (1 − t), one finds

K2(s, t) ≤ μ(t)e−s{A(t)−(1−ω)(1−t)} ≤ μ(t)e−ωs/2.

As a similar argument works for K3, the proof is complete.

CFG ESTIMATOR. The argument mimics the proof pertaining to the Pickands
estimator. To emphasize the parallel, the same notation is used and the presentation
focuses on the changes.

In view of Lemma 3.1 and the functional version of Slutsky’s lemma, the
process to be studied is given for all t ∈ [0,1] by

B
CFG
n,r (t) = n1/2{logACFG

n,r (t) − logA(t)}

=
∫ 1

0
Cn(u

1−t , ut )
du

u logu
= −

∫ ∞
0

Cn

(
e−s(1−t), e−st ) ds

s
.

This process can be decomposed as −(I1,n + I2,n + I3,n), where

I1,n(t) =
∫ ∞
kn

Cn

(
e−s(1−t), e−st ) ds

s
,

I2,n(t) =
∫ kn

�n

Cn

(
e−s(1−t), e−st ) ds

s
,

I3,n(t) =
∫ �n

0
Cn

(
e−s(1−t), e−st ) ds

s

with kn = 2 log(n + 1) as above and �n = 1/(n + 1).
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Arguing as in (B.4), one sees that |I1,n| ≤ n−1/2. Similarly, I3,n is negligi-
ble asymptotically. For, if s ∈ (0, �n) and t ∈ [0,1], one has e−s(1−t) ∧ e−st ≥
e−1/(n+1) > 1/(n + 1), and then Ĉn(e

−s(1−t), e−st ) = 1, so that∣∣Cn

(
e−s(1−t), e−st )∣∣ ≤ n1/2{

1 − e−sA(t)} ≤ n1/2sA(t).

Therefore, |I3,n| ≤ n1/2�n ≤ n−1/2.
As a result, the asymptotic behavior of B

CFG
n,r is determined entirely by I2,n.

Using Stute’s representation (B.2), one may then write I2,n = J1,n + · · · + J4,n,
where for all t ∈ [0,1],

J1,n(t) =
∫ kn

�n

αn

(
e−s(1−t), e−st ) ds

s
,

J2,n(t) = −
∫ kn

�n

αn

(
e−s(1−t),1

)
Ċ1

(
e−s(1−t), e−st ) ds

s
,

J3,n(t) = −
∫ kn

�n

αn(1, e−st )Ċ2
(
e−s(1−t), e−st ) ds

s
,

J4,n(t) =
∫ kn

�n

Rn

(
e−s(1−t), e−st ) ds

s
.

Again, the term J4,n is negligible asymptotically because as n → ∞,

|J4,n(t)| ≤ log(kn/�n) sup
(u,v)∈[0,1]2

|Rn(u, v)|

= O{n−1/4(logn)3/2(log logn)1/4}
almost surely and uniformly in t ∈ [0,1]. As for J1,n, J2,n and J3,n, they admit
the same representations as (B.5)–(B.7), except that in each case, the integration is
limited to the interval (�n, kn). For s ∈ [1,∞), the same upper bounds K∗

1 , K∗
2 , K∗

3
apply, and they have already been shown to be integrable on this domain. As for the
integrability on (0,1), it follows from the additional bound |1−e−s(1−t)∧e−st |ω ≤
sω. �

APPENDIX C: PROOF OF PROPOSITION 3.3

The proofs rely on the fact that for all u, v, t ∈ [0,1],

σ(u, v; t) = σ0(u, v; t) + (uv)A(t)

{ 4∑
�=1

σ�(u, v; t) −
8∑

�=5

σ�(u, v; t)
}
,

where σ0 is given by (4.1) and

σ1(u, v; t) = (ut−1 ∧ vt−1 − 1)μ2(t),

σ2(u, v; t) = (u−t ∧ v−t − 1)ν2(t),
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σ3(u, v; t) = {ut−1v−tC(u1−t , vt ) − 1}μ(t)ν(t),

σ4(u, v; t) = {u−t vt−1C(v1−t , ut ) − 1}μ(t)ν(t),

σ5(u, v; t) = {
u−A(t)vt−1C(u1−t ∧ v1−t , ut ) − 1

}
μ(t),

σ6(u, v; t) = {
ut−1v−A(t)C(u1−t ∧ v1−t , vt ) − 1

}
μ(t),

σ7(u, v; t) = {
u−A(t)v−tC(u1−t , ut ∧ vt ) − 1

}
ν(t),

σ8(u, v; t) = {
u−t v−A(t)C(v1−t , ut ∧ vt ) − 1

}
ν(t).

As AP
n,r(0) = AP

n,r(1) = 1 and ACFG
n,r (0) = ACFG

n,r (1) = 1 by construction, it may
be assumed without loss of generality that t ∈ (0,1). It is immediate from the work
of Segers (2007) that ∫ 1

0

∫ 1

0
σ0(u, v; t) du

u

dv

v
= 1

A2(t)

and ∫ 1

0

∫ 1

0
σ0(u, v; t) du

u log(u)

dv

v log(v)
= L2(1)

for the Pickands and the CFG estimators, respectively. Various symmetries help
to reduce the computation of the remaining terms from eight to three for both
estimators. In particular, note that σi(u, v; t) = σi+1(v, u; t) for i = 3,5,7 and all
t ∈ [0,1]. Furthermore,

σ2(u, v; t) = σ1(u, v; t), σ7(u, v; t) = σ5(u, v; t),
where a bar over a function means that all instances of A, t , μ and ν in it should
be replaced by 1 − A, 1 − t , 1 − μ and 1 − ν, respectively. Thus, if

f (u, v) =
{

fP (u, v) = (uv)A(t)−1,

fCFG(u, v) = (uv)A(t)−1/{log(u) log(v)},
one has f (v,u) = f (u, v) = f (u, v), as well as

4∑
i=1

∫ 1

0

∫ 1

0
σi(u, v; t)f (u, v) dudv

=
∫ 1

0

∫ 1

0
{σ1(u, v; t) + σ1(u, v; t) + 2σ3(u, v; t)}f (u, v) dudv

and
8∑

i=5

∫ 1

0

∫ 1

0
σi(u, v; t)f (u, v) dudv

=
∫ 1

0

∫ 1

0
{2σ5(u, v; t) + 2σ5(u, v; t)}f (u, v) dudv.

Each of the relevant parts is computed in turn.
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INTEGRALS INVOLVING σ1. For the Pickands estimator,∫ 1

0

∫ 1

0
(u ∧ v)t−1(uv)A(t)−1 dudv

= 2
∫ 1

0

∫ v

0
uA(t)−1vA(t)+t−2 dudv(C.1)

= 2

A(t)

∫ 1

0
v2A(t)+t−2 dv = 2

A(t){2A(t) + t − 1} .
Consequently,∫ 1

0

∫ 1

0
σ1(u, v; t)fP (u, v) dudv = μ2(t)

A(t)

{
2

2A(t) + t − 1
− 1

A(t)

}
.

For the CFG estimator,∫ 1

0

∫ 1

0
{(u ∧ v)t−1 − 1}(uv)A(t) du

u log(u)

dv

v log(v)
(C.2)

= 2
∫ 1

0

∫ 1

u
(vt−1 − 1)(uv)A(t) dv

v log(v)

du

u log(u)
.

Use the substitution v = ux to rewrite this expression as

−2
∫ 1

0

∫ 1

0

(
u(t−1)x − 1

)
u(1+x)A(t)−1 du

log(u)

dx

x

= −2
∫ 1

0
log

{
(1 + x)A(t) + (t − 1)x

(1 + x)A(t)

}
dx

x

= −2
∫ 1

0
log[1 + {1 − 1/A2(t)}x] dx

x
+ 2

∫ 1

0
log(1 + x)

dx

x

= 2L2{−1 + 1/A2(t)} + L2(1).

Therefore,∫ 1

0

∫ 1

0
σ1(u, v; t)fCFG(u, v) dudv = μ2(t)[2L2{−1 + 1/A2(t)} + L2(1)].

INTEGRALS INVOLVING σ3. First, consider the Pickands estimator. The substi-
tutions u1−t = x and vt = y yield∫ 1

0

∫ 1

0
ut−1v−tC(u1−t , vt )(uv)A(t)−1 dudv

= 1

t (1 − t)

∫ 1

0

∫ 1

0

C(x, y)

xy

(
x1/(1−t)y1/t )A(t)−1

x1/(1−t)−1y1/t−1 dx dy

= 1

t (1 − t)

∫ 1

0

∫ 1

0
C(x, y)xA2(t)−2yA1(t)−2 dx dy.
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Next, use the substitutions x = w1−s and y = ws . Note that w = xy ∈ (0,1], s =
log(y)/ log(xy) ∈ [0,1], C(x, y) = wA(s) and the Jacobian of the transformation
is − log(w). The above integral then becomes

− 1

t (1 − t)

∫ 1

0

∫ 1

0
wA(s)+(1−s){A2(t)−2}+s{A1(t)−2} log(w)dw ds

= 1

t (1 − t)

∫ 1

0
[A(s) + (1 − s){A2(t) − 2} + s{A1(t) − 2} + 1]−2 ds.

With A(s) in the integrand, no further simplification is possible. Thus,∫ 1

0

∫ 1

0
σ3(u, v; t)fP (u, v) dudv

= μ(t)ν(t)

A2(t)
− μ(t)ν(t)

t (1 − t)

∫ 1

0
{A(s) + sA1(t) + (1 − s)A2(t) − 1}−2 ds.

The same substitutions are used for the CFG estimator. They yield∫ 1

0

∫ 1

0

{
C(u1−t , vt )

u1−t vt
− 1

}
(uv)A(t) du

u log(u)

dv

v log(v)

=
∫ 1

0

∫ 1

0

{
C(x, y)

xy
− 1

}
xA2(t)yA1(t)

dx

x log(x)

dy

y log(y)

= −
∫ 1

0

∫ 1

0

(
w−1+A(s) − 1

)
w{(1−s)/(1−t)+s/t}A(t)−1 dw

log(w)

ds

s(1 − s)

= −
∫ 1

0
log

[{(1 − s)/(1 − t) + s/t}A(t) − 1 + A(s)

{(1 − s)/(1 − t) + s/t}A(t)

]
ds

s(1 − s)
.

Hence,∫ 1

0

∫ 1

0
σ3(u, v; t)fCFG(u, v) dudv

= −μ(t)ν(t)

∫ 1

0
log

{
1 − t (1 − t)

A(t)

1 − A(s)

t (1 − s) + (1 − t)s

}
ds

s(1 − s)
.

INTEGRALS INVOLVING σ5. For the Pickands estimator, one gets∫ 1

0

∫ 1

0
u−A(t)vt−1C{(u ∧ v)1−t , ut}(uv)A(t) du

u

dv

v

=
∫ 1

0

∫ v

0
vt−1(uv)A(t)−1 dudv

+
∫ 1

0

∫ 1

v
u−A(t)vt−1C(v1−t , ut )(uv)A(t)−1 dudv.
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The first integral on the right was computed in (C.1). For the second, collect powers
in u and v and use the substitutions v1−t = x and ut = y. This yields

1

t (1 − t)

∫ 1

0

∫ y−1+1/t

0
xA2(t)−2y−1C(x, y) dx dy.

Then, make the same substitutions x = w1−s , y = ws that were used for σ3. As the
constraint x < y−1+1/t reduces to s < t , the integral becomes

− 1

t (1 − t)

∫ t

0

∫ 1

0
w(1−s){A2(t)−2}+A(s)−s log(w)dw ds

= 1

t (1 − t)

∫ t

0
[(1 − s){A2(t) − 2} + A(s) − s + 1]−2 ds.

Thus, ∫ 1

0

∫ 1

0
σ5(u, v; t)fP (u, v) dudv

= μ(t)

A(t){2A(t) + t − 1} − μ(t)

A2(t)

+ μ(t)

t (1 − t)

∫ t

0
[A(s) + (1 − s){A2(t) − 1}]−2 ds.

Finally, turning to the CFG estimator, one must evaluate∫ 1

0

∫ v

0
(vt−1 − 1)(uv)A(t) du

u log(u)

dv

v log(v)

+
∫ 1

0

∫ 1

v

{
u−A(t)vt−1C(v1−t , ut ) − 1

}
(uv)A(t) du

u log(u)

dv

v log(v)
.

The first integral on the right was computed in (C.2). For the second, the same
substitutions are used as for the Pickands estimator. This yields∫ 1

0

∫ y−1+1/t

0

{
x−1y−A1(t)C(x, y) − 1

}
xA2(t)yA1(t)

dx

x log(x)

dy

y logy

= −
∫ t

0

∫ 1

0

(
ws−1−sA1(t)+A(s) − 1

)
w{(1−s)/(1−t)+s/t}A(t)−1

× dw

log(w)

ds

s(1 − s)

= −
∫ t

0
log

[{(1 − s)/(1 − t) + s/t}A(t) + s − 1 − s/tA(t) + A(s)

{(1 − s)/(1 − t) + s/t}A(t)

]

× ds

s(1 − s)
.
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Therefore,∫ 1

0

∫ 1

0
σ5(u, v; t)fCFG(u, v) dudv

= μ(t)L2{−1 + 1/A2(t)} + μ(t)L2(1)/2

− μ(t)

∫ t

0
log

[
1 − t (1 − t)

A(t)

1 − A(s) + s{A1(t) − 1}
t (1 − s) + (1 − t)s

]
ds

s(1 − s)
.

It then suffices to assemble the various terms to conclude.

APPENDIX D: PROOF OF COROLLARY 3.4

When C(u, v) = uv for all u, v ∈ [0,1], one has A(t) = μ(t) = ν(t) = 1 for all
t ∈ [0,1]. Upon substitution, one gets

σ(u, v; t) = (u1−t ∧ v1−t − u1−t v1−t )(ut ∧ vt − utvt ),

which simplifies to σ(u, v; t) = u(1−v1−t )(1−vt ) for arbitrary u, v ∈ (0,1) with
u < v. Thus, by symmetry,

var A
P
r (t) = 2

∫ 1

0
(1 − v1−t )(1 − vt ) dv = 3t (1 − t)

(2 − t)(1 + t)

for all t ∈ [0,1]. For the CFG estimator, the substitution v = ux yields

var A
CFG
r (t) = 2

∫ 1

0

∫ 1

u
(1 − v1−t )(1 − vt )

dv

v log(v)

du

log(u)

= −2
∫ 1

0

∫ 1

0

(
1 − u(1−t)x)

(1 − uxt )
du

log(u)

dx

x

= 2
∫ 1

0

[
log{(1 − t)x + 1} − log

{
(1 − t)x + xt + 1

1 + xt

}]
dx

x
.

The latter decomposes into a sum of three integrals, namely,

−2
∫ 1

0
log(1 + x)

dx

x
+ 2

∫ 1−t

0
log(1 + x)

dx

x
+ 2

∫ t

0
log(1 + x)

dx

x
,

whence the conclusion.

APPENDIX E: PROOF OF PROPOSITION 4.1

COMPARISON OF THE PICKANDS ESTIMATORS. In view of Theorem 3.1 of
Segers (2007) and relation (4.2) with a(t) = t and b(t) = 1 − t , one has

var A
P
c (t) − var A

P
u(t) = (1 − t)2 varη(0) + t2 varη(1) − 2(1 − t) cov{η(0), η(t)}

− 2t cov{η(t), η(1)} + 2t (1 − t) cov{η(0), η(1)},
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where η denotes a zero-mean Gaussian process on [0,1] whose covariance func-
tion is defined for all 0 ≤ s ≤ t ≤ 1 by

cov{η(s), η(t)} = s

t

1

A2(s)
+ 1 − t

1 − s

1

A2(t)
+ 1

(1 − s)t

∫ t

s

dw

A2(w)
− 1

A(s)A(t)
.

Upon substitution and simplification, var A
P
c (t) − var A

P
u(t) thus reduces to

−1 + 2

A(t)
+ 2{(1 − t)2 + t2}

{
1 − 1

A2(t)

}
(E.1)

− 2(1 − t)

(
1

t
− t

)∫ t

0

dw

A2(w)
− 2t

{
1

1 − t
− (1 − t)

}∫ 1

t

dw

A2(w)
.

Because A is convex, however, one knows that for all t ∈ [0,1],∫ t

0

dw

A2(w)
≥ 1

A(t)
and

∫ 1

t

dw

A2(w)
≥ 1 − t

A(t)
.

Using these inequalities and the fact that the third summand in (E.1) is negative
for all t ∈ [0,1], one gets

var A
P
c (t) − var A

P
u(t) ≤ −1 + 2[1 − (1 − t)(1 − t2) − t{1 − (1 − t)2}] 1

A(t)

= −1 + 2t (1 − t)
1

A(t)

and this upper bound is negative because A(t) ≥ t ∨ (1 − t) for all t ∈ [0,1]. Thus,
the argument is complete.

COMPARISON OF THE CFG ESTIMATORS. Theorem 4.2 of Segers (2007) and
relation (4.2) with a(t) = t and b(t) = 1 − t imply that

var A
CFG
c (t) − var A

CFG
u (t)

= (1 − t)2 var ζ(0) + t2 var ζ(1) − 2(1 − t) cov{ζ(0), ζ(t)}
− 2t cov{ζ(t), ζ(1)} + 2t (1 − t) cov{ζ(0), ζ(1)},

where ζ denotes a zero-mean Gaussian process on [0,1] whose covariance func-
tion is defined for all 0 ≤ s ≤ t ≤ 1 by

cov{ζ(s), ζ(t)} = −
∫ s

0
log(w)

dw

1 − w
− log(t) log(1 − s) −

∫ 1

t
log(1 − w)

dw

w

+ log
(

t

s

)
logA(s) + log

(
1 − s

1 − t

)
logA(t)

+ 1

2

{
log

A(s)

A(t)

}2

−
∫ t

s

logA(w)

w(1 − w)
dw.
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Upon substitution and simplification, var A
CFG
c (t) − var A

CFG
u (t) becomes

{(1 − t)2 + t2}π
2

6
+ 2(1 − t)

∫ 1

t
log(1 − w)

dw

w
+ 2t

∫ t

0
log(w)

dw

1 − w

− {logA(t)}2 + 2{(1 − t) log(1 − t) + t log(t)} logA(t)

+ 2(1 − t)

∫ t

0

logA(w)

w(1 − w)
dw + 2t

∫ 1

t

logA(w)

w(1 − w)
dw

− 2t (1 − t)

∫ 1

0

logA(w)

w(1 − w)
dw.

Omitting the term −{logA(t)}2 and using the elementary inequalities

π2

6
(1 − t) ≤ −

∫ 1

t
log(1 − w)

dw

w
,

π2

6
t ≤ −

∫ t

0
log(w)

dw

1 − w
,

one can see that an upper bound on var A
CFG
c (t) − var A

CFG
u (t) is given by

(1 − t)

∫ 1

t
log(1 − w)

dw

w
+ t

∫ t

0
log(w)

dw

1 − w

+ 2{(1 − t) log(1 − t) + t log(t)} logA(t)

+ 2(1 − t)2
∫ t

0

logA(w)

w(1 − w)
dw + 2t2

∫ 1

t

logA(w)

w(1 − w)
dw.

Partial integration and the fact that A(t) ≥ 1 − t for all t ∈ [0,1] imply that∫ t

0
log(w)

dw

1 − w
= − log(t) log(1 − t) +

∫ t

0
log(1 − w)

dw

w

≤ − log(t) log(1 − t) ≤ − log(t) logA(t).

Similarly, the fact that A(t) ≥ t for all t ∈ [0,1] yields∫ 1

t
log(1 − w)

dw

w
≤ − log(1 − t) logA(t).

Therefore, a more conservative upper bound on var A
CFG
c (t)−var A

CFG
u (t) is given

by

{(1 − t) log(1 − t) + t log(t)} logA(t)

+ 2(1 − t)2
∫ t

0

logA(w)

w(1 − w)
dw + 2t2

∫ 1

t

logA(w)

w(1 − w)
dw.

Now A(t) ∈ [1/2,1] and hence 2{A(t) − 1} ≤ logA(t) ≤ A(t) − 1 for all t ∈
[0,1]. Consequently, an even more conservative bound is given by

2{(1 − t) log(1 − t) + t log(t)}{A(t) − 1}

+ 2(1 − t)2
∫ t

0

A(w) − 1

w(1 − w)
dw + 2t2

∫ 1

t

A(w) − 1

w(1 − w)
dw.
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Calling on the convexity of A, however, one can show that {A(w) − 1}/w ≤
{A(t) − 1}/t for all w ∈ [0, t] while {A(w) − 1}/(1 − w) ≤ {A(t) − 1}/(1 − t)

for any w ∈ [t,1]. This leads to the final upper bound, namely,

2
1 − 2t

t (1 − t)
{t2 log(t) − (1 − t)2 log(1 − t)}{A(t) − 1}.

As the latter is easily checked to be at most zero, the proof is complete.

APPENDIX F: PROOF OF PROPOSITION 4.2

In view of the expressions for σ(u, v; t) and σ0(u, v; t) given in Appendix C, it
suffices to show that for all u, v, t ∈ [0,1],

4∑
�=1

σ�(u, v; t) ≤
8∑

�=5

σ�(u, v; t).

If u ≤ v, then

σ1 ≤ σ5, σ2 ≤ σ7, σ3 ≤ σ6, σ4 ≤ σ8

for all t ∈ [0,1], while if v ≤ u, then

σ1 ≤ σ6, σ2 ≤ σ8, σ3 ≤ σ7, σ4 ≤ σ5

for all t ∈ [0,1]. Each of these inequalities is an easy consequence of the following
inequalities, which are valid for every extreme-value copula C, associated depen-
dence function A and real numbers u, v, t ∈ [0,1]:
uv ≤ C(u, v), t ∨ (1 − t) ≤ A(t) ≤ 1, 0 ≤ μ(t) ≤ 1, 0 ≤ ν(t) ≤ 1.

The bounds on μ(t) and ν(t) stem from the fact that A is convex, A(0) = A(1) = 1
and Ȧ(t) ∈ [−1,1] for every t ∈ (0,1).

APPENDIX G: WEIGHTED BIVARIATE EMPIRICAL PROCESSES

Let (U1,V1), . . . , (Un,Vn) be a random sample from an arbitrary bivariate cop-
ula C and for all u, v ∈ [0,1], define

Cn(u, v) = 1

n

n∑
i=1

1(Ui ≤ u,Vi ≤ v).

The purpose of this appendix is to characterize the asymptotic behavior of a
weighted version of the empirical process αn = n1/2(Cn − C). Specifically, fix
ω ≥ 0, and for every x ∈ [0,1], let qω(t) = tω(1 − t)ω and

Gn,ω(u, v) =
⎧⎨
⎩

αn(u, v)

qω(u ∧ v)
, if u ∧ v ∈ (0,1),

0, if u = 0 or v = 0 or (u, v) = (1,1).
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The following result, which may be of independent interest, gives the weak limit
of the weighted process Gn,ω in the space �∞([0,1]2) of bounded, real-valued
functions on [0,1]2 equipped with the topology of uniform convergence. Weak
convergence is understood in the sense of Hoffman-Jørgensen [van der Vaart and
Wellner (1996), Section 1.5].

THEOREM G.1. For every ω ∈ [0,1/2), the process Gn,ω converges weakly
in �∞([0,1]2) to a centered Gaussian process Gω with continuous sample paths
such that Gω(u, v) = 0 if u = 0, v = 0 or (u, v) = (1,1), while

cov{Gω(u, v),Gω(u′, v′)} = C(u ∧ u′, v ∧ v′) − C(u, v)C(u′, v′)
qω(u ∧ v)qω(u′ ∧ v′)

,

if u ∧ v ∈ (0,1) and u′ ∧ v′ ∈ (0,1).

The proof of this result relies on the theory of empirical processes detailed in
van der Vaart and Wellner (1996), whose notation is adopted. Let

E = {(u, v) ∈ [0,1]2 : 0 < u ∧ v < 1} = (0,1]2 \ {(1,1)}.
For fixed (u, v) ∈ E, define the mapping f(u,v) : E → R by

(s, t) �→ f(u,v)(s, t) = 1(0,u]×(0,v](s, t) − C(u, v)

q(u ∧ v)

and consider the class F = {f(u,v) : (u, v) ∈ E}∪ {0}, where 0 denotes the function
vanishing everywhere on E.

Finally, let P be the probability distribution on E corresponding to C and denote
by Pn the empirical measure of the sample (U1,V1), . . . , (Un,Vn). The following
lemma is instrumental in the proof of Theorem G.1. It pertains to the asymptotic
behavior of the process Gn, where for each f ∈ F ,

Gnf = n1/2(Pnf − Pf )

with

Pnf = 1

n

n∑
i=1

f (Ui,Vi), Pf =
∫ ∫

[0,1]2
f (u, v) dC(u, v).

LEMMA G.2. The collection F is a P-Donsker class, that is, there exists a
P -Brownian bridge G such that Gn � G as n → ∞ in �∞(F ).

PROOF. It is enough to check the conditions of Dudley and Koltchinskii
(1994) reported in Theorem 2.6.14 of van der Vaart and Wellner (1996), namely:

(a) F is a VC-major class.
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(b) There exists F : E → R such that |f | ≤ F pointwise for all f ∈ F and∫ ∞
0

{P(F > x)}1/2 dx < ∞,

where P(F > x) = P {(s, t) ∈ E :F(s, t) > x}.
(c) F is pointwise separable.

To prove (a), one must check that the class of subsets of E given by {(u′, v′) ∈
E :f (u′, v′) > t} with f ranging over F and t over R forms a Vapnik–Červonenkis
(VC) class of sets; see page 145 in van der Vaart and Wellner (1996). Noting
that each f in F can take only two values, one can see that this class of subsets
coincides with the family of intervals (0, u] × (0, v] with (u, v) ranging over E.
By Example 2.6.1 on page 135 of van der Vaart and Wellner (1996), the latter is
indeed a VC-class.

To prove (b), define F : E → R at every (s, t) ∈ E by

F(s, t) = 2{s−ω ∨ t−ω ∨ (1 − s)−ω ∨ (1 − t)−ω}.
Given that the marginal distributions of C are uniform on [0,1], one has

C(u, v) ≤ u ∧ v and 1 − C(u, v) ≤ (1 − u)+ (1 − v) ≤ 2(1 − u∧ v),(G.1)

for all (u, v) ∈ [0,1]2. Now take (u, v), (s, t) ∈ E. If s ≤ u and t ≤ v, then

∣∣f(u,v)(s, t)
∣∣ = 1 − C(u, v)

q(u ∧ v)
≤ 2(u ∧ v)−ω ≤ 2(s ∧ t)−ω = 2(s−ω ∨ t−ω),

while if s > u or t > v, then

∣∣f(u,v)(s, t)
∣∣ = C(u, v)

q(u ∧ v)
≤ (1 − u ∧ v)−ω

≤ (1 − s ∨ t)−ω = (1 − s)−ω ∨ (1 − t)−ω.

Hence, for every f ∈ F and every (s, t) ∈ E, one has |f (s, t)| ≤ F(s, t). Further-
more, P(F > x) ≤ 4(x/2)−1/ω ∧ 1 for every x ≥ 0, so that the condition ω < 1/2
ensures the integrability condition. Note in passing that since Pf = 0, one has
Gnf = n1/2

Pnf for all f ∈ F . Hence, as F is an envelope for F , every sample
path f �→ Gnf is an element of �∞(F ).

To prove (c), let E0 be a countable, dense subset of E, and let G be the count-
able subset of F consisting of the zero function and the functions f(u,v) with
(u, v) ∈ E0. Clearly, every f ∈ F is the pointwise limit of a sequence in G. Fur-
thermore, the envelope function F is P -square integrable, and hence pointwise
convergence in F implies L2(P ) convergence. According to the definition at the
bottom of page 116 of van der Vaart and Wellner (1996), this implies that F is
indeed a pointwise separable class. �



3020 C. GENEST AND J. SEGERS

The limit process G whose existence is guaranteed by Lemma G.2 is a tight,
Borel measurable element of �∞(F ) with Gaussian finite-dimensional distrib-
utions. To establish Theorem G.1, the idea is now to write Gn,ω = T (Gn) and
Gω = T (G) as images of a continuous mapping T :�∞(F ) → �∞([0,1]2) and to
invoke the continuous mapping theorem.

To this end, introduce φ : [0,1]2 → F , which maps (u, v) ∈ [0,1]2 to

φ(u, v) =
{

f(u,v), if u ∧ v ∈ (0,1),
0, if u = 0 or v = 0 or (u, v) = (1,1).

Now let T :�∞(F ) → �∞([0,1]2) be defined by T (z) = z ◦ φ for all z ∈ �∞(F ).
One has T (Gn) = Gn,ω because if (u, v) ∈ [0,1]2 with u ∧ v ∈ (0,1), then

T (Gn)(u, v) = Gnf(u,v) = n1/2(Pn − P)
1(0,u]×(0,v] − C(u, v)

q(u ∧ v)
= Gn,ω(u, v),

while if u = 0, v = 0 or (u, v) = (1,1) then

T (Gn)(u, v) = Gn0 = 0 = Gn,ω(u, v).

The map T is linear and bounded; it is thus continuous with respect to the
topologies of uniform convergence on �∞(F ) and �∞([0,1]2). As for the map φ,
it is continuous with respect to the Euclidean metric on [0,1]2 and the standard-
deviation metric ρ on F , defined implicitly by

ρ2(f, g) = E{(Gf − Gg)2} = Pf 2 − 2Pfg + Pg2.

Indeed, the continuity of φ is easily derived from the bounds (G.1), together with
the fact that for f(u,v), f(s,t),0 ∈ F ,

ρ2(
f(u,v),0

) = C(u, v){1 − C(u, v)}
q(u ∧ v)2

and

ρ2(
f(u,v), f(s,t)

) = C(u, v){1 − C(u, v)}
q(u ∧ v)2 + C(s, t){1 − C(s, t)}

q(s ∧ t)2

− 2
C(u ∧ s, v ∧ t) − C(u, v)C(s, t)

q(u ∧ v)q(s ∧ t)

=
(

C(u, v)

q(u ∧ v)
− C(u ∧ s, v ∧ t)

q(s ∧ t)

)/
q(u ∧ v)

+
(

C(s, t)

q(s ∧ t)
− C(u ∧ s, v ∧ t)

q(u ∧ v)

)/
q(s ∧ t)

−
(

C(u, v)

q(u ∧ v)
− C(s, t)

q(s ∧ t)

)2

.
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The scene is finally set for an application of the continuous mapping theorem
[see Theorem 1.3.6 in van der Vaart and Wellner (1996)].

PROOF OF THEOREM G.1. The continuous mapping theorem implies that
T (Gn) � T (G) in �∞([0,1]2) as n → ∞. The limit process Gω = T (G) is thus a
tight, Borel measurable element of �∞([0,1]2) with the desired finite-dimensional
distributions. Furthermore, φ is continuous, and according to the statements on
page 41 of van der Vaart and Wellner (1996), the sample paths f �→ Gf of G are
almost surely uniformly continuous with respect to ρ. Therefore, the sample paths
(u, v) �→ Gω(u, v) = Gφ(u, v) are almost surely continuous, as well. Hence, the
process Gω has all the stated properties. �
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