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NONPARAMETRIC ESTIMATION BY CONVEX PROGRAMMING

BY ANATOLI B. JUDITSKY AND ARKADI S. NEMIROVSKI1

Université Grenoble I and Georgia Institute of Technology

The problem we concentrate on is as follows: given (1) a convex compact
set X in R

n, an affine mapping x �→ A(x), a parametric family {pμ(·)} of
probability densities and (2) N i.i.d. observations of the random variable ω,
distributed with the density pA(x)(·) for some (unknown) x ∈ X, estimate the

value gT x of a given linear form at x.
For several families {pμ(·)} with no additional assumptions on X and A,

we develop computationally efficient estimation routines which are minimax
optimal, within an absolute constant factor. We then apply these routines to
recovering x itself in the Euclidean norm.

1. Introduction. The problem we are interested in is essentially as follows:
suppose that we are given a convex compact set X in R

n, an affine mapping
x �→ A(x) and a parametric family {pμ(·)} of probability densities. Suppose that N

i.i.d. observations of the random variable ω, distributed with the density pA(x)(·)
for some (unknown) x ∈ X, are available. Our objective is to estimate the value
gT x of a given linear form at x.

In nonparametric statistics, there exists an immense literature on various ver-
sions of this problem (see, e.g., [10–13, 15, 17, 18, 21–28] and the references
therein). To the best of our knowledge, the majority of papers on the subject focus
on specific domains X (e.g., distributions with densities from Sobolev balls), and
investigate lower and upper bounds on the worst-case, with regard to x ∈ X, accu-
racy to which the problem of interest can be solved. These bounds depend on the
number of observations N , and the question of primary interest is the behavior of
those bounds as N → ∞. When the lower and the upper bounds coincide within
a constant factor [or, ideally, within factor (1 + o(1)) as N → ∞], the estimation
problem is considered essentially solved, and the estimation methods underlying
the upper bounds are treated as optimal.

The approach we adopt in this paper is of a different spirit; we make no “struc-
tural assumptions” on X, aside from assumptions of convexity and compactness
which are crucial for us, and we make no assumptions on the linear functional p.
Clearly, with no structural assumptions on X and p, explicit bounds on the risks of
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our estimates, as well as bounds on the minimax optimal risk, are impossible. How-
ever, it is possible to show that when estimating linear forms, the worst-case risk of
the estimator we propose is within an absolute constant factor of the “ideal” (i.e.,
the minimax optimal) risk. It should be added that while the optimal, within an ab-
solute constant factor, worst-case risk of our estimates is not available in a closed
analytical form, it is “available algorithmically”—it can be efficiently computed,
provided that X is computationally tractable.1

Note that the estimation problem, presented above, can be seen as a general-
ization of the problem of estimation of linear functionals of the central parameter
of a normal distribution (see [4, 8, 9, 16]). Namely, suppose that the observation
ω ∈ R

m,

ω = Ax + σξ

of the unknown signal x is available. Here A is a given m × n matrix and
ξ ∼ N (0, Im), σ > 0 is known. For this important case the problem has been es-
sentially solved in [5], where it was proved that for several commonly used loss
functions, the minimax optimal affine in ω estimate is minimax optimal, within an
absolute constant factor, among all possible estimates.

Another special case of our setting is the problem of estimating a linear func-
tional g(p) of an unknown distribution p, given N i.i.d. observations ω1, . . . ,ωN ,
which obey p. We suppose that it is known a priori that p ∈ X, where X is a given
convex compact set of distributions (here the parameter x is the density p itself).
Some important results for this problem have been obtained in [6] and [7]. For
instance, in [7] the authors established minimax bounds for the risk of estimation
of g(p) and developed an estimation method based on the binary search algorithm.
The estimation procedure uses at each search iteration tests of convex hypotheses,
studied in [2, 3]. That estimator of g(p) is shown to be minimax optimal (within
an absolute constant factor) if some basic structural assumptions about X hold.

In this paper, we concentrate on the properties of affine estimators. Here, we re-
fer to an estimator ĝ as affine when it is of the form ĝ(ω1, . . . ,ωN) = ∑N

i=1 φ(ωi),
for some given functions φ, that is, if ĝ is an affine function of the empirical dis-
tribution. When φ itself is an affine function, the estimator is also affine in the
observations, as it is in the setting of [5]. Our motivation is to extend the results
obtained in [5] to the non-Gaussian situation. In particular, we propose a technique
of derivation of affine estimators which are minimax optimal (up to a moderate ab-
solute constant) for a class of “good parametric families of distributions,” which is
defined in Section 2.1. As normal family and discrete distributions belong to the
class of good parametric families, the minimax optimal estimators for these cases

1For details on computational tractability and complexity issues in convex optimization, see, for
example, [1], Chapter 4. A reader not familiar with this area will not lose much when interpreting
a computationally tractable convex set as a set given by a finite system of inequalities pi(x) ≤ 0,
i = 1, . . . ,m, where pi(x) are convex polynomials.
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are obtained by direct application of the general construction. In this sense, our
results generalize those of [7] and [5] on the estimation of linear functionals. On
the other hand, it is clear that different techniques, presented in the current paper,
inherit from those developed in [3] and [7]. To make a computationally efficient
solution of the estimation problem possible, unlike the authors of those papers,
we concentrate only on the finite-dimensional situation. As a result, the proposed
estimation procedures allow efficient numeric implementation. This also allows us
to avoid much of the intricate mathematical details. However, we allow the dimen-
sion to be arbitrarily large, thus addressing, essentially, a nonparametric estimation
problem.

The rest of this paper is organized as follows. In Section 2, we define the main
components of our study—we state the estimation problem and define the corre-
sponding risk measures. Then, in Section 3, we provide the general solution to the
estimation problem, which is then applied, in Section 4, to the problems of esti-
mating linear functionals in the normal model and the tomography model. Finally,
in Section 5, we present adaptive versions of affine estimators.

Note that when passing from recovering linear forms of the unknown signal to
recovering the signal itself, we do impose structural assumptions on X, but still
make no structural assumptions on the affine mapping A(x). Our “optimality re-
sults” become weaker—instead of “optimality within an absolute constant factor”
we end up with statements like “the worst-case risk of such-and-such estimate is
in between the minimax optimal risk and the latter risk to the power χ ,” with χ

depending on the geometry of X (and close to 1 when this geometry is “good
enough”).

2. Problem statement.

2.1. Good parametric families of distributions. Let (�,P ) be a Polish space
with Borel σ -finite measure, and M ⊂ R

m. Assume that every μ ∈ M is associ-
ated with a probability density pμ(ω)—a Borel nonnegative function on � such
that

∫
� pμ(ω)P (dω) = 1; we refer to the mapping μ → pμ(·) as to a parametric

density family D . Let also F be a finite-dimensional linear space of Borel func-
tions on � which contains constants. We call a pair (D,F ) good if it possesses
the following properties:

1. M is an open convex set in R
m;

2. whenever μ ∈ M, we have pμ(ω) > 0 everywhere on �;
3. whenever μ,ν ∈ M, we have φ(ω) = ln(pμ(ω)/pν(ω)) ∈ F ;
4. whenever φ(ω) ∈ F , the function

Fφ(μ) = ln
(∫

�
exp{φ(ω)}pμ(ω)P (dω)

)
is well defined and concave in μ ∈ M.
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The reader familiar with exponential families will immediately recognize that
the above definition implies that D is such a family. Let us denote pμ(ω) =
exp{θ(μ)T ω − C(θ(μ))},μ ∈ M, its density with regard to P where θ is the nat-
ural parameter and C(·) as the cumulant function. Then, D is good if:

1. M is an open convex set in DP = {μ ∈ R
m| ∫ eθ(μ)T ωP (dω) < ∞};

2. for any φ such that the cumulant function C(θ(μ) + φ) is well definded, the
function [C(θ(μ) + φ) − C(θ(μ))] is concave in μ ∈ M.

Let us list several examples.

EXAMPLE 1 (Discrete distributions). Let � = {1,2, . . . ,M} be a finite
set, P be a counting measure on �, M = {μ ∈ R

M :μ > 0,
∑

i μi = 1} and
pμ(i) = μi , i = 1, . . . ,M . Let also F be the set of all functions on �. The as-
sociated pair (D,F ) clearly is good.

EXAMPLE 2 (Poisson distributions). Let � = {0,1, . . .}, P be the counting

measure on �, M = {μ ∈ R :μ > 0} and pμ(i) = μi exp{−μ}
i! , i ∈ �, so that pμ

is the Poisson distribution with the parameter μ. Let also F be the set of affine
functions φ(i) = αi + β on �. We claim that the associated pair (D,F ) is good.
Indeed, ln(pμ(i)/pν(i)) = i[lnμ − lnν] + μ − ν is an affine function of i, and

ln

(∑
i

exp{αi + β}μ
i exp{−μ}

i!
)

= ln(exp{β − μ} exp{μ exp{α}})

= β − μ + μ exp{α}
is a concave function of μ > 0.

EXAMPLE 3 (Gaussian distributions with fixed covariance). Let � = R
k ,

P be the Lebesque measure on �, � be a positive definite k × k matrix, M = R
k

and

pμ(ω) = (2π)−k/2(Det�)−1/2 exp{−(ω − μ)T �−1(ω − μ)}
be the density of the Gaussian distribution with mean μ and covariance matrix �.
Let, further, F be comprised of affine functions on �. We claim that the associated
pair (D,F ) is good. Indeed, the function ln(pμ(ω)/pν(ω)) indeed is affine on �,
and

ln
(∫

exp{φT ω + c}pμ(ω)dω

)
= c + φT μ + φT �φ

2

is a concave function of μ.
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EXAMPLE 4 (Direct product of good pairs). Let p�
μ�

(ω�) be a probability den-
sity, parameterized by μ� ∈ M� ⊂ R

m� , on a Polish space �� with Borel σ -finite
measure P�, and F� be a finite-dimensional linear space of Borel functions on ��

such that the associated pairs (D�,F�) are good. Let us define the direct product
(D,F ) = ⊗L

�=1(D�,F�) of these pairs as follows:

• The associated space with measure is (� = �1 ×· · ·×�L,P = P1 ×· · ·×P�).
• The set of parameters is M = M1 × · · · × ML, and the density associated with

a parameter μ = (μ1, . . . ,μL) from this set is pμ(ω1, . . . ,ωL) = ∏L
�=1 p�

μ�
(ω�).

• F is comprised of all functions φ(ω1, . . . ,ωL) = ∑L
�=1 φ�(ω�) with φ�(·) ∈ F�,

� = 1, . . . ,m.

We claim that the direct product of good pairs is good. Indeed, M is an open
convex set; when μ = (μ1, . . . ,μL) and ν = (ν1, . . . , νL) are in M, we have

ln
(
pμ(ω1, . . . ,ωL)/pν(ω1, . . . ,ωL)

) =
L∑

�=1

ln
(
p�

μ�
(ω�)/p

�
ν�

(ω�)
) ∈ F

and when φ(ω1, . . . ,ωL) = ∑
� φ�(ω�) ∈ F , we have

ln
(∫

�
exp{φ(ω)}pμ(ω)P (dω)

)
= ln

(∏
�

∫
��

exp{φ�(ω�)}p�
μ�

(ω�)P (dω�)

)

= ∑
�

ln
(∫

��

exp{φ�(ω�)}p�
μ�

(ω�)P (dω�)

)
,

which is a sum of concave functions of μ and thus is concave in μ.

2.2. The problem. The problem we are interested in is as follows:

PROBLEM I. We are given the following:

• a convex compact set X ⊂ R
n,

• a good pair (D,F ) comprised of
– a parametric family {pμ(ω) :μ ∈ M ⊂ R

m} of probability densities on a Borel
space � with σ -finite Borel measure P and

– a finite-dimensional linear space F of Borel functions on �,
• an affine mapping x �→ A(x) :X �→ M,

• a linear form gT z on R
n ⊃ X.

Aside of this a priori information, we are given a realization ω of a random variable
taking values in � and distributed with the density pA(x)(·) for some unknown in
advance x ∈ X. Our goal is to infer from this observation an estimate ĝ(ω) of the
value gT x of the given linear form at x.
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From now on we refer to an estimate as affine, if it is of the form ĝ(ω) = φ(ω),
with certain φ ∈ F .

We quantify the risk of a candidate estimate ĝ(·) by its worst-case, over x ∈ X,
confidence interval, given the confidence level. Specifically, given a confidence
level ε ∈ (0,1), we define the associated ε-risk of an estimate ĝ as

Risk(ĝ; ε) = inf
{
δ : sup

x∈X

Probω∼pA(x)(·){ω : |ĝ(ω) − gT x| > δ} < ε

}
.

The corresponding minimax optimal ε-risk is defined as

Risk∗(ε) = inf
ĝ(·)

Risk(ĝ; ε),
where inf is taken over the space of all Borel functions ĝ on �. We are interested
also in the minimax optimal ε-risk of affine estimates

RiskA(ε) = inf
φ(·)∈F

Risk(φ; ε).

3. Minimax optimal affine estimators.

3.1. Main result. Our main result follows.

THEOREM 3.1. Let the pair (D,F ) underlying Problem I be good. Then, the
minimax optimal risk achievable with affine estimates is, for small ε, within an
absolute constant factor of the “true” minimax optimal risk, specifically,

0 ≤ ε < 1/4 ⇒ RiskA(ε) ≤ θ(ε)Risk∗(ε), θ(ε) = 2 ln(2/ε)

ln(1/(4ε))
.

PROOF. For r ≥ 0, let us set

�r(x, y;φ,α) = gT x − gT y + α ln
(∫

�
exp{α−1φ(ω)}pA(y)(ω)P (dω)

)
+ α ln

(∫
�

exp{−α−1φ(ω)}pA(x)(ω)P (dω)

)
+ 2αr: Z × F+ → R,

Z = X × X,

F+ = F × {α > 0}.
We claim that this function is a continuous real-valued function on Z ×F+, which
is convex in (φ,α) ∈ F+ and concave in (x, y) ∈ Z.

Indeed, the function

�(μ,ν;φ) = ln
(∫

�
exp{φ(ω)}pμ(ω)P (dω)

)

+ ln
(∫

�
exp{−φ(ω)}pν(ω)P (dω)

)
: (M × M) × F → R
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is well defined, concave in (μ, ν) ∈ M × M [since (D,F ) is good] and convex in
φ ∈ F (evident). Since M is open and F is a finite-dimensional linear space, � is
continuous on its domain. It remains to note that �ε is the sum of a linear function
of x, y,α and the function α�(A(x),A(y);α−1φ) which clearly is concave in (x, y)

[since �(μ,ν;φ) is concave in (μ, ν) and A(·) is affine] and convex in (φ,α) ∈ F+
[since �(μ,ν;φ) is continuous in φ ∈ F , and the transformation f (u) �→ g(u,α) =
αf (u/α) converts a convex function of u into a convex in (α > 0, u) function of (u,α)].

Since Z is a convex finite-dimensional compact set, F+ is a convex finite-
dimensional set and �ε is continuous and convex–concave on Z × F+, we can
invoke the Sion–Kakutani theorem (see, e.g., [14]) to infer that

sup
x,y∈X

inf
φ∈F ,α>0

�r(x, y;φ,α) = inf
φ∈F ,α>0

max
x,y∈X

�r(x, y;φ,α) := 2�∗(r).(3.1)

Note that �∗(r) ≥ 0 is a concave and nonnegative function of r ≥ 0. Indeed,
the functional fx[h] = ln

∫
� exp{h(ω)}pA(x)(ω)P (dω) is well defined and convex

on F , whence

�r(x, x;φ,α) = 2αr + α(fx[−α−1φ] + fx[α−1φ]) ≥ 2αr ≥ 0,

whence �∗(r) ≥ 1
2 supx∈X infφ∈F ,α>0 �r(x, x;φ,α) ≥ 0. The concavity of �∗(r)

on the nonnegative ray follows immediately from the representation, yielded
by (3.1),

�∗(r) = 1

2
inf

φ∈F ,α

[
2αr + sup

x,y∈X

�0(x, y;φ,α)

]
of �∗(r) as the infinum of a family of affine functions of r .

LEMMA 3.1. One has

RiskA(ε) ≤ �∗
(
ln(2/ε)

)
.

PROOF. Given δ > 0 and ε ∈ (0,1/4), let us build an affine estimate with
ε-risk ≤ R ≡ �∗(ln(2/ε)) + δ/2, namely, as follows. By (3.1), there exist φ∗ ∈ F
and α∗ > 0, such that

2�∗
(
ln(2/ε)

) + δ/2

≥ max
x,y∈X

�ε/2(x, y;φ∗, α∗)

= max
x∈X

[
gT x + α∗ ln

(∫
�

exp{−α−1∗ φ∗(ω)}pA(x)(ω)P (dω)

)
+ α∗ ln(2/ε)

]
︸ ︷︷ ︸

U

×max
y∈X

[
−gT y + α∗ ln

(∫
�

exp{α−1∗ φ∗(ω)}pA(y)(ω)P (dω)

)
+ α∗ ln(2/ε)

]
︸ ︷︷ ︸

V

.
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Setting c = U−V
2 , we have

max
x∈X

[
gT x + α∗ ln

(∫
�

exp{−α−1∗ [φ∗(ω) + c]}pA(x)(ω)P (dω)

)
+ α∗ ln(2/ε)

]
= U − c = U + V

2
≤ �∗

(
ln(2/ε)

) + δ/4 = R − δ/4,

max
y∈Y

[
gT x + α∗ ln

(∫
�

exp{α−1∗ [φ∗(ω) + c]}pA(y)(ω)P (dω)

)
+ α∗ ln(2/ε)

]

= V + c = U + V

2
≤ �∗

(
ln(2/ε)

) + δ/4 = R − δ/4

or, equivalently,

max
x∈X

ln
(∫

�
exp

{
α−1∗

[
gT x − (

φ∗(ω) + c
) − R

]}
pA(x)(ω)P (dω)

)
≤ ln(ε/2) − δ

4α∗
≡ ln(ε′/2),

max
y∈X

ln
(∫

�
exp

{
α−1∗

[(
φ∗(ω) + c

) − R − gT y
]}

pA(y)(ω)P (dω)

)
≤ ln(ε′/2),

that is,

(a) ∀x ∈ X:
∫
�

exp
{
α−1∗

[
gT x − (

φ∗(ω) + c
) − R

]}
pA(x)(ω)P (dω) ≤ ε′/2,

(b) ∀y ∈ X:
∫
�

exp
{
α−1∗

[[φ∗(ω) + c] − R − gT y
]}

pA(y)(ω)P (dω) ≤ ε′/2.

For a given x ∈ X, the exponent in (a) is nonnegative and is > 1, for all ω such
that gT x − [φ∗(ω) + c] > R; therefore, (a) implies that Probω∼pA(x)(·){gT x >

[φ∗(ω) + c] + R} ≤ ε′/2, for every x ∈ X. By similar reasons, (b) implies that
Probω∼pA(x)(·){gT x < [φ∗(ω) + c] − R} ≤ ε′/2, for all x ∈ X. Since by construc-
tion ε′ < ε, we see that the ε-risk of the affine estimate ĝ(ω) = φ∗(ω) + c is ≤ R,
as claimed. �

LEMMA 3.2. One has

δ ∈ (0,1) ⇒ Risk∗(δ2/4) ≥ �∗
(
ln(1/δ)

)
,(3.2)

whence also

ε ∈ (0,1/4) ⇒ Risk∗(δ) ≥ ln(1/(4ε))

2 ln(2/ε)
�∗

(
ln(2/ε)

)
.(3.3)

PROOF. To prove (3.2), let us set ρ = ln(1/δ). The function �ρ(x, y) =
infφ∈F ,α>0 �ρ(x, y;φ,α) takes values in {−∞} ∪ R, is upper semicontinuous
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(since �r is continuous) and is not identically −∞ (in fact, it is even ≥ 0 when
y = x). Thus, �ρ achieves its maximum on X × X at certain point (x̄, ȳ), and for
any (α > 0, φ ∈ F ):

�ρ(x̄, ȳ;φ,α) ≥ �ρ(x̄, ȳ) = sup
x,y∈X

inf
φ∈F ,α>0

�ρ(x, y;φ,α) = 2�∗(ρ),(3.4)

where the concluding inequality is given by (3.1). Since (D,F ) is a good pair,
setting μ = A(x̄), ν = A(ȳ) and φ̄(ω) = 1

2 ln(pμ(ω)/pν(ω)), we get φ̄ ∈ F , which
combines with (3.4) to imply that

∀(α > 0):

2�∗(ρ) ≤ gT x̄ − gT ȳ + α

[
ln

(∫
�

exp{−α−1[αφ̄(ω)]}pμ(ω)P (dω)

)
+ ln

(∫
�

exp{α−1[αφ̄(ω)]}pν(ω)P (dω)

)
+ 2ρ

]
= gT x̄ − gT ȳ + 2α

[
ln

(∫
�

√
pμ(ω)pν(ω)P (dω)

)
+ ρ

]
.

The resulting inequality holds true for all α > 0, meaning that

(a) gT x̄ − gT ȳ ≥ 2�∗(ρ) = 2�∗
(
ln(1/δ)

)
,

(3.5)
(b)

∫
�

√
pμ(ω)pν(ω)P (dω) ≥ exp{−ρ} = δ.

Now assume, in contrast to what should be proved, that Risk∗(δ2/4) < �∗(ln(1/

δ)). Then, there exists R′ < �∗(ln(1/δ)), δ′ < δ2/4 and an estimate ĝ(ω) such that

Probω∼pA(x)(·){|ĝ(ω) − gT x| > R′} ≤ δ′ ∀x ∈ X.

Now, consider two hypotheses �1,2 on the distribution of ω stating that the den-
sities of the distribution with regard to P are pμ and pν , respectively. Consider
a procedure for distinguishing between the hypotheses as follows: after ω is ob-
served, we compare ĝ(ω) with ḡ = 1

2 [gT x̄ + gT ȳ]; if ĝ(ω) ≥ ḡ, we accept �1,
otherwise we accept �2. Note that by (3.5)(a) and due to R′ < �∗(ln(1/δ)), the
probability to accept �2 when �1 is true is ≤ the probability for ĝ(ω) to deviate
from gT x̄ by at most R′, that is, it is ≤ δ′. Similarly, the probability to accept �1

when �2 is true is ≤ δ′. Now, let �1 be the part of � where our hypotheses testing
routine accepts �1, so that in �2 = �\�1 the routine accepts �2. As we just have
seen, ∫

�1

pν(ω)P (dω) ≤ δ′,
∫
�2

pμ(ω)P (dω) ≤ δ′,
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whence∫
�

√
pμ(ω)pν(ω)P (dω) =

2∑
i=1

∫
�i

√
pμ(ω)pν(ω)P (dω)

≤
2∑

i=1

(∫
�i

pμ(ω)P (dω)

)1/2(∫
�i

pν(ω)P (dω)

)1/2

≤ 2
√

δ′ < 2
√

δ2/4 = δ.

The resulting inequality
∫
�

√
pμ(ω)pν(ω)P (dω) < δ contradicts (3.5)(b); we have

arrived at a desired contradiction. (3.2) is proved.
To prove (3.3), let us set δ = 2

√
ε, so that Risk∗(ε) = Risk∗(δ2/4) ≥ �∗(ln(1/

δ)) = �∗(1
2 ln( 1

4ε
)), where the concluding ≥ is due to (3.2). Now recall that �∗(r)

is a nonnegative and concave function of r ≥ 0, so that �∗(tr) ≥ t�∗(r), for all
r ≥ 0 and 0 ≤ t ≤ 1. We therefore have

�∗
(

1

2
ln

(
1

4ε

))
≥ ln(1/(4ε))

2 ln(2/ε)
�∗

(
ln

(
2

ε

))
and we arrive at (3.3). �

Lemmas 3.1 and 3.2 clearly imply Theorem 3.1. �

REMARK 3.1. Lemmas 3.1 and 3.2 provide certain information even beyond
the case when the pair (D,F ) is good, specifically, that:

(i) The ε-risk of an affine estimate can be made arbitrarily close to the quantity

�+(ε) = inf
φ∈F ,α>0

sup
x,y∈X

�ln(2/ε)(x, y;φ,α)

(cf. Lemma 3.1);
(ii) We have Risk∗(ε) ≥ �−(ε) = supx,y∈X infφ∈F ,α>0 �1/2 ln(1/(4ε))(x, y;

φ,α) (cf. Lemma 3.2).

As it is seen from the proofs of Lemmas 3.1 and 3.2, both these statements hold
true without the goodness assumption. The role of the latter is in ensuring that
�+(ε) is within an absolute constant factor of �−(ε).

Lemma 3.2 Implies the following result.

PROPOSITION 3.1. Under the premise of Theorem 3.1, the Hellinger affinity

AffH(μ, ν) =
∫
�

√
pμ(ω)pν(ω)P (dω)



2288 A. B. JUDITSKY AND A. S. NEMIROVSKI

is a continuous and log-concave function on M × M, and the quantity �∗(r),
r ≥ 0, admits the following representation:

2�∗(r) = max
x,y

{
gT x − gT y : AffH(A(x),A(y)) ≥ exp{−r}, x, y ∈ X

}
.(3.6)

We see that the upper bound �∗(ln(2/ε)) on RiskAff(ε) stated in Theo-
rem 3.1 admits a very transparent interpretation: this bound is the maximum of
the variation 1

2 maxx,y[gT x − gT y] of the estimated functional on the set of pairs
x, y ∈ X with the associated distributions “close” to each other, namely, such that
AffH(A(x),A(y)) ≥ ε/2. Observe that asymptotically (when r becomes small),2

�∗(r) is equivalent to the modulus of continuity ω(r,X) of g with regard to the
Hellinger distance, introduced in [7].

PROOF OF PROPOSITION 3.1. By exactly the same argument as in the proof
of Theorem 3.1, the function �(μ,ν;φ) : (M × M) × F → R,

�(μ,ν;φ) =
[
ln

(∫
exp{−φ(ω)}pμ(ω)P (dω)

)
+ ln

(∫
exp{φ(ω)}pν(ω)P (dω)

)]
is well defined and continuous on its domain, and this function is convex in φ and
concave in (μ, ν). We claim that

ln(AffH(μ, ν)) = 1
2 min

φ
�(μ, ν;ψ),(3.7)

which would imply that ln(AffH(·)) is indeed a finite concave function on M ×M
and as such is continuous (recall that M is open). To justify our claim, note that,
for fixed μ,ν ∈ M, setting φ = 1

2 ln(pν/pμ), we get a function from F such that
�(μ,ν; φ̄) = 2 ln(AffH(μ, ν)). To complete the verification of (3.7), it suffices to
demonstrate that �(μ,ν;φ) ≥ �(μ,ν; φ̄) whenever φ ∈ F , which is immediate,
since setting φ = φ̄ + �, we have

exp{�(μ,ν; φ̄)/2}
=

∫ √
pμ(ω)pν(ω)P (dω)

=
∫

[(pμ(ω)pν(ω))1/4 exp{−�(ω)/2}]
× [(pμ(ω)pν(ω))1/4 exp{�(ω)/2}]P(dω)

≤
[∫ √

pμ(ω)pν(ω) exp{−�(ω)}P(dω)

]1/2

2Recall that we consider here the case of one observation.



ESTIMATION BY CONVEX PROGRAMMING 2289

×
[∫ √

pμ(ω)pν(ω) exp{�(ω)}P(dω)

]1/2

= exp{�(μ,ν;φ)/2}.
Now, note that by (3.1)

2�∗(r) = sup
x,y∈X

{
inf

φ∈F ,α>0
[gT x − gT y + α�(A(x),A(y);α−1φ) + 2αr]

}

= sup
x,y∈X

{
gT x − gT y + inf

α>0
α

[
inf

φ∈F
�(A(x),A(y);α−1φ) + 2r

]}

= sup
x,y∈X

{
gT x − gT y + inf

α>0
α

[
inf

ψ≡α−1φ∈F
�(A(x),A(y);ψ) + 2r

]}

= sup
x,y∈X

{
gT x − gT y + inf

α>0
α[2 ln(AffH(A(x),A(y))) + 2r]︸ ︷︷ ︸

=
{

0, ln(AffH(A(x),A(y))) + r ≥ 0,
−∞, ln(AffH(A(x),A(y))) + r < 0

}

[see (3.7)]

= max
x,y

{
gT x − gT y : AffH(A(x),A(y)) ≥ exp{−r}, x, y ∈ X

}
. �

3.2. The case of multiple observations. In Problem I, our goal was to estimate
gT x from a single observation ω of the random variable ω ∼ pA(x)(·), associ-
ated with x. The result can be immediately extended to the case when we want
to recover gT x from a sample of independent observations ω1, . . . ,ωL of random
variables ω� with distributions parameterized by x. Specifically, let (��,P�) and
(D�,F�), 1 ≤ � ≤ L, be as in Example 4, and let every pair (D�,F�) be good. As-
sume, further, that X ⊂ R

n is a convex compact set and A�(x) are affine mappings
with A�(X) ⊂ M�. Given a linear form gT z on R

n and a sequence of independent
realizations ω� ∼ p�

A�(x)(·), � = 1, . . . ,L, we want to recover from these obser-

vations the value gT x of the given affine form at the “signal” x underlying our
observations.

In our current situation, we call a candidate estimate ĝ(ω1, . . . ,ωL) affine if it
is of the form

ĝ(ω1, . . . ,ωL) =
L∑

�=1

φ�(ω�),(3.8)

where φ� ∈ F�, � = 1, . . . ,L. Note that setting (D,F ) = ⊗L
�=1(D�,F�), we re-

duce the situation to the one we have already considered. In particular, Theo-
rem 3.1 along with the proof of Lemma 3.1 implies the following result (where the
ε-risks—of an estimate, the minimax optimal and the affine-minimax optimal—
are defined exactly as in the single-observation case).
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THEOREM 3.2. In the situation just described, for r > 0, let

�r(x, y;φ,α) = α

[
L∑

�=1

ln
(∫

��

exp{−α−1φ�(ω�)}p�
A�(x)(ω�)P (dω�)

)

+
(∫

��

exp{α−1φ�(ω�)}p�
A�(y)(ω�)P (dω�)

)]

+ gT x − gT y + 2αr: Z × F+ → R,

Z = X × X,

F+ = F1 × · · · × FL × {α > 0}.
The function �r is continuous on its domain, concave in the (x, y)-argument, con-
vex in the (φ,α)-argument and possesses a well-defined saddle point value

2�∗(r) = sup
x,y∈X

inf
φ,α∈F+

�r(x, y;φ,α)︸ ︷︷ ︸
�r(x,y)

= inf
(φ,α)∈F+

sup
x,y∈X

�r(x, y;φ,α)︸ ︷︷ ︸
�r(φ,α)

,

which is a concave and nonnegative function of r ≥ 0. Moreover:

(i) For all ε ∈ (0,1/4), we have

RiskA(ε) ≤ �∗
(
ln(2/ε)

) ≤ θ(ε)Risk∗(ε), θ(ε) = 2 ln(2/ε)

ln(1/(4ε))
.

(ii) Given ε ∈ (0,1/4) and δ ≥ 0, in order to build an affine estimate with
ε-risk not exceeding [�∗(ln(2/ε)) + δ], where δ > 0 is given, it suffices to find
α∗ > 0 and φ∗

� ∈ F�, 1 ≤ � ≤ L, such that

�ln(2/ε)(φ
∗, α∗) ≤ 2�∗

(
ln(2/ε)

) + δ/2,

to compute the quantity

c = 1

2
max
x∈X

[
gT x + α∗

L∑
�=1

ln
(∫

��

exp{−α−1φ∗
� (ω�)}p�

A�(x)(ω�)P�(dω�)

)]

− 1

2
max
y∈X

[
−gT y + α∗

L∑
�=1

ln
(∫

��

exp{α−1φ∗
� (ω�)}p�

A�(y)(ω�)P�(dω�)

)]
and to set

ĝ(ω1, . . . ,ωL) =
L∑

�=1

φ∗
� (ω�) + c.(3.9)

REMARK 3.2. Computing the “nearly optimal” affine estimate (3.9) reduces
to convex programming and thus can be carried out efficiently, provided that we
are given explicit descriptions of:
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• the linear spaces F�, � = 1, . . . ,L (as it is the case, e.g., in Examples 1–3),
• and X (e.g., by a list of efficiently computable convex constraints which cut X

out of R
n) and are capable to compute efficiently the value of �r at a point.

REMARK 3.3. Assume that the observations ω�, �0 ≤ � ≤ �1, are copies of
the same random variable [i.e., ��,P�,D�,F�,A�(·) are independent of � for
�0 ≤ � ≤ �1]. Then, the convex function �r(φ1, . . . , φL,α) is symmetric with re-
gard to the arguments φ� ∈ F�0 , �0 ≤ � ≤ �1, and therefore, when building the es-
timate (3.9) we lose nothing when restricting ourselves to φ’s satisfying φ� = φ�0 ,
�0 ≤ � ≤ �1, which allows to reduce the computational effort of building α∗, φ∗

� .

3.2.1. Illustration. Consider the toy problem where we want to recover the
probability p of getting 1 from a Bernoulli distribution, given L independent real-
izations ω1, . . . ,ωL of the associated random variable. To handle the problem, we
specialize our general setup as follows:

• (��,P�), 1 ≤ � ≤ L, are identical to the two-point set {0;1} with the counting
measure;

• M is the interval (0,1), and pμ(1) = 1 − pμ(0) = μ, μ ∈ M;
• X is a compact convex subset in M, say, the segment [1·e–16, 1–1/e–16], and

A(x) = x.

Invoking Remark 3.3, we lose nothing when restricting ourselves to affine esti-
mates of the form (3.8) with mutually identical functions φ�(·), 1 ≤ � ≤ L, that is,
with the estimates

ĝ(ω1, . . . ,ωL) = γ + δ

L∑
�=1

ω�.

Invoking Theorem 3.2, the coefficients γ and δ are readily given by the φ-com-
ponent of the saddle point (max in x, y ∈ X, min in φ = [φ0;φ1] ∈ R

2 and α > 0)
of the convex–concave function

x − y + α
[
L ln

(
ε−φ0/α(1 − x) + ε−φ1/αx

)
+ L ln

(
εφ0/α(1 − y) + εφ1/αy

) + 2 ln(2/ε)
];

the (guaranteed upper bound on the) ε-risk of this estimate is half of the cor-
responding saddle point value. The saddle point (it is easily seen that it does
exist) can be computed with high accuracy by standard convex programming tech-
niques. In Table 1, we present the nearly optimal affine estimates along with the
corresponding risks. In the table, the upper risk bound is the one guaranteed by
Theorem 3.2 and the lower risk bound is the largest d such that the hypotheses
“p = 0.5 + d” and “p = 0.5 − d” cannot be distinguished from L independent
observations of a random variable ∼ Bernoulli(p) with the sum of probabilities
of errors < 2ε [this easily computable quantity is a lower bound on the minimax
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TABLE 1
Recovering the parameter of a Bernoulli distribution

Upper risk Lower risk Ratio of
ε L γ δ bound bound bounds ϑ(ε)

0.05 10 2.91e–1 4.18e–2 3.61e–1 2.49e–1 1.45 4.58
0.05 100 4.13e–2 9.17e–3 1.33e–1 8.19e–2 1.63 4.58
0.05 1000 4.29e–3 9.91e–4 4.29e–3 2.60e–3 1.65 4.58
0.01 10 3.58e–1 2.83e–2 4.04e–1 3.29e–1 1.23 3.29
0.01 100 5.83e–2 8.84e–2 1.59e–1 1.15e–1 1.38 3.29
0.01 1000 6.15e–3 9.88e–4 5.13e–2 3.67e–3 1.40 3.29
0.001 10 4.19e–1 1.61e–2 4.42e–1 3.98e–1 1.11 2.75
0.001 100 8.15e–2 8.37e–3 1.88e–1 1.51e–1 1.24 2.75
0.001 1000 8.79e–3 9.82e–4 6.14e–3 4.88e–3 1.26 2.75

optimal ε-risk Risk∗(ε)], and ϑ(ε) = 2 ln(2/ε)
ln(0.25/ε)

is the theoretical upper bound on
the “level of nonoptimality” of our estimate. As it could be guessed in advance, for
large L, the near-optimal affine estimate is close to the trivial estimate 1

L

∑L
�=1 ω�.

4. Applications. In this section, we present some applications of Theo-
rems 3.1 and 3.2.

4.1. Positron emission tomography. The positron emission tomography (PET)
is a noninvasive diagnostic tool allowing us to visualize not only the anatomy of
tissues in a body, but their functioning as well. In PET, a patient is administered
a radioactive tracer chosen in such a way that it concentrates in the areas of inter-
est (e.g., those of high metabolic activity in early diagnosis of cancer). The tracer
disintegrates, emitting positrons which then annihilate with nearby electrons to
produce pairs of photons flying at the speed of light in opposite directions; the ori-
entation of the resulting line of response (LOR) is completely random. The patient
is placed in a cylinder with the surface split into small detector cells. When two of
the detectors are hit by photons “nearly simultaneously”—within an appropriately
chosen short time window—the event indicates that somewhere at a line crossing
the detectors a disintegration act took place. Such an event is registered, and the
data collected by the PET device form a list of the number of events registered in
every one of the bins (pairs of detectors) in the course of a given time t . The goal
of a PET reconstruction algorithm is to recover the density of the tracer from this
data. The standard mathematical model of PET is as follows. After discretization
of the field of view, there are N voxels (small 3D cubes) assigned with nonneg-
ative (and unknown) amounts xi of the traces i = 1, . . . , n. The number of LORs
emanating from a voxel i is a realization of a Poisson random variable with pa-
rameter xi , and these variables for different voxels are independent. Every LOR
emanating from a voxel i is subject to a “lottery,” which decides in which bin (pair



ESTIMATION BY CONVEX PROGRAMMING 2293

of detectors) it will be registered or if it will be registered at all—some LORs can
intersect the surface of the cylinder only in one point or not intersect it at all and
thus are missed. The role of the lottery is played by the random orientation of the
LOR in question, and outcomes of different lotteries are independent. The proba-
bilities qi� for a LOR emanating from voxel i to be registered in bin � are known
(they are readily given by the geometry of the device). With this model, the data
registered by PET is a realization of a random vector (ω1, . . . ,ωL) (L is the total
number of bins) with independent Poisson-distributed coordinates, the parameter
of the Poisson distribution associated with ω� being

A�(x) =
n∑

i=1

qi�xi .

Assume that our a priori information on x allows us to point out a convex compact
set X ⊂ {x ∈ R

n :x > 0}, such that x ∈ X. Assuming without loss of generality that∑
i qi� > 0 for every � (indeed, we can eliminate all bins � which never register

LORs) and invoking Example 2, we find ourselves in the situation of Section 3.2.
It follows that in order to evaluate a given linear form gT x of the unknown tracer
density x, we can use the construction from Theorem 3.2 to build a near-optimal
affine estimate of gT x. The recipe suggested to this end by Theorem 3.2 reads as
follows: the estimate is of the form

ĝ(ω) =
L∑

�=1

γ ∗
� y� + c∗,

where y� is the number of LORs registered in bin � and γ ∗ = [γ ∗
1 ; . . . ;γ ∗

L], c∗ are
given by an optimal solution (γ ∗, α∗) to the convex optimization problem

min
α>0,γ

�r(γ,α),

�r(γ,α) = max
x,y∈X

{
gT x − gT y

+ α

[
L∑

�=1

[q�(x) exp{−α−1γ�} + q�(y) exp{α−1γ�}]

− q(x) − q(y) + 2r

]}
,

r = ln(2/ε), q�(z) =
n∑

i=1

qi�zi, q(z) =
L∑

�=1

q�(z).
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It is easily seen that the problem is solvable with

c∗ = 1

2

[
max
x∈X

{
gT x + α∗

[
−q(x) +

L∑
�=1

q�(x) exp{−α−1∗ γ ∗
� }

]}

− max
y∈X

{
−gT y + α∗

[
−q(y) +

L∑
�=1

q�(y) exp{α−1∗ γ ∗
� }

]}]
.

4.2. Gaussian observations. Now consider the standard problem of recover-
ing a linear form gT x of a signal x known to belong to a given convex compact
set X ⊂ R

n via indirect observations of the signal corrupted by Gaussian noise.
Without loss of generality, let the model of observations be

ω = Ax + ξ, ξ ∼ N (0, IL).(4.1)

The associated pair (D,F ) is comprised of the shifts of the standard Gaussian
distribution (D) and all affine forms on R

L (F ) and is good (see Example 3).
The affine estimates in the case in question are just the affine functions of ω.
The near-optimality of affine estimates in the case in question was established
by Donoho [5], not only for the ε-risk, but for all risks based on the standard loss
functions. We have the following direct corollary of Theorem 3.2 (cf. Theorem 2
and Corollary 1 of [5]):

PROPOSITION 4.1. In the situation in question, the affine estimate ĝε(·)
yielded by Theorem 3.2 is asymptotically (ε → +0) optimal, specifically,

ε ∈ (0,1/2) ⇒ Risk(ĝε; ε) ≤ ψ(ε)Risk∗(ε),

ψ(ε) =
√

2 ln(2/ε)

ErfInv(ε)
= 1 + o(1) as ε → +0

[here x = ErfInv(y) stands for the inverse error function, i.e., y = 1√
2π

×∫ ∞
x e−t2/2 dt].

PROOF. Let G(·) be the density of the N (0, IL) distribution. By Theorem 3.2,
we have Risk(ĝε; ε) ≤ �∗(ln(2/ε)), where, for r > 0,

2�∗(r) = max
x,y∈X

�r(x, y),

�r(x, y) = inf
φ∈RL,α>0

{
gT x − gT y

+ α

[
ln

(∫
exp{−α−1φT ω}G(ω − Ax)dω

)
+ ln

(∫
exp{α−1φT ω}G(ω − Ay)dω

)
+ 2r

]}
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= inf
φ∈RL,α>0

{
gT x − gT y + φT A(y − x) + 2

[
α−1 φT φ

2
+ αr

]}
= inf

φ

{
gT x − gT y + φT A(x − y) + 2

√
2r‖φ‖2

}
=

{
gT x − gT y, ‖A(x − y)‖2 ≤ 2

√
2r ,

−∞, ‖A(x − y)‖2 > 2
√

2r .

Thus,

Risk(ĝε; ε) ≤ �∗
(
ln(2/ε)

) = 1
2 [gT x̄ − gT ȳ](4.2)

for certain x̄, ȳ ∈ X with ‖A(x − y)‖2 ≤ 2
√

2 ln(2/ε). It remains to prove that

Risk∗(ε) ≥ ψ−1(ε)1
2�∗

(
ln(2/ε)

)
.(4.3)

To this end, assume, on the contrary to what should be proved, that

Risk∗(ε) < ψ−1(ε)�∗
(
ln(2/ε)

) (= ψ−1(ε)1
2 [gT x̄ − gT ȳ]),

and let us lead this assumption to a contradiction. Under our assumption, there
exists ρ < ψ−1(ε)1

2 [gT x̄ − gT ȳ], ε′ < ε and an estimate g̃ such that

∀(x ∈ X): Prob{|g̃(Ax + ξ) − gT x| ≥ ρ} ≤ ε′.(4.4)

Observing that ψ(ε) > 1, we see that 2ρ < [gT x̄ − gT ȳ]. Let x̂ = x̄ and ŷ be
a convex combination of x̄ and ȳ such that 2ρ = [gT x̂ − gT ŷ]. Note that

‖A(x̂ − ŷ)‖2 =
[

2ρ

[gT x̄ − gT ȳ]
]

︸ ︷︷ ︸
<ψ−1(ε)

‖A(x̄ − ȳ)‖2 ≤ ψ−1(ε)2
√

2 ln(2/ε) = 2 erfinv(ε).

Now, let �1 be the hypothesis that the distribution of an observation (4.1) comes
from x = x̂, and let �2 be the hypothesis that this distribution comes from x = ŷ.
From (4.4) by the same standard argument as in the proof of Lemma 3.2, it follows
that there exists a routine, based on a single observation (4.1), for distinguishing
between �1 and �2, which rejects �i when this hypothesis is true with probability
≤ε′, i = 1,2. But, it is well known that the hypotheses on shifts of the standard
Gaussian distribution indeed can be distinguished with the outlined reliability. This
is possible if and only if the Euclidean distance between the corresponding shifts
is at least 2 erfinv(ε′). This condition is not satisfied for our �i , i = 1,2, which
correspond to shifts Ax̂ and Aŷ, since ‖Ax̂ − Aŷ‖2 ≤ 2 erfinv(ε) < 2 erfinv(ε).
We have arrived at a desired contradiction. �

In fact, the reasoning can be slightly simplified and strengthened to yield the
following result.
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PROPOSITION 4.2. In the situation of Proposition 4.1, one can build effi-
ciently an affine estimate ĝε , such that

0 < ε < 1/2 ⇒ Risk(ĝε; ε) ≤ ErfInv(ε/2)

ErfInv(ε)
Risk∗(ε)

[cf. Proposition 4.1, and note that ErfInv(ε/2)
ErfInv(ε)

<
√

2 ln(2/ε)
ErfInv(ε)

].
PROOF. Let

�(x, y;φ) = gT x −gT y +φT A(y −x)+2 erfinv(ε/2)‖φ‖2 : (X×X)×R
L → R.

� clearly is a function which is continuous, convex in φ and concave in (x, y)

on its domain; by the same argument as in the proof of Theorem 3.1, � has a
well-defined saddle point value

2�∗(ε) = inf
φ

�(φ)︷ ︸︸ ︷
max
x,y∈X

�(x, y;φ) = max
x,y∈X

�(x,y)︷ ︸︸ ︷
inf
φ

�(x, y;φ) .

The function

�(φ) = max
x,y∈X

[gT x −gT y +φT (Ay −Ax)]+2 erfinv(ε/2)‖φ‖2 ≥ 2 erfinv(ε)‖φ‖2

is a finite convex function on R
L, which goes to ∞ as ‖φ‖2 → ∞, and therefore

it attains its minimum at a point φ∗, so that

2�∗(ε) = �(φ∗).
Setting

c∗ = 1

2

[
max
x∈X

[gT x − φT∗ Ax] − max
y∈Y

[−gT y + φT∗ Ay]
]
,

we have, similar to the proof of Lemma 3.1, the following:

(a) max
x∈X

[gT x − φT∗ Ax − c∗] + erfinv(ε/2)‖φ∗‖2 = �∗(ε),

(b) max
y∈X

[−gT y + φT∗ Ax + c∗] + erfinv(ε/2)‖φ∗‖2 = �∗(ε).

Now, consider the affine estimate

ĝε(ω) = φT∗ ω + c∗.
From (a) it follows that

∀d > �∗(ε): sup
x∈X

Prob{gT x − ĝε(Ax + ξ) > d} ≤ ε′ < ε/2,

while (b) implies that

∀d > �∗(ε): sup
y∈X

Prob{ĝε(Ay + ξ) − gT y > d} ≤ ε′ < ε/2.
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We conclude that Risk(ĝε; ε) ≤ �∗(ε). To complete the proof, it suffices to demon-
strate that

Risk∗(ε) ≤ ErfInv(ε/2)

ErfInv(ε)
�∗(ε).(4.5)

To this end, observe that

�(x, y) = [gT x − gT y] + inf
φ

{φT A(y − x) + 2 erfinv(ε/2)‖φ‖2}

=
{

gT x − gT y, ‖A(y − x)‖2 ≤ 2 erfinv(ε/2),
−∞, otherwise,

whence

Risk∗(ĝε; ε) ≤ �∗(ε) = 1
2 [gT x̄ − gT ȳ],

for certain x̄, ȳ ∈ X, such that ‖A(x̄ − ȳ)‖2 ≤ 2 erfinv(ε). Relation (4.5) can be
derived from this observation by exactly the same argument as used in the proof of
Proposition 4.1 to derive (4.3) from (4.2). �

5. Adaptive version of the estimate. In the situation of Problem I, let X1 ⊂
X2 ⊂ · · · ⊂ XK be a nested collection of nonempty convex compact sets in R

n,
such that A(XK) ⊂ M. Consider a modification of the problem where the signal x

underlying our observation is known to belong to one of Xk with value of k ≤ K

unknown in advance. Given a linear form gT z on R
n, let Riskk(ĝ; ε) and Riskk∗(ε)

be, respectively, the ε-risk of an estimate ĝ on Xk and the minimax optimal ε-risk
of recovering gT x on Xk . Let also �k∗(r) be the function associated with X = Xk

according to (3.1). As it is immediately seen, the functions �k∗(r) grow with k.
Our goal is to modify the estimate ĝ yielded by Theorem 3.1 in such a way that the
ε-risk of the modified estimate on Xk will be “nearly” Riskk∗(ε) for every k ≤ K .
This goal can be achieved by a straightforward application of the well-known Lep-
skii’s adaptation scheme [19, 20] as follows.

Given δ > 0, let δ′ ∈ (0, δ), and let ĝk(·) be the affine estimate with the (ε/K)-
risk on Xk not exceeding �k∗(ln(2K/ε)) + δ′ provided by Theorem 3.1 as applied
with ε/K substituted for ε and Xk substituted for X. Then, for any k ≤ K ,

sup
x∈Xk

Probω∼pA(x)(·)
{|ĝk(ω) − gT x| > �k∗

(
ln(2K/ε)

) + δ
}

(5.1)
≤ ε′/K < ε/K.

Given observation ω, let us say that an index k ≤ K is ω-good, if for any k′, k ≤
k′ ≤ K ,

|ĝk′
(ω) − ĝk(ω)| ≤ �k∗

(
ln(2K/ε)

) + �k′
∗

(
ln(2K/ε)

) + 2δ.

Note that ω-good indexes do exist (e.g., k = K). Given ω, we can find the smallest
ω-good index k = k(ω); our estimate is nothing but ĝ(ω) = ĝk(ω)(ω).
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PROPOSITION 5.1. Assume that ε ∈ (0,1/4), and let

ϑ = 3
ln(2K/ε)

ln(2/ε)
.

Then, for any (k,1 ≤ k ≤ K),

sup
x∈Xk

Probω∼pA(x)(·)
{|ĝ(ω) − gT x| > ϑ�k∗

(
ln(2K/ε)

) + 3δ
}
< ε,(5.2)

whence also

∀(k,1 ≤ k ≤ K): Riskk(ĝ; ε) ≤ 6 ln((2K)/ε)

ln(1/(4ε))
Riskk∗(ε) + 3δ.(5.3)

PROOF. Setting r = ln(2K/ε), let us fix k̄ ≤ K and x ∈ Xk̄ and call a realiza-
tion ω x-good, if

∀(k, k̄ ≤ k ≤ K): |ĝk(ω) − gT x| ≤ �k∗(r) + δ.(5.4)

Since Xk ⊃ Xk̄ when k ≥ k̄, (5.1) implies that

Probω∼pA(x)(·){ω is good} ≥ 1 − ε′.

Now, when x is the signal and ω is x-good, relations (5.4) imply that k̄ is an ω-good
index, so that k(ω) ≤ k̄. Since k(ω) is an ω-good index, we have

|ĝ(ω) − ĝk̄(ω)| = ∣∣ĝk(ω)(ω) − ĝk̄(ω)
∣∣ ≤ �k∗(r) + �k̄∗(r) + 2δ,

which combines with (5.4) to imply that

|ĝ(ω) − gT x| ≤ 2�k̄∗(r) + �k(ω)∗ (r) + 3δ ≤ 3�k̄∗(r) + 3δ,(5.5)

where the concluding inequality is due to k(ω) ≤ k̄ and to the fact that �k∗ grows
with k. The bound (5.5) holds true whenever ω is x-good, which, as we have
seen, happens with probability ≥ 1 − ε′. Since ε′ < ε and x̄ ∈ Xk̄ is arbitrary, we
conclude that

Riskk̄(ĝ; ε) ≤ 3�k̄∗(r) + 3δ.(5.6)

Using the nonnegativity and concavity of �k̄∗(·) on the nonnegative ray and recall-
ing the definition of r , we obtain �k∗(r) ≤ ln(2K/ε)

ln(2/ε)
�k∗(ln(2/ε)) whenever ε ≤ 1/2

and K ≥ 1. Recalling the definition of ϑ , the right-hand side in (5.6) therefore does
not exceed ϑ�k̄∗(ln(2/ε)) + 3δ. Since k̄ ≤ K is arbitrary, we have proved (5.2).
This bound, due to Lemma 3.2, implies (5.3). �

Acknowledgments. The authors would like to acknowledge the valuable sug-
gestions made by L. Birgè, Universitè Paris 6, and Alexander Goldenshluger, Haifa
University.



ESTIMATION BY CONVEX PROGRAMMING 2299

REFERENCES

[1] BEN-TAL, A. and NEMIROVSKI, A. (2001). Lectures on Modern Convex Optimization: Analy-
sis, Algorithms and Engineering Applications. SIAM, Philadelphia. MR1857264

[2] BIRGÉ, L. (1984). Sur un théorème de minimax et son application aux tests. (French) Probab.
Math. Statist. 3 259–282. MR0764150

[3] BIRGÉ, L. (1983). Approximation dans les espaces métriques et théorie de l’estimation.
Z. Wahrsch. Verw. Gebiete 65 181–237. MR0722129

[4] CAI, T. and LOW, M. (2003). A note on nonparametric estimation of linear functionals. Ann.
Statist. 31 1140–1153. MR2001645

[5] DONOHO, D. (1995). Statistical estimation and optimal recovery. Ann. Statist. 22 238–270.
MR1272082

[6] DONOHO, D. and LIU, R. (1987). Geometrizing Rates of Convergence. I. Technical Re-
port 137a, Dept. Statistics, Univ. California, Berkeley.

[7] DONOHO, D. and LIU, R. (1991). Geometrizing rates of convergence. II. Ann. Statist. 19 633–
667. MR1105839

[8] DONOHO, D., LIU, R. and MACGIBBON, B. (1990). Minimax risk over hyperrectangles, and
implications. Ann. Statist. 18 1416–1437. MR1062717

[9] DONOHO, D. and LOW, M. (1992). Renormalization exponents and optimal pointwise rates of
convergence. Ann. Statist. 20 944–970. MR1165601

[10] EUBANK, R. (1988). Spline Smoothing and Nonparametric Regression. Dekker, New York.
MR0934016

[11] GOLDENSHLUGER, A. and NEMIROVSKI, A. (1997). On spatially adaptive estimation of non-
parametric regression. Math. Methods Statist. 6 135–170. MR1466625

[12] HÄRDLE, W. (1990). Applied Nonparametric Regression. ES Monograph Series 19. Cambridge
Univ. Press, Cambridge, UK. MR1161622

[13] HÄRDLE, W., KERKYACHARIAN, G., PICARD, D. and TSYBAKOV, A. B. (1998). Wavelets,
Approximation and Statistical Applications. Lecture Notes in Statistics 129. Springer,
New York. MR1618204

[14] HIRIART-URRUTY, J. B. and LEMARECHAL, C. (1993). Convex Analysis and Minimization
Algorithms I: Fundamentals. Springer, Berlin.

[15] IBRAGIMOV, I. A. and KHASMINSKI, R. Z. (1981). Statistical Estimation: Asymptotic Theory.
Springer, New York. MR0620321

[16] IBRAGIMOV, I. A. and KHAS’MINSKIJ, R. Z. (1984). On the nonparametric estimation of a
value of a linear functional in Gaussian white noise. Teor. Veroyatnost. i Primenen. 29
19–32. (Russian. English summary.) MR0739497

[17] KLEMELA, J. and TSYBAKOV, A. B. (2001). Sharp adaptive estimation of linear functionals.
Ann. Statist. 29 1567–1600. MR1891739

[18] KOROSTELEV, A. and TSYBAKOV, A. (1993). Minimax Theory of Image Reconstruction. Lec-
ture Notes in Statistics 82. Springer, New York. MR1226450

[19] LEPSKII, O. (1990). On a problem of adaptive estimation in Gaussian white noise. Teor. Veroy-
atnost. i Primenen. 35 454–466. MR1091202

[20] LEPSKII, O. (1991). Asymptotically minimax adaptive estimation I. Upper bounds. Optimally
adaptive estimates. Teor. Veroyatnost. i Primenen. 36 682–697. MR1147167

[21] NEMIROVSKI, A. (2000). Topics in Nonparametric Statistics. In Ecole d’Eteé de Probabilités
de Saint-Flour XXVII (M. Emery, A. Nemirovski, D. Voiculescu and P. Bernard, eds.).
Lecture Notes in Mathematics 1738 87–285. Springer, New York.

[22] PINSKER, M. (1980). Optimal filtration of square-integrable signals in Gaussian noise. Prob-
lemy Peredachi Informatsii 16 120–133. MR0624591

[23] PRAKASA RAO, B. L. S. (1983). Nonparametric Functional Estimation. Academic Press, Or-
lando. MR0740865

http://www.ams.org/mathscinet-getitem?mr=1857264
http://www.ams.org/mathscinet-getitem?mr=0764150
http://www.ams.org/mathscinet-getitem?mr=0722129
http://www.ams.org/mathscinet-getitem?mr=2001645
http://www.ams.org/mathscinet-getitem?mr=1272082
http://www.ams.org/mathscinet-getitem?mr=1105839
http://www.ams.org/mathscinet-getitem?mr=1062717
http://www.ams.org/mathscinet-getitem?mr=1165601
http://www.ams.org/mathscinet-getitem?mr=0934016
http://www.ams.org/mathscinet-getitem?mr=1466625
http://www.ams.org/mathscinet-getitem?mr=1161622
http://www.ams.org/mathscinet-getitem?mr=1618204
http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=0739497
http://www.ams.org/mathscinet-getitem?mr=1891739
http://www.ams.org/mathscinet-getitem?mr=1226450
http://www.ams.org/mathscinet-getitem?mr=1091202
http://www.ams.org/mathscinet-getitem?mr=1147167
http://www.ams.org/mathscinet-getitem?mr=0624591
http://www.ams.org/mathscinet-getitem?mr=0740865


2300 A. B. JUDITSKY AND A. S. NEMIROVSKI

[24] ROSENBLATT, M. (1991). Stochastic Curve Estimation. Institute of Mathematical Statistics,
Hayward, CA.

[25] SIMONOFF, J. S. (1996). Smoothing Methods in Statistics. Springer, New York. MR1391963
[26] TAKEZAWA, K. (2005). Introduction to Nonparametric Regression. Wiley, Hoboken, NJ.

MR2181216
[27] TSYBAKOV, A. B. (2004). Introduction a l’Estimation Nonparamétrique. Springer, Berlin.

MR2013911
[28] WASSERMAN, L. (2006). All of Nonparametric Statistics. Springer, New York. MR2172729

LABORATOIRE JEAN KUNTZMANN

UNIVERSITÉ GRENOBLE I
51 RUE DES MATHÉMATIQUES

BP 53
38041 GRENOBLE CEDEX 9
FRANCE

E-MAIL: juditsky@imag.fr

SCHOOL OF INDUSTRIAL

AND SYSTEMS ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY

765 FERST DRIVE

ATLANTA, GEORGIA 30332-0205
USA
E-MAIL: nemirovs@isye.gatech.edu

http://www.ams.org/mathscinet-getitem?mr=1391963
http://www.ams.org/mathscinet-getitem?mr=2181216
http://www.ams.org/mathscinet-getitem?mr=2013911
http://www.ams.org/mathscinet-getitem?mr=2172729
mailto:juditsky@imag.fr
mailto:nemirovs@isye.gatech.edu

	Introduction
	Problem statement
	Good parametric families of distributions
	The problem

	Minimax optimal affine estimators
	Main result
	The case of multiple observations
	Illustration


	Applications
	Positron emission tomography
	Gaussian observations

	Adaptive version of the estimate
	Acknowledgments
	References
	Author's Addresses

